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ABSTRACT 
 
 
 

AUTOMATED QUADRILATERAL COARSENING  

BY RING COLLAPSE 

 
 

Mark W. Dewey 

Department of Civil and Environmental Engineering 

Master of Science 
 
 
 

In most finite element analysis, a uniform mesh is not the optimum way to model 

the problem.  Mesh adaptation is the ability to modify a finite element model to include 

regions of the mesh with higher and lower node density.  Mesh adaptation has received 

extensive study in both computational mechanics and computer graphics to increase the 

resolution or accuracy of the solution in specific areas.  The algorithm developed in this 

thesis, the Automated Quadrilateral Coarsening by Ring Collapse (AQCRC) algorithm, 

provides a unique solution to allow conformal coarsening of both structured and 

unstructured quadrilateral finite element meshes.  The algorithm is based on dual chord 

operations and dual chord removal.  The AQCRC algorithm follows six steps:  1) input of 

a coarsening region and factor, 2) selection of coarsening rings, 3) improvement of mesh 

quality, 4) removal of coarsening rings, 5) mesh clean-up and 6) coarsening iterations.  

Examples are presented that show the application of the algorithm.  
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1 14BIntroduction 

Finite element analysis (FEA) continues to push the limits of computing power. 

The computation time required even by the most powerful machines is hours or days on 

complex problems.  Computation time increases proportional to the cube of the number 

of nodes in the finite element mesh.  The accuracy of the finite element analysis is also 

proportional to the number of nodes in the mesh [X1X].  However, in many analysis 

situations there are areas of interest where accuracy of analysis is more important than in 

other locations or where greater resolution and detail is desired.  For example, if the 

solution has a high gradient in a particular location, the errors produced by a low density 

mesh may transfer into other parts of the solution.  A high node density in the areas of 

interest is crucial to accurate analysis; however, the need for this density may not 

transfer to other regions.  If a uniform mesh is used, analysis time may be much greater 

than necessary while overall accuracy in the analysis may not improve significantly.  

The competing objectives of accuracy and computation time have prompted 

investigation into the field of mesh adaptation for the purpose of optimizing meshes. 

Most research in mesh adaptation for computational mechanics centers on 

refinement algorithms which divide the mesh in the area of interest into smaller elements 

[X2X].  An algorithm which can coarsen an existing mesh by removing elements outside of 

the area of interest would be a powerful companion tool to refinement algorithms that 
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would allow more flexible adaptation of a mesh, or maintain computation speed when an 

analysis indicates that a more refined mesh is required to capture some detail.  

Unfortunately, coarsening is an area of research which has received limited attention in 

the field of computational mechanics.  Coarsening methods have been explored in the 

field of computer graphics.  The coarsening methods developed for computer graphics 

are generally referred to as simplification algorithms as their purpose is to simplify a 

model when a lower level of detail is required.  The algorithm presented in this paper, 

Automated Quadrilateral Coarsening by Ring Collapse (AQCRC), provides a fully 

automated conformal coarsening algorithm suitable for use with generalized 

unstructured quadrilateral finite element meshes.   

The ability to manipulate a mesh by both refining and coarsening significantly 

increases the ability to adapt a mesh.  For example given an original, fairly uniform mesh, 

the mesh density in an area of interest may be increased by established refinement 

techniques [X3X] and decreased away from the areas of interest by a coarsening technique 

such as AQCRC.  An initial analysis on a base mesh may be used to indicate locations 

where high density meshes and low density meshes are appropriate based on the 

gradients of the intial solution.  Rather than remeshing the model, the initial mesh may be 

modified using refinement and coarsening tools. This would allow increased resolution 

and accuracy in the results while maintaining a similar computation time for the entire 

model.  Furthermore, a given model may require adaptation in different locations 

depending on different load cases, adaptation by both refinement and coarsening from a 

single uniform base mesh may allow more efficient and robust generation of meshes 

appropriate for various load cases. 
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This paper describes the development and implementation of the AQCRC 

algorithm for use in quadrilateral finite element analysis.  Chapter X2X presents the 

background of the problem and discusses the limitations of previously developed 

coarsening and simplification algorithms.  Chapter X3X describes the implementation of the 

algorithm.  Chapter X4X evaluates the merit of the algorithm and demonstrates a few 

primary applications. Conclusions are provided in Chapter 5. 
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2 15BBackground 

Mesh adaptation is a field which has received extensive study among both 

computational mechanics and computer graphics researchers.  Generally these two fields 

have not colluded as many of the restrictions which apply in computational mechanics 

are not necessary in computer graphics.  The adaptation algorithms developed for 

computer graphics are therefore rarely applicable to computational mechanics.  For 

example, in finite element analysis, a mesh must accurately represent the geometry of 

the model by insuring that the nodes representing a curve or surface of the model do not 

move off the geometry, whereas in graphics a sufficiently low level of detail might 

justify combining surfaces and curves.  Similarly, the degree to which the elements of an 

all-quadrilateral finite element mesh resemble a square has a large impact on the 

accuracy solution, but has no bearing on the representation of a computer graphics 

model.  The following sections describe some  efforts, similar to the AQCRC algorithm 

and the motivation for that work. 

2.1 24BTriangle Mesh Simplification and Coarsening 

In computer graphics and computational mechanics, many meshes are made 

entirely of triangles because triangle meshing methods are simple and have been well 

established.  One of the foremost algorithms of mesh simplification for triangles was 
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developed by Garland, et al. [X1X].  His approach is fast, reliable, and generally applicable 

to any polygon mesh.  The algorithm assumes that the mesh is composed entirely of 

triangles or can be broken into a mesh entirely compose of triangles.    It is designed to 

combine surfaces and curves that are indistinguishable when rendered at a low level of 

detail.  Another useful method of surface mesh simplification was developed by Hoppe, 

et al. [X5X].  This method respects geometry curves and surfaces in order to preserve sharp 

corners and edges.  Numerous other triangular mesh coarsening algorithms are 

documented by Cignoni, et al. [X6X].  Additional reviews that compare smaller sets of 

algorithms are found in References X7X and X8X.  While triangle meshes have widespread use, 

quadrilateral meshes are often preferred in finite element analysis because they converge 

to the correct solution with fewer elements than triangle meshes [X1X].  Most of the 

algorithms developed for triangle meshes cannot be adapted for use on quadrilateral 

meshes. 

2.2 25BQuadrilateral Mesh Simplification and Coarsening 

Takeuchi, et al. [X9X], modified the approach developed by Garland, et al. [X4X], to 

simplify the quadrilateral meshes.  The process is robust and well-generalized, but as 

noted above it does not respect the geometry of the model.  It is also optimized for global 

simplification; however, localized simplification is preferred in most finite element 

analysis situations involving mesh adaptation.  Furthermore, it may produce degenerate 

quadrilaterals which have a negative impact on finite element analysis accuracy.   

One very flexible method of coarsening a mesh is to completely remesh the 

defined region.  Kwak, et al., have made strides in the use of such algorithms [X11X].  For 
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this application, the geometry of the models they are working on change as the solver 

iterates, necessitating the need to change the mesh density in specific regions.  The 

algorithm refines specific areas of the mesh, but carefully maintains coarseness away 

from the areas of interest.  The drawback of this method is that remeshing is a global 

approach to a local problem which may require a great deal more computational time 

than simply to modify a portion of the existing mesh.  It should be noted that this 

algorithm is primarily designed to be a refinement algorithm; however, it could just as 

easily be used as a coarsening algorithm. 

