
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2008-02-21

Throughput Constrained and Area Optimized Dataflow Synthesis Throughput Constrained and Area Optimized Dataflow Synthesis

for FPGAs for FPGAs

Hua Sun
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Sun, Hua, "Throughput Constrained and Area Optimized Dataflow Synthesis for FPGAs" (2008). Theses
and Dissertations. 1329.
https://scholarsarchive.byu.edu/etd/1329

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1329?utm_source=scholarsarchive.byu.edu%2Fetd%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

THROUGHPUT CONSTRAINED AND AREA OPTIMIZED

DATAFLOW SYNTHESIS FOR FPGAS

by

Hua Sun

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

Brigham Young University

April 2008

Copyright c© 2008 Hua Sun

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Hua Sun

This dissertation has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Michael J. Wirthlin, Chair

Date Brent E. Nelson

Date James K. Archibald

Date Doran K. Wilde

Date Clark N. Taylor

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Hua
Sun in its final form and have found that (1) its format, citations, and bibliograph-
ical style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is
ready for submission to the university library.

Date Michael J. Wirthlin
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Chair

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

THROUGHPUT CONSTRAINED AND AREA OPTIMIZED

DATAFLOW SYNTHESIS FOR FPGAS

Hua Sun

Department of Electrical and Computer Engineering

Doctor of Philosophy

Although high-level synthesis has been researched for many years, synthesizing

minimum hardware implementations under a throughput constraint for computation-

ally intensive algorithms remains a challenge. In this thesis, three important tech-

niques are studied carefully and applied in an integrated way to meet this challenging

synthesis requirement. The first is pipeline scheduling, which generates a pipelined

schedule that meets the throughput requirement. The second is module selection,

which decides the most appropriate circuit module for each operation. The third is

resource sharing, which reuses a circuit module by sharing it between multiple oper-

ations. This work shows that combining module selection and resource sharing while

performing pipeline scheduling can significantly reduce the hardware area, by either

using slower, more area-efficient circuit modules or by time-multiplexing faster, larger

circuit modules, while meeting the throughput constraint. The results of this work

show that the combined approach can generate on average 43% smaller hardware than

possible when a single technique (resource sharing or module selection) is applied.

There are four major contributions of this work. First, given a fixed through-

put constraint, it explores all feasible frequency and data introduction interval design

points that meet this throughput constraint. This enlarged pipelining design space

exploration results in superior hardware architectures than previous pipeline synthe-

sis work because of the larger sapce. Second, the module selection algorithm in this

work considers different module architectures, as well as different pipelining options

for each architecture. This not only addresses the unique architecture of most FPGA

circuit modules, it also performs retiming at the high-level synthesis level. Third,

this work proposes a novel approach that integrates the three inter-related synthesis

techniques of pipeline scheduling, module selection and resource sharing. To the au-

thor’s best knowledge, this is the first attempt to do this. The integrated approach is

able to identify more efficient hardware implementations than when only one or two

of the three techniques are applied. Fourth, this work proposes and implements sev-

eral algorithms that explore the combined pipeline scheduling, module selection and

resource sharing design space, and identifies the most efficient hardware architecture

under the synthesis constraint. These algorithms explore the combined design space

in different ways which represents the trade off between algorithm execution time and

the size of the explored design space.

ACKNOWLEDGMENTS

First of all, I want to express my thanks and great appreciation to my advisor

Michael Wirthlin. His rare combination of strengths in both the theoretical and the

practical has been a continuous inspiration to me, as well as his genuine enthusiasm

for the field.

I am also deeply indebted to my committee members, Professors Brent Nelson,

James Archibald, Doran Wilde and Clark Taylor. Their comments and welcoming

discussions have been an enjoyable part of this work.

I would like to thank my readers and others whose discussions with me have

had a large, direct impact on what is presented here. In particular, I want to thank

Stephen Neuendorffer from Xilinx research labs, for sharing with me his wide knowl-

edge of issues in design space exploration, and for his helpful comments.

I truely want to thank the many people who have contributed to this project.

They have done so with caring sincerity, and their hard work deserves as much recog-

nition as possible. These are Nathan Rollins, Bennion, Eric Johnson and all students

who took the high level synthesis class during Fall 2005.

I am so very grateful for my family, and in particular for my parents, who

have taught me and influenced me far more deeply than they realize. Their love and

support has been continuously uplifting during many struggles.

For my wife, words cannot express my love, appreciation and respect for her.

She has given her love and support freely and far beyond my hopes and dreams. Her

mark is on every page of my work.

Table of Contents

Acknowledgements xiii

List of Tables xxi

List of Figures xxvi

1 Introduction 1

1.1 High Level Synthesis for FPGAs . 4

1.2 Proposed FPGA HLS Methodology 7

1.3 Dissertation Structure . 8

2 Overview 11

2.1 Synthesis Constraint and Optimization Goal 11

2.2 Design Representation . 12

2.3 Scheduling . 13

2.4 Resource Sharing . 16

2.5 Module Library and Module Selection 17

2.6 Design Space Exploration . 18

2.7 Summary . 19

3 Pipeline Scheduling 21

3.1 Pipelining . 22

3.1.1 Pipelining Terminology . 22

xv

3.1.2 Pipelining Design Space . 24

3.2 Pipeline Scheduling Overview . 27

3.2.1 Modulo Start Time . 27

3.2.2 Effective Delay . 28

3.2.3 Feedback Constraints . 29

3.3 Previous Pipeline Scheduling Work 32

3.4 HOIMS . 34

3.4.1 IMS Algorithm Overview . 34

3.4.2 Hardware Specific Issues for Pipeline Scheduling 36

3.4.3 HOIMS Algorithm . 36

3.5 Summary . 39

4 Resource Allocation and Sharing 41

4.1 Resource Allocation and Sharing Overview 41

4.2 Resource Sharing and Pipeline Scheduling 42

4.2.1 Multi-cycle, Pipelined Circuit Module 43

4.2.2 Resource Sharing Capability with Pipeline Scheduling 43

4.2.3 Resource Sharing and Pipeline Schedulability 45

4.3 Previous Resource Sharing Work . 46

4.4 Weighted Compatibility Graph . 49

4.4.1 Port Similarity . 50

4.4.2 Source Similarity . 52

4.4.3 Sink Similarity . 52

4.5 Resource Allocation and Sharing in HOIMS 54

4.6 Summary . 57

5 Module Selection 59

xvi

5.1 Module Selection Overview . 60

5.1.1 Module Selection in HLS . 60

5.1.2 Sample FPGA Circuit Modules 61

5.2 Module Selection and Pipeline Scheduling 63

5.2.1 Module Selection and Scheduling Order 63

5.2.2 Feedback Constraint and Module Selection 65

5.2.3 Module Selection and Pipelining Design Space 66

5.3 Module Selection and Resource Sharing 67

5.4 Previous Module Selection Work . 68

5.5 HOIMS with Module Selection . 70

5.5.1 Candidate Module Set Generation 72

5.5.2 Initial Module Selection and Correction 73

5.5.3 Module Selection Refinement 76

5.5.4 Bit Width Morphing . 78

5.6 Summary . 80

6 Experimental Results 81

6.1 Pipeline Synthesis Design Space Analysis 82

6.1.1 Module Selection Only . 82

6.1.2 Resource Sharing Only . 83

6.1.3 Combined Module Selection and Resource Sharing 84

6.1.4 Pipeline Synthesis Design Space Summary 85

6.2 Pipeline Synthesis Area Results . 86

6.2.1 Area Results for a Single Throughput Constraint 87

6.2.2 Area Results for Multiple Throughput Constraint 89

6.3 HOIMS Area Results . 92

xvii

6.3.1 Uniform Bit-Width Area Results 93

6.3.2 Non-uniform Bit-Width Results 96

6.4 Runtime Results . 100

6.5 Summary . 105

7 Conclusion and Future Work 107

7.1 Future Work . 109

7.2 Summary . 111

Bibliography 112

Appendices 122

A Multi-cycle Pipelined Circuit Modules 123

A.1 Circuit Module Characterization and Description 123

A.2 Multi-cycle, Pipelined Circuit Module and C-Slow Retiming 125

B Supporting Functions in HOIMS 129

B.1 MinDist Matrix Calculation . 129

B.2 Scheduling Priority Calculation in Pipeline Scheduling 130

C Resource Sharing Overhead for FPGAs 133

C.1 Multiplexer Area . 134

C.2 Controller Area . 137

C.3 Timing Overhead . 138

D ASAP Exploration Algorithm 141

D.1 Algorithm Summary . 141

D.2 ASAP Exploration Results . 143

xviii

D.3 Limitations . 145

E IMS Exploration Algorithm 147

E.1 Algorithm Summary . 147

E.2 Heuristic Module Selection . 148

E.3 Scheduling and Resource Sharing . 150

E.4 IMS Exploration Results . 150

E.5 Comparison Between ASAP Exploration and IMS Exploration 153

E.6 Limitations . 154

xix

xx

List of Tables

3.1 Different throughput requirements for different DTV standards, as-
suming 30 frames/sec for each standard, therefore, the throughput =
width ∗ height ∗ 30. 25

5.1 Sample FPGA circuit modules. The slice count (Am) and the frequency
(fm) are characterized by the FPGA implementation tools shown in
Figure A.1. 62

6.1 Average area comparison between different synthesis techniques. . . . 89

6.2 Minimum area FIR design points. 92

6.3 Bit-width morphing and binding at (24MHz, 2) for the FIR filter. . . 101

6.4 Runtime report for ASAP Exploration algorithm, IMS Exploration al-
gorithm and HOIMS algorithm. 102

xxi

xxii

List of Figures

1.1 Performance and programmability comparison between FPGAs,
ASICs, ASSPs, DSPs and general purpose CPUs [1] 2

1.2 Current design methodologies and productivity improvements are fail-
ing to keep pace with the rapid and ongoing increase in circuit com-
plexity [2] . 4

2.1 The SDF model of a Biquad filter . 14

2.2 An example of an unscheduled DG and the scheduled DG after schedul-
ing, all operations are assumed to have a latency of 1 clock cycle. . . 15

2.3 Resource sharing example . 16

3.1 Five stage pipeline example for an 5-tap FIR filter 23

3.2 Illustration of pipelining terminologies 24

3.3 Pipelining design space illustration 26

3.4 Dependence graph of the Biquad filter in Figure 2.1, integers on edges
showing “intra” or “inter” iteration dependence between operations . 29

3.5 Illustration of feedback and its constraints on the minimum system
data introduction interval (δmin). The numbers on the operations rep-
resents the module latency (λm) . 31

4.1 Illustration of the sharing capability of a pipelined circuit module in
the context of a pipelined schedule, assuming δ = 5, δm = 3, λm = 5. . 45

4.2 Resource sharing may prevent a dependence graph from schedulable
even with a valid minDist matrix . 47

4.3 A sample compatibility graph and two possible clique partitioning. . . 50

4.4 Port similarity (sport) example . 52

xxiii

4.5 Source similarity (ssource) example 53

4.6 Sink similarity (ssource) example . 54

5.1 Module selection before scheduling 64

5.2 Illustration of feedback constraint limits cycle’s module selection . . . 65

5.3 Example of candidate module set . 73

5.4 Module selection for the Biquad filter’s SCC and the corresponding
minDist matrix . 75

6.1 Projected pipeline synthesis design space with module selection and/or
resource sharing under a fixed throughput constraint 83

6.2 ASAP Exploration area result with different synthesis techniques for
the IDCT example under a 12 MSamples/Sec throughput constraint . 88

6.3 3D Design Space for the Biquad Filter 90

6.4 3D Design Space for the FIR Filter 91

6.5 Area comparison between HOIMS and IMS Exploration for the Biquad
example with 12M Samples/Sec throughput constraint 93

6.6 Area comparison between ASAP Exploration, IMS Exploration and
HOIMS algorithm for the FIR filter with 12 MSamples/Sec throughput
requirement . 95

6.7 Non-uniform bit-width dependence graph of the Biquad filter 97

6.8 Area comparison between uniform bit-width and non-uniform bit-
width Biquad filter with 12 MSamples/Sec throughput constraint . . 97

6.9 Effects of bit-width morphing at (36MHz, 3) for the non-uniform bit-
width Biquad filter with HOIMS . 98

6.10 Effects of module selection refinement at (48MHz, 4) for the non-
uniform bit-width Biquad filter with HOIMS 99

6.11 Area comparison between uniform bit-width and non-uniform bit-
width FIR filter with 12 MSamples/Sec throughput constraint 100

6.12 Logarithmic computational complexity compare. 103

6.13 Number of module selection iterations by HOIMS at each pipelining
design point for the Biquad example 104

xxiv

6.14 Number of module selection iterations by HOIMS at each pipelining
design point for the FIR filter . 105

A.1 Circuit module characterization flow 123

A.2 Retiming a circuit. Rectangles represent registers and circles represent
operations. Registers r1 and r2 in the top circuit are moved forward to
create r4 in the bottom circuit; register r3 in the top circuit is moved
backward to create r5 and r6 . 126

A.3 Slowdown and retiming. In the original circuit (a), each operation
(white rectangle) has a delay of 1, so the minimum clock period between
the registers (black rectangles) is 2. After a 2-slowdown transformation
(b) followed by a retiming (c) the minimum clock period has been
reduced to 1 . 128

C.1 Relationship between the number of input ports (N) and area cost in
FPGA LUT count for N-input 1-bit multiplexers 135

C.2 Relationship between the bit width (W) and area cost in FPGA LUT
count for several N-input multiplexers 136

C.3 The simplest controller to share 4 operations with 1 circuit module . 137

C.4 Relationship between the number of input ports (N) and combinational
delay for N-input multiplexers . 139

D.1 ASAP Exploration area result with different synthesis techniques for
the “Color Space Conversion” example under a 12 MSamples/Sec
throughput constraint . 143

D.2 ASAP Exploration area result with different synthesis techniques for
the FFT example under a 12 MSamples/Sec throughput constraint . 144

D.3 ASAP Exploration area result with different synthesis techniques for
the FIR example under a 12 MSamples/Sec throughput constraint . . 144

D.4 ASAP Exploration area result with different synthesis techniques for
the “Linear Interpolator” example under a 12 MSamples/Sec through-
put constraint . 145

D.5 ASAP Exploration area result with different synthesis techniques for
the IDCT example under a 12 MSamples/Sec throughput constraint . 145

xxv

E.1 Area comparison between different techniques for FIR filter with 12M
Samples/Sec throughput constraint 151

E.2 Area comparison between different techniques for Biquad filter with
12M Samples/Sec throughput constraint 151

E.3 Area comparison between ASAP and IMS exploration approach for
FIR filter with 12 MSamples/Sec throughput constraint 154

xxvi

Chapter 1

Introduction

FPGAs (Field Programmable Gate Arrays) are becoming an ever popular

hardware platform for implementing computationally intensive algorithms. Over the

years, a large number of such algorithms have been implemented on FPGAs for

image and video processing, data encryption and decryption, digital communication

systems, etc. For example, Porter et al. [3] implemented a maximal throughput

neighborhood image processing algorithm on Stratix II [4] and Virtex-II [5] devices.

