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ABSTRACT 
 

Automating Mini-Ontology Generation from Canonical Tables 

 

Stephen Lynn 

Department of Computer Science 

Master of Science 

 

 

In this thesis work we develop and test MOGO (a Mini-Ontology GeneratOr.)  MOGO 

automates the generation of mini-ontologies from canonicalized tables of data.  This will help 

anyone trying to organize large amounts of existing data into a more searchable and accessible 

form.  By using a number of different heuristic rules for selecting, enhancing, and modifying 

ontology elements, MOGO allows users to automatically, semi-automatically, or manually 

generate conceptual mini-ontologies from canonicalized tables of data.  Ideally, MOGO operates 

fully automatically while allowing users to intervene to direct and correct when necessary so that 

they can always satisfactorily complete the translation of canonicalized tables into mini-

ontologies.  Experimental results show that MOGO is able to automatically identify the concepts, 

relationships, and constraints that exist in arbitrary tables of values with a relatively high level of 

accuracy.  This automation significantly reduces the work required to translate canonicalized 

tables into mini-ontologies.  
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CHAPTER 1: INTRODUCTION 

 From libraries filled with millions of books to the Internet accessible to anyone 

with a web browser, the amount of information available in the world is growing 

exponentially.  With this information explosion comes new challenges in organizing and 

finding information that is relevant to a user’s needs.  Most of the available information 

does not follow any consistent format or structure, making it difficult to extract in a way 

that supports queries beyond common keyword searching.  One possible solution to this 

problem is structuring the information on the Internet into standardized ontologies which 

represent the inherent concepts, relationships, and constraints found in the information.  

Exposing the information in an ontological model enables an entire new class of search 

algorithms allowing queries to be expressed more completely and more explicitly, well 

beyond anything currently available in today’s standard keyword searches. 

Few use ontology-based representations to organize information on the Internet 

because creating an ontology takes too much time and effort and requires a high degree 

of expertise.  TANGO [21] is a project which will reduce the time, effort, and degree of 

expertise needed by automating the process of creating an ontology from the concepts, 

relationships, and constraints found in sets of tabular data.  As the second component of 

the overall TANGO project, MOGO (a Mini-Ontology GeneratOr) develops and 

implements the necessary algorithms and user interfaces for automatically, semi-

automatically, or manually generating mini-ontologies from canonicalized tables of data. 

(The first component of the TANGO project interprets raw tables found on the web and 

elsewhere and reorganizes them as canonical tables.  The third component merges a set of 
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mini-ontologies into a large ontology representing a body of knowledge that is usable as a 

means of organizing information on the Internet.) 

Region and State Information
Location Population (2000) Latitude Longitude 
Northeast 2,122,869
    Delaware 817,376 45 -90 
    Maine 1,305,493 44 -93 
Northwest 9,690,665
    Oregon 3,559,547 45 -120 
    Washington 6,131,118 43 -120 

Figure 1.  Sample Table. 

Given a table like the one in Figure 1, MOGO generates a conceptual model 

(mini-ontology) that accurately represents the table of data by iterating through a set of 

heuristics.  Each heuristic deals with one of three main tasks: concept recognition, 

relationship discovery, or constraint discovery.  During each step of the process, MOGO 

populates the conceptual model with the data in the original table.  Figure 2 shows the 

conceptual model (mini-ontology) MOGO generates from the table in Figure 1.  The four 

states in Figure 1 are members of the State object set in Figure 2.  The two regions are in 

the Region object set.  Together the regions and states constitute the elements of the 

Location object set.  The states aggregated together constitute the different regions.  The 

values in the population, latitude, and longitude columns of the table in Figure 1 are 

members of the Population, Latitude, and Longitude object sets respectively.  Latitude 

and longitude values aggregated together constitute the Geographic Coordinate object 

set.  For each location there are associated populations and geographic coordinates.   
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Figure 2. Sample mini-ontology, produced by MOGO for the table in Figure 1. 

Our contribution is a tool, called MOGO, that accurately generates mini-

ontologies from canonicalized tables of data automatically, semi-automatically, or 

manually.  This tool is unique in that it combines both spatial and linguistic clues for 

generating the conceptual model, and it is easily extensible, allowing the addition of new 

algorithms at run time without the need for program recompilation. 

The remainder of this thesis contains an overview of previous work and how it 

relates to this project.  After that, we provide a detailed implementation description 

including an architectural overview, as well as detailed explanations of each of the 

heuristics MOGO uses to generate conceptual models.  We conduct an evaluation study 

of MOGO on a set of randomly chosen tables and present precision and recall results in 

the areas of concept/value recognition, relationship discovery, and constraint discovery. 
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CHAPTER 2: RELATED WORK 

 Automating the creation of ontologies has become a widely researched area over 

the past few years, and researchers from many different backgrounds have contributed a 

variety of solutions.  A common approach in the area of natural language processing 

(NLP) attempts to “learn” ontologies by finding the terms, concepts, relations, and 

concept hierarchies existing in large collections of unstructured text documents.  The lack 

of structure and appropriate metadata in these documents has so far made these 

approaches less than accurate, thus requiring significant human post-processing before 

the results can actually be used [5].  These approaches rely on a variety of methods to 

identify concepts in free form text documents including: word co-occurrence [9], formal 

concept analysis [23] for extracting concept hierarchies [6], and even fuzzy logic 

principles [20]. These methods often result in concept recognition but do little by way of 

understanding the relationships and constraints between these concepts.  Our approach 

differs from typical NLP approaches by using tabular data as the source information.  

Using tabular data is useful in the creation of ontologies because the data has been 

structured by humans into a form representing the relationships found in the data.  This 

structure makes the automatic discovery of relationship information much more effective 

than algorithms based solely on unstructured text documents. 

Some researchers in the area of reverse engineering have worked on the problem 

of automatic generation of ontologies.  Benslimane et al. [2] focus on generating OWL 

ontologies using HTML web forms in conjunction with the database schema associated 

with the forms.  While this method shows promise, their approach differs from ours in 

that it relies on access to an underlying database schema and is based on web forms rather 
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than tables.  Significant work has been done over the years on reverse engineering 

databases into conceptual models [1, 4, 7, 13, 15, 17, 19].  This work has focused on 

using an existing database schema and deriving the concepts, relationships, and 

constraints from the information implicit in the schema.  While these projects have an 

output goal similar to MOGO (generating conceptual models), the input data is 

drastically different in that a database schema is a highly formalized structure which 

significantly increases the predictability of the data.  In the case of MOGO, tables can 

have an arbitrary number of dimensions (unlike databases schemas which deal 

exclusively with tables having only column headers), and for MOGO there are no 

guarantees about the uniformity of table data values. 

Pivk et al. [18] have approached automatic ontology creation in a manner similar 

to MOGO.  Their approach (implemented as a system called TARTAR) uses tabular data 

as the input in the same way MOGO does, with the eventual output being an ontology 

representation using F-Logic frames.  F-Logic frames have their roots in object-oriented 

program modeling and constitute a formal way to represent object identity, complex 

objects, inheritance, polymorphic types, query methods, and encapsulation [16].  