Cheng, et al., developed a method of coarsening an all-quadrilateral structured 

mesh for use on autobody parts [X10X].  The algorithm has potential for general meshes, but 

as yet the generalized implementation of it has not been published. 

Another coarsening method which has received attention in the computational 

fluid dynamics community is undoing refinement which has previously taken place.  

Choi describes such an algorithm which can be used to undo previous refinement on both 

quadrilateral and hexahedral meshes [X12X].  The reliance on previous refinement restricts 

the algorithm from being used on a base mesh that has not been refined. 

Nikishkov developed a method for mesh adaptation that allows both refinement 

and coarsening [X13X].  However, his method produces unconformal elements as shown in 

XFigure 2.1X.  The left panel shows the original mesh with the region to be coarsened 

highlighted in grey.  The center panel shows the mesh once coarsening has been applied.  

The nodes marked A, B, C, and D are locations where the mesh is not conformal.  

Conformal quadrilateral meshes, where every internal quadrilateral is bounded by exactly 

four quadrilaterals, are required by most FEA solvers.   Nikishkov addresses the 
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conformability issue by using special elements.  These special elements restrict the use of 

this algorithm for general local coarsening by requiring the use of Nikishkov’s elements.   

 

 

Figure 2.1:  Quadtree and chord removal coarsening 

 

Much of the basis of the AQCRC algorithm was developed by Murdoch, et al., 

when he defined the dual of the mesh [X14X].  The dual of a quadrilateral mesh is the set of 

all chords in the mesh.  A chord is a set of quadrilaterals connected by opposite edges.  

XFigure 2.2X shows a chord in the left panel as a dotted line running through the mesh. 

 

 

Figure 2.2:  Removing a chord from a mesh 

 

Borden, et al., recognized that it is possible to remove an entire chord from a 

quadrilateral mesh, maintaining conformal connectivity, by simply collapsing the 

defining edges of the chord as shown in XFigure 2.2X [X15X].  The removal of a chord reduces 
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the number of quadrilaterals in the mesh and coarsens the quadrilaterals adjacent to the 

chord.  The right panel of XFigure 2.1X shows this kind of coarsening applied to the 

selected coarsening region.  Unfortunately, while the local region is significantly 

coarsened, the effect of the coarsening extends well beyond the boundaries of the 

coarsening region.  The research of Borden, et al., was continued in the paper by Benzley, 

et al. [X16X], where initial steps were made to localize the coarsening region. 

Staten, et al., presented some of the concepts of the AQCRC algorithm by 

realizing that if a circular chord (i.e. a chord which forms a closed loop) could be created 

in a specific region, then the removal of that chord would produce localized coarsening 

[X17X].  Partial chords consisting of a continuous subset of the quadrilaterals of a chord are 

identified bounding the coarsening region.  They show that if a set of bounding partial 

chords can be established, then simple chord operations, i.e. alterations to the mesh which 

change the connectivity of chords, can be performed at the intersections of these 

bounding partial chords to combine them into one continuous chord surrounding the 

region to be coarsened.  The operations used to combine the partial chords are the edge 

swap, face close and doublet insertion operations documented in Appendix A.  While not 

described as such by Staten, et al., a set of bounding partial chords can be considered a 

coarsening ring, as it is called for the remainder of this paper. 

XFigure 2.3X shows an example of the coarsening process developed by Staten, et 

al. [X16X].  The left panel shows the initial mesh.  The dashed lines mark chords which 

bound the region to be coarsened.  The quadrilaterals highlighted in grey are the 

bounding partial chords and define a coarsening ring.  In the second panel, the 

quadrilaterals where two bounding partial chords intersect have been modified with 
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moved.   

doublet insertion, face close and edges swap operations.  The top left intersection is 

modified using a doublet insertion operation.  In the center panel, the doublet node is 

circled for clarity.  The bottom two intersections are modified by a face close operation.  

The top right intersection is modified by an edge swap operation.  The merits of each 

operation are discussed further in Appendix A.  Once the operations have been performed 

a single circular chord now bounds the coarsening region.  This chord is removed by the 

same means as that shown in XFigure 2.2X; the right panel shows the mesh after this 

bounding chord has been re

 

 

Figure 2.3:  Chord operations and removal 



3 16BAutomated Quadrilateral Coarsening by Ring Collapse 

The algorithm developed by Staten, et al., is a powerful quadrilateral coarsening 

algorithm [X17X].  The AQCRC algorithm, presented in this chapter, generalizes, develops 

and automates the work of Staten, et al.  The AQCRC algorithm further advances this 

methodology by developing input parameters, creating and selecting from multiple 

coarsening rings simultaneously, introducing logic to maximize element quality, and 

eliminating the step of combining the bounding partial chords into a single circular chord.   

One of the key developments of the AQCRC algorithm is the use of coarsening 

rings, i.e. a closed loop of quadrilaterals contained within the coarsening region, rather 

than circular chords in the element removal process.  This is a generalization of the 

algorithm as any circular chord within the coarsening region is also a coarsening ring.  

The AQCRC algorithm does not take the step of modifying the bounding partial chords 

with chord operations to create a single chord as shown in XFigure 2.3X.  The quadrilaterals 

highlighted in grey in the left panel are instead considered a coarsening ring and will be 

removed directly in a process similar to chord removal.   

The AQCRC algorithm involves six key steps outlined below and shown in the 

flow chart in XFigure 3.1X.  These steps will be examined in detail in the following sections. 

1. A contiguous coarsening region and the final mesh coarseness are specified. 
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2. One or more coarsening rings are selected within the coarsening region containing 

a number of quads less than or equal to a goal number of quads. 

3. The bounding partial chord intersections may be altered with chord operations to 

increase the final quality of the mesh or to prevent merging nodes illegally. 

4. The identified coarsening rings are collapsed from the mesh and the mesh 

reconnected in a manner that retains its conformal properties. 

5. The mesh is checked, cleaned up, and smoothed to ensure that elements have 

acceptable quality. 

6. Steps two through five are repeated if insufficient coarsening has taken place in a 

given iteration of the algorithm. 

 

 

Figure 3.1:  Algorithm flow chart 

3.1 26BDefining the Coarsening Region and Removal Parameter 

XFigure 3.2X will be used to illustrate the input of a coarsening region.  First, a base 

set of node, vertex, edge, curve, face, or surface entities is identified.  In XFigure 3.2X the 
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edges that have been marked with extra dark lines are the base set of entities used.  A 

depth parameter is further specified to determine the number of layers of quadrilateral 

elements around this base set of entities.  For the example, a depth of five was specified; 

the faces highlighted in dark grey are all within five faces of the base set of edges.   This 

set of elements is the coarsening region.  For convenience in later parts of the algorithm, 

an additional layer of elements, marked in light grey, is specified around the coarsening 

region.  This layer of elements is marked as unmodifiable boundary elements and will 

form a transition layer between the coarsening region and the unchanged portions of the 

mesh.  These elements may be partially altered but are defined not to be removed from 

the mesh.  Occasionally there is not an additional layer of elements around the coarsening 

region because the border of the mesh at large is included within the coarsening region.  