Järvinen et al. [6] implemented a fully pipelined encryptor based on the Advanced

Encryption Standard encryption algorithm with 128-bit input and key length (AES-

128) on Virtex-E [7] and Virtex-II devices. Singaraju et al. [8] implemented an

FPGA based signature match processor that can serve as the core of a hardware

based network intrusion detection system.

Compared with other technologies, FPGAs offer several major advantages for

computationally intensive algorithms. First, FPGAs have a performance advantage

over sequential processors such as general purpose CPUs and DSPs (Digital Signal

Processors). Although their performance cannot match fully customized circuits such

as ASICs (Application Specific Integrated Circuits) and ASSPs (Application Specific

Standard Product), they are capable of implementing most computationally inten-

sive algorithms. Second, FPGAs have much lower up-front, non-recurring expenses

(NREs). The typical NREs for taping-out a 90nm ASIC are tens of millions of US

dollars. On the other hand, FPGAs are pre-manufactured and can be purchased

off-the-shelf with tens to thousands of dollars, depending on the capacity of the chip.

Third, FPGAs can be re-programmed after manufacturing which is necessary for algo-

rithms implementation, since this allows late-stage design changes with little impact

1

on the overall project schedule. This feature can also be used to fix the bugs in the

design even after the system is deployed in the field. As Figure 1.1 shows, FPGAs

offer a good balance between performance and programmability. Their performance

is close to customized hardware such as ASICs and ASSPs, yet at the same time they

can be re-programmed like general purpose CPUs and DSPs.

ASICs

ASSPs

FPGAs

General
Purpose CPUs

Pe
rf

or
m

an
ce

Programmability

DSP
Processors

Figure 1.1: Performance and programmability comparison between FPGAs, ASICs,
ASSPs, DSPs and general purpose CPUs [1]

There is one important disadvantage of using FPGAs for computationally

intensive algorithms. Compared to microprocessors, FPGAs are significantly more

difficult to program. Programing for microprocessors is imperative. The designers

only need to specify a sequence of functions to perform on certain data objects.

The compiler will automatically translate this specification into a list of instructions

which can be executed by the targeted microprocessor. To program FPGAs, the

designer has to create a customized circuit. All circuit details such as the hardware

2

implementation of each operation, the behavior of the circuit at each clock cycle, and

the interconnection and synchronization inside the circuit, must be specified by the

designer.

Currently the most mature method for FPGA based design is RTL (Register

Transfer Level) synthesis. The input to RTL synthesis contains two parts. The first

part is a data-path structure which contains functional units (e.g., adders, multipliers

and shifters, etc.), storage units (e.g., registers and memory), and interconnection

units (e.g., buses and multiplexers). The second part is a controller (finite state

machine) which contains the detailed schedule (related to clock edge) of the data-path

components. The output of RTL synthesis is a technology dependent implementation

in terms of logic gates and their interconnections. The RTL synthesis output is then

converted by FPGA vendor specific tools to program the target FPGAs.

RTL synthesis is limited due to its design complexity. RTL synthesis requires

the designer to specify the detailed circuit micro-architecture as the design input.

Unfortunately, defining such an architecture, creating, simulating, implementing and

debugging the corresponding RTL code is very time consuming and error-prone, es-

pecially with the increasing complexity of the designs. Moreover, to optimize the

hardware for area and timing purpose, the designer has to create and evaluate many

different RTL designs. Manually changing from one micro-architecture to another

one for design optimization can be prohibitively difficult due to the long design cycle.

The limitation of RTL synthesis creates a huge design productivity gap when

implementing computationally intensive algorithms on FPGAs. Most computation-

ally intensive algorithms are first written in software programming languages such

as C or Fortran. These software programs are then manually translated into RTL

descriptions for RTL synthesis. However, this manual translation process is tedious

and error prone. The designers who translate must fully understand the software

algorithm, determine the micro-architecture of the hardware implementation, verify

the correctness of the micro-architecture, and synthesize the hardware that meets the

area and timing requirements. If the micro-architecture requires modification due to

changes in source algorithms or area and timing requirements, this manual transla-

3

tion process has to be repeated. With the growing complexity of these algorithms,

the ever shortening time-to-market requirement and the constantly changing require-

ments, this manual translation process is creating a design productivity gap as shown

in Figure 1.2. Thus, new synthesis techniques must be made available to program

FPGAs for computationally intensive algorithms with significant improvements in

productivity.

C
irc

ui
t c

om
pl

ex
ity

 p
er

 C
hi

p

P
roductivity in Transistors/S

taff-m
onth

1980 20102000199519901985 2005

0.01M

10,000M

1,000M

100M

10M

1M

0.1M

0.1K

100,000K

10,000K

1,000K

100K

10K

1K

0.01K

58% annual
growth rate in

complexity

21% annual
growth rate in
productivity

Figure 1.2: Current design methodologies and productivity improvements are failing
to keep pace with the rapid and ongoing increase in circuit complexity [2]

1.1 High Level Synthesis for FPGAs

High-level synthesis (HLS) has been proposed to reduce this design productiv-

ity gap and address the limitations of RTL synthesis. HLS normally takes an untimed

algorithm description such as a C program or a block diagram, and automatically

generates different RTL descriptions based on different design requirements [9]. An

untimed description is a more abstract representation of the algorithm than the RTL

description because it is architecture independent and contains no implementation

details, thus no timing specification or constraint. It is the responsibility of HLS tool

4

to automatically explore and identify the best architecture and implementation for

this algorithm based on various user constraints.

High-level synthesis normally performs scheduling, binding and control synthe-

sis to translate a high-level description into an RTL description [10]. The scheduling

problem is to determine the time step or clock cycle in which each operation in the

design executes. The purpose of binding is to determine the number of resources

that need to be allocated to synthesize the hardware circuit, as well as the mapping

from the operations, variables, and data (and control) transfers in the design to the

allocated resources. Control synthesis generates a control unit that implements the

schedule. This control unit generates control signals that control the flow of data

through the data path.

High-level synthesis offers three major benefits compared to RTL synthesis.

First, modeling at higher levels of abstraction makes the designs smaller in code size

and less complex than equivalent RTL descriptions. The designs are easier to write,

understand and debug because they are closer to the algorithms being developed.

Second, HLS provides an automatic and much faster way to implement untimed soft-

ware algorithms in hardware. This greatly improves the design team’s productivity

and helps to close the design productivity gap. Third and most importantly, an HLS

design methodology shifts the focus from the detailed architecture to the behavior of

the design. A high-level description defines the algorithm or behavior to be performed

with few or no architectural details. With HLS tools, the designer can direct the syn-

thesis tool to generate alternate architectures by modifying constraints (such as clock

speed, hardware resource constraint, and latency, etc.). The output of HLS tools is

RTL code that implements the behavior of the high-level description with the best

hardware architecture. Thus, designers can explore more architectural alternatives

than possible with a RTL synthesis methodology.

The unique “reconfigurable” feature of FPGAs make FPGA-specific HLS even

more attractive. The first benefit is accelerated verification. One big limitation of

HLS tools for ASICs is the long verification period of the synthesized design. Verifi-

cation for ASIC design can only be done through software-based simulation, because

5

ASICs cannot be manufactured until the design is fully verified. However, verification

for FPGA design can be performed directly on the hardware itself. Hardware-based

verification is often orders of magnitude faster than software-based verification. The

second benefit is faster design space exploration. High-level synthesis can generate

multiple implementations from a single design input varying in clock speed, area,

latency and power consumption, etc. Validating these design metrics estimated by

HLS tools can be very difficult and time consuming for ASIC designs. However,

FPGA-based design can validate these estimations by downloading the synthesized

implementation to the actual hardware instantly. This fast prototyping greatly im-

proves the design space exploration speed and quality of high-level synthesis tools.

Despite the enormous previous research in high-level synthesis [11, 12, 13, 14,

15], there are still some major limitations of current HLS tools. The first limitation

is that few HLS research are throughput constrained and area optimized. Most of

them are area constrained and optimized for clock frequency or latency and others

are frequency or latency constrained and optimized for area. However, throughput

constrained synthesis is crucial for synthesizing streaming algorithms. The second

limitation is that the synthesis quality from HLS is still not satisfactory. Although

numerous researchers on high-level synthesis have proposed various ways for the auto-

matic translation task, few of them focused on the synthesized hardware quality. The

main reason for unsatisfactory synthesis quality is the small design space previous

HLS work explored.

The third limitation of the previous HLS work is that most of them are fo-

cused on ASIC technology only and do not address the unique features of FPGAs.

FPGAs are normally 3 to 4 times slower than ASICs due to their slow logic and in-

terconnections. On the other hand, FPGAs have a plethora of registers which makes

pipelining a very common technique for FPGA based designs. Thus, FPGA-specific

HLS must support automatically generating pipelined implementations. Although

there are some HLS work which perform pipeline synthesis, their scope is very limited.

Another unique feature of FPGAs is their significantly higher silicon cost related-to

ASICs, and the area costs of some FPGA components are quite different from ASIC

6

technology. For example, the multiplexer in FPGAs is as expensive as an adder while

it is much cheaper in ASIC technology. Thus FPGA-specific high-level synthesis tools

must minimize the area cost of the generated implementation, and address the unique

component area cost.

1.2 Proposed FPGA HLS Methodology

To address the limitations of current HLS tools, this work proposes an FPGA-

specific HLS methodology which synthesizes throughput constrained, minimum hard-

ware implementations from untimed computationally intensive algorithms. Most

computationally intensive streaming algorithms require a unique synthesis constraint

called throughput. The throughput constraint puts a lower bound on the perfor-

mance of the synthesized hardware implementation (i.e. how many data samples the

synthesized circuit can process every second). Once the throughput constraint is met,

minimizing the hardware area cost is very important for FPGAs due to its high silicon

cost.

The HLS methodology proposed in this work is based on three techniques:

pipeline scheduling, resource sharing and module selection. Pipeline scheduling deter-

mines the exact start time of each operation in an untimed computationally intensive

algorithm, and guarantees that the schedule meets the throughput constraint. Mod-

ule selection decides the most appropriate hardware component for each operation in

the algorithm. Resource sharing reuses a hardware component by sharing it between

more than one operation. Module selection and resource sharing are very important

for minimizing the hardware area of the synthesized circuit.

The primary focus of this work is the integration of these three techniques.

Most previous work only combine two of the three techniques, assuming the third

one is performed independently. An important claim of this work is that combining

the three techniques together can greatly expand the design space. A larger design

space almost always identifies superior solutions that couldn’t be found by existing

techniques.

7

However, the design space created by combining the three techniques is very

difficult to explore due to the close inter-relationship between them and the magnitude

of the combined design space. A major contribution of this work is that it thoroughly

studied each technique as well as their inter-relationships, and proposed one novel

algorithm that concurrently explores these techniques in an efficient way. To the

author’s best knowledge, this is the first attempt to concurrently explore these three

techniques.

1.3 Dissertation Structure

The rest of this dissertation focuses on the detailed discussion of the three

synthesis techniques and proposes algorithms that integrate them. In Chapter 2, a

detailed overview of the proposed HLS methodology is first presented. This includes

the synthesis constraints and optimization goals, design representation and transfor-

mation steps. Chapter 2 then provides detailed technical background for scheduling,

resource sharing and module selection respectively. Finally, it discusses the combined

design space of the three techniques and the complexity to explore it.

Chapter 3 discusses the first important technique of the proposed HLS method-

ology: pipeline scheduling. It begins with a detailed discussion of pipelining which

is a very common design technique for FPGA based designs. Then several impor-

tant issues of pipeline scheduling are presented. Finally a new, hardware oriented

pipeline scheduling algorithm called HOIMS is proposed. This algorithm also serves

as the backbone of the final pipeline synthesis algorithm, and will be expanded by

the integration of the other synthesis techniques.

Chapter 4 studies another important HLS synthesis technique: resource shar-

ing. This chapter first carefully characterizes the area and timing cost of resource

sharing overhead components (such as multiplexers) in FPGA architectures. It then

analyzes the close inter-relationship between resource sharing and pipeline scheduling.

Finally, this chapter proposes a weighted compatibility graph based resource sharing

algorithm and integrates it to the pipeline scheduling algorithm proposed in Chapter

3.

8

Chapter 5 discusses the third important HLS synthesis technique which has

limited previous research: module selection. Module selection can be applied in HLS

to reduce the hardware area by choosing the appropriate hardware component for

each operation in the computationally intensive algorithms. This chapter proposes a

novel way to integrate module selection with pipeline scheduling and resource sharing

based on a careful study of the inter-relationship between them.

Chapter 6 presents and discusses the experimental results of several pipeline

synthesis algorithms which combine pipeline scheduling, resource sharing and mod-

ule selection. An estimated design space of different synthesis techniques is first

presented. The actual design space and the benefits of a combined approach is then

presented and discussed with the results of two simpler algorithms: the ASAP Ex-

ploration algorithm and the IMS Exploration algorithm. Finally, the results of the

HOIMS algorithm are illustrated, analyzed, and compared with the other two algo-

rithms.

Chapter 7 summarizes the work accomplished in this dissertation. It also

proposes future directions beyond this work. Several Appendix chapters provide some

valuable discussion and supplemental information can be referenced when reading the

main chapters.

9

10

Chapter 2

Overview

This chapter provides an overview of the proposed HLS methodology and

discusses the related technical background. It first discusses the synthesis constraint

and optimization goal of the proposed methodology. Then the design representation is

discussed. After a brief description of high-level synthesis transformations, it discusses

scheduling, module selection, and resource sharing. Finally, the combined design

space of the three techniques and exploration complexity are discussed.