TARTAR focuses primarily on using statistical methods for string recognition and 

grouping to discover concepts and relationships in a table.  Our approach makes use of 

some similar pattern matching heuristics but also includes a strong emphasis on heuristics 

employing linguistic clues to discover concepts, relationships, and constraints in a table. 
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CHAPTER 3: MINI-ONTOLOGY GENERATION 

 MOGO takes as input canonicalized tables of data based on Wang notation [22].  

This notation preserves the labels found in the source table as well as their associated 

data values.  The notation organizes label information in simple data structures called 

dimensions.  Each dimension corresponds to a different axis of the table similar to the 

different axes of a multi-dimensional array.  Combining these dimensions allows every 

data cell to be referenced using an element from each dimension.  Because Wang 

notation can represent any set of tabular data independent of layout, MOGO is agnostic to 

the data’s original form. 

 To further enhance MOGO’s ability to produce a useful mini-ontology, we 

enhance standard Wang notation so information beyond row and column labels and data 

values is preserved in a canonicalized form.  These enhancements include the 

identification of a table’s title, caption, and footnotes as well as row, column, and value 

augmentations such as units of measure.  For practical reasons we also keep track of the 

original source URL of the document. 

 Based on the canonicalized input data, MOGO tries to produce a mini-ontology 

that conforms to the OSM data modeling language [12]. OSM provides a standard way of 

representing concepts, relationships, and constraints.  Thus the input to MOGO is a 

canonicalized table in an XML document, and the output of MOGO is a conceptual 

model in OSM.  MOGO uses the following basic steps to automatically generate a mini-

ontology: 
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1. Concept/Value Recognition:  MOGO extracts the set of concepts found in each of 
the dimensions, and associates the table’s data values with the appropriate 
concepts. 

2. Relationship Discovery:  MOGO adds relationship information to the concepts 
using structural and linguistic clues. 

3. Constraint Discovery:  MOGO adds constraint information to the mini-ontology 
by examining the table’s data values. 

 

MOGO performs all of these steps automatically and allows the user to: accept the mini-

ontology without review, make adjustments to the mini-ontology, or manually rebuild the 

mini-ontology. 

 To illustrate how MOGO works, we use the table of geopolitical data in Figure 1 

as an example.  We compiled a small amount of data from multiple tables to create a 

single sample table that illustrates the various facets of MOGO’s processing abilities.  

Figure 3 shows the sample table in Figure 1 in canonicalized form in an XML document.  

The input XML must validate against an XML-Schema specification previously 

developed by others as part of the TANGO project.  The Table tag contains a number of 

attributes useful to the overall TANGO project for uniquely identifying different tables.  

It also contains a title attribute which contains the table’s title if there is one.  Each 

element in the XML document has an object identifier (OID) for uniquely identifying the 

different nodes.  CategoryNodes contain all of the labels found in the table.  The 

CategoryParentNodes section captures the tree structure of the labels in each dimension.  

The DataCells section contains all of the data values in the table as well as references 

back to the labels that give the values a meaningful context.  The final section, 

Augmentations, describes all of the augmentations found in the table which can include 

row, column, data, or table augmentations such as footnotes, values in labels (like the 

value 2000 in Figure 1), and units of measure.  MOGO uses JAXB 2.0, an XML binding 
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framework available as part of Java 6, to read and validate canonicalized XML input and 

convert that input into simple Java objects. 

 Figure 4 shows a graphical representation of the canonicalized table in Figure 3.  

Each dimension of the table forms a tree structure with the depth of the tree determined 

by how many levels of label nesting exist in the dimension.  The second dimension in the 

canonicalized table has no label value so a placeholder label of “[Dimension2]” is used.  

Each label in the dimension represents a node in the tree and connects to other tree nodes 

using a solid black line.  Data values, at the bottom of the figure, connect to one node 

from each dimension using a dashed line.  The dotted line connecting the “Population” 

node and the value “2000” indicates that the “2000” is an augmentation of the 

“Population” node.  The title of the table is also captured and marked as such. 

3.1 Auxiliary Services 

 Many of MOGO’s algorithms rely on access to a base set of common services.  

These services provide access to basic lexical information and data frame classification 

operations. 

3.1.1 Lexical Service 

 Many of the algorithms MOGO uses require access to external lexical 

information.  Rather than tie the system directly to a specific implementation of some 

lexical resource, MOGO establishes an implementation-independent lexical service 

interface (in the form of a Java interface) to access lexical information.  This Java 

interface defines what operations this service can perform, what parameters are required 

for each operation, and what information will be returned by each operation.   
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<InterpretedTable> 
  <Table TableOID=“Table1” Title=“Region and State Information” Number=“1” DocumentCitation=““> 
    <CategoryNodes> 
      <CategoryNode CategoryNodeOID=“C1” Label=“Location” /> 
      <CategoryNode CategoryNodeOID=“C1.1” Label=“Northeast” /> 
      <CategoryNode CategoryNodeOID=“C1.1.1” Label=“” /> 
      <CategoryNode CategoryNodeOID=“C1.1.2” Label=“Delaware” /> 
      <CategoryNode CategoryNodeOID=“C1.1.3” Label=“Maine” /> 
      <CategoryNode CategoryNodeOID=“C1.2” Label=“Northwest” /> 
      <CategoryNode CategoryNodeOID=“C1.2.1” Label=“” /> 
      <CategoryNode CategoryNodeOID=“C1.2.2” Label=“Oregon” /> 
      <CategoryNode CategoryNodeOID=“C1.2.3” Label=“Washington” /> 
      <CategoryNode CategoryNodeOID=“C2” Label=“” /> 
      <CategoryNode CategoryNodeOID=“C2.1” Label=“Population” /> 
      <CategoryNode CategoryNodeOID=“C2.2” Label=“Latitude” /> 
      <CategoryNode CategoryNodeOID=“C2.3” Label=“Longitude” /> 
    </CategoryNodes> 
  </Table> 
  <CategoryParentNodes> 
    <CategoryParentNode CategoryParentNodeOID=“C1”> 
      <CategoryNodes> 
        <CategoryNode CategoryNodeOID=“C1.1” /> 
        <CategoryNode CategoryNodeOID=“C1.2” /> 
      </CategoryNodes> 
    </CategoryParentNode> 
    <CategoryParentNode CategoryParentNodeOID=“C2”> 
      <CategoryNodes> 
        <CategoryNode CategoryNodeOID=“C2.1” /> 
        <CategoryNode CategoryNodeOID=“C2.2” /> 
        <CategoryNode CategoryNodeOID=“C2.3” /> 
      </CategoryNodes> 
    </CategoryParentNode> 
    <CategoryParentNode CategoryParentNodeOID=“C1.1”> 
        <CategoryNodes> 
            <CategoryNode CategoryNodeOID=“C1.1.1”/> 
            <CategoryNode CategoryNodeOID=“C1.1.2”/> 
            <CategoryNode CategoryNodeOID=“C1.1.3”/> 
        </CategoryNodes> 
    </CategoryParentNode> 
      .   .    . 
  </CategoryParentNodes> 
  <DataCells> 
    <DataCell DataCellOID=“D1” DataValue=“2,122,869”> 
      <CategoryLeafNode CategoryLeafNodeOID=“C1.1.1” /> 
      <CategoryLeafNode CategoryLeafNodeOID=“C2.1” /> 
    </DataCell> 
    <DataCell DataCellOID=“D2” DataValue=““> 
      <CategoryLeafNode CategoryLeafNodeOID=“C1.1.1” /> 
      <CategoryLeafNode CategoryLeafNodeOID=“C2.2” /> 
    </DataCell> 
    <DataCell DataCellOID=“D4” DataValue=“817,376”> 
      <CategoryLeafNode CategoryLeafNodeOID=“C1.1.2” /> 
      <CategoryLeafNode CategoryLeafNodeOID=“C2.1” /> 
    </DataCell> 
      .   .    . 
  </DataCells> 
  <Augmentations> 
    <Augmentation Augmentation=“2000” AugmentationType=”value”> 
      <CategoryNodes> 
        <CategoryNode CategoryNodeOID=“C2.1” /> 
      </CategoryNodes> 
    </Augmentation> 
  </Augmentations> 
</InterpretedTable> 