In this case the elements on the boundary are marked as unmodifiable boundary elements 

in order to preserve the interval counts on the curves at the boundary of the mesh. 

In addition to the selection of the coarsening region a target size or coarsening 

factor is specified to establish the goal number of elements which are to be removed from 

the mesh.  A coarsening factor corresponds to the multiplicative increase in average area 

that should occur within the coarsening region during the execution of the AQCRC 

algorithm.  A target size corresponds to the average length of the edges in the coarsening 

region after the execution of the AQCRC algorithm. 

Equation 3.1 shows how a coarsening factor is used to determine the the number 

of quadrilaterals that should be removed. 
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where Ne-r = the number of elements to be removed 

Et = the number of elements in the coarsening region 

F = the user supplied factor 

 

Equation 3.X2X converts the target size into an equivalent coarsening factor which is 

then converted into the number of elements to be removed by Equation 3. 

 

 

Figure 3.2:  Coarsening region selection 
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where F = the equivalent factor 

lf = the final average edge length specified by the user 

l0 = the initial average edge length in the coarsening region 

 

Once the number of quadrilaterals to remove is determined, a tolerance factor (tf) of 

10% of the original number of quadrilaterals to be removed is calculated such that the 

number of quadrilaterals actually removed is within ± tf.  This tolerance factor is limited 

to being at least 3 and at most 50.  The values of 10%, 3 and 50 are heuristics; a further 

examination of the determination of an appropriate coarsening factor is merited. 

3.2 27BSelecting Coarsening Rings 

Once the coarsening region has been established, the algorithm analyzes the mesh 

and creates a set of concentric coarsening rings for removal.  The algorithm then selects 

from this set of rings the optimum rings to collapse based on which ring removals will 

preserve a high quality mesh and the goal number of elements to be removed. 

3.2.1 36BRing Identification 

  Each ring is created by locating an element in the coarsening region which is 

adjacent to or shares a node with an element marked as a boundary element.  Initially, 

only the elements forming the unmodifiable layer are marked as boundary elements.  The 

algorithm then proceeds to find additional, adjacent elements which are also along the 

boundary and add them until the ring closes.  This complete loop around the outer 
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boundary of the coarsening region is stored as a new coarsening ring.  If the algorithm 

successfully creates a valid ring, the elements are marked as boundary elements and the 

process is repeated.  New rings are formed iteratively until there are no remaining 

elements in the coarsening region.  XFigure 3.3X shows a simple coarsening region, where 

the grayed out elements have been marked as boundary elements.  The elements marked 

with a dashed line would be selected as a coarsening ring. 

 

 

Figure 3.3:  A simple coarsening region with a ring selected 

 

During the process of identifying coarsening rings there are a few cases where the 

ring identified could not be collapsed or there are not enough elements to form a closed 

loop.  These invalid cases are handled by marking some of the elements as boundary 

elements and then repeating the ring identification algorithm.  Eventually all of the 

elements in the coarsening region will be marked as boundary elements which effectively 

ends the ring identification portion of the algorithm.  Apart from not being able to 

complete a closed coarsening ring, the following three major invalid cases exist.   

First, the loop may contain a region where it runs adjacent to itself; these regions 

are referred to as “double–wide” regions.  The left panel of XFigure 3.4X shows this case.  
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As before, the dashed line indicates the elements which have been selected as part of the 

ring being identified.  The elements circled show double-wide region.  Collapse of this 

ring results in a set of high-valent nodes.  The valence of a node is the number of edges 

connected to the node.  A node is considered high-valent if it has more than five edges 

connected to it.  To resolve this problem, the two elements circled are marked as 

boundary elements, allowing the ring identification algorithm to be executed again, in 

this case, identifying the elements on the top and bottom of the figure as separate rings.  

It is noted from XFigure 3.3X, above, that once the elements in the ring have been marked as 

boundary elements, the only elements left will be double wide elements.  These elements 

will not be used as a ring in the rest of the algorithm. 

 

        

Figure 3.4:  Double-wide and peninsula invalid ring cases 

 

The second invalid ring case is when the ring intersects with itself in a location 

other than the starting location.  If the ring has a three way intersection, it may not be 
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collapsed; the elements near the intersection cannot be conformally reconnected.  In the 

unlikely event that a four way intersection is found, it can be collapsed, although this case 

is very rare.  The right panel of XFigure 3.4X shows a ring with a three way intersection.  

The two quadrilaterals circled on the right are considered peninsula quadrilaterals.  These 

peninsula quadrilaterals are marked as boundary quadrilaterals and the ring identifying 

algorithm is once again employed.  This time, the rest of the quadrilaterals previously 

identified as part of the ring will become the new ring. 

The final case occurs in unstructured meshes where a three-valent node is 

adjacent to three quads that are all part of the ring as shown in XFigure 3.5X.  The circled 

quadrilateral is unnecessary to closing the ring and is removed from the ring and marked 

as a boundary element.  Furthermore, the inclusion of all three of these faces in the ring 

obscures future steps and leads to the creation of high-valent nodes. 

 

 

Figure 3.5:  The three-valent node invalid ring case 

 

In most cases the coarsening region is large enough that several rings are created 

concentrically.  XFigure 3.6X continues the example started with  and shows the rings 
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developed within the coarsening region.  The alternating numbered regions of darker and 

lighter shaded grey elements show the set of rings.  The dark regions not numbered are 

locations of elements which are not included as rings because they were part of an invalid 

ring case.  The initial set of edges selected for the coarsening region and the unmodifiable 

layer are still marked as in  for ease of reference.   

 

 

Figure 3.6:  Coarsening rings 
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3.2.2 37BRing Selection 

Once the set of rings has been created, a subset of the rings is chosen for removal.  

To facilitate choosing an optimum set of rings for removal, each node connected to a ring 

is assigned to a node group.  A node group is a set of nodes that will be merged into a 

single node when the coarsening ring is collapsed. A given node may only be associated 

with one node group per coarsening ring.  Node groups are created by identifying edges 

that are between adjacent quadrilaterals in a given ring.  The nodes on either end of these 

edges are then assigned to a node group.  If one of the nodes is already assigned to a node 

group for the current ring, the other node is assigned to the same node group.  If both 

have already been assigned to different node groups, the two node groups are combined 

into one node group.  The node groups are established at this point in the algorithm so 

that a rough projection of the mesh connectivity and element shapes can be established 

before choosing which rings to collapse. 

To facilitate choosing the best set of rings to collapse, each node group will be 

assigned a projected location.  Generally, the projected location is the centroid of all the 

nodes in the group.  However, this location is modified so that the projected location is on 

the most restrictive geometry entity any of the nodes is owned by, i.e. if one of the nodes 

is owned by a vertex the projected location is the location of the vertex, otherwise if one 

or more are on a curve the projected location is on the curve and if they are all on a 

surface the projected location is on the surface.  

After the projected location of all the node groups is calculated, each ring is given 

a quality metric.  This metric used here is equal to the minimum projected Scaled 

Jacobian [X18X] quality of the neighboring quadrilaterals once the ring has been collapsed.  
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The neighboring quadrilaterals use the projected location of the node groups rather than 

the current location of the nodes when making a quality assessment.  XTable 3.1X shows the 

results of this analysis for the example shown in XFigure 3.6X.  The ring ID is a unique 

identifier assigned to each of the rings and corresponds to the numbering shown in XFigure 

3.6X.  The ring quality is the minimum projected Scaled Jacobian for all quadrilaterals 

adjacent to the ring assuming the ring is removed.  The quadrilateral count is the number 

of quadrilaterals in the given ring. 