2.1 Synthesis Constraint and Optimization Goal

Throughput is one of the most important constraints to synthesize computa-

tionally intensive streaming algorithms. These algorithms are normally used in sys-

tems whose data inputs are fed into the system at a fixed rate. For example, digital

video encoders need to process a certain number of pixels every second; digital commu-

nication systems performance is typically measured in terms of transmitted/received

symbols per second; encryption and decryption systems care about how many bytes

can be encrypted or decrypted per second. Thus the main constraint for synthesizing

these computationally intensive algorithms is the number of samples (pixels, symbols

and bytes, etc.) the algorithm can process per second, or throughput. For this work,

any synthesized implementation must meet a user-defined throughput constraint.

Once the throughput constraint is met, the synthesis algorithm should mini-

mize the hardware area cost of the FPGA implementation. The main reason for this

is that the silicon cost of FPGAs is much higher than customized circuits such as

ASICs. FPGAs require 39 times more silicon area than ASICs on average to imple-

ment the same logic function [16]. Hence, generating the smallest hardware is very

11

important for FPGA-targeted synthesis. On the other hand, there is no benefit to

synthesize a hardware implementation that has a higher throughput than needed.

Throughput is normally proportional to hardware area cost. Thus, extra and wasted

throughput means extra and wasted hardware area. The HLS methodology proposed

in this work is a throughput constraint minimum area high-level synthesis approach

targeting FPGA architectures.

There has been little previous work on throughput constrained and area op-

timized high-level synthesis. Most ASIC targeted HLS research are area constrained

and optimized for clock frequency or latency, others are frequency or latency con-

strained and optimized for area [10]. There are also few throughput constrained and

area optimized HLS research for FPGAs. Xu and Kurdahi[17] use a layout-driven

approach to synthesize an RTL netlist with predictable metrics for FPGA based

architectures. In [18], an area and delay estimator for FPGAs is presented, which

estimates the maximum number of CLBs consumed by the hardware synthesized from

an input MATLAB algorithm, and the delay in the logic elements in the critical path

and the delay in the interconnects. Other work focused on minimizing the power

consumption at a higher level design abstraction. In [19], an RTL power estimator

for FPGAs with consideration of wire length is presented, together with a high level

synthesis system that uses the power estimator. Although there has been some re-

search on throughput constrained and area optimized high-level synthesis, the results

of this dissertation show that integrating pipeline scheduling, module selection and

resource sharing provides a better solution for this challenge.

2.2 Design Representation

Although textual languages are currently the most common form of design

representation for HLS tools [20, 21, 22], graphical descriptions can contain all the

relevant information necessary for high-level synthesis as well. Some HLS tools use

graphical languages such as Carleton’s HAL System [15] and UT Austin’s DAGER

System [23]. For computationally intensive algorithms, a graphical representation is

12

more intuitive because of the reduced control information in these algorithms, and

the more explicit data dependency in the graphical representation.

The design representation used in this work is an SDF (Synchronous Data Flow

[24]) model. SDF is a model of computation [25] well suited to represent computa-

tionally intensive streaming algorithms. It is made up of the computation elements

and the relationships between these elements. This is a purely functional model of

the original algorithm because it contains no explicit timing or architecture infor-

mation. An SDF graph can be hierarchical to better support design abstraction of

large algorithms. The Ptolemy [26] tool from UC Berkeley provides a good modeling

and simulation environment for SDF models, which is used as the front-end for the

proposed HLS methodology.

An SDF model is represented in the form of a directed graph (i.e. a graph

with directed edges). The nodes of the graph are also called actors, which represent

the computation elements. The edges of the graph are also called arcs, and tokens are

produced by source actors and consumed by sink actors, which represent the commu-

nication between actors. An SDF graph also specifies the relative rates of production

and consumption of data tokens for each firing of each actor. For simplicity, this

work only synthesizes circuits from SDF graphs which have the same token rate for

production and consumption (i.e. homogeneous SDF). Figure 2.1 illustrates the SDF

model of a Biquad filter from the Ptolemy modeling environment.

This work uses a Dependence Graph (DG) with attributes as its internal syn-

thesis representation. It is similar to a flattened SDF graph without hierarchy. Spe-

cific attributes are attached to the nodes, edges and the graph. These attributes

are important for the architectural exploration process. The dependence graph is

generated from the SDF model, which will be discussed in Chapter 3.

2.3 Scheduling

Scheduling is the process of assigning a start time to each operation in the de-

pendence graph. The original dependence graph which specifies only the dependencies

among operations is called an unscheduled DG. After scheduling is performed on the

13

Figure 2.1: The SDF model of a Biquad filter

unscheduled DG, each operation is assigned to a start time, and the dependence graph

is called a scheduled DG. Figure 2.2 shows an example of an unscheduled DG and the

respective scheduled DG after being scheduled. As shown in Figure 2.2, every opera-

tion in the DG is assigned to a start time, while the dependencies between operations

are maintained. A formal definition of scheduling for an unscheduled DG = (V, E)

is:

Definition 1 Given a set of operations V with integer latency Λ and a partial order

on the operations E, find an integer labeling of the operations ϕ : V → Z+ such that

tj = ϕ(vj), tj ≥ ti + λi : (vi, vj) ∈ E [10].

As Definition 1 shows, the start time of each operation must satisfy the original

dependencies between related operations in the dependence graph. In other words,

an operation cannot start until all its predecessors are finished. In definition 1, λi is

the latency of operation i, which is defined as the number of clock cycles from the

consumption of inputs to the generation of outputs for that operation.

Scheduling has a great impact on the performance as well as the area of the

synthesized hardware. For each dependence graph, there is great flexibility in the

14

X X XX

X X

START

STOP

X X

X

XX

X

START

STOP

Time 0

Time 1

Time 2

Time 3

Unscheduled DG Scheduled DG

Scheduling

Figure 2.2: An example of an unscheduled DG and the scheduled DG after scheduling,
all operations are assumed to have a latency of 1 clock cycle.

ordering of executions of all the operations in the graph. The execution order can be

either highly serial for limited concurrency, or highly parallel for extreme concurrency,

or anything in between. The amount of concurrency in the schedule directly affects

the performance of the circuit. Scheduling also impacts the number of concurrent

operations of any given hardware resource type at any step of the schedule, the

maximum concurrency among all steps is the minimum number of hardware resources

required for that type. Therefore the choice of a schedule also impacts the area of

the implementation.

Many different types of scheduling algorithms have been proposed. Some

algorithms are called “exact” algorithms which find the optimal scheduling result. The

exhaustive scheduling algorithm in Expl [27], and the branch and bound algorithm

by Davidson [28] are examples of “exact” algorithms. Although optimal scheduling

results can be found with these “exact” algorithms, the computational complexity of

these algorithm is typically NP-complete [29]. Thus these algorithms are often used

for small size designs only, or used for generating an upper or lower bound for some

optimization metrics as a reference point.

15

Other scheduling algorithms are called “heuristic” algorithms, whose goal is

to find the suboptimal result without exponential run time. The First-Come-First-

Served (FCFS, also known as As-Soon-As-Possible, or ASAP) scheduling, list schedul-

ing, and critical path first scheduling studies by Davidson et al. are examples of simple

scheduling heuristics. A more complex but still heuristic scheduling algorithm is the

force-directed scheduling used in HAL [15] and SAM [30] systems. Force-directed

scheduling aims at balancing the number of operations in each control step. These

algorithms utilize various heuristic techniques to avoid the searching of the entire

scheduling space, thus their runtime is typically only a fraction of the “exact” al-

gorithms. However, the limited design space exploration normally cannot find the

optimal scheduling result.

2.4 Resource Sharing

Resource sharing [31] is an important technique in hardware synthesis to re-

duce area cost. It reuses a component by sharing it between more than one operations.

If the shared hardware uses less area than allocating a dedicated component for each

operation, resource sharing becomes worthwhile. Figure 2.3 illustrates an example of

sharing two multiplier operations with one multiplier component.

Controller

Sel
Input1 Input2

Output
Sel

Input1 Input2

Output

a c b d

a b c d

Not shared Shared

Figure 2.3: Resource sharing example

16

Resource sharing can only be applied when the resources saved by sharing are

larger than the overhead area itself, and the extra hardware for resource sharing does

not become the critical path of the implementation. Resource sharing does not come

without a cost. Resource sharing overhead appears in the form of both area and time.

To steer the input data to the shared circuit module, multiplexers and control logic

must be employed to guide the correct input data into the shared module at correct

time. As Figure 2.3 shows, the area overhead for resource sharing is made up of two

parts: the multiplexer and the controller. The time overhead for resource sharing

is the combinational delay of the extra hardware. The area and timing overhead of

resource sharing is an important factor to determine if sharing is profitable or not.

This work proposes a resource sharing algorithm based on an FPGA-specific

overhead model. The area and timing characteristics of resource sharing overheads

in FPGAs are carefully studied and modeled. This model is used as a basis to

differentiate between multiple sharing possibilities. This differentiation is explored

in the resource sharing algorithm of the proposed algorithm. Thus more accurate

resource sharing overhead is accounted for in the sharing algorithm, and more efficient

hardware implementation is generated when there is more than one sharing possibility.

2.5 Module Library and Module Selection

Module selection [32] is the process of selecting the most optimized circuit

module for each operation in the input algorithms. For example, there are two differ-

ent circuit modules in the library to implement a multiplier function, one called Array

Multiplier which has a latency of 8 clock cycles and an area of 366 FPGA slices, and

the other called Sequential Multiplier which has a latency of 12 clock cycles and an

area of 115 FPGA slices. If the synthesis goal is to minimize the hardware area, the

Sequential Multiplier is a better choice. But if the synthesis goal is to minimize the

execution latency, the Array Multiplier becomes the better choice.

Module selection is very important to improve the quality of high-level syn-

thesis. Over the years, many numbers of FPGA specific circuit implementations have

been published for performing primary arithmetic operations, which are the major

17

building blocks of computationally intensive algorithms. Each implementation has

different speed, area, latency etc. To synthesize high quality, minimum hardware

FPGA implementations, these circuit modules must be carefully characterized and

chosen during the architectural exploration process.

This work proposes a novel way to perform module selection with pipeline

scheduling and resource sharing. A large variety of pipelined FPGA circuit modules

are characterized and available for each operation. The module selection algorithm

in this work proposes several ways to significantly reduce the module selection design

space. It also proposes a novel algorithm to iteratively refine the module selection

based on previous iteration’s scheduling and resource sharing result. As the results in

Chapter 6 show, this greatly improves the runtime of the module selection algorithm.

2.6 Design Space Exploration

A very large design space is formed by combining the three synthesis tech-

niques of scheduling, resource sharing and module selection. The design space size

(or complexity) of high-level synthesis algorithms can be measured by the number of

all feasible implementations that can be generated by the algorithms. Mandal et al

[29] show that the complexity of the scheduling problem in high-level synthesis is NP-

complete. The complexity of the resource sharing problem is the same as the clique

partitioning problem [31], which is also NP-complete. Exploring all module selection

possibilities is an exponential search. If there are ni implementation possibilities for

operator i, and there are mi operations of type i, then the total number of module

selection possibilities is
∏N

i=1 mni
i , where N is the number of unique operators. The

design space created by combining these three techniques is even bigger than the

design space of each technique applied alone. Efficiently exploring such a large design

space is a major challenge of this combined approach.

Searching for an optimal implementation in such a big design space is further

complicated by the close inter-relationship between these techniques. Each technique

is dependent on the other two techniques. For example, scheduling depends on the

latency of operations which is determined by module selection. It also depends on

18

the sharing decision between operations, because shared operations cannot operate

simultaneously. Resource sharing is dependent on module selection because oper-

ations with different module selections cannot be shared. Resource sharing is also

dependent on scheduling because only operations that don’t start simultaneously can

be shared. These close inter-relationships make the sequence of these techniques in

the combined algorithm extremely hard.

This work proposes a pipeline synthesis algorithm that concurrently performs

pipeline scheduling, resource sharing and module selection. Although the combined

design space of applying the three techniques together is much larger than the design

space encountered when exploring one or two of the techniques, it can always generate

much better synthesis results. To efficiently explore the combined design space, this

work proposes an integrated algorithm which explores the three techniques together in

an iterative way. It is based on the observation that the result of a previous iteration’s

exploration can be applied to subsequent explorations. This exploration strategy can

significantly improve the search efficiency of the combined design space and generate

near-optimal results. To the best of the author’s knowledge, this is the first work that

proposes efficient pipeline synthesis algorithms to explore the combined design space

of the three techniques.

2.7 Summary

The goal of this work is to synthesize area efficient FPGA implementations

from computationally intensive streaming algorithms under a user-specified through-

put constraint. The proposed HLS methodology takes an SDF model as design input

and uses a dependence graph with various properties as the internal representation

format. It proposes efficient design space exploration algorithms to integrate three im-

portant synthesis techniques for FPGA specific high-level synthesis: pipeline schedul-

ing, resource sharing and module selection. The next chapter discusses the pipeline

scheduling algorithm proposed for this methodology.

19

20

Chapter 3

Pipeline Scheduling

Scheduling is an important step in the architectural exploration process of

high-level synthesis. The goal of scheduling is to determine the start time of each op-

eration in the data dependence graph with some predetermined optimization goals.

The operation’s start time determines the amount of concurrency of the implementa-

tion while the concurrency determines the performance and area of the final circuit.

Pipeline scheduling [32] (also called modulo scheduling) is an important exten-

sion of traditional non-pipelined scheduling. Pipeline scheduling generates a schedule

that allows multiple iterations of the same computation to overlap in execution. It

is usually used when a repetitive version of a computation needs to be scheduled.

The need to arrange overlapping iterations (i.e. schedule a new computation when

the previous one is not finished) makes pipeline scheduling more difficult than tradi-

tional scheduling. The terms, issues and algorithms of pipeline scheduling discussed in

this chapter are very important for synthesizing throughput constrained and efficient

FPGA implementation from an untimed functional specification.

This chapter begins with a detailed discussion of pipelining. It then discusses

three important issues in pipeline scheduling: modulo start time, effective delay and

feedback constraints. A review of previous pipeline synthesis work is provided after-

ward. Finally, a new pipeline scheduling algorithm called HOIMS (Hardware Oriented

Iterative Modulo Scheduling) is proposed. It is based on the IMS algorithm [33], and

addresses important issues for hardware oriented pipeline scheduling.