Figure 3. XML version of canonicalized table. 
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Figure 4. Graphical view of canonicalized sample table. 

Supported operations include term normalization, and testing whether one word is a 

hypernym, hyponym, meronym, or holonym of another word.  Because all access to 

lexical information in MOGO is done through this interface, the user can modify, 

augment, or replace the underlying lexical service implementation without requiring 

source code changes to MOGO’s various heuristic procedures. 

In this implementation, MOGO uses WordNet, an electronic lexical database [14], 

for accessing lexical information.  WordNet provides a number of freely available APIs 

enabling programmatic access to the underlying lexical repository.  MOGO uses the Java 

API for WordNet Searching (JAWS) as its API for accessing WordNet resources.  

Because JAWS does not provide a mechanism for looking up a word’s inherited 

hypernym list directly, MOGO’s lexical service implementation builds these lists by 

looking up a word in WordNet and then recursively looking up each of the hypernyms of 

all senses of that word until a word with no hypernyms is reached.  Similar operations are 

available for looking up a word’s inherited hyponym and holonym lists. 
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 To help increase the accuracy of lexical operations, MOGO’s lexical service 

provides a term normalization routine.  When doing term comparisons, it is important 

that the operations are performed using a unified lexicon so that matches can be correctly 

identified.  MOGO normalizes all terms by looking terms up in WordNet and capturing 

all the associated word forms.  Comparison operations involve looking for an exact match 

in at least one word form of a normalized term.  For example, when the lexical service 

normalizes the term “Iowa”, WordNet returns the word forms: “Iowa”, “Ioway”, 

“Hawkeye State”, and “IA”.  For term comparisons, these different word forms are all 

treated as equivalent and an exact match with any one of them will return a valid match 

for the entire normalized term. 

3.1.2 Data Frame Library Service 

 Another service that MOGO uses is the data frame library service.  Data frames 

provide a mechanism for recognizing different types of objects from strings of data using 

regular expression recognizers [10].  MOGO’s data frame library service takes a string as 

input, iterates over a collection of data frame recognizers attempting to classify the string, 

and returns the data frame (and the associated ontology fragment) that matches that 

string.  Each ontology fragment associated with a data frame contains one or more 

concepts, zero or more relationship sets, and zero or more constraints.  In every case, one 

concept in the fragment is marked as the primary concept for the fragment.  This primary 

concept serves as the connection point for MOGO’s data frame related algorithms. 

 To illustrate how this works, suppose the string ’12-08-2007’ needs to be 

classified.  MOGO’s data frame service takes the string and loops through each of the 

data frame recognizers looking for a match.  In this case the Date data frame recognizes 

11 
 



dates in the form MM-DD-YYYY and will successfully match the search string.  The 

data frame service returns the specific object set (concept) on which the search terms 

match, as well as a reference to the entire ontology fragment associated with this data 

frame. 

3.1.3 Name Finding Service 

 The final general service MOGO provides is a name finding service available at 

each step of the process for assigning names to unnamed concepts.  Titles, footnotes, 

captions and augmentations can contain words which are helpful for naming unnamed 

concepts.  The combined set of words from these sources forms a pool of possible 

concept names.  Given an unnamed concept, MOGO uses the lexical service to retrieve 

the inherited hypernym list of each value assigned to a concept, compares the list with 

each of the words in the naming pool, and assigns the concept a name if one of the words 

in the pool is a direct match to a word in the hypernym list.  If the name finding service 

does not find any matches to words in the pool then MOGO attempts to identify an 

appropriate label by looking for the first common word in the inherited hypernym lists of 

each of the concept’s first ten data values.  If a common word is found, MOGO assigns 

that word as the concept’s name. 

3.2 Concept/Value Recognition  

 MOGO extracts concepts from a canonicalized table using a set of concept 

recognition algorithms and assigns the appropriate data values to those concepts.  Each 

concept recognition algorithm conforms to a standard interface making it easy to augment 

MOGO with additional heuristic algorithms.  MOGO implements six concept recognition 
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algorithms.  We execute each of the algorithms until each table label and table data value 

of the canonicalized table (Figure 2) is recognized as either a concept or a value for a 

concept.  Each algorithm classifies the table labels and table data values it recognizes, 

and subsequent algorithms only evaluate unclassified labels and values until all labels and 

values have been classified, at which point MOGO skips any subsequent algorithms. 

 Table labels can either be concepts or data values for a concept.  In Figure 1, the 

label Delaware is a data value for the concept State and Northwest is a data value for the 

concept Region, but the label Population is a concept containing population values.  

Unlike table labels, table data values are always data values for a concept. 

 A concept is synonymous with an object set in the OSM data modeling language.  

According to OSM an object set identifies a group of objects or values [12].  Object sets, 

either lexical or non-lexical, are the ontological elements representing the different 

concepts found in a table.  A lexical object set is one whose members are printable and 

represent themselves (e.g., telephone numbers, names of companies).  In OSM a lexical 

object set is visually represented by a box with a dashed border.  A non-lexical object 

set’s members are object identifiers that are non-printable (e.g., identifiers that stand for 

persons or companies).  In OSM a non-lexical object set is visually represented by a box 

with a solid border. 

 The first concept recognition algorithm uses lexical clues to determine to which 

dimension labels the table’s data values belong.  MOGO uses its lexical service to 

compare each data value to its corresponding dimension labels.  A data value is said to 

“belong” to a label if the data value is a hyponym of at least one of the label’s senses, and 

is not a hyponym of any other dimension label associated with that data value.  If the 
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majority of the data values “belong” to an associated label, MOGO flags the label as a 

potential object set.  After evaluating all the dimension labels, if all the labels MOGO 

flags belong to the same dimension then it marks all of the labels in that dimension as 

lexical object sets and associates the corresponding data values with those object sets.  

Otherwise, MOGO clears the flags and proceeds to the next algorithm. 

 The first concept recognition algorithm fails to discover any concepts for the table 

in Figure 1 because all the data values in the table are numbers and there is no way to 

determine, using only lexical clues, if those numbers belong to their associated labels.  