 

Table 3.1:  Rings available for selection 

Ring ID Ring Quality Element 
Count 

 
1 0.0425 90 
2 0.2184 83 
3 0.0297 78 
4 0.1676 71 
5 0.3107 58 
6 0.0345 51 

  
 
 
Once each ring has an associated quality metric, the rings are ordered according to 

quality using a quick sort algorithm.  Any rings that have a quality metric less than 0 – 

suggesting that collapsing the ring would create a degenerate quadrilateral – are removed 

from the list.  XTable 3.2X shows the rings from XTable 3.1X reordered according to their 

projected quality.  Each ring is then considered for collapsing in order.  Every time the 

collapsing of a ring is considered acceptable (see below), it is placed in a list and the 

number of quadrilaterals to be collapsed is updated.  In XTable 3.2X, the rings to be 

collapsed have been marked in bolded italics.  
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A ring is considered acceptable if the current number of quadrilaterals to be 

collapsed plus the number of quadrilaterals in the current ring is less than the goal 

number of quadrilaterals to be collapsed plus the tolerance factor determined at the 

beginning of the program.  Any ring that meets this qualification may be rejected if it is 

immediately adjacent to another ring that has previously been selected.  The goal number 

of quads to be removed for the example given in Tables 1 and 2 is 369 quadrilaterals with 

a tolerance of 36 quadrilaterals.  In this case the goal number of quadrilaterals is not 

reached; the total number of quadrilaterals collapsed in this iteration is only 141.  After 

rings 2 and 10 are chosen, the others are not chosen because they are adjacent to these 

two rings.  Additional iterations of the entire coarsening algorithm will be attempted until 

the goal number of quadrilaterals has been removed. 

 

Table 3.2:  Rings reordered with selected rings in italics 

Ring ID Ring Quality Element 
Count 

5 0.3107 58 
2 0.2184 83 
4 0.1676 71 
1 0.0425 90 
6 0.0345 51 
3 0.0297 78 

   

3.3 28BImproving Quality 

In some cases, modifying the connectivity of a ring can improve the quality of the 

final mesh.  As each ring is chosen for collapse, it is examined more closely to see if 

there is room for quality improvements.  Quality is a major consideration in coarsening 

because nearly every time a ring is removed the quality of the mesh goes down.  The 
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following procedures are intended to keep the algorithm from creating low quality 

elements as much as possible.  Any node group containing three or more nodes is 

examined for possible improvements as discussed below. 

A node group with three or more nodes indicates the existence of an intersection 

of bounding partial chords in the ring topology.  If a three node group is near geometric 

curve boundaries, it may be advantageous to use a template insertion operation.  XFigure 

3.7X shows this template insertion operation.  The two top panels are the original meshes, 

while the two bottom panels show the meshes after a template has been inserted into a 

quadrilateral just inside the intersection of the two bounding partial chords.  The double 

lines are geometric curves; the dashed lines indicate the quadrilaterals that are part of the 

ring being improved.  The nodes circled are part of a node group; each node group has 

extra bold lines connecting the members of the group.  Node groups where the template is 

applied are broken into three new node groups. 

 

 

Figure 3.7:  Cases in which application of template insertion is advised 
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The importance of using template insertion in each case is different.  In the case 

shown on the left of XFigure 3.7X, the template insertion prevents merging of nodes on 

different curves, a situation that clearly needs to be avoided in order to respect the 

geometry of the model.  In the case shown on the right, the use of the template simply 

prevents the creation of a triangular-shaped quadrilateral:  if the nodes were merged, the 

quadrilateral to the left of the corner of the ring would have two edges on the same curve, 

a situation which would force the quadrilateral to be shaped like a triangle.   

In node groups with four or more nodes, consideration is given to how the node 

group should be collapsed.  A simple collapse may create high-valent nodes, reducing the 

element quality in the region.  There are two problem cases which involve more than 

three nodes in a single node group.  The first is referred to as the star case and the second 

is referred to as a stair-step case.  When both cases are present in the same node group, 

the node group will be treated as the star case. 

In unstructured meshes, multiple bounding partial chord intersections may share a 

node with a valence higher than four.  This may result in all nodes in the node group 

linking back to a single node as shown in XFigure 3.8X.  Star node groups are resolved by a 

simple collapse even though it may result in high-valent nodes.  For improved quality, 

each sub-case could be resolved differently; however some of these cases require adding 

several new quadrilaterals (ie. through multiple template insertions), contrary to the goal 

of the coarsening procedure.  For this condition it is preferable to collapse the node 

groups and address the high-valent nodes during the clean-up process. 
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Figure 3.8:  Star node group and resolution 

 

The stair-step case is the most commonly encountered problem among node 

groups with four or more nodes.  XFigure 3.9X below shows the problem and resolution in 

detail.  In a stair-step case the bounding partial chord intersections are adjacent to each 

other.  The top left panel shows three adjacent intersections.  The nodes circled are the 

members of the original group.  The top right panel shows the mesh if the node group 

were simply collapsed:  the resulting node valence is seven.  There is no limit to the 

valence of the node group that may be created by this problem; while the clean-up 

operations described in Appendix C would address the example problem, it is better to 

resolve it as shown in the bottom two panels of XFigure 3.9X and it resolves all stair step 

cases regardless of how many intersections are adjacent to each other.  First, a face is 

created in the mesh by splitting one node and two of the edges connected to the node as 

shown in the bottom left panel.  The original node group is broken up into three node 

groups which can be collapsed normally.  This operation may be applied recursively for 

large stair step cases.  The bottom right panel of XFigure 3.9X shows the mesh once the ring 

has been collapsed. The quality and node valence of the surrounding elements are 

significantly better using this operation. 
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Figure 3.9:  Two options for dealing with stair-step node group 

3.4 29BCollapsing Coarsening Rings 

Once the coarsening rings have been selected and the various quality 

improvement templates have been applied, the mesh is ready to be coarsened.  Each of 

the selected coarsening rings is collapsed in succession using the following procedure.  

The nodes in each node group are moved to the projected position and the quadrilaterals 

that are part of the ring are deleted.  As the quadrilaterals are deleted, any edge that is no 

longer associated with a quadrilateral is deleted and the nodes on either end of the deleted 

edge are merged together.  At corners, where Staten, et al., recommend the application of 

chord operations, a simple collapse as shown in XFigure 3.10X creates a conformal mesh 

identical to what would be produced by some of the operations they recommended 

(compare to the operation shown in XFigure 2.3X).  In the left and center panels of XFigure 

3.10X, the node groups are circled and extra-dark edges connecting each group.  The 
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dashed line indicates the ring of quadrilaterals being collapsed.  In the right panel the 

circled nodes are the locations of the merged nodes in the final mesh. 

 

                       

Figure 3.10:  Collapsing node groups 

3.5 30BMesh Clean-up 

Despite efforts to minimize high-valent nodes in previous steps, a few cases 

remain where high-valent nodes are formed.  Furthermore, the collapse of two rings 

separated by only one layer of elements may have unexpected results that reduce the 

element quality of the mesh.  Finally, collapsing quadrilaterals along geometric curves 

may result in elements with low quality which cannot be smoothed.   To improve mesh 

quality, smoothing the mesh is always appropriate prior to further iterations of coarsening 

or to improve the quality of the final mesh.  Therefore, after each coarsening iteration, 

clean-up and smoothing operations are performed.  Most of these operations are defined 

in the paper published by Kinney [X19X] and are outlined in Appendix C. 