21

3.1 Pipelining

Pipelining is an important design technique used to increase the throughput of

digital circuits. Used frequently in signal processing and data intensive calculations,

pipelining increases the throughput of a computation by dividing a computation into

discrete steps and operating on multiple samples simultaneously [34]. To increase

the throughput of pipelined computations, stages for different computations are over-

lapped in time. Pipelining offers increased computational throughput at the expense

of latency and inter-stage pipeline registers.

Pipelining also increases the system frequency. System frequency is defined

as the reciprocal of the longest combinational delay between any two registers in a

circuit. The path that has the longest combinational delay is defined as the “critical

path” of the circuit. Pipeline registers are inserted between operations that belong

to consecutive stages of pipelining to decrease the delay of the critical path.

Figure 3.1 shows an example of pipelining. In this figure, a 5-tap FIR filter

is divided into 5 stages of computation. While stage i is processing the nth input

sample, stage i + 1 is still processing the (n − 1)th (previous) sample. If each stage

takes 2 clock cycles, the pipelined circuit can process a new sample every 2 clock

cycles on average, compared to a non-pipelined circuit where it can only process one

sample every 10 clock cycles. The throughput of the pipelined circuit is five times

that of the non-pipelined circuit. The cost of pipelining is an increased latency. The

pipelined circuit now has a longer latency due to the pipeline registers (15 cycles vs

10 cycles). These pipeline registers also increase the hardware area cost.

3.1.1 Pipelining Terminology

From the scheduling perspective, the pipeline is treated as a linear time line

that begins with cycle 0 and ends with the last cycle of the pipeline. The following

terms will be used to describe the pipeline:

System Data Introduction Interval (δ) The time interval, in clock cycles, be-

tween two consecutive input samples.

22

X

Z-1

X

+

Z-1

X

+

Z-1

X

+

Z-1

X

+

x(n)

y(n)

a0 a1 a2 a3 a4 a5

x(n-1) x(n-2) x(n-3) x(n-4)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 3.1: Five stage pipeline example for an 5-tap FIR filter

Pipeline Latency (λ) The length, in clock cycles, to complete a single iteration of

the computation.

Pipeline Time Step (t) A specific clock cycle within the linear pipeline. A valid

pipeline time step is within the range: 0 ≤ t ≤ λ− 1.

Pipeline Stage (s) The pipeline is divided into discrete pipeline stages that are

each δ cycles in length. There are
⌈

λ
δ

⌉
pipeline stages in the pipeline. The

pipeline stage associated with time step t is st =
⌊

t
δ

⌋
.

Pipeline Phase (φ) Each clock cycle within a pipeline stage is associated with a

pipeline phase. The pipeline phase of time step t is φt = t mod δ.

Figure 3.2 illustrates this terminology with an example. In this figure, δ is 5

so a new computation will be initiated every 5 clock cycles. It has a pipeline latency

(λ) of 10, so the pipeline time step (t) has a range from 0 to 9. It has 2 (
⌈

10
5

⌉
) pipeline

stages and each stage has 5 phases.

The system data introduction interval (δ) is the most important parameter of

every pipelined system. δ = 1 indicates a fully pipelined circuit with a new computa-

tion initiated every clock cycle. λ > δ > 1 indicates a partially pipelined circuit with

a new computation initiated every δ cycles. Non-pipelined circuits occur when δ ≥ λ.

23

0 1

Pipeline
Phase (φ) 0 1 2 3 4 0 1 2 3 4

Pipeline
Time Step (t) 0 1 2 3 4 5 6 7 8 9

System Data Introduction Interval () = 5
Pipeline Latency (λ) = 10

Pipeline
Stage (s)

0 ≤ t ≤ λ -1

s = t /

φ = t %

Figure 3.2: Illustration of pipelining terminologies

The system data introduction interval and throughput are closely related.

They are related by the system clock frequency (f) as shown in Equation 3.1. Through-

put can be increased by increasing frequency or decreasing δ. Due to the integer

constraint of system data introduction interval, δ should be represented by f and T

as in Equation 3.2.

T =
f

δ
. (3.1)

δ =

⌊
f

T

⌋
. (3.2)

3.1.2 Pipelining Design Space

The pipelined circuits in this work are synthesized under a fixed throughput

constraint. This throughput constraint, measured in samples per second, specifies the

number of iterations of the computation that must be initiated each second. This is

different from some other pipeline scheduling work where other constraints might be

applied, such as system frequency, hardware resources and latency, etc.

The throughput requirement for a computationally intensive algorithm might

be very different. As Table 3.1 shows, the throughput requirements might be very

different for various video standards all using the same algorithm (such as a color

24

space conversion). As a result, the final implementations for different throughput

constraints can be very different, from a highly sequential, low throughput and low

hardware area implementation to a highly parallel, high throughput and high hard-

ware area implementation, as well as other implementation possibilities in between.

Table 3.1: Different throughput requirements for different DTV standards, assuming
30 frames/sec for each standard, therefore, the throughput = width ∗ height ∗ 30.

DTV Standard Width Height Throughput (MSamples/Sec)
HDTV 1080p 1920 1200 69.12
HDTV 720p 1280 720 27.65
VGA 640 480 9.22
DVB-H QVGA 320 240 2.30
DVB-H QCIF 176 144 0.76

Equation 3.1 suggests that a pipelined circuit may meet the throughput con-

straint at a variety of clock frequencies. For example, a throughput constraint of

25 MSamples/sec may be met with a system clock frequency of 100 MHz and an

initiation interval of 4 (i.e. f = 100 MHz and δ = 4). Other combinations of system

clock frequency and initiation interval that meet this constraint include: (f, δ) = (25

MHz, 1), (50 MHz, 2), (150 MHz, 6), etc. The number of discrete (f, δ) combina-

tions that meets the throughput constraint is large and represents a wide variety of

implementation alternatives.

The size of the pipelining design space is limited by the feasible system data

introduction interval values. The minimum system data introduction interval (δmin)

is limited by the feedback cycles in the data-flow graph which will be discussed later.

The maximum system data introduction interval (δmax) is limited by the slowest

operation inside the data-flow graph:

δmax =

⌊
fmax

T

⌋
, (3.3)

25

where fmax is the maximum possible system frequency which will be shown in Equa-

tion 5.1.

Figure 3.3 illustrates a sample pipeline scheduling design space. In this figure, a

30MSamples/Sec throughput constraint is assumed. Ideally, different (f ,δ) pipelining

pairs should be explored to find the best possible implementation, such as (30MHz,1),

(60MHz,2), (90MHz,3), etc. However, any δ < δmin will violate the recurrence

constraint, and any δ > δmax will violate the system maximum operating frequency

constraint. The valid (f ,δ) pairs presents the large pipeline scheduling design space.

600

500

400

300

200

100

0
2 4 6 8 10 12 14 16 18

Fr
eq

ue
nc

y
(M

H
z)

Data Introduction Interval

⎥⎦
⎥

⎢⎣
⎢=
T

fδ

minδ

maxδ

Feedback
constraint Frequency constraint

Figure 3.3: Pipelining design space illustration

26

3.2 Pipeline Scheduling Overview

Pipeline scheduling is an extension of traditional non-pipelined scheduling.

Although it is similar to non-pipelined scheduling where the optimal start time of

each operation needs to be identified, the repetitive computation due to pipelining

makes it more complicated. Operations in a pipeline need to be re-started every δ

cycles to process new input data. Different stages of a pipeline execute concurrently,

which introduces a new type of dependency between operations. The new dependency,

called “loop-carried dependency” in software context, also imposes possible feedback

constraints in the original computation model. This section will study these pipeline

scheduling specific issues.

3.2.1 Modulo Start Time

In a pipelined system, input samples are introduced into the system every

δ cycles, so the computation and each operation must be restarted every δ cycles

accordingly. An iteration is defined as one execution of all operations in the depen-

dence graph for a single computation. Because the operation is repeated every δ

cycles, pipeline scheduling only needs to find the start time for each operation during

the first iteration. The start time for other iterations (i > 0) can be determined as

follows:

ts(n)i = ts(n)0 + i ∗ δ, (3.4)

where ts(n)i is the start time of operation n in the ith iteration, and ts(n)0 is the start

time in the first iteration.

The feasible start time of each operation in pipeline scheduling can be limited

to a window of size δ. Equation 3.4 suggests that if an operation cannot be scheduled

at time t, it cannot be scheduled at any time t + i ∗ δ. If tsmin
(n) is the earliest start

time of operation n in the first iteration, then it is enough to only try scheduling the

operation inside a window between tsmin
(n) and tsmin

(n) + δ − 1. If no feasible time

can be found to schedule the operation within this window, the operation cannot be

27

scheduled at any time according to Equation 3.4. So the latest start time of operation

n can be represented as:

tsmax(n) = tsmin
(n) + δ − 1. (3.5)

3.2.2 Effective Delay

Any scheduling algorithm must preserve the data dependencies between oper-

ations. An operation can start only after all of its input operations have been finished.

In a pipelined circuit, different iterations of a dependence graph execute simultane-

ously. Data dependencies between two operations can be categorized into two types.

The first type is called intra-iteration dependency, meaning the two operations are

executed in the same iteration. This kind of dependency exists in both pipelined and

non-pipelined systems. The second type is called inter-iteration dependency, meaning

the two dependent operations are executed in two distinct iterations.

This work uses a non-negative integer edge weight, called “distance”, to rep-

resent both types of data dependencies. Each “distance” is equal to the number of

sample delays between the two operations in the SDF graph. Figure 3.4 shows the

dependence graph for the input SDF model of the Biquad filter. Notice that all sam-

ple delay nodes in Figure 2.1 are converted into the non-negative “distance” values

of the dependence edges in Figure 3.4. For example, the inter-iteration dependent

operations Add and Add1 are connected by an edge with a “distance” of 1, and the

intra-iteration dependent operations a2 and Add7 are connected by an edge with a

“distance” of 0.

Because pipeline scheduling only needs to decide the start time for the first

iteration for each operation, the delay constraint described in Definition 1 in Section

2.3 for non-pipelined scheduling should be extended to consider the iteration difference

between operations. Consider a successor j of an operation i with a dependence edge

from i to j having a distance of d(i, j). If ts(p) is defined as the start time of an

28

+

x+

x

+

+

x

x

input output

0

1 1

0

1

1

2

0
a2

a3

b

b3

Add

Add7

Add1

Add2

START

Figure 3.4: Dependence graph of the Biquad filter in Figure 2.1, integers on edges
showing “intra” or “inter” iteration dependence between operations

operation p at the current iteration, the relationship between ts(i) and ts(j) is:

ts(j) + δ ∗ d(i, j) ≥ ts(i) + λi . (3.6)

This means that operation j at d iterations later cannot start until the operation i of

current iteration finishes. Equation 3.6 can be rewritten as:

ts(j) ≥ ts(i) + λi − δ ∗ d(i, j). (3.7)

The “effective delay” between i and j is defined as:

λeff (i, j) = λi − δ ∗ d(i, j) . (3.8)

This equation includes both the delay of the predecessor operation, as well as the inter-

iteration (d(i, j) > 0) and intra-iteration (d(i, j) = 0) delay between two operations.

3.2.3 Feedback Constraints

Unlike many other scheduling algorithms, pipeline scheduling allows feedback

in the dependence graph, which limits the throughput of the pipelined circuit. This

section discusses the definition and implication of feedback constraints in pipeline

29

scheduling, as well as an algorithm to compute the minimum system data introduction

interval for pipeline scheduling caused by the feedback constraints.

Feedback constraints may occur in pipeline scheduling. If an operation in one

iteration is directly or indirectly dependent on itself in a previous iteration, it is called

a recurrence [33]. Pipeline scheduling represents this recurrence as a cycle within the

dependence graph. Each cycle (C) within a dependence graph must be broken by

an edge with positive “distance”, representing a data dependence between different

iterations of the computation. The recurrence creates feedback in the dependence

graph.

The presence of feedback in the dependence graph limits the ability to increase

throughput using pipelining. The recurrence constraint on the data introduction

interval can be expressed in terms of the Delay and Distance of the cycles within

the dependence graph. The delay of an elementary recurrence cycle, Delay(c), is the

sum of the module latencies (λm) for all operations within the cycle. The distance

of the cycle, Distance(c), is the sum of the sample delays within the cycle. For any

operation in this cycle, suppose its start time for the current iteration is Ts, its start

time for Distance(c) iterations later is Ts + Distance(c) ∗ δ. The later start time

must be after the completion of this operation’s predecessors (i.e. all operations in

this cycle), which is the cycle’s accumulated latency. Thus the Delay and Distance

of all recurrence cycles must satisfy the following relationship:

Delay(c) ≤ δc ×Distance(c). (3.9)

Equation 3.9 implies a lower bound on the initiation interval of the resulting

pipeline schedule. The minimum initiation interval, termed the recurrence minimum

initiation interval (RecMII) in software pipelining, is the smallest δc that satisfies

30

the above relationship for all cycles (C) in the dependence graph1. Thus,

δmin = max
c∈C

⌈
Delay(c)

Distance(c)

⌉
. (3.10)

Figure 3.5 shows an example of feedback constraints within the Biquad filter.

There are two cycles in this figure (c1 and c2). The module latency (λm) of each oper-

ation within the two cycles is labeled beside each operation. For cycle c1, Delay(c1)

= 1 + 2 + 1 = 4, Distance(c1) = 1. So the minimum data introduction interval

for cycle c1 is 4/1=4. For cycle c2, Delay(c2) = 1 + 4 + 1 = 6, Distance(c2) =

2. So the minimum data introduction interval for cycle c2 is 6/2=3. According to

Equation 3.10, the minimum system data introduction interval δmin can be calculated

as max(4, 3)=4.

Z-1

+

x+

Z-1 x

Z-1

Z-1

Z-1

Z-1

+

+

x

x

INPUT OUTPUTc1

c2

Figure 3.5: Illustration of feedback and its constraints on the minimum system data
introduction interval (δmin). The numbers on the operations represents the module
latency (λm)

.

It is important to compute the minimum system data introduction interval of

a dependence graph. As shown in Equation 3.1, the minimum value of δ determines

the upper bound on throughput of a system if its frequency is fixed. For throughput

constrained pipeline synthesis, δmin determines the minimum clock frequency (fmin)

1Software pipelining also introduces a resource constrained minimum initiation interval or
(ResMII). No such constraint exists for hardware synthesis as the resources are not known at
the start of the synthesis process.