This algorithm does succeed, however, for the sample table in Figure 5.  Figure 6 shows 

the object sets the algorithm creates out of each set of data values in the table.  MOGO 

examines each table value to see if that value belongs to the dimension label associated 

with the value.  In the case of the first column, the label “City” is found to be a hypernym 

of the table values “Salt Lake City” and “Provo”, so MOGO flags the label “City” as a 

potential object set.   Similarly, the label “State” is found to be a hypernym of the value 

“Utah”, so MOGO flags “State” as a potential object set as well.  Because all of the 

flagged labels are from the same dimension, MOGO creates an object set for each of the 

flagged labels and assigns the associated table values to the appropriate object set. 

City State 
Salt Lake City Utah 
Los Angeles California 

San Francisco California 
Figure 5. Sample table where values "belong" to their labels.  

Figure 6. Object sets with values. 

 The second concept recognition algorithm also uses the lexical service, but in this 

case the objective is to determine if a label is an instance of its parent label.  Each 
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dimension has one label referred to as the root label.  Below that, a dimension can contain 

several levels of label nesting. Beginning with the labels directly under the dimension’s 

root label, MOGO uses its lexical service to look up each unmarked label in a dimension 

and retrieve that label’s list of inherited hypernyms.  A label is said to be an instance of 

its parent label if either the parent label, or the name of the object set the parent label is 

assigned to, is found in the label’s inherited hypernym list.  If the majority of the labels at 

one level of label nesting are instances of that level’s parent label, MOGO marks all the 

labels at that level as values, creates an unnamed lexical object set, and assigns the values 

to the object set.  MOGO evaluates each succeeding level of label nesting in like manner 

until the leaf labels have been evaluated.  MOGO uses the name finding service to find an 

appropriate name for any unnamed object sets produced by this algorithm.  In cases 

where labels are found to belong to their parent label and the dimension only contains 

one level of label nesting, MOGO creates a single object set, names that object set using 

the dimension’s root label, and assigns all of the labels of the dimension as values to that 

object set. 

 For the sample table in Figure 1, Figure 7 shows the object sets and associated 

data values the second algorithm creates for each level of label nesting in the “Location” 

dimension.  The inherited hypernym list for each label in the “Location” dimension 

(Northeast, Northwest, Delaware, Maine, etc.) contains the word “Location.”  MOGO 

marks the labels at each level of nesting as values, creates unnamed lexical object sets for 

each level of nesting, and assigns the values from each level to the corresponding object 

set.  The naming service extracts possible names for these object sets from word tokens in 

the title of the table.  The inherited hypernym lists for each of the values assigned to the 
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region object set contain the word “Region” which is also a word that appears in the title 

of the table.  Similarly, each of the inherited hypernym lists for the state values contains 

the word “State” which is also a word in the title of the table.  MOGO finds these 

matches and assigns the names “Region” and “State” to the two unnamed object sets. 

 

Figure 7. Object sets that the second algorithm creates. 

 The third algorithm checks for labels at the same level of nesting that have the 

exact same name.  Tables often contain multiple columns with the same type of 

information.  This is usually manifest in tables that have labels that span multiple 

columns or rows and usually only appears in tables with more than one level of label 

nesting.  Beginning with the labels directly under the dimension’s root label, MOGO 

compares each unmarked label with the other labels at that same level to see if all of the 

labels are exactly the same.  If all the labels at one level of label nesting are the same, 

MOGO creates a named object set using the common name of the source labels, and 

assigns all of the values associated with those labels to the newly created object set.  

MOGO evaluates each succeeding level of label nesting in like manner until the leaf 

labels have been evaluated. 

 The labels in Figure 1 are all different, so this third algorithm does not apply to 

the table in Figure 1.  For the sample table in Figure 8, Figure 10 shows the object sets 

16 
 



the third algorithm creates.  While the label “Number of Deaths” does not appear twice in 

the source table, it does appear twice in the canonicalized version of the table.  Figure 9 

shows how the canonicalization process duplicates the single source label “Number of 

Deaths”.  This replication is an artifact of the canonicalization process encountering 

labels that span multiple columns.  In this case, MOGO recognizes the label duplication, 

merges the duplicate labels into one object set, assigns the common label as the name of 

the object set, and assigns any values associated with the labels to the newly created 

object set. 

  2002  2003 
Province  Number of Deaths 
Quebec  54,896  56,411 
Ontario  83,410  84,155 

Figure 8. Sample table with label column span. 

Province

Quebec Ontario

[Dimension2]

20032002

54,896 84,15556,411

Number of Deaths Number of Deaths

 

Figure 9. Canonicalized version of sample table in Figure 8. 
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Figure 10. Object sets that algorithm three creates. 

 The fourth concept recognition algorithm takes each unmarked dimension label 

and attempts to classify all the data values associated in a row or column with that label 

using MOGO’s data frame service to determine to which dimension labels the table’s 

data values belong.  If all the data values in a row or column have the same type, MOGO 

temporarily associates that type with the dimension label.  After MOGO classifies all the 

labels for a dimension using its data frame service, if there are at least two labels in the 

dimension of different types, MOGO flags all of the labels in the dimension as lexical 

object sets and associates the corresponding data values with the object sets.  Requiring 

two different types avoids misidentifying object sets in a table uniformly populated by 

data of the same type, such as a table full of percentages or of currency values.  

 Using the sample table in Figure 11 as the source table, Figure 12 shows the 

object sets the fourth algorithm creates.  Using the data frame library service, MOGO 

classifies each of the data values found in the source table.  For the sample table in Figure 

11, the values “Tire”, “Transmission”, and “Steering Wheel” all match the car part data 

frame.  The values “$115.60”, “$356.45”, and “$32.34” all match the currency data 

frame.  Because the values in two different columns match two separate data frames, 

MOGO creates object sets for each of the columns, uses the label associated with that 

column to name the object set, and assigns the values associated with those columns to 

the newly created object sets. 
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Car Part Price
Tire $115.60

Transmission $356.45
Steering Wheel $32.34 

Figure 11. Sample table of car parts.  

Figure 12. Object sets the fourth algorithm creates. 

 The fifth concept recognition algorithm tries to identify concepts among sibling 

labels.  MOGO first classifies each unmarked dimension label using its data frame 

service.  For each set of sibling labels that have the same data frame classification, 

MOGO marks the labels as values, creates an object set, names the object set with the 

same name as the matching concept returned by the data frame service, and associates the 

sibling labels with the new object set.  

 For the sample table in Figure 8, MOGO classifies the labels “2002” and “2003” 

as instances of a “Year” object set using the data frame library service.  Because both 

sibling labels are classified as the same type, MOGO creates an object set, uses the name 

of the matching concept to name the object set “Year”, and assigns the labels “2002” and 

“2003” as data values to the newly created object set. 

If the prior algorithms do not successfully mark all items in the canonicalized 

table as object sets or values, MOGO processes the remaining unmarked items based on 

whether or not the dimension’s root has a real label or a placeholder label.  For 

dimensions whose root nodes contain a placeholder labels, MOGO flattens any label 

nesting in the dimensions by prepending parent labels to child labels, removes parent 

labels until there is no more nesting, and marks all of the unmarked labels as lexical 

object sets.  If the data values associated with those labels are currently unassigned, 
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MOGO assigns the data values to the newly created object sets.  For any unmarked labels 

in the remaining dimensions, MOGO groups the labels that are at the same level of 

nesting in each dimension, treats the labels as values, creates unnamed object sets for 

each group of labels, associates the values with the newly created object sets, and uses 

the name finding service to find appropriate names for the object sets.  For any remaining 

data values that are not currently assigned to an object set, MOGO creates a new 

unnamed object set and assigns the values to that object set. 