3.6 31BCoarsening Iterations 

At the end of each coarsening cycle the net number of quadrilaterals removed is 

determined, including any quadrilaterals added or removed by the clean-up procedures.  
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If too few quadrilaterals have been removed, the algorithm executes again.  If a sufficient 

number of quadrilaterals have been removed or if no quadrilaterals have been removed, 

the program exits, integrating the coarsened region back into the original mesh.  The 

algorithm provides a message if insufficient coarsening has taken place to reach the goal 

number of elements to be removed. 

XFigure 3.11X shows the example given in  after it has gone through several 

coarsening iterations.  The region that is completely outside of the coarsening region is 

identical in both meshes.  However, fewer elements remain within the coarsening region. 

 

 

Figure 3.11:  Original mesh compared to coarsened region 
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4 17BResults and Examples 

Three example meshes are shown in this section that have been coarsened using 

the AQCRC algorithm.  They are meant to represent three major applications of the 

coarsening algorithm.  A discussion of the trade-offs between the magnitude of 

coarsening and the resultant quality of the mesh follows each of these examples. 

The resulting area and quality of the meshes coarsened to various levels will be 

compared.  The quality metric used is the Scaled Jacobian metric which ranges from -1.0 

to 1.0 [X18X].  A Scaled Jacobian value of 1.0 represents a perfect square while anything 

below 0.0 is a degenerate element (0.0 typically being a triangle-shaped element).  The 

element is generally considered acceptable for analysis accuracy if it has a quality above 

0.2.  Elements with a Scaled Jacobian value below  0.2 are considered marginal [X20X]. 

4.1 32BTypical Applications 

The three examples provided to show the breadth of uses for the ring coarsening 

algorithms.  In all three cases coarsening factors of 1.5, 4 and 10 were used to 

demonstrate the flexibility of the algorithm.  The first example is mesh of a membrane 

with holes.  The second example is the source surface of a swept mesh.  The third 

example is the mesh of a quasi-spherical shell surface.   

29 



4.1.1 38BMembrane Mesh Example 

 XFigure 4.1X shows a membrane mesh for a simple rectangular surface with bolt 

holes.  The coarsening region is highlighted in darker grey lines.  The coarsening region 

was chosen by selecting the five quads filled in with grey as a base set and using a depth 

of eight.  The areas of interest in this problem surround the bolt holes where stress 

concentrations will arise.  The coarsening procedure, appropriately applied, respects these 

high stress concentration zones by preserving the high quality, high density mesh in those 

regions.   

 

 

Figure 4.1:  Membrane mesh coarsening region 

 

The initial mesh and three coarsened versions of the mesh are shown in XFigure 

4.2X.  Each coarsened version of the mesh was created by coarsening from the initial mesh 

with a different coarsening factor.  The top left mesh is the initial mesh, included for 

reference.  The top right is coarsened to a factor of 1.5, the bottom left is coarsened to a 

factor of 4 and the bottom right is coarsened to a factor of 10. 
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XTable 4.1X specifies the quality of the surface mesh for each level of coarsening.  

For reference purposes, the first row in the table provides the quality for the initial mesh.  

As shown in the table, the quality tends to degrade as coarsening increases except for 

when the coarsening  factor 10 is used. However, the remaining examples in this section 

consistently demonstrate that the average and minimum quality of the mesh is reduced 

for larger amounts of coarsening. 

 

 

Figure 4.2:  Membrane mesh at various levels of coarsening 
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Table 4.1:  Membrane mesh quality results comparison 

Test Name
Average 
Quality

Quality 
Std. Dev.

Minimum 
Quality

Maximum 
Quality

Membrane Mesh, Initial 0.976 0.044 0.719 1.000
Membrane Mesh, factor 1.5 0.965 0.052 0.705 1.000
Membrane Mesh, factor 4 0.946 0.069 0.556 1.000
Membrane Mesh, factor 10 0.946 0.070 0.579 1.000   

 

XTable 4.2X provides a comparison of the element areas of the four different 

meshes.  The average area increases significantly.  The maximum area of the elements in 

the mesh increases by a factor of 15 from the initial mesh to the factor 10 mesh.  For 

reference, the number of elements within the initial coarsening region is 1126, the factor 

1.5 coarsening removed 340 elements, the factor 4 coarsening removed 526 elements and 

the factor 10 coarsening removed 955 elements. 

 

Table 4.2:  Membrane mesh area results comparison   

Test Name
Quad 
Count

% Quads 
Remaining

Average 
Area

Area Std. 
Dev.

Minimum 
Area

Maximum 
Area

Membrane Mesh, Initial 2429 100.0% 1.011 0.220 0.331 2.243
Membrane Mesh, factor 1.5 2089 86.0% 1.176 0.359 0.308 3.341
Membrane Mesh, factor 4 1563 64.3% 1.571 1.155 0.304 9.692
Membrane Mesh, factor 10 1474 60.7% 1.666 1.922 0.304 30.190  

4.1.2 39BSwept Mesh Example 

The boundary of a three dimensional mesh is of the most significance in some 

models.  In computational fluid dynamics the boundary layer region may require a fine 

mesh.  XFigure 4.3X shows the circular cross-section of a cylinder.  The initial mesh is 

shown in the top right corner.  In this case the entire surface is the coarsening region.  

The other meshes shown have been coarsened to again to factors of 1.5, 4 and 10.  The 

32 



original mesh is created with a sufficient number of elements at the boundary of the 

mesh; however this mesh density may not be necessary near the center of the mesh.   

 

 

Figure 4.3:  Cylinder mesh before and after coarsening 

 

XTable 4.3X and XTable 4.4X show the quality and area results for these meshes 

respectively.  The factor 10 coarsening attempt did not successfully complete the level of 

coarsening desired and the algorithm provided a warning that it was unable to coarsen 
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further.  Once again it can be seen that as the mesh is coarsened more and more, the 

quality of the mesh is reduced.  When coarsened to a factor of 10, the quality is barely 

within the acceptable range of quality.    The transition between coarse and fine mesh in 

this example is very rapid and so the transition elements tend to have much shorter sides 

facing the outside of the mesh.  This is typical in coarsening regions and is the primary 

reason for quality degradation.   

After coarsening the surface can be swept through the cylinder to create an all-

hexahedral mesh as shown in XFigure 4.4X.  Densely packed, high-aspect ratio boundary 

elements are created around the perimeter with larger elements, good quality elements 

near the center. 

 

Table 4.3:  Swept mesh quality results comparison 

Test Name
Average 
Quality

Quality 
Std. Dev.

Minimum 
Quality

Maximum 
Quality

Swept Mesh, Initial 0.974 0.041 0.755 1.000
Swept Mesh, factor 1.5 0.938 0.065 0.676 1.000
Swept Mesh factor 4 0.862 0.110 0.453 0.999
Swept Mesh factor 10 0.797 0.153 0.261 0.999  

 

Table 4.4:  Swept mesh area results comparison 

Test Name
Quad 
Count

% Quads 
Remaining

Average 
Area

Area Std. 
Dev.