31

at which the circuit must operate. The (fmin, δmin) pair also represents the lower

bound of the pipelining design space, because any δ smaller than δmin makes the

dependence graph unschedulable.

This work computes the minimum data introduction interval based on SCC

(Strongly Connected Component) decomposition of a dependence graph. Identifying

SCCs in a directed graph is much more efficient than finding all cycles in the graph.

The complexity of the Kosaraju SCC detection algorithm [35] is O(V + E) where

V and E are the number of nodes and edges in the directed graph. A matrix called

minDist can be used to test if a certain δ is valid for an SCC. The rows and columns of

this matrix correspond to the nodes in the SCC, and the matrix entry [i,j] specifies the

minimum permissible interval between the time at which operation i is scheduled and

the time at which operation j, from the same iteration, is scheduled. If MinDist[i,i]

is positive for any i, it means that node i must be scheduled later than itself, which

is clearly impossible. This indicates that the δ is too small and must be increased

until no diagonal entry is positive. The algorithm to compute the minDist matrix is

described in Appendix B.1. The complexity of this algorithm is O(N3
scc) where Nscc

is the size of the largest SCC.

3.3 Previous Pipeline Scheduling Work

Although pipelining is a common technique in circuit design, pipeline schedul-

ing for hardware has not been studied extensively. Pipelining is normally categorized

into two types[11]. The first is functional pipelining, which is defined as using non-

pipelined components but putting pipelining registers on the circuit interconnection.

Functional pipelining is uniquely characterized by the system data introduction inter-

val δ. Since functional pipelining only puts registers on inter-connections, the critical

path of the circuit might be the non-pipelined component which has the longest com-

binational delay. The second type of pipelining is called structural pipelining where

pipelined components are used, but pipelining on the circuit itself is not performed.

For structural pipelining, there is no overlapped execution between consecutive it-

erations, so the system data introduction interval is not applicable. Because the

32

pipelining registers exist only inside the components, the critical path of the circuit

might be the inter-connections between operations.

The Sehwa [32] project is the first synthesis work in the literature featuring

functional pipeline scheduling. In that project, the theoretical foundation for pipelin-

ing a loop without loop-carried dependencies was presented. It has been shown that

given a constraint on the number of resources, a pipelined data path can be imple-

mented with minimum data introduction interval. Since the data introduction interval

is fixed, the objective is to minimize the latency of the circuit. Sehwa tackles this

problem using two polynomial-time pipeline scheduling algorithms. The first is called

“feasible scheduling” which schedules with constraints on the total implementation

cost. The second is called “maximal scheduling”, which schedules for maximum per-

formance assuming there is no cost constraint. Sehwa also incorporates an exhaustive

algorithm for optimal scheduling. Here the search time is reduced by using the feasi-

ble or maximal schedule as an upper bound. The algorithms are invoked iteratively,

and each scheduling cycle is guided by the performance and cost estimation for the

previous schedule.

Force-directed scheduling algorithm was augmented in HAL [36] to support

pipeline scheduling. The intent of the force-directed scheduling algorithm is to reduce

the hardware resources by balancing the concurrency of the operations but without

increasing the total latency. [36] proposed an improved force-directed scheduling that

can be integrated into specialized or general purpose high level synthesis systems.

HAL supports both fixed global timing constrained scheduling to minimize area, and

fixed hardware resource constraints to minimize latency as well. The HAL system

described in this paper also makes use of a stepwise refinement approach. The system

does a preliminary allocation and uses that information to establish a schedule esti-

mate. The allocation is repeated using the schedule to perform a much more detailed

analysis and an improved selection of resources based on operation concurrency. The

scheduler is then reinvoked and the final schedule is established by optimizing the use

of the preselected resources. Further optimization of algorithm efficiency is described

in [37].

33

The PLS pipeline scheduler [38] also focused on minimizing the latency of

the schedule with a resource constraint as Sehwa did, but PLS can be applied to

DFGs with or without loop-carried dependencies. It showed that latency has a strong

relationship with the cost of registers and controller. The saved silicon area could

be used to allocate additional resources and improve the throughput. It proposed

an algorithm that iteratively uses forward scheduling and backward scheduling to

achieve this goal.

3.4 HOIMS

This work proposed a novel pipeline scheduling algorithm called HOIMS (Hard-

ware Oriented Iterative Modulo Scheduling). This algorithm is based on the IMS

(Iterative Modulo Scheduling) algorithm which is targeted for software pipelining.

This section will first briefly describe the original IMS algorithm. It will then discuss

some important issues for hardware oriented pipeline scheduling. Finally, the HOIMS

algorithm is presented and discussed.

3.4.1 IMS Algorithm Overview

The IMS algorithm was first proposed by Rau[33] from Hewlett Packard labo-

ratory. IMS is targeted for software pipelining[39] of a loop body on microprocessors,

and thus it is formulated as a resource constrained (due to the fixed number of

functional units in a microprocessor), minimum data introduction interval pipeline

scheduling algorithm. The main steps of the IMS algorithm is illustrated in Algorithm

3.1.

The resource constrained IMS algorithm is similar to traditional acyclic list

scheduling. The outer-most loop of the IMS algorithm searches for the minimum

system data introduction interval that can pipeline schedule the loop body (line 2).

This search starts from the minimum possible data introduction interval (line 1,

function MinII() is discussed in Section 3.2.3). With each candidate δ value, it checks

the pipeline schedulability of the dependence graph (line 12). If it is schedulable,

the schedule is recorded and the algorithm terminates; otherwise, it increments the δ

34

Algorithm 3.1: IMS algorithm

IMS(budget, DG = (V, E))
begin

δ ← MinII();1

repeat2

Initialize all operations to be never scheduled;
HeightR(δ);3

Insert all operations into Q;4

Schedule(START, 0), budget← budget− 1;
while (Q 6= ø and budget > 0) do5

v ← HighestPriorityOperation(Q);6

tsmin
← CalculateEarlyStart(v);7

tsmax ← tsmin
+ δ − 1;8

ts ← FindTimeSlot(v, tsmin
,tsmax);9

Schedule(v, ts), budget← budget− 1;10

Q← Q + UnscheduleConflicts();11

schedulable ← Q = ø;12

δ ← δ + 1;13

until (schedulable = true) ;

end

value by one (line 13) and the pipeline scheduling is performed again with the new δ

value.

For each candidate δ value, the algorithm keeps a priority queue (Q) of un-

scheduled operation nodes (line 4). The priority of each node is the calculated by

the HeightR() function (line 3). HeightR() is a direct extension of the height-based

priority [40] that is popular in acyclic list scheduling [41]. Each scheduling step takes

the highest priority node in the queue (line 6). It then calculates the scheduling win-

dow of that operation (line 7 and 8) as discussed in Section 3.2.1. The earliest time

slot to schedule it within that window (line 9) is then calculated. Finally the algo-

rithm schedules the operation (line 10), while all conflicting nodes are unscheduled

and added back into the priority queue (line 11). The scheduling continues until the

queue is empty or the scheduling step threshold is reached, whichever is true (line

5). The former condition means a valid pipeline scheduling and bounding is found

successfully, while the later one means the scheduling fails with the current δ value.

35

3.4.2 Hardware Specific Issues for Pipeline Scheduling

Traditional IMS scheduling is not sufficient for custom hardware oriented high-

level synthesis. The target hardware for the IMS algorithm is a pre-fabricated micro-

processor, which has both a fixed frequency and a fixed number of functional units.

Hardware oriented pipeline scheduling algorithms must consider hardware specific is-

sues when improving the IMS algorithm. With custom hardware, system frequency

and hardware resources are not fixed. Instead, the scheduling algorithm needs to

determine the optimal system frequency and hardware resources that can meet the

synthesis goals.

The throughput constrained pipeline scheduling algorithm in this work ex-

plores different system frequencies. Incrementing the system data introduction inter-

val alone with a fixed system frequency is equal to decreasing the system throughput

as implied by Equation 3.1. To meet the throughput constraint, increasing the data

introduction interval must increase the system frequency accordingly. However, real

hardware circuits cannot run at infinite frequency, so the data introduction interval

for hardware oriented pipeline scheduling should be bounded.

The minimum hardware oriented pipeline scheduling algorithm in this work

allocates new resources when necessary. This is very different from the fixed number

of functional units in pre-fabricated microprocessors. The limitation of hardware

resources will prevent a feasible pipeline schedule even when the candidate δ value is

larger than the minimum required one. In hardware oriented pipeline scheduling, new

hardware resources can be allocated during the scheduling process. The allocation

and scheduling minimize the hardware area of the synthesized circuit.

3.4.3 HOIMS Algorithm

Based on the IMS algorithm, a hardware oriented pipeline scheduling (HOIMS)

algorithm is proposed. It addresses the specific issues for hardware oriented pipeline

scheduling as discussed above. This algorithm serves as the backbone of the final

pipeline synthesis algorithm, and will be used and expanded throughout this work.

The main steps of the HOIMS algorithm are shown in Algorithm 3.2.

36

Algorithm 3.2: HOIMS algorithm

HOIMS(T ,DG(V, E)) begin
δmin ← MinII();1

δmax ← MaxII();2

Sbest ← ø;3

for δ ← δmin to δmax do4

fδ ← δ·T ;5

Initialize all operations to be never scheduled;6

HeightR(δ);7

Insert all operations into Q;8

Schedule(START, 0);9

while Q 6= ø do10

v ← HighestPriorityOperation(Q);11

tsmin
← CalculateEarlyStart(v);12

tsmax ← tsmin
+ δ − 1;13

(ts, m) ← DynamicAllocate(v,Tsmin
,Tsmax);14

Schedule(v, ts, M);15

Q← Q + UnscheduleConflicts(v, ts, M);16

if Cost(Scurrent) < Cost(Sbest) then17

Sbest ← Scurrent;18

end

The HOIMS algorithm is structurally similar to the IMS algorithm, but ex-

tended with numerous custom hardware synthesis specific features. The outer-most

loop (line 4) iterates through all the feasible data introduction intervals with corre-

sponding clock frequencies that all meet the throughput constraint. For each pipelin-

ing design point (a specific (f, δ) pair), iterative modulo scheduling is performed (line

5 to line 16) to find a corresponding pipelined schedule. Several algorithm steps

are identical to those in the IMS algorithm, such as the MinDist matrix calcula-

tion algorithm used in determing the minimum system data introduction interval,

the HeightR(δ) function to determine the schedule priority for each operation (line 7

and line 11), and the CalculateEarlyStart() function to calculate the earliest possible

start time for each operation as discussed in Section 3.2.2. The details of the MinDist

37

matrix calculation and HeightR(δ) function are discussed in Appendix B.1 and B.2

respectively.

HOIMS explores the entire pipelining design space as discussed in Section

3.1.2. For software IMS, the system frequency and hardware resources are fixed, and

the exploration strategy is to find the minimum data introduction interval, where a

pipeline schedule is feasible. The result is a pipeline schedule with maximum possible

throughput. In HOIMS, system throughput is an input constraint that must be guar-

anteed. So, in addition to increasing the data introduction value, the corresponding

system frequency is also increased proportionally (see line 5). This (f, δ) design space

is bounded as discussed in section 3.1.2 due to the maximum operating frequency of

hardware circuit modules.

HOIMS compares and selects a pipeline schedule that has the minimum hard-

ware area cost. Unlike the IMS algorithm where the algorithm terminates once a

schedule is found, the HOIMS algorithm compares the pipeline schedule at each

pipelining design point with the best schedule (Sbest in line 17). If the current sched-

ule has a hardware area less than the best schedule, Sbest is updated with the current

schedule (line 18). The result of this comparison is a minimum hardware pipelined

schedule for a fixed throughput constraint.

Like the traditional latency constrained, minimum hardware scheduling algo-

rithm, the HOIMS algorithm dynamically allocates hardware resources. In Algorithm

3.2, this dynamic allocation is performed by the DynamicAllocate() function (see line

14). DynamicAllocate() returns not only the time slot (ts) for the operation to sched-

ule, but also the hardware resource for the operation to bind to. The hardware

resource can be either a newly allocated circuit module, or a previously allocated

circuit module that is free at the preferred scheduling time slot ts, depending on the

algorithm in the DynamicAllocate() function. A simple dynamic resource allocation

algorithm would be to re-use as much as possible the previously allocated hardware

resources. If no such resources are available, a new hardware resource would be

allocated.

38

The HOIMS algorithm will be expanded in the following chapters with dy-

namic resource allocation and sharing, as well as module selection. In Chapter 4, the

algorithm for DynamicAllocate() will be proposed. The sharing algorithm will not

only take FPGA specific resource sharing overhead into account, it will also explore

the sharing design space for each operation. In Chapter 5, the HOIMS algorithm will

be further expanded with the integration of module selection. Unlike software IMS,

the availability of multiple circuit modules for a single operation provide tradeoffs

between area and performance, which can greatly affects the scheduling and sharing

algorithm.

3.5 Summary

This chapter describes one important technique for design space exploration:

pipeline scheduling. Pipelining is very important for implementing computationally

intensive algorithms on FPGAs. Pipeline scheduling is an extension of traditional

non-pipelined scheduling. It is more difficult due to the overlapping iterations. This

work proposes a hardware oriented pipeline scheduling algorithm called HOIMS. It

is based on the efficient IMS algorithm which is targeted for software pipelining on

resource constrained microprocessors. To the author’s best knowledge, HOIMS is

the first to explore the entire pipelining design space and provides hardware specific

features. It will be integrated with module selection and resource sharing techniques

in the following chapters.

39

40

Chapter 4

Resource Allocation and Sharing

Resource allocation and binding are very important in the architectural ex-

ploration process of high-level synthesis. Resource allocation allocates the hardware

components needed to implement the computationally intensive algorithms. Resource

binding determines which hardware component should be used for each operation in

the dependence graph. The number of hardware components and the binding of these

components to the specific operations directly impact the area and performance of

the final hardware circuit.

Resource sharing is an essential component of resource allocation to synthesize

efficient FPGA implementations. Resource sharing assigns multiple operations in the

dependence graph to a single hardware component. Although this can significantly

reduce the synthesized hardware area, the overhead cost caused by resource sharing

must be carefully quantified to justify the sharing benefits.