 Using the sample table in Figure 1 as the source table, Figure 13 shows the results 

of running the final algorithm.  The algorithm creates lexical object sets for each of the 

labels in the “[Dimension2]” dimension because the dimension’s root node contains a 

placeholder label and none of its labels are marked as either an object set or a data value 

by any of the previous algorithms.  MOGO also assigns the associated data values, none 

of which are assigned to an object set by previous algorithms, to the newly created object 

sets. 

 

Figure 13. Object sets created by final algorithm. 

  Figure 14 shows all the object sets MOGO identifies in our sample table from 

Figure 1 after all of the concept/value recognition algorithms have completed.  
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Figure 14. Discovered object sets and value assignments. 

3.3 Relationship Discovery 

 With all of the concepts identified and the values assigned to those concepts, 

MOGO next identifies all of the relationships that exist between the different concepts.  

MOGO adds relationship information to the object sets using a set of relationship 

discovery algorithms.  Each relationship discovery algorithm conforms to a standard 

interface making it easy to augment MOGO with additional heuristic algorithms.  MOGO 

implements five relationship discovery algorithms.  We execute the algorithms in order, 

passing the newly discovered relationship information on to the next algorithm until each 

of the algorithms has successfully run.  Unlike the concept recognition algorithms which 

only run until all labels and values have been classified, the full set of relationship 

recognition algorithms runs — each successively refines the results of the previous. 

 The first relationship discovery algorithm extracts relationship information from 

the dimension trees.  For each dimension, MOGO creates relationship sets between the 

object sets from that dimension anywhere an edge exists in the dimension trees.  When 

labels at one level of nesting have been merged into a single object set, MOGO only 

creates one relationship set between the parent object set and the child object set.  If 

sibling object sets (object sets coming from labels in the same level of label nesting) do 
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not have any related object sets higher in the tree, MOGO creates an object set of 

unknown type, labels it with the dimension’s name (if there is one), and creates 

relationship sets between this new object set and each of the sibling object sets. 

 Figure 15 shows the relationship sets MOGO adds between the different object 

sets for our running example beginning with Figure 1.  MOGO associates the “Region” 

and “State” object sets because they come from different levels of the same dimension, 

“State” from the leaf level and “Region” from the intermediate level of the “Location” 

tree in Figure 4.  The “Population”, “Latitude”, and “Longitude” object sets are sibling 

object sets whose parent object set is the placeholder “[Dimension 2]” — meaning that 

“Population”, “Latitude”, and “Longitude” have no identified conceptual parent object 

set.  In this case, MOGO creates an object set of unknown type, and associates the sibling 

object sets with the newly created object set.  Object sets of unknown type are visually 

represented as a shaded box with no border. 

 

 

Figure 15.  Relationship sets from dimension trees. 

 The second relationship discovery algorithm modifies the generated ontology 

relationship sets using lexical clues.  MOGO’s lexical service provides a way to analyze 

object set labels and sets of values associated with object sets to discover semantic 

relationship information like hypernyms, hyponyms, holonyms, and meronyms.  
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Hypernyms and hyponyms translate to generalization/specialization relationships 

(represented as an empty triangle).  Holonyms and meronyms translate to aggregation 

relationships (represented as a filled-in triangle).  MOGO looks for more specific 

relationship information by examining each object set involved in a relationship set to see 

if the labels or values in the two object sets contain any of these semantic relationships.  

If they do, MOGO adjusts the relationship set by replacing it with an aggregation or 

generalization/specialization. 

 If aggregations are found between the different object sets from one dimension, 

MOGO looks for any generalization/specializations that might exist in the table.  Using 

its lexical service, MOGO looks up the inherited hypernym list of each object set label 

participating in the aggregation.  If the dimension’s root label is in the inherited 

hypernym lists of all the different object sets, MOGO creates a new lexical object set, 

labels it with the dimension’s root label, and associates this new object set with each of 

the object sets that participate in the aggregation using generalization/specialization. 

 Figure 16 shows the sample table’s ontology elements in Figure 15 after MOGO 

modifies them using lexical clues.  Using its lexical service, MOGO finds that 

“Delaware” is an instance of an “American State” which is a hyponym of “region.”  

MOGO uses this information to create an aggregation constraint from the “Region” 

object set to the “State” object set.  Because the “Region” and “State” object sets come 

from the same dimension, MOGO checks to see if the dimension’s root label is in the 

inherited hypernym list of those object sets.  MOGO successfully finds the root label 

“Location” in the inherited hypernym lists so it transforms the root object set into a 
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generalization and associates this object set with the existing object sets as 

specializations. 

 

 

Figure 16. Relationship sets after linguistic processing. 

 The third relationship discovery algorithm uses MOGO’s data frame service to 

find relationships between the object sets.  MOGO first attempts to recognize each object 

set label using the data frame service and stores any matches found.  When all of the 

object sets have been classified, MOGO searches the list of matches looking for object 

sets that match different concepts in the same data frame ontology fragment and merges 

these matches.  For each data frame match, MOGO adds the ontology fragment 

associated with the data frame to the mini-ontology, removes all of the previous object 

sets represented by the new ontology fragment, and updates any relationship sets 

associated with the removed object sets to point at the primary object set found in the 

data frame ontology fragment.  In cases where all of the labels at a given level of label 

nesting are classified as the same data frame type, MOGO adds the ontology fragment 

associated with the data frame to the mini-ontology, removes all of the previous object 

sets represented by the new ontology fragment and assigns their labels as data values to 

the appropriate object set in the ontology fragment, and updates any relationship sets 

associated with the removed object sets to point at the object set generated from the 

parent label. 
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 Figure 17 shows the results of MOGO’s applying this algorithm.  MOGO finds 

data frame matches on the “Latitude” and “Longitude” object sets.  These object sets 

match different object sets in the same data frame so MOGO merges the two matches 

into one.  The matching data frame contains information about geographical coordinate 

objects.  MOGO adds the ontology fragment for this data frame to the mini-ontology, 

removes the previous “Latitude” and “Longitude” object sets, and transfers any 

relationship sets previously connected to the “Latitude” and “Longitude” object sets to 

the primary object set of the data frame ontology fragment which in this case is the 

“Geographic Coordinate” object set. 

 

 

Figure 17. Relationship sets after data frame recognizers. 

 For the sample canonicalized table in Figure 18, Figure 19 shows the relationship 

sets that the third relationship discovery algorithm finds.  MOGO’s data frame service 

recognizes the “2005” and “2006” labels as values in a “Year” object set.  Because the 

“2005” and “2006” labels represent all of the labels at that level of label nesting, MOGO 

adds the “Year” object set associated with the matched data frame to the mini-ontology, 

removes any previous object sets associated with the “2005” and “2006” labels, assigns 

these labels as data values to the “Year” object set, assigns the values previously 
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associated with those labels to the “Passengers” object set which was generated from 

these labels’ parent label, and creates a ternary relationship set among the “Airport”, 

“Year”, and “Passengers” object sets. 