Minimum 
Area

Maximum 
Area

Swept Mesh, Initial 3233 100.0% 0.010 0.002 0.002 0.020
Swept Mesh, factor 1.5 2174 67.2% 0.015 0.006 0.002 0.055
Swept Mesh factor 4 801 24.8% 0.040 0.051 0.004 0.378
Swept Mesh factor 10 396 12.2% 0.077 0.153 0.003 1.053  
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4.1.3 40BShell Mesh Example 

For most FEA applications several different load cases are applied to the same 

model during the course of simulations.  In these cases it is convenient to work from one 

base model which can quickly be adapted, by either refining or coarsening, to place 

computational emphasis on the areas of interest for a particular load case.   XFigure 4.5X 

shows a shell mesh of a nearly spherical model holes.  Again the mesh is coarsened to 

factors of 1.5, 4 and 10.  The number of edges at the surface boundary remains constant 

throughout the coarsening to preserve the edge count between itself and neighboring 

surfaces which are not coarsened.   

 

 

Figure 4.4:  Swept cylinder mesh 

 

In this case the factor 10 mesh has clearly been over coarsened.  The curvature of 

the model is too high to be accurately captured by the large elements resulting from the 

coarsening procedure.  However, the quality of the elements remains well within the 

acceptable range as is shown in XTable 4.5X. 
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Figure 4.5:  Shell mesh before and after coarsening   

 

Table 4.5:  Shell mesh quality comparison results 

Test Name
Average 
Quality

Quality 
Std. Dev.

Minimum 
Quality

Maximum 
Quality

Shell Mesh, Initial 0.986 0.036 0.668 1.000
Shell Mesh, factor 1.5 0.980 0.043 0.656 1.000
Shell Mesh, factor 4 0.941 0.066 0.639 1.000
Shell Mesh, factor 10 0.843 0.093 0.499 0.995  
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XTable 4.6X below shows a comparison of the areas and quads remaining in the 

original mesh.  The algorithm has faithfully removed quads according to the coarsening 

factors of 1.5, 4 and 10.  The coarsened factor is most readily apparent when examining 

the average area column. 

Table 4.6:  Shell mesh area comparison results 

Test Name
Quad 
Count

% Quads 
Remaining

Average 
Area

Area Std. 
Dev.

Minimum 
Area

Maximum 
Area

Shell Mesh, Initial 5477 100.0% 0.014 0.003 0.002 0.037
Shell Mesh, factor 1.5 3638 66.4% 0.022 0.013 0.006 0.119
Shell Mesh, factor 4 1347 24.6% 0.058 0.105 0.007 1.280
Shell Mesh, factor 10 572 10.4% 0.137 0.349 0.007 3.758  
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5 18BConclusions and Recommendations 

5.1 33BMagnitude of Coarsening and Quality Considerations 

The magnitude of coarsening to be achieved is limited primarily by element 

quality considerations.  Generally speaking, the more the mesh is coarsened, the lower 

the quality of the mesh becomes.  This can largely be attributed to the quality of the 

transition elements between the fine and coarse regions of the mesh degrading as the 

difference in sizes between the two mesh regions increases.  At least one layer of 

elements must take on a trapezoidal shape where the edges near the center of the region 

are larger than the edges near the outside of the region.  As the difference in length 

becomes more pronounced the quality of the mesh is reduced.  This should not deter from 

the use of the coarsened mesh so long as the quality remains within acceptable ranges 

because typically the area of the mesh being coarsened is outside of the area where 

accuracy is most critical.   

Consideration of the location of the transition elements also gives insight into the 

best way to choose coarsening rings.  Instead of doing concentric coarsening rings, many 

smaller coarsening rings, perhaps centering around a single element, could have been 

created.  Or rather than creating and considering several coarsening rings, only the 

outermost ring might be processed and removed automatically.  Both of these options 
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were explored and rejected because the quality of the mesh created were significantly 

lower than when several concentric rings were used.  In the first case, where many small 

non-concentric rings are used, the number of transition elements goes up sharply 

throughout the mesh.  In the second case where only the outermost ring is used 

repeatedly, the coarsening often does not touch the center region and the transition 

elements are focused on the outermost rings of the region.  This sharp transition results in 

low quality meshes like those in the factor 10 examples but occurring on much lower 

levels of coarsening.  Using many concentric rings may not be the best method of 

choosing rings, but it has proven to be the most effective of the techniques tried so far.   

Due to the triangularization of the stiffness matrix, an analysis loop for finite 

element analysis has a computational complexity proportional to the number of nodes in 

the mesh cubed.  In the case of the swept mesh the number of nodes in the original mesh 

is 5603.  The mesh after being coarsened to a factor of 1.5, 4 and 10 is reduced to 3764, 

1473 and 698 nodes respectively.  This reduction in node count would roughly 

correspond to a reduction in computation time by factors of 3, 50 and 500 respectively. 

This kind of speed increase is invaluable for large scale meshes that take hours or days to 

analyze. 

5.2 34BSummary 

The availability of a fast, robust coarsening algorithm for unstructured, all-

quadrilateral, conformal meshes expands the tools available for computational modeling.  

The use of coarsening coupled with refinement provides and effective means to adapt a 

mesh more effectively, increasing model accuracy while reducing computation times.   
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This paper presented the Automated Quadrilateral Coarsening by Ring Collapse 

(AQCRC) algorithm.  The algorithm conformally coarsens localized regions of 

quadrilateral meshes by creating, modifying and removing coarsening rings.  The 

automation procedure optimizes final element quality while attempting to heavily coarsen 

the defined region.   

Application of the AQCRC algorithm demonstrates that it is capable of removing 

enough nodes from the mesh to increase speeds by many times while maintaining a mesh 

quality sufficient for accurate analysis.  In the examples shown the algorithm was capable 

of increasing speed by a factor of 3 without significantly decreasing the quality of the 

mesh or of increasing speed by two orders of magnitude while maintaining generally 

acceptable element quality. 

5.3 35BFurther Research 

Further research in applying this algorithm is indicated in several areas.  Clean-up 

operations are already a focus of significant effort to address problems coarsening around 

complex surfaces.  A three dimensional version of this algorithm for use in hexahedral 

meshes is being developed [X21X].  An alternative method of coarsening, partial chord 

removal, is described in Appendix B.  A basic verion of this algorithm has been 

implemented and with further research could be used in conjunction with AQCRC 

coarsening or as a stand alone coarsening method.   

One of the methods of coarsening discussed in the Chapter 2 was undoing 

refinement.  The AQCRC algorithm could be adapted into a reversible coarsening 

procedure, allowing refinement of regions previously coarsened by storing the changes 
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made to the mesh in the remaining mesh entities.  As some nodes or edges may be 

merged and then merged again, a set of changes could be pushed onto a stack so that the 

reverse operations could be performed one at a time, restoring the mesh to its original 

state. 

The AQCRC algorithm is a step forward in coarsening methodology for 

quadrilateral finite element meshes.  The potential speed benefits of coarsening 

algorithms could significantly reduce the time and cost of computational analysis of large 

scale problems. 
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Appendix A. 20BBasic Chord Operations 

The core of the idea put forward by Staten, et al. [X16X], is that if a bounding set of 

partial chords is selected, the chords can be united by a set of simple operations creating a 

circular chord entirely contained within the coarsening region.  The operations are: edge 

swap, face close and doublet insertion.  These original operations are no longer used in 

the AQCRC algorithm except in the context of clean-up operations; however, two 

additional operations, the template insertion and the face open operations were later 

developed and applied in the AQCRC.  All of these operations are described here in 

detail for reference. 