This chapter discusses important issues and algorithms to integrate resource

allocation and sharing techniques into HOIMS. It begins with an overview of resource

allocation and sharing. It then discusses resource sharing overhead for FPGA imple-

mentations. The inter-relationship between resource sharing and pipeline scheduling

is then discussed. After a review of previous work on resource sharing, a new resource

allocation and sharing algorithm based on weighted compatibility graphs is proposed

and integrated into the HOIMS algorithm.

4.1 Resource Allocation and Sharing Overview

Resource sharing is the assignment of a hardware component to more than one

operation. Resource allocation may infer some resource sharing, even though they do

41

not imply a particular binding. For example, there are only two hardware multiplier

components allocated for a dependence graph which contains three multiplier oper-

ations. Although this allocation mandates that at least two operations should share

one hardware component, the allocation does not necessarily imply a specific binding,

because any two operations can be bound to one of the hardware components, and

the other operation be bound to the other hardware component.

Although resource sharing can avoid allocating a dedicated hardware compo-

nent for every operation, it comes with the price of sharing overhead. To support

resource sharing, multiplexers, controllers and interconnections are required to steer

data from multiple sources to a single hardware component. Successful resource shar-

ing algorithms must carefully balance the circuit area saved by sharing against the

overhead area introduced by that sharing, thus reducing the overall hardware area.

The resource sharing overhead for FPGAs has been carefully studied in this work and

is discussed in Appendix C.

Resource sharing or binding can be performed after or before scheduling de-

pending on the style of dataflow. For resource dominated circuits (i.e. the majority of

circuit area is functional units rather than the overhead hardware which guides data

between functional units), resource sharing is normally performed after scheduling.

This is because the area and latency for this type of circuits are dominated by resource

usage and the schedule. Thus resource sharing can maximally assign non-concurrent

operations to a single hardware component without considering the impact of sharing

overhead. For general circuits (i.e. the overhead hardware area is comparable to

functional unit area), resource sharing is preferably performed before scheduling, so

that the steering logic area and delay can be derived from the binding or sharing.

Thus the overall area and timing of the synthesized circuit can be estimated with

more accuracy[10].

4.2 Resource Sharing and Pipeline Scheduling

The use of multi-cycle, pipelined circuit modules in this work creates a close

relationship between resource sharing and pipeline scheduling. On one hand, the

42

pipeline schedule’s data introduction interval (δ) limits the sharing capability of the

circuit modules. On the other hand, resource sharing between certain operations may

affect the pipeline schedulability of a dependence graph.

4.2.1 Multi-cycle, Pipelined Circuit Module

Unlike most previous high-level synthesis work, this work emphasizes the use of

multi-cycle, pipelined circuit modules. Pipelined modules allow the circuit to operate

at a higher clock frequency than possible without module pipelining and is essential

for FPGAs. It also allows the use of multi-cycle circuit modules. Although pipelined

modules may take longer latency to operate on a single data input than non-pipelined

modules, they allow overlapped operations on a single circuit module by introducing

new input data before the operation on the existing data has completed.

Multi-cycle, pipelined circuit modules are characterized with similar parame-

ters of pipelining. Module latency (λm) is the number of clock cycles to complete a

single computation on a circuit module. Module data introduction interval (δm) is the

minimum number of clock cycles between two consecutive inputs to a circuit module.

Such a module may initiate a new computation at least δm clock cycles after the

input of the previous data. Module frequency (fm) is the maximum operating clock

frequency of a circuit module. It is determined by the longest combinational delay

inside the circuit module. Module area (Am) is the amount of hardware resources

(i.e. FPGA logic slices) the circuit module requires.

Multi-cycle circuit modules can be classified based on the relationship between

λm and δm. Fully pipelined modules occur when δm = 1 and λm ≥ 1. Partially

pipelined modules occur when 1 < δm < λm. Non-pipelined modules occur when

λm = δm.

4.2.2 Resource Sharing Capability with Pipeline Scheduling

The sharing capability of a pipelined circuit module is determined by the

system data introduction interval (δ) and the module’s data introduction interval

(δm). The maximum number of operations that can share a pipelined circuit module

43

is:

sharemax =

⌊
δ

δm

⌋
. (4.1)

As shown in Equation 4.1, a multi-cycle pipelined circuit module may be shared

only if the data introduction interval of the module is less than or equal to half

the data introduction interval of the global pipeline (i.e. δm ≤ 1
2
δ thus sharemax is

larger than one). It is important to note that δm of any circuit module allocated for a

pipeline must be less than or equal to δ, otherwise, sharemax becomes zero meaning no

operations can be assigned to this circuit module. This requirement ensures that the

module will complete initiation on a given sample in time for the circuit to operate

on the next sample. For non-pipelined circuit modules (i.e. combinational circuit

modules), their outputs can be registered and thus be treated as pipelined circuit

modules with δm = 1.

Figure 4.1 illustrates Equation 4.1 with a two dimensional figure. The y-axis

shows the progress of time in terms of clock cycles. The x-axis shows the location of

the data inside a pipelined circuit module at each clock cycle. Assume a multi-cycle

pipelined circuit module has a module data introduction interval of 3 (δm = 3), and

that the global system data introduction interval of the pipeline is 5 (δ = 5). Assume

that value x(n) is fed into the module at clock cycle 0 (tx(n) = 0). Although another

value y can be fed into the module at clock cycle 3 or later (i.e. ty ≥ tx(n) + δm),

it is not possible due to the system pipelining. The global system data introduction

interval of the pipeline mandates a new value x(n+1) be fed into the module at clock

cycle 5. So introducing another value at cycle 3 or 4 prevents value x(n + 1) at cycle

5, which is not possible. Thus the sharing capability of this circuit module under this

pipelining condition is
⌊

5
3

⌋
= 1.

The exploration of the pipelining design space (i.e. iterating through feasible

(f, δ) pairs) has a big impact on resource sharing capability. When δ is small, the

resource sharing capability of the circuit is limited (i.e. small
⌊

δ
δm

⌋
). In the extreme

case where δ=1, no resource sharing is possible. As δ increases, the overall hardware

area of the circuit decreases due to the benefits of more resource sharing (i.e. larger

44

x(n)0

1

2

3

4

5

x(n)

x(n)

x(n)

x(n)

x(n+1)

y

y

y

XC
lo

ck
 c

yc
le

Data location in circuit module

Figure 4.1: Illustration of the sharing capability of a pipelined circuit module in the
context of a pipelined schedule, assuming δ = 5, δm = 3, λm = 5.

⌊
δ

δm

⌋
). When exploring very large δ values, the corresponding system frequency

becomes very high. At such high frequencies, only deeply pipelined or sequential

circuit modules can operate. For deeply pipelined modules, the sharing capability is

high, but the higher cost of deeply pipelined modules might overcome the resource

sharing savings. For high speed sequential circuit modules, due to their relatively high

module data introduction interval (i.e. small
⌊

δ
δm

⌋
), the resource sharing capability

is limited.

4.2.3 Resource Sharing and Pipeline Schedulability

As discussed in Section 3.2.3 of the pipeline scheduling chapter, the minDist

matrix can be used to determine the pipeline schedulability of a dependence graph

with feedback edges. The dependence graph is pipeline schedulable only if none

of the diagonal elements in the minDist matrix is positive (i.e. matrix element

minDist [P][P], also called slack value tslack of operation P , must be ≤ 0). However,

this schedulability check does not take possible resource sharing between these oper-

45

ations into account. It is possible that the minDist matrix has no positive diagonal

elements, yet the dependence graph is still not pipeline schedulable.

Pipeline schedulability under the context of resource sharing can be checked

by the earliest start time (tsmin
) and the slack value (tslack) of the shared operations.

The time from tsmin
to tsmin

+ abs(tslack) is defined as the scheduling window (w) of an

operation. If two operations share a circuit module whose module data introduction

interval is δm, the start time of the two operations must be separated by at least δm

cycles. This mandates a relative scheduling constraint between these two operations.

If the scheduling window of the two operations cannot honor this constraint, these

two operations cannot be shared. In other words, sharing these two operations will

make the dependence graph unschedulable.

Figure 4.2 shows such an example. A dependence graph and its minDist matrix

with δ = 4 are shown as part (a) and (b) of this figure. The latency of the operations

are labeled beside each operation’s name. Since none of the diagonal members of

the minDist matrix are positive, this graph is schedulable without resource sharing

(i.e. each operation is allocated with a dedicated hardware component). A feasible

schedule is illustrated as part (c) of Figure 4.2. Now assume operation B and C are

shared, and the circuit module they shared has a δm = 1. This requires that the

start time of B and C be separated by at least one clock cycle. However, the slack

value of both operations is zero, and their earliest start time with regard to the same

operation A is the same (minDist [A][B] = minDist [A][C] = 1). So the scheduling

window of operation A and B is the same (i.e. wa = wb = [1, 1]). Obviously, the

start time of the two operations cannot be separated by 1 clock cycle. Thus, sharing

between operation B and C makes this graph unschedulable.

4.3 Previous Resource Sharing Work

Resource sharing is a well known technique and there is much relevant re-

search in high-level synthesis research. A common method to formulate and solve the

resource sharing problem is partitioning a compatibility graph into a set of cliques,

where each clique represents the operations that share a single hardware component

46

A (1)

B (2) C (2)

D (1)

0 0

0 0

1
 A B C D
A 0 1 1 3
B -1 0 0 2
C -1 0 0 2
D -3 -2 -2 0

(a) Dependence graph (b) minDist matrix assuming =4

A

B

C

D

0 1 2 3Start time:

(c) Sample schedule

Figure 4.2: Resource sharing may prevent a dependence graph from schedulable even
with a valid minDist matrix

[10]. A compatibility graph CG(V , E) is defined as an undirected graph, whose vertex

set V is in one-to-one correspondence with the operations in the dependence graph,

and whose edge set E denotes the compatible operations pairs. Two operations are

compatible if they can be implemented by the same component type and they can be

scheduled non-concurrently. A group of mutually compatible operations correspond

to a subset of vertices that are all mutually connected by edges in the compatibility

graph (i.e. a clique). An optimum resource sharing is one that minimizes the number

of required hardware resources. Since one can associate a hardware component with

each clique, the resource sharing problem is equivalent to partitioning the compat-

ibility graph CG into a minimum number of cliques [31]. However, general clique

partitioning algorithms are NP hard. Thus quite a few heuristics are proposed to

simplify the algorithm and obtain sub-optimal solutions.

Springer and Thomas [42] investigated the features of high-level representation

and high-level synthesis algorithms that give rise to special compatibility graphs.

They provided insights to why and how interval and circular arc graphs occur in high

level synthesis algorithms, which are the two special compatibility graphs that have

been exploited by previous work to perform clique partitioning in polynomial time.

They also introduced two additional ones, the chordal and the comparability graphs,

47

to be used in high level synthesis. Chordal graphs are a special type of conflict graph;

they can be recognized and colored in O(V + E) time, where E is the number of

edges and V is the number of nodes in the conflict graph. A comparability graph is a

special type of compatibility graph. The cliques in a comparability graph are covered

by directed paths. This makes finding cliques very easy, which can help speed up

existing clique partitioning heuristics and create better clique partioning algorithms

for mapping objects onto shared resources.

Raje et al. [31] proposed a heuristic algorithm to perform resource sharing for

both registers and functional units considering several resource sharing costs. In that

paper, they claimed that most clique-partitioning based resource sharing algorithms

use local and inaccurate cost-functions which result in inefficient results. So they

presented several global cost functions for estimating merging cost, interconnect cost,

and control cost. These cost functions can be applied to guide the clique partitioning

algorithms for faster algorithm convergence and more efficient and accurate resource

sharing.

Ku and Micheli studied the problem of resource sharing before scheduling in

[43]. In that book, they proposed a weakly compatibility graph where all operations of

the same type are connected. A conflict resolution task is then performed to serial-

ize those compatible operations. Serialization between two operations is marked by a

constraint edge between these operations, which will be honored during the scheduling

step. They also proposed a strongly compatibility graph where two operations of the

same type and that are either alternative or data dependent are connected. This does

not require any serialization constraint on the schedule. They claimed that although

performing resource sharing before scheduling can estimate more accurately the over-

all area and delays, no efficient algorithm is known to compute minimum-area (or

minimum-latency) sharing under latency (area) constraints, aside from enumerative

techniques.

Mondal and Memik [44] proposed an algorithm to perform resource sharing

on a pipeline scheduled FPGA circuit. Resource sharing is allowed between different

basic blocks in the same pipeline stage, without violating the performance constraint.

48

In that paper, they create a direct relationship between available time slack on opera-

tions and the multiplexing overhead due to sharing. Flexibility is maximally exploited

without violating any throughput constraint. They proposed an optimal algorithm

for constant slack resource sharing and a heuristic for non-constant slack resource

sharing. However, the paper only uses a simple linear timing model for multiplexers

and doesn’t include the area overhead.

This dissertation proposes a resource sharing algorithm which has several dis-

tinctions from previous work. First, it performs resource allocation and sharing dur-

ing pipeline scheduling, while most previous work do them after or before scheduling.

Second, the overhead cost used by the resource sharing algorithm in this work is

based on actual characterization of the sharing overhead in FPGA technology (see

Appendix C). Third, this work uses a weighted compatibility graph to represent the

cost associated with different sharing possibilities, so that more area efficient hard-

ware architectures can be synthesized. The weight idea is similar to the “projected

area saving” in [31], but different in the cost function.

4.4 Weighted Compatibility Graph

One way to improve the compatibility graph used in most previous work is to

add a weight to the graph. If the compatibility graph is not weighted, two cliques

with the same number of compatible operations are considered to have the same

hardware cost. For example, Figure 4.3 shows a sample compatibility graph with

four operations (part (a)). If the hardware component has a sharing capability of

two (i.e. the size of each clique cannot exceed two), two clique partitioning solutions

are possible. The first solution is forming one clique with A and B, while forming

the other clique with C and D (see part (b) of Figure 4.3). The second solution is

forming one clique with A and D, while forming the other clique with B and C (see

part (c) of Figure 4.3). Either of these two solutions can be used because they both

have the same number of cliques, and each clique has the same number of operations.

However, if sharing A and B saves more hardware area than sharing A and D does,

49

then the first clique partitioning solution is obviously better than the second one. In

this case, the first solution should have a larger weight than the second solution.

A B

C D

A B

C D

A B

C D

(a) a compatibility graph (b) first clique partitioning (c) second clique partitioning

Figure 4.3: A sample compatibility graph and two possible clique partitioning.