 

Figure18. Sample canonicalized table with nested year labels. 
 

 

Figure19. Relationship sets for nested label table after data frame recognizers. 

 The fourth relationship discovery algorithm processes any augmentations that 

exist in the canonicalized table. For each row and column augmentation that is a value 

and not a unit, footnote, or a parenthetical remark as indicated by the canonicalized table, 

MOGO creates a singleton object with the value found in the augmentation, and forms an 

n-ary relationship set among the singleton object and the object sets associated with the 

augmentation. 
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 Figure 20 shows the results of MOGO’s applying this algorithm.  As Figures 1, 3, 

and 4 show, the “Population” column has the augmentation “2000”.  MOGO creates a 

singleton object of value 2000 and creates a ternary relationship set among the object of 

value 2000, the “Population” object set, and the unnamed object set already related to the 

“Population” object set. 

 

 

Figure 20. Relationship sets after processing augmentations. 

 

 The final relationship discovery algorithm merges ontology fragments into a mini-

ontology.  Ontology fragments are made up of all of the ontology elements that are inter-

connected via some type of relationship set.  MOGO joins the ontology fragments by 

creating an n-ary relationship set among the ontology fragment link-in points.  An 

ontology fragment’s link-in point is the object set in the fragment that came from the 

highest level label or labels in the dimension — typically the object set associated with 

the dimension’s root label.  If one of the link-in points is a placeholder object set and 

there is only one other ontology fragment, MOGO removes the placeholder object set and 

the n-ary relationship set, and transfers all of the removed object set’s relationships to the 

remaining ontology fragment’s link-in point. 
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 In our sample table, there are two ontology fragments.  Figure 21 shows the result 

of merging the two sample ontology fragments into a mini-ontology.  MOGO removes 

the placeholder object set from the one ontology fragment because there is only one other 

ontology fragment.  MOGO then assigns the orphaned relations to the link-in point of the 

other ontology fragment (the “Location” object set). 

  

 

Figure 21.  Mini-ontology results from fragment merge. 

3.4 Constraint Discovery 

 MOGO adds constraints to the mini-ontology using a set of constraint discovery 

algorithms.  Each constraint discovery algorithm conforms to a standard interface making 

it easy to augment MOGO with additional heuristic algorithms.  MOGO implements four 

constraint discovery algorithms.  We execute each algorithm until each has run 

successfully.  Each checks for a single kind of constraint; if an algorithm finds that the 

constraint it is checking holds, it adds the constraint to the mini-ontology being created. 

 The first constraint discovery algorithm adds constraints to 

generalization/specialization relationships that exist in the mini-ontology.  A 

generalization/specialization relationship can be constrained to be a union, a mutual 

exclusion, or a partition.  MOGO constrains a generalization/specialization relationship to 
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be a union (represented as a triangle containing a U) if all values in the generalization 

object set are also in at least one of the specialization object sets.  MOGO adds a mutual 

exclusion constraint (represented as a triangle containing a +) if there is no overlap in the 

values in each of the specialization object sets.  When the generalization/specialization is 

constrained by both union and mutual exclusion, MOGO assigns a partition constraint 

(represented as a triangle containing both a U and a +) to the relationship. 

 Figure 22 shows the results of running this algorithm on our sample table.  

MOGO determines that there are no values assigned to the “Location” object set that are 

not also assigned to the “Region” or “State” object sets.  The values in the “Region” and 

“State” object sets are also found to be mutually exclusive.  Thus, MOGO assigns a 

partition constraint to the generalization/specialization relationship in the mini-ontology. 

 

Figure 22. Mini-ontology with generalization/specialization constraints. 

  The second constraint discovery algorithm looks for any computed values in the 

table.  Tables often include columns or rows that contain the summation, average, or 

other aggregates of values in the table.  MOGO examines the values related to object sets 

that come from dimensions with label nesting.  By computing aggregates of the values 

from related object sets and comparing them to given values to test whether the 
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aggregates hold, MOGO captures these constraints and adds them as annotations to the 

mini-ontology.   

 Figure 23 shows the results of running this algorithm on our sample table.  

Looking for possible aggregate values, MOGO determines that the population values 

related to the “Region” object set values are the summation of the population values 

related to the “State” object set.  MOGO thus adds the constraint “Region.Population = 

sum(Population); Region” to the mini-ontology.  (The notation here means that a region’s 

population is the sum of the population values grouped by Region; it is adapted from [8], 

which defines computational expressions over ER conceptual models). 

 

Figure 23. Mini-ontology with computed value constraint. 

 The third constraint discovery algorithm looks for functional relationship sets.  

Each of the data values in a table is functionally determined by the set of dimension 

labels associated with those values.  MOGO identifies the object sets that contain the 

table’s data values and marks the relationship sets coming into those object sets as 

functional.  Object sets assigned values that are dimension labels are handled separately.  

MOGO evaluates each of these object sets to see if the values assigned to the object set 

functionally map to values assigned to any related object sets (i.e. checks each domain 
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value or combination of domain values to see if there is at most one range value).  If so, 

MOGO marks the relationship set as functional. 

 Figure 24 shows the results of running this algorithm on our sample table.  The 

“Population”, “Latitude”, and “Longitude” object sets contain the data values from the 

canonicalized tables, so MOGO marks the relationship sets coming into these object sets 

as functional.  Because the “Latitude” and “Longitude” object sets were replaced by an 

ontology fragment associated with a data frame, MOGO marks the relationship sets 

coming into the “Geographic Coordinate” object set (the ontology fragment’s primary 

object set) as functional.  The “Region” and “State” object sets contain values from 

dimension labels.  Because the values assigned to the “State” object set appear to 

functionally determine the values assigned to the “Region” object set (i.e. there is only 

one region for each state), MOGO marks the relationship set from the “State” object set 

to the aggregation connecting it to the “Region” object set as functional. 

 

Figure 24. Mini-ontology with functional constraints. 

  The final constraint discovery algorithm determines if objects in an object set 

participate mandatorily or optionally in associated relationship sets.  Optional 

participation is represented in OSM as an o placed near the object set’s connection point 
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to a relationship set line.  MOGO identifies object sets whose objects have optional 

participation in relationship sets by considering empty value cells in the canonicalized 

table.   MOGO determines where these non-existing values mapped in the mini-ontology 

and marks participation in any relationship sets between one of these object sets and any 

other object set as optional. 

 Figure 25 shows the results of running this algorithm on our sample table.  The 

canonicalized table contains four empty data cells.  These non-existing values “belong” 

to the “Longitude” and “Latitude” object sets.  MOGO thus marks participation of object 

sets in any relationship sets coming into either of these object sets as optional.  Because 

these object sets were replaced by an ontology fragment associated with a data frame, 

MOGO marks the connection between the “Location” object set and the relationship set 

that comes into the data frame’s primary object set, the “Geographical Coordinate” object 

set, as optional.  