0BEdge Swap Operation 

One of the simplest operations is the edge-swap.  XFigure A.1X demonstrates how 

an edge-swap would be applied to the two bounding partial chords.  The panel on the top 

left shows the original partial chords at the intersection marked by a dotted line.  The 

panel on the top right shows the resulting mesh after the edge swap has been performed; 

the two partial chords have now become one chord.  The other two panels show the 

results of the face close and doublet insertion operations and will be discussed later.  At 

first, the edge-swap creates a poor quality element; however, this element will easily 

become a high quality element with the application of a simple smoothing operation.  
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This method of joining two chords generally results in very good quality elements once 

the chord has been collapsed from the mesh.  However, it reduces the number of quads 

collapsed from the mesh by one.  If the low quality element is adjacent to a geometric 

curve, a simple smoothing operation is not sufficient to redeem the low quality quad. 

 

            

          

Figure A.1:  The edge swap, face close and doublet insertion operations 

1BFace Close Operation 

XFigure A.1X also shows the face close operation, the two partial chords are again 

combined, this time as shown in the bottom left panel.  The face close operation is quick, 

simple and effective.  At first it appears to create a high-valent node, which is generally 

considered bad due to the poor quality elements around it; however, once the joined 
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chord has been collapsed the node will be reduced again to a node with an acceptable 

valence.  The draw back to this operation is that it generally produces slightly lower 

quality elements compared to the edge swap operation.  The face close operation is very 

useful in a number of clean-up operations and can be seen to be the simplest method of 

coarsening, albeit on a very small scale.  

2BThe Doublet Insertion Operation 

The doublet insertion operation is another simple way of combining the two 

partial chords.  Initially it creates very poor quality elements; however, both of these 

elements are removed in the process of coarsening, making this operation perfectly 

acceptable in the long run.  The doublet insertion operation is also used as an 

intermediate step in a number of clean-up operation.  Typically one of the edges in the 

doublet is split during a face open operation immediately following the doublet insertion.  

Interestingly, when applied as part of the coarsening process, the face close and doublet 

insertion algorithms produce an identical mesh once the chord has been collapsed. 

3BTemplate Insertion Operation 

The template insertion operation is another option that can replace face close and 

edge swap operations in combining two partial chords.  A simple one-to-three template is 

inserted into the quad just insider the intersection of the bounding chords.  Edges are 

redistributed and created according to the right panel of XFigure A.2X.   

Template insertion is advantageous because it guarantees that no poor quality 

elements or high-valent nodes are created near the bounding chords.  However, it adds 
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two elements to the mesh and thus should be used sparingly in coarsening operations.  

The template insertion method can be used to defuse problematic boundary conditions as 

discussed in Section X3.3X. 

 

                

Figure A.2:  The template insertion operation 

4BFace Open Operation 

The face open operation was added to the code because of a discovered need 

during the coding of the algorithm.  It was found that commonly there were multiple 

bounding partial chords with intersections adjacent to each other.  XFigure A.3X shows such 

a situation in the left panel.  The right panel shows the resulting combination of all three 

partial chords into one continuous chord by the application of a single face open 

operation.  Each additional chord intersection requires an additional face open operation.   

Note that if two face close operations or two edge swap operations were 

performed, the resulting collapse of the chord would create a high-valent node.  Worse, if 

several of these jagged bounding chords were adjacent to each other there would be no 
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limit to the valence of the node created by the collapse of the chord, and the edge swap 

operation could not be used for more than the simple three chord case.  The face open 

operation is an essential tool in joining three or more partial chords into a continuous 

bounding chord. 

 

                

Figure A.3:  The face open operation 
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Appendix B. 21BPartial Chord Removal 

  Concurrently with the research presented in the main body of this paper, another 

algorithm appropriate for localized coarsening on quadrilateral finite element meshes has 

been developed.  The algorithm, called Partial Chord Removal, is an excellent 

complement to the ring coarsening algorithm.  It seems likely that with the development 

of intelligent decision making processes, a given coarsening region could have both ring 

coarsening and partial chord coarsening applied simultaneously and with great effect. 

5BSingle Face Collapse 

The simplest coarsening method possible is the removal of a single element with a 

face close operation as shown in XFigure B.1X.  Face close operations are not used to 

coarsen because they leave behind a high-valent node.  As can be seen in the figure, this 

structured mesh now includes a six valent node.  This tends to reduce the quality quickly 

and has been neglected as a valid means of large scale coarsening. 

 

 

Figure B.1:  Face close operation 
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6BStringing Face Closes Together 

Partial chord coarsening is simply a series of face close operations adjacent to 

each other along partial chord.  XFigure B.2X below shows a mesh being coarsened by 

partial chord removal.  In the left panel, the nodes circled with dashed lines between them 

will be collapsed to the same point.  In the right panel the final mesh configuration is 

shown.  The region highlighted in grey is the partial chord selected for coarsening.   

 

 

Figure B.2:  Partial chord coarsening 

 

Partial chord removal has two limitations.  First, at least two quadrilaterals should 

be removed at the same time in order to avoid creating high-valent nodes.  Along with 

this limitation, the end quadrilaterals should not collapse nodes with a valence higher 

than four or high-valent nodes will be created.  Second, the partial chord cannot extend 

through or adjacent to a curve boundary.  In either case, it will create a triangle-shaped 

quadrilateral as discussed in Appendix C. 
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Appendix C. 22BClean-up Operations 

Clean-up is an increasingly important part of the coding of the AQCRC 

algorithm.  In its current development stage there are still too many unknown factors that 

may result in the creation of very poor elements which cannot be smoothed into being 

good quality elements by any ordinary means.  Clean-up operations are therefore 

important to ensuring that the mesh left after the coarsening operations have executed is 

still valid.  Included in the coarsening suite is a simple smoother which is used to both 

enhance the functionality of the other coarsening tools and to allow the coarsening ring 

quality projections to be more accurate.  The clean-up operations and smoother now in 

use in the AQCRC algorithm are detailed in the following sections. 

7BSmoothing 

The mesh is smoothed each time a coarsening iteration is performed so that the 

quality metrics used during coarsening more accurately reflect the actual location of 

nodes in the final mesh.  It is also smoothed during each iteration of the clean-up 

operations because some of the clean-up operations are only activated on low quality 

elements.  The smoothing algorithm during clean-up is a simple laplacian smoothing 

algorithm [X22X].  Each node is considered in turn and moved to the centroid of the 

quadrilaterals surrounding it.  This procedure is repeated several times for all the nodes in 
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the mesh until the maximum distance moved by the nodes has been reduced to a 

convergence tolerance or a maximum number of iterations have been performed.   

8BDiamond Quadrilateral Removal 

A diamond quadrilateral is defined as a quadrilateral with two opposing three-

valent nodes.  These quadrilaterals are not a major concern, but reduce the overall quality 

of the mesh.  They are removed by simply performing a face close operation, bringing the 

two three-valent nodes together to form a four-valent node as shown in XFigure C.1X.  If a 

quadrilateral has more than two three-valent nodes it is not considered a diamond 

quadrilateral because the collapse of the quadrilateral would result in the creation of a 

doublet. 