This work proposes a weighted compatibility graph to represent the cost asso-

ciated with different sharing choices. This technique generates the resource sharing

that results in minimum overall hardware area. The weighted compatibility graph is

defined as an undirected graph WCG = (V, E), where V is the vertex set of WCG

and E is the edge set of WCG. Each vertex v ∈ V represents a “real” operation

(i.e. an operation requiring a hardware component) in the corresponding dependence

graph, such as an ADD or MULTIPLY operation. It is a subset of the vertex set of

the dependence graph because a vertex in a dependence graph can also be a pseudo

vertex (i.e. an operation that doesn’t require a hardware component), such as a PORT

or a START vertex. Each undirected edge (e ∈ E) of WCG represents a compatible

relationship between the two operations that are connected by e. In other words, the

two operations can be implemented by the same type of hardware component. Every

edge has a weight (w) representing the hardware area that can be saved by sharing

the two operations. The weight is based on three similarity relationships between the

two operations: port similarity, source similarity and sink similarity.

4.4.1 Port Similarity

The bit-width of compatible operations in a dependence graph may be differ-

ent. The greater the similarity between these operations’ bit-widths, the greater the

hardware utilization ratio will be when these operations are shared. Port similarity

50

(sport) represents the bit-width similarity between the input ports of two compatible

operations. It is defined as:

sport =

∑N
i=1

w(i)smaller

w(i)bigger

N
, (4.2)

where w(i)smaller is the smaller bit-width of the ith port of the two operations, w(i)bigger

is the bigger bit-width of the ith port of the two operations. (This work only allows

operations with the same number of input ports to be shared, so N is the number

of input ports of either operation.) The maximum value of sport is 1 when the two

operations have the same bit-width. In this case, the shared hardware component is

fully utilized by both operations. When the bit-width of two operations are different

(i.e. sport < 1), the shared hardware component is under-utilized by the smaller

bit-width operation.

Figure 4.4 shows an example of port similarity and its relationship with the

shared hardware utilization. Operation A has two input ports with each port’s bit-

width equal to 10. Operation B has two input ports, but the bit-width of its ports

is 5. The port similarity sport is equal to (5/10 + 5/10)/2 = 1/2. To share the two

operations, a hardware component with each port’s bit-width of 10 must be used, and

each port should be connected to the output of a 10-bit multiplexer. Hence, the shared

hardware is under-utilized by the smaller bit-width operation. Assume the area for

the 10-bit component is 100, and 50 for the 5-bit component. The saved hardware

area with sharing is: 100 + 50− 100− 2 ∗Mux2(10) = 50− 2 ∗Mux2(10). However,

if the bit-width of operation B’s ports is also 10, the port similarity sport is equal to

(10/10 + 10/10)/2 = 1. In this case, the shared hardware is fully utilized by both

operations, and the saved hardware area becomes: 100 + 100− 100− 2 ∗Mux2(10) =

100 − 2 ∗Mux2(10). As shown by this example, the larger the port similarity, the

more shared hardware utilization will be, and the more hardware area can be saved.

51

Mux2(10)

a c

(A,B)

Mux2(10)

b d

a b
10 10

c d
5 5

sport = 1/2

10 10 10 10

a b
10 10

c d
10 10

sport = 1

10 10

Figure 4.4: Port similarity (sport) example

4.4.2 Source Similarity

Source similarity (ssource) represents the similarity of the source operations

that feed the input ports of the two operations. Common sources can reduce the

multiplexer and routing resources when the two operations are shared. This is defined

as:

ssource =
Ncommon source

N
, (4.3)

where Ncommon source is the number of input ports which have common sources, and

N is the number of input ports of the operation. Figure 4.5 shows an example of

source similarity. In part (a), the input sources of the two operations are the same

operations (i.e. ssource = 2 / 2 = 1). Sharing the two operations does not require a

single multiplexer. In part (b), there are no common source operations for the two

operations (i.e. ssource = 0 / 2 = 0). Thus it requires two multiplexers to guide the

input data. As shown in this example, the larger the source similarity is, the more

hardware area that can be saved by sharing the two operations.

4.4.3 Sink Similarity

Sink similarity (ssink) represents the similarity of sink operations that are fed

by the outputs of the two operations. Common sink operations can reduce the routing

52

(A,B)

ssource = 1

ssource = 0 (A,B)

(a) Resource sharing with common sources

(b) Resource sharing with no common sources

Figure 4.5: Source similarity (ssource) example

resources when the two operations are shared. It is defined as:

ssink =
Ncommon sink

N
, (4.4)

where Ncommon sink is the number of common sink operations between the two opera-

tions, and N is the number of total sink operations of the two operations. Figure 4.6

shows an example of sink similarity. In part (a), the outputs of operations A and B

are fed to the same sink operation (i.e. ssink = 1 / 1 = 1). In part (b), the outputs

of the two operations are fed into two different sink operations (ssink = 0 / 2 = 0).

As shown in Figure 4.6, sharing in part (b) requires a longer routing net than sharing

in part (a). Thus, the larger sink similarity, the more hardware area can be saved by

sharing the two operations.

A heuristic minimum cost clique partitioning is performed on the weighted

compatibility graph to generate the resource sharing that saves the most hardware

area. The three similarities discussed above are added up to form the weight (w)

53

(A,B)

ssink = 1

(a) Resource sharing with common sinks

(b) Resource sharing with no common sinks

C

R

(A,B)

ssink = 0

C

R

D

Figure 4.6: Sink similarity (ssource) example

for each edge in the WCG. The weight of each clique is the aggregated weight of

all edges which belong to that clique. The clique weight provides a cost function to

differentiate multiple sharing possibilities, thus exploration of the resource sharing

design space can be performed more efficiently. The clique partitioning is performed

simultaneously with the pipeline scheduling step - it partitions the WCG into a list

of cliques so that the sum of all the clique’s weight is minimal. The details of the

algorithm is explained in the next section.

4.5 Resource Allocation and Sharing in HOIMS

The HOIMS algorithm performs dynamic resource allocation and resource

sharing during pipeline scheduling. These two tasks are performed when the function

DynamicAllocate() is called in Algorithm 3.2 of the previous chapter. For each op-

eration to be scheduled, the scheduling algorithm determines the start time window

for that operation, then DynamicAllocate() determines the start time along with the

hardware component which the operation will be bound to. The hardware compo-

54

nent can either be newly allocated, or a previously allocated component. The detailed

algorithm steps of this function is illustrated in Algorithm 4.1.

Algorithm 4.1: Resource sharing exploration in HOIMS

Result: ts, m, cOps
DynamicAllocate(op, tmin, tmax) begin

mAlloc ← allocatedComp(op);1

if notWorthShare(op) or mAlloc=ø then2

t ← tmin;
m ← create a new component for op;
cOps ← null;
return t, m, cOps;3

maxSimCompC ← null;
maxSimCompNC ← null;
for t← tmin to tmax do4

(conflict, maxSimComp) ← findMaxSimComp(t, op, mAlloc);5

if (conflict) then
if maxSimCompC < maxSimComp then

maxSimCompC ← maxSimComp;

else
if maxSimCompNC < maxSimComp then

maxSimCompNC ← maxSimComp;

if (maxSimCompNC != null) then6

return maxSimCompNC;

if (maxSimCompC ≥ 0) then7

if worthUnschedule() then
return maxSimCompC;

return new component for op;
end

The algorithm first gets a list of allocated components that are compatible

with the operation (line 1). If the list is empty or the operation is not worth sharing

(line 2, i.e. the sharing overhead is larger than the hardware area being saved), the

earliest possible scheduling time tmin and a new component is returned, without any

conflicting operations (line 3). If the operation is worth sharing and the allocated

component list is not empty, the algorithm iterates through every feasible clock cy-

55

cle within tmin and tmax (line 4). For each feasible clock cycle, findMaxSimComp()

(line 5) returns the maximum “similarity” component, if there are components whose

bound operations do not start in that cycle. This is called a non-conflicting com-

ponent. Otherwise, findMaxSimComp() returns the maximum “similarity difference”

component, which is called a conflicting component. In either case, the component

is compared to the best component previously found, which is updated if needed.

Finally, if there exists a best non-conflicting component (line 6, maxSimCompNC),

it is returned to bind the operation. Otherwise, if unscheduling the conflicted oper-

ations on the conflicting component is worthwhile (line 7), i.e. saves more hardware

area by binding the current operation than binding the conflicted operations, it is

returned. If neither conditions is met, the function allocates a new component and

returns it with the earliest possible scheduling time tmin.

The findMaxSimComp() function performs the minimum cost clique partition-

ing on the weighted compatibility graph to find the best resource sharing for each

component. If there is more than one allocated component that the current operation

can be bound to without resource conflict, the “average similarity” of each component

is calculated. This is calculated by summing up the weight (w) between the current

operation and all operations that have been bound to that component, and the sum

is then divided by the number of currently bound operations. The component with

the biggest “average similarity” is returned. If no such non-conflicting component

can be found, the “average similarity difference” is calculated. This is calculated

by the difference of “average similarity” between the conflicted operations and the

current operation. The component with the biggest “average similarity difference” is

returned.

Resource allocation and sharing is performed simultaneously with scheduling

in HOIMS. This prevents shared operations from being scheduled at the same time.

More importantly, it schedules the operations based on the sharing cost between

them. Although the IMS algorithm [33] discussed in the previous chapter performs

resource sharing during scheduling, it does not explore the resource sharing design

space. Instead, it always schedules the operation at the earliest start time, and

56

unschedules the conflicting operations. By using a weighted compatibility graph to

trade off between different sharing possibilities, the HOIMS algorithm can generate

more efficient binding than un-weighted resource sharing. Also, by scheduling based

on resource sharing cost, the HOIMS algorithm requires much less unscheduling steps

than the IMS algorithm. These results will be discussed in Chapter 6.

4.6 Summary

This chapter discusses an important synthesis technique used frequently in

high-level synthesis: resource allocation and sharing. Resource sharing is used to

reduce the overall hardware area cost. However, it is not normally performed for syn-

thesis tools targeting FPGA implementation, due to the relatively high sharing cost

of FPGAs. Appendix C carefully characterizes the area and timing overhead cost in

FPGAs, and shows that the overhead cost is still much smaller compared with large

circuit modules that are commonly used in computationally intensive algorithms. The

close relationship between resource sharing and pipeline scheduling is also discussed.

A weighted compatibility graph is proposed as a cost function to perform resource

sharing exploration. The weighted compatibility graph is superior to previous non-

weighted versions because it not only differentiates between multiple resource sharing

possibilities, but also provides an estimation of sharing overhead cost. A detailed re-

source allocation and sharing algorithm that utilizes the weighted compatibility graph

under the context of pipeline scheduling is proposed and discussed. This algorithm

is integrated into the HOIMS algorithm, thus making it perform pipeline scheduling

and resource sharing exploration simultaneously.

57

58

Chapter 5

Module Selection

Module selection is the process of choosing a specific circuit module for each

operation in the dependence graph. Candidate circuit modules vary in latency, mod-

ule data introduction interval, maximum operating clock frequency, area cost, etc.

Performing module selection in high-level synthesis can have a large impact on sys-

tem frequency, throughput and hardware area of the final circuit implementation.

Unlike scheduling and resource sharing, there has been limited investigation of mod-

ule selection and its role within high-level synthesis.

This work proposes a novel way to integrate module selection with pipeline

scheduling and resource sharing. To do so, a large variety of pipelined circuit modules

are characterized and made available for each operation, providing the synthesis tool

with significant flexibility when creating a hardware architecture. Module selection

can greatly improve the quality of the synthesized circuit. To our knowledge, this

is the first work that proposes the use of module selection for multi-cycle, pipelined

circuit modules together with the other two techniques of pipeline scheduling and

resource sharing.

This chapter addresses the important issues and algorithms of module selec-

tion. It begins with an overview of module selection and an FPGA specific cir-

cuit module library. Previous work on module selection is then discussed. It then

describes the inter-relationship between module selection and other techniques of

pipeline scheduling and resource sharing. Finally, this chapter describes how module

selection algorithms can be integrated into the HOIMS algorithm.

59

5.1 Module Selection Overview

Module selection is the process of choosing a specific circuit module from the

circuit module library for each operation in the dependence graph. Given an adder

operation in the dependence graph and two circuit modules in the library, a ripple-

carry adder and a carry look-ahead adder, both circuit modules fulfill the required

functionality of the operation, but with different area and clock frequency. The

decision of which circuit module to select can be affected by synthesis constraints and

optimization goals. For example, if clock frequency is constrained for the synthesis,

circuit modules that are slower than the frequency constraint cannot be selected. If

the optimization goal of the synthesis is to minimize area, then circuit modules with

smaller area should be preferred. Module selection is defined formally as follows:

Definition 2 Module matching is a mapping between an operation v of a dependence

graph G(V, E) and a set of compatible circuit modules M . This is represented as:

T (v) : v −→ {m1, m2, ...,mn}, where n is the number of compatible circuit modules

for v, and mi ∈M .

Definition 3 Module selection is the assignment of a particular circuit module to an

operation. This is represented as: M(v) : v −→ m, where m ∈ T (v).

5.1.1 Module Selection in HLS

Module selection is not commonly performed in high-level synthesis. Instead,

a fixed circuit module is assigned to each operation in the dependence graph, and

remains unchanged during the architectural exploration process. For example, all

multiplier operations in the dependence graph are assigned to the same parallel mul-

tiplier circuit module, and all adder operations are assigned to the same ripple carry

adder circuit module. If the circuit module library has other implementation options,

the fixed module assignment misses the opportunity to select the optimal circuit mod-

ule and thus generates inferior synthesis results. The fixed module assignment also

limits the design space of scheduling and resource sharing. Different circuit modules

may have different latencies and different sharing capabilities, thus more scheduling

60

and resource sharing possibilities can be explored. A larger design space can greatly

improve the quality of high-level synthesis.

Module selection is especially important for FPGA specific HLS. Over the

years, countless FPGA-specific circuit implementations have been published for per-

forming many primary arithmetic functions and DSP kernels [45, 46, 47]. This large

set of novel implementation techniques demonstrates the unique features of vari-

ous FPGA families and interesting new ways to perform arithmetic when using pro-

grammable logic. These implementations vary in their frequency, latency, pipelining

characteristics, and FPGA resource requirements. With all the varieties among these

implementations, time-area trade offs can be exploited during the synthesis process.

5.1.2 Sample FPGA Circuit Modules

To enable the selection among multiple circuit modules, this work created

a variety of circuit modules for the Xilinx Virtex4 architecture, as shown in Table

5.1. These circuit modules were created based on a variety of sources from both

academic and industrial organizations. Each circuit module was characterized using

a unified set of module parameters. The characterization was performed using the

standard Xilinx FPGA implementation tools (XST, MAP, PAR and TRCE) included

in Xilinx ISE 6 software with service pack 3. In some cases, the modules were provided

with architecture-specific netlists, bypassing HDL synthesis. In order to give better

estimates, the designs were synthesized multiple times using faster timing constraints

to obtain better speed estimates.

Table 5.1 shows a variety of multiplier circuit modules with different imple-

mentation styles. The first three multipliers (Array Multiplier, Booth Multiplier and

CoreGen Parallel Multiplier) use a parallel architecture (i.e. partial products are gen-

erated by the whole multiplicand and multiplier), while the other multipliers (Core-

Gen Sequential Multiplier, Shift & Add Multiplier and Bit-Serial Multiplier) use a

sequential architecture (i.e. partial products are generated sequentially by part of the

multiplicand and multiplier). For the parallel multipliers, even with the same level of

pipelining, different implementation styles differ greatly in area cost and frequency.

61

Table 5.1: Sample FPGA circuit modules. The slice count (Am) and the frequency
(fm) are characterized by the FPGA implementation tools shown in Figure A.1.

Circuit Module λm δm Am fm

Multipliers
Array Multiplier 1 1 1 162 41
Array Multiplier 2 2 1 192 72
Array Multiplier 3 4 1 270 127
Array Multiplier 4 8 1 366 203
Array Multiplier 5 16 1 540 296
Booth Multiplier 1 1 1 180 69
Booth Multiplier 2 2 1 213 90
Booth Multiplier 3 4 1 305 150
Booth Multiplier 4 8 1 407 223
CoreGen Parallel 1 2 1 172 112
CoreGen Parallel 2 4 1 198 257
CoreGen Sequential 12 8 115 291
Shift & Add Multiplier 16 16 108 307
Bit-Serial Multiplier 32 32 33 401
Dedicated Multiplier 1 2 1 N/A 211
Dedicated Multiplier 2 4 1 N/A 654

Adder/Subtracters
Ripple Carry Adder/Sub 1 1 1 9 370
Ripple Carry Adder/Sub 2 2 1 29 469
Bit-Serial Adder/Sub 16 16 27 401

For example, an Array Multiplier with two pipeline stages runs at 72MHz and re-

quires 192 FPGA slices, while a Booth Multiplier with the same level of pipelining

can run at 90MHz, but requires more hardware resources (213 slices). Sequential

multipliers are smaller than the parallel versions and they run at a higher clock rate.

However, their latency can be long and they normally cannot accept a new data input

every clock cycle. A detailed description for all the modules in Table 5.1 is given in

Appendix A.1.

Table 5.1 also shows a variety of pipelining options for the same circuit module.

For example, the five Array Multipliers are all implemented with the same architec-

ture, but each has a different pipelining depth. Different pipelining depths result in

62

different hardware area costs and frequencies. Note that the relationship between

area and frequency increase is not linear with respect to the levels of pipelining.

5.2 Module Selection and Pipeline Scheduling

Module selection and pipeline scheduling are closely inter-related. On one

hand, module selection determines the latency of each operation, through the assign-

ment of a particular circuit module to each operation. The latency of each operation

is vital to schedule the dependence graph. On the other hand, the possible feedback

constraints in pipeline scheduling place latency bounds on operations along the feed-

back paths, thus limiting the circuit modules that can be selected for those operations.

Pipeline scheduling also limits the circuit modules that can be selected during the

exploration of the pipelining design space (feasible (f, δ) pairs).

5.2.1 Module Selection and Scheduling Order

Prior work in high-level synthesis performed module selection after scheduling

is finished. The assumption is that each operation can be finished within one clock

cycle, regardless of its function and the circuit module selected for it. This assumption

limits the circuit modules to only combinational ones that execute in a single clock

cycle.

For multi-cycle circuit modules, scheduling before module selection is difficult.

Before an operation in the dependence graph can be scheduled, the start time and

latency of all its immediate predecessors must be known. The latency of an operation

is determined by module selection: the latency of the operation is the latency of

the module selected to implement the operation. Without module selection, the

completion time of an operation is not known and data dependencies may be violated.

This requires that before scheduling an operation, module selection and scheduling

of all its predecessor operations be completed.

Because of this requirement, module selection for multi-cycle operations is usu-

ally performed before scheduling [48, 49]. A typical design space exploration strategy

with this sequence is a nested loop as shown in Figure 5.1. The outer loop iterates

63

through the module selection design space, and the inner loop explores the scheduling

design space. Each module selection iteration searches among the candidate circuit

modules within the library and selects a circuit module for each operation in the

dependence graph. Thus the latency and finish time of each operation is known and

scheduling can proceed. The inner loop tries different schedules and determines the

best schedule based on the current module selection, while meeting other constraints

and goals.

LOOP: Module Selection

LOOP: Scheduling

Figure 5.1: Module selection before scheduling

The module selection design space exploration in the outer loop can be more

efficient if the scheduling inner loop can provide useful information back to the module

selection process. For example, the start time difference between an ASAP (As Soon

As Possible) schedule and an ALAP (As Late As Possible) schedule [10] indicates the

“mobility” of an operation. If the mobility of an operation is positive, module selection

for that operation can be changed to use some “longer latency but cheaper” circuit

module without changing the schedule. The feedback from scheduling to module

selection suggests that module selection and scheduling should be performed in an

iterative way to guide the module selection design space exploration.

Some approaches perform module selection and scheduling simultaneously [50,

51]. While more computationally demanding, these approaches allow the scheduler

64

to explore the impact of module selection on the circuit schedule within a larger

design space. Performing module selection during scheduling explores a large set of

implementation possibilities and allows the scheduler to balance the area cost of each

operation implementation with the importance of the operation within the schedule.

5.2.2 Feedback Constraint and Module Selection

Feedback constraints limit the module selection possibilities. As discussed in

Chapter 3, feedback constraints are represented as cycles in the dependence graph.

According to Equation 3.9, the accumulated latency of any elementary cycle cannot

exceed the cycle’s distance multiplied by the system data introduction interval. The

latency of a cycle is the accumulated latency of the selected circuit modules for each

operation inside the cycle. This latency constraint imposes limitations on the module

selection of operations in each cycle.

The feedback constraint limitation applies to the combination of module se-

lections for all operations in an elementary cycle, not to the module selection for a

single operation in that cycle. Figure 5.2 shows an example of this limitation. The

feedback edge from operation B to operation A has a distance of 1, while the feed-

forward edge from A to B has zero distance. If the system data introduction interval

(δ) is 3, then the cycle latency of the cycle cannot be greater than D ∗ δ = 3. Both

operations have the same compatible circuit modules as shown in part (b) of Figure

5.2. The feedback constraint does not limit the module selection for either operation.

However, the combination of module selection which makes the cycle latency exceed

3, i.e. A→M2 and B →M2 is not permitted.

BA 0

1

(a)

Operation Circuit Module Latency
A/B M_1 1
A/B M_2 2

(b)

Figure 5.2: Illustration of feedback constraint limits cycle’s module selection

65

5.2.3 Module Selection and Pipelining Design Space

In the context of pipeline scheduling, module selection has a direct impact on

the pipelining design space. The maximum system frequency (fmax) is determined

by the module selection. A computationally intensive circuit is resource dominant,

which means its maximum frequency is determined by the slowest circuit module

in the circuit. If there are M circuit modules that can implement the function of

operation n, and there are N operations in the dependence graph, the maximum

system frequency is:

fmax = min (fmax(n)), fmax(n) = max (fi(n)) for 1 ≤ n ≤ N, 1 ≤ i ≤M, (5.1)

where fi(n) is the frequency of each compatible circuit module for operation n, and

fmax(n) is the maximum frequency among these modules. According to Equation 3.2,

module selection determines the upper bound of the pipelining design space.

For dependence graphs with feedback edges, each elementary cycle’s latency

is determined by the module selection. The minimum cycle latency for each cycle (c)

is:

Delaymin(c) =
∑

λmin(n) ∀n ∈ c, (5.2)

where λmin(n) is the minimum latency among all compatible circuit modules for

operation n. Thus the minimum system data introduction interval is:

δmin = max
c∈C

⌈
Delaymin(c)

Distance(c)

⌉
. (5.3)

Thus module selection determines the lower bound of the pipelining design space for

dependence graphs with feedback edges. Note that for feed-forward only dependence

graphs, δmin is always 1.

Each (f ,δ) pair in the pipeline scheduling design space also has a direct impact

on the module selection. As discussed in the previous chapter, the data introduction

interval of any circuit module allocated for a pipeline must be less than or equal to

the system data introduction interval. Also, each circuit module cannot be slower

66

than the system clock frequency. Thus, when pipeline scheduling is performed at

each (f , δ) pair, module selection for each operation must conform to the following

two criteria:

δm ≤ δ , and (5.4)

fm ≥ f. (5.5)

This indicates that at each (f ,δ) pair of the pipeline scheduling design space, mod-

ule selection candidates are limited and the design space of module selection might

change.

5.3 Module Selection and Resource Sharing

Module selection and resource sharing are inter-related. If two or more com-

patible operations are assigned to different circuit modules, they cannot be shared.

If two or more operations are shared, they must be assigned to the same circuit mod-

ule. To share operations with different bit-widths, the same circuit module should

be instantiated with a bit-width configuration that covers the bit-width requirement

of all shared operations. For example, to share a 4x4 and an 8x8 multiplier on a

Booth Multiplier circuit module, the circuit module must be instantiated with an 8x8

bit-width configuration.

Module selection affects the amount of resource sharing. Selecting more spe-

cific circuit modules for each operation will decrease the possibility of resource sharing

between operations. Selecting more generic modules for each operation will increase

the possibility of resource sharing. For example, if the four multiplier operations in

the Biquad filter (see Figure 3.4) are all assigned to the same circuit module such

as the Array Multiplier 1 in Table 5.1, and the circuit module is configured to cover

the bit-width requirement for all of the four operations, it is more likely that the

four operations will be shared in the resource sharing process. However, if module

selection assigns a different circuit module to each multiplier operation, the resource

67

sharing algorithm will not be able to share them even though each operation has a

unique start time.

With resource sharing, the average cost of a circuit module is no longer the

“actual” hardware area of the module itself. Instead, it should include the resource

sharing overhead hardware cost, and be divided by the number of operations that can

share this module. The amortized cost of a circuit module is defined as:

A′
m =

Am + Ashare

sharemax

, (5.6)

where Am is the hardware cost of the circuit module itself, Ashare is the hardware cost

for resource sharing this module and sharemax is the largest number of operations

that can share this module as defined in Equation 4.1.

The amortized cost of a circuit module affects the module selection algorithm

described in the previous chapter. The selection of the lowest circuit module area

(Am) discourages sharing between operations, while the selection of A′
m encourages

the sharing between operations.

5.4 Previous Module Selection Work

Unlike pipeline scheduling and resource sharing, there has been limited in-

vestigation of module selection and its role within architectural exploration. Several

projects have included module selection during high-level synthesis but their scope

is relatively limited. A major contribution of this work is integrating module selec-

tion of multi-cycle, pipelined circuit modules with the other two high-level synthesis

techniques of pipeline scheduling and resource sharing.

Thomas and Leive considered the first module selection problem [52] and

opened the door to further research on the subject. In that paper, they proposed

a solution to the general module selection problem for non-pipelined designs where

module selection is done after scheduling and allocation. Each module is evaluated by

an individual optimization function, from which the best module is selected for each

operation type. The optimization function is a function of weighted area, delay and

68

power of the operation. However, optimizing every operation type doesn’t necessarily

lead to the globally optimal solution.

The Schwa project was augmented to support module selection for pipeline

scheduling in [49]. In that paper, Jain proposed a rigorous technique for module

selection for pipelined designs. This technique is based on the ability to predict the

location in the design space of the area-time trade-off curve for a given design and

a given module set. This predictive ability, in turn, is based on the straightforward

optimization criteria for digital design that all modules are utilized as many cycles

as possible. This work was further augmented to support multi-cycle circuit modules

during scheduling in [53] and later constrained pipeline scheduling using an ILP [54].

All the module selection techniques in these papers are based on operation type (i.e.

all operations of the same type are assigned to the same circuit module) instead of

each operation, and the selection criteria is minimum area-time product.

Bakshi and Gajski proposed an iterative module selection algorithm in [55] to

optimize the hardware area for pipelined circuits. In this paper, a CF (Commonality

Factor) function based on the topology of the circuit is used to calculate the priority

of each operation for area reduction. The algorithm starts with the fastest compo-

nent and iteratively “slowsdown” the highest priority operations until there is no area

improvement. The underlying premise of this paper is that slow, inexpensive com-

ponents should be used for non-critical paths, while fast and expensive components

should be used for critical paths. This paper is later extended in [56] to incorporate

multi-cycle but non-pipelined circuit modules.

All the papers discussed above use some form of heuristics to find a near-

optimal module selection solution. Other have used an exhaustive approach to find

the optimal solution. In [57], module binding and module selection problems are

solved concurrently for non-pipelined designs using a mixed inter-linear program-

ming (MILP) technique. Shen and Jong formulated the module selection as a multi-

objective optimization problem in [48]. They proposed a branch and bound algorithm

for simultaneously optimizing power, delay and area globally. The basic drawback of

69

these exhaustive techniques is that their computational complexity are exponential,

so they are not practical for realistic examples.

5.5 HOIMS with Module Selection

The HOIMS algorithm is expanded with module selection to explore a larger

pipeline synthesis design space. Without module selection, a fixed circuit module is

assigned to each operation in the dependence graph. In this case, the exploration

of the pipelining design space is limited because a fixed circuit module may only

be operational at certain pipelining design points. Resource sharing is also limited

with a fixed circuit module assignment because different circuit modules may have

different sharing capabilities, which might generate different circuit architectures with

different hardware costs. The integration of module selection in the HOIMS algorithm

can explore more scheduling and sharing possibilities. Such an enlarged design space

can greatly improve the synthesis quality of the HOIMS