 

Figure 25. Final mini-ontology MOGO produces. 
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CHAPTER 4: EXPERIMENTAL RESULTS 

We evaluated MOGO using a test set of tables found on the Internet by a third-

party participant.  We asked the participant to capture the URL of twenty different web 

pages that contain tables.  Because tables can vary drastically in form and complexity, we 

asked that the test tables meet the following criteria: the tables should come from at least 

three distinct sites; the tables should contain a mix of simple tables (one-dimensional 

with no label nesting) and complex tables (multi-dimensional with or without label 

nesting); and that all the tables be from the geopolitical domain. 

For each test URL gathered by the participant, we saved a local copy of the page’s 

source HTML and used the tools created in the first component of the TANGO [21] 

project to canonicalize the tables.  MOGO processed each of the twenty canonicalized 

tables and the resulting mini-ontologies were formatted and saved for evaluation.  We 

evaluate each mini-ontology in three different areas: concept/value recognition, 

relationship discovery, and constraint discovery. 

It is necessary to point out that when building ontologies, there is often no “right” 

answer.  For any given set of data there can be multiple ontologies that are valid 

conceptualizations of the data set.  For that reason, it is necessary for the evaluation to be 

done manually by a trained expert in the field of data conceptualization. 

4.1 Concept/Value Recognition 

Every table has a fixed number of concepts, concept labels, and data values.  We 

observe how many concepts, concept labels, and data values MOGO correctly identifies, 

how many it misses, and how many it proposes that are invalid.  We compute precision 
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values with respect to concept/value recognition by dividing the total number of correct 

concepts, labels, and data values MOGO finds by the total number of actual concepts, 

labels, and data values combined with the incorrect concepts, labels, and data values 

MOGO proposes.  We compute recall values with respect to concept/value recognition by 

dividing the total number of correct concepts, labels, and data values MOGO finds by the 

total number of actual concepts, labels, and data values found in the canonicalized table. 

4.2 Relationship Discovery 

We evaluate relationship discovery by observing how many valid relationship 

sets, aggregations, and generalization/specializations MOGO discovers, how many it 

proposes that are invalid, and how many MOGO does not discover.  In cases where a 

relationship set, aggregation, or generalization/specialization should exist but does not 

because MOGO did not correctly identify a concept, we count the missing relationship 

set, aggregation, or generalization/specialization as one that MOGO did not discover.  

We compute precision values with respect to relationship discovery by dividing the total 

number of correct relationship sets, aggregations, and generalization/specializations 

MOGO finds by the total number of actual relationship sets, aggregations, and 

generalization/specializations combined with the incorrect relationship sets, aggregations, 

and generalization/specializations MOGO proposes.  We compute recall values with 

respect to relationship discovery by dividing the total number of relationship sets, 

aggregations, and generalization/specializations MOGO finds by the total number of 

actual relationship sets, aggregations, and generalization/specializations found in the 

canonicalized table. 
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4.3 Constraint Discovery 

We evaluate constraint discovery by observing how many valid constraints 

MOGO discovers, how many invalid constraints it proposes, and how many valid 

constraints MOGO does not discover.  Observations are made for each of the following 

types of constraints: functional dependencies, generalization/specialization constraints, 

computed values, and optional participation of objects in object sets and their associated 

relationship sets.  In cases where constraints should exist but do not because MOGO did 

not correctly identify a concept or relationship, we count the missing constraint as one 

that MOGO did not discover.  We compute precision values with respect to constraint 

discovery by dividing the total number of correct constraints MOGO finds by the total 

number of actual constraints combined with the incorrect constraints MOGO proposes.  

We compute recall values with respect to constraint discovery by dividing the total 

number of constraints MOGO finds by the total number of actual constraints found in the 

canonicalized table. 

4.4 Results 

Appendix A contains all of the original HTML tables and the mini-ontologies 

MOGO generated as part of the evaluation.  We report the accuracy of MOGO with 

respect to precision and recall values.  Table 1 shows the precision and recall values for 

each area of evaluation.  MOGO achieves a precision of 87% and recall of 94% for the 

concept recognition task, a precision of 73% and recall of 81% for the relationship 

discovery task, and a precision of 89% and recall of 91% for the constraint discovery 

task.  As a combined measure of precision and recall we add F-measures to Table 1.  
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Concept recognition and constraint discovery both have an F-measure of 90% while 

relationship discovery has an F-measure of 77%. 

 Precision Recall F-measure 
Concept Recognition 87% 94% 90% 

Relationship Discovery 73% 81% 77% 
Constraint Discovery 89% 91% 90% 

Table 1. Precision and recall values for evaluation tables. 

 Unfortunately, a direct comparison of MOGO’s results with results achieved by 

TARTAR [18], a similar system for converting tables to conceptual models, is not 

possible.  TARTAR’s results take into account both the table canonicalization process 

and the conversion to a conceptual model.  MOGO’s results are based on a set of 

canonicalized tables that were checked to be accurately canonicalized before being 

processed by MOGO.  So while at first glance it might appear that MOGO performs 

significantly better than TARTAR, because the results measure different objects/targets, 

it is very difficult to compare the two systems in a meaningful way. 

4.5 Issues 

 One issue that MOGO encounters in concept recognition is generating duplicate 

concepts.  In our set of evaluation tables, a number of tables had multiple columns that 

corresponded to the same concept.  The only difference in the columns was in units of the 

data values.  For example, a table about mountain peaks contains two columns labeled 

height but in one column the height is given in meters and in the other column the height 

appears in feet.  MOGO was unable to correctly merge these concepts into one.  Further 

enhancements to MOGO’s use of data frames would likely yield the desired results in 

these types of cases. 
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 The other concept recognition area MOGO struggled with is in identifying a valid 

label for a concept.  There are a number of reasons why this occurs.  Sometimes a valid 

label for the concept does not even exist in the table.  Many tables assume that the reader 

can infer the correct label based on the context in which the table occurs.  Unfortunately, 

this contextual information is not available in the canonicalized table which MOGO uses 

as input.  In some cases, such as a table containing an unlabeled column of country 

names, MOGO is able to successfully identify a valid label using its lexical service.  In 

other cases, such as an unlabeled column of numbers, MOGO cannot identify a label for 

the concept that contains these values. 

 In the relationship discovery task, MOGO occasionally struggles with identifying 

aggregations and generalization/specializations.  The main case for which MOGO was 

not able to identify aggregations and generalization/specializations is when these types of 

relationships exist between two sibling labels.  MOGO only looks for these types of 

relationships when there is label nesting present in the dimension.  In cases where sibling 

labels form an aggregation, such as a table with a column full of city names and another 

column full of state names, MOGO’s heuristics do not cover checking for aggregations or 

generalization/specializations. 

 The other main area that MOGO struggles with in relationship discovery is 

assigning relationship sets to invalid concepts.  Errors in earlier phases of mini-ontology 

generation have a cascading effect on errors in later parts of the process.  Invalid concepts 

found in the concept recognition phase invariably lead to invalid relationship sets in the 

relationship discovery phase. 
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 In the constraint discovery task, MOGO occasionally misclassifies a 

nonfunctional relationship set as a functional one.  The most common cause of this was 

when the canonicalized table values contained lists of items instead of a single value.  

MOGO treats all table values as singleton objects and uniformly constrains relationship 

sets with the object sets that contain these values as functional.  In cases where table 

values contain lists of objects, this behavior is incorrect. 

 The final area in the constraint discovery task that MOGO struggles with is in 

tables that contain arbitrary rows and columns that contain totals.  When a column or row 

only contains values that are the computed sums or averages of the other values in the 

table, MOGO does not correctly identify these computed values.  Only when the row or 

column represents a conceptual aggregation of the other values, such as a state population 

containing the computed sum of the populations of the cities in that state, does MOGO 

correctly identify the computed value. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 We have created a system called MOGO that automates the generation of mini-

ontologies from canonicalized tables of data.  MOGO uses a novel approach to ontology 

generation by combining both spatial and linguistic clues for generating conceptual 

models, and it is easily extensible allowing the addition of new algorithms at run time 

without the need for program recompilation. 

 Experimental results show that MOGO is able to automatically identify the 

concepts, relationships, and constraints that exist in arbitrary tables of values with a 

relatively high level of accuracy — with F-measures of 90%, 77%, and 90% respectively 

for concept/value recognition, relationship discovery, and constraint discovery in web 

tables selected from the geopolitical domain.  This automation can significantly reduce 

the work required to generate ontologies from canonicalized tables. 

5.1 Future Work 

 The base set of algorithms MOGO uses to generate mini-ontologies cover many 

of the common patterns found in tables but they do not constitute an exhaustive set of 

algorithms for table conversion.  The following possibilities for future work include both 

algorithm refinements as well as other possible applications for MOGO. 

5.1.1 Linguistic Processing 

 Many of the algorithms in MOGO take advantage of external lexical resources 

using MOGO’s lexical service.  Our current implementation of this lexical service only 

uses WordNet [14] for querying lexical information.  Future work could be done not only 
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in how WordNet is used by the lexical service, but also in the incorporation of other 

external linguistic resources.   

5.1.2 Data Frame Library 

 MOGO makes frequent use of a data frame library for recognizing complex data 

types using its data frame library service.  The idea of data frames has been well thought 

out and successfully implemented [10] but the set of data frame recognizers in the library 

is still somewhat limited.  Increasing the coverage of the set of data frame recognizers in 

the data frame library could significantly increase MOGO’s effectiveness. 

5.1.3 Domain Specific Algorithms 

 All the algorithms MOGO uses to generate mini-ontologies are designed to be 

very general-purpose algorithms.  It is very likely that tables from specific domains 

would benefit from algorithms written specifically for that domain.  Such algorithms 

might be able to recognize common abbreviations, formats, or terms specific to a 

particular domain.  These algorithms could be written to run in addition to or in place of 

MOGO’s algorithms. 

5.1.4 MOGO as Part of a Semantic Web Annotation System 

 MOGO’s primary goal is to function as the second component of the larger 

TANGO [21]  project.  The TANGO project focuses on automating the process of 

creating an ontology from the concepts, relationships, and constraints found in sets of 

tabular data.  Another possible application for MOGO would be to use the resultant mini-

ontologies as extraction ontologies [11].  Extraction ontologies are useful for annotating 

source tables with ontology information thereby making those tables accessible as part of 

the semantic web [3]. 
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APPENDIX A – EVALUATION TABLES 

 This appendix includes images of all the original HTML evaluation tables along 

with the mini-ontologies generated by MOGO for each table.  Object sets with labels 

beginning with “osmx” followed by a number are equivalent to unlabeled object sets. 

 

 
 
 
 
 
 
 

 
  

43 
 



 
 
 
 
 
 

 
  

44 
 



 
 
 
 
 
 

 
  

45 
 



 
 
 
 
 
 
 
 

 
  

46 
 



 
 
 
 
 
 
 
 

 
  

47 
 



 
 
 
 
 
 
 

 
  

48 
 



 
 
 
 
 
 
 

 
  

49 
 



 
 
 
 
 
 

 
  

50 
 



 
 
 
 
 
 

 
  

51 
 



 
 
 
 
 
 

 
  

52 
 



 
 
 
 
 
 
 

 
  

53 
 



 
 
 
 
 
 

 
  

54 
 



 
 
 
 
 
 
 

 
  

55 
 



 
 
 
 
 
 
 

 
  

56 
 



 
 
 
 
 
 

 
  

57 
 



 
 
 

 
 
 
 

 
  

58 
 



 
 
 
 
 
 

 
  

59 
 



 
 
 
 
 
 

 
  

60 
 



 
 
 
 
 
 

 
  

61 
 



 
 
 
 
 
 

 

62 
 


	Automating Mini-Ontology Generation from Canonical Tables
	BYU ScholarsArchive Citation

	AUTOMATING MINI-ONTOLOGY GENERATION FROM CANONICAL TABLES
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	Figure 1.  Sample Table.
	Figure 2. Sample mini-ontology, produced by MOGO for the table in Figure 1.

	CHAPTER 2: RELATED WORK
	CHAPTER 3: MINI-ONTOLOGY GENERATION
	3.1 Auxiliary Services
	3.1.1 Lexical Service
	Figure 3. XML version of canonicalized table.
	Figure 4. Graphical view of canonicalized sample table.

	3.1.2 Data Frame Library Service
	3.1.3 Name Finding Service

	3.2 Concept/Value Recognition 
	Figure 5. Sample table where values "belong" to their labels.
	Figure 6. Object sets with values.
	Figure 7. Object sets that the second algorithm creates.
	Figure 8. Sample table with label column span.
	Figure 9. Canonicalized version of sample table in Figure 8.
	Figure 10. Object sets that algorithm three creates.
	Figure 11. Sample table of car parts.
	Figure 12. Object sets the fourth algorithm creates.
	Figure 13. Object sets created by final algorithm.
	Figure 14. Discovered object sets and value assignments.

	3.3 Relationship Discovery
	Figure 15.  Relationship sets from dimension trees.
	Figure 16. Relationship sets after linguistic processing.
	Figure 17. Relationship sets after data frame recognizers.
	Figure18. Sample canonicalized table with nested year labels.
	Figure19. Relationship sets for nested label table after data frame recognizers.
	Figure 20. Relationship sets after processing augmentations.
	Figure 21.  Mini-ontology results from fragment merge.

	3.4 Constraint Discovery
	Figure 22. Mini-ontology with generalization/specialization constraints.
	Figure 23. Mini-ontology with computed value constraint.
	Figure 24. Mini-ontology with functional constraints.
	Figure 25. Final mini-ontology MOGO produces.


	CHAPTER 4: EXPERIMENTAL RESULTS
	4.1 Concept/Value Recognition
	4.2 Relationship Discovery
	4.3 Constraint Discovery
	4.4 Results
	Table 1. Precision and recall values for evaluation tables.

	4.5 Issues

	CHAPTER 5: CONCLUSIONS AND FUTURE WORK
	5.1 Future Work
	5.1.1 Linguistic Processing
	5.1.2 Data Frame Library
	5.1.3 Domain Specific Algorithms
	5.1.4 MOGO as Part of a Semantic Web Annotation System


	BIBLIOGRAPHY
	APPENDIX A – EVALUATION TABLES