 

 

Figure C.1:  Diamond quadrilateral removal 

9BDoublet Removal 

A doublet is a node with a valence of two.  They are easily removed by 

performing a simple face close operation on one of the two adjacent quadrilaterals; thus, 

one quadrilateral takes the place that the two quadrilaterals previously occupied.  XFigure 

C.2X shows a doublet being removed.  In a few cases it is not practical to delete one of the 
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quadrilaterals, either because it will create a triangle-shaped quadrilateral, or because 

both quadrilaterals were part of the original mesh just outside of the coarsening region.  If 

a face close operation is not feasible, a second option may be employed by performing a 

face open operation on one of the edges connected to the doublet node and on another 

edge not connected to the doublet quadrilaterals.  The doublet becomes a three-valent 

node.  Inserting a doublet and removing it in this way is one of the primary tools used in 

resolving triangle-shaped quadrilaterals as discussed and illustrated in the Triangle-

Shaped Quadrilateral Removal Section below. 

 

 

Figure C.2:  Simple doublet removal 

10BHigh-Valent Node Reduction 

Nodes with a valence of more than five are considered high-valent nodes and tend 

to reduce the quality of the mesh.  There are two major ways of dealing with these 

problems.  First, two of the edges connected to the node may be opened.  This results in 

two nodes, each with lower valence than the first.  Second, a face close operation on one 

of the neighboring quadrilaterals will reduce the valence of the node.  Both operations 

have been illustrated in XFigure C.3X.  The top panel shows the original mesh with the 
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high-valent node circled for clarity.  The face open operation is shown on the left; the 

face opened has extra bold lines.  The face close operation is on the right; the two edges 

remaining where the face was previously to be are shown in extra bold lines.   

 

 

Figure C.3:  Resolution options for high-valent nodes 

 

In the face open operation the edges intersecting at the node are split between the 

two new nodes that take the place of the original node.  However, because the edges of 

two of the adjacent nodes are split, those adjacent nodes increase in valence.  This is 

advantageous if those nodes were three-valent nodes to begin with, and acceptable if they 

are four-valent nodes, but it may simply move the high-valent problem to another 
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location if one of the nodes has a higher valence than four.  In the face close operation a 

similar dilemma is encountered: the two nodes which are merged in the face close 

operation combine their edges.  If they are both three-valent nodes they will become a 

four-valent node, and if they are one three-valent node and one four-valent node they will 

become a five-valent node.  However, if they have any higher combination of valence 

they will become a high-valent node themselves.  There is no guarantee that there are two 

nodes of appropriate valence on the same face as is required for the face close operation, 

nor on different faces as is required for the face open operation; however, it is very 

common to find one or more in either of those possibilities.  The program searches for the 

lowest valence nodes neighboring the high-valent node and performs a face close 

operation if they are on the same quadrilateral, or a face open operation if they are not on 

the same quadrilateral.  In the example shown in XFigure C.3X both options are equally 

valid and the decision to do one or the other is made arbitrarily. 

11BTriangle-shaped Quadrilateral Removal 

If a quadrilateral has two edges on the same geometry curve it may have a 

distinctly triangular shape.  Such an element often has a low quality; because of the 

restrictions of the node locations on the curve, the shape quality cannot be improved by 

smoothing.  In some cases, such as a curve with high curvature, this may be acceptable or 

even preferred; therefore, the quality of the quadrilateral is checked with the scaled 

Jacobian metric before having the clean-up operation performed.  If the quality is above 

marginal, it is left alone.  XFigure C.4X shows these two cases.  On the left is a triangle-

shaped quadrilateral on a straight curve; the third node on the curve is circled for clarity, 
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and the double line is where the geometry curve lies.  The right panel shows a 

quadrilateral that is topologically the same, and is only distinguished by having an 

acceptable quality. 

 

 

Figure C.4:  Triangle-shaped quadrilaterals 

 

As with the high-valent node case, triangle-shaped quadrilaterals have several 

options for remediation depending on the specific situation.  The primary method used is 

to insert a doublet into the quadrilateral running from the circled node on the curve to the 

node opposite and then opening the far edge with another from the surrounding mesh.  

XFigure C.5X depicts this method.  On the left a doublet is inserted into the triangle-shaped 

quadrilateral from XFigure C.4X; the doublet node is circled.  On the right a face open 

operation has been performed changing the doublet into a three-valent node.  It should be 

noted that the other edge in the operation may increase the valence of the other node 

above acceptable levels.  This is permitted temporarily because it is better to have a high-

valent node away from the restrictions imposed by the geometry curves than to have a 

triangle-shaped quadrilateral.  Even though it is acceptable to create a high-valent node, it 

is not preferred and the other edge in this operation is chosen to avoid this problem if 

possible. 
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Since the triangle-shaped quadrilateral has two edges on the same curve, only one 

of the nodes of the quadrilateral is not on the curve.  If that node is on another curve, the 

standard procedure cannot be used. The solution, shown in XFigure C.6X, is to insert a 

doublet in the triangle-shaped quadrilateral and one of the adjacent quadrilaterals.  An 

edge-swap operation of the edge between the original two quadrilaterals will then resolve 

the situation. This method generally results in marginal quality elements, but is still a 

significant improvement over the situation of the mesh prior to the operation. 

 

 

Figure C.5:  Basic resolution to triangle-shaped quadrilaterals 

 

 

Figure C.6:  Solution for triangle-shaped quadrilateral between two curves 
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Appendix D. 23BImplementation Concerns in CUBIT 

The AQCRC algorithm is implemented into CUBIT.  The following sections 

describe the command structure in CUBIT, a description of a temporary data structure 

developed to perform coarsening, and an algorithm flow chart. 

12BCUBIT Command Parameters 

Commands in CUBIT are generally denoted with the following syntax.  Curly 

braces, { }, indicate that one of several parameters within the braces is required.  The 

options are separated by a sing vertical line, |, symbol.  Angle brackets, < >, indicate that 

a number is required, between the brackets is the type of number (integer, range or 

double) that is allowed.  Square brackets, [ ], indicate one or more optional parameters 

which may be separated by vertical line symbols if only one of the optional parameters is 

allowed.  The command syntax for coarsening is as follows:  Coarsen {Surface | Curve | 

Vertex | Face | Edge | Node} <range> [Depth <int>] {Factor <double> | Size <double>}. 

13BTemporary Data Structure 

Immediately after the command is read in, the cubit mesh entities within the 

region are determined and copied into a data structure designed and optimized 

specifically for the coarsening algorithm.  This data structure mirrors the CUBIT data 

63 



structure in that it has nodes, edges and faces.  Each face has edge uses which contain the 

edges and a definition of whether the edge nodes run clockwise or counter-clockwise on 

the face.  These entities are created by and stored in a container class which further 

contains most of the utility functions used to modify and adapt the mesh during 

coarsening.  This container class also contains the functions necessary to convert back 

and forth between the CUBIT entities and the temporary entities it uses. 

The temporary entities all contain a pointer to the CUBIT entity from which they 

are copied (or NULL if they are a newly created entity), and the CUBIT entities which 

have been converted into adapt entities are stored in a map which couples them with the 

temporary entities.   
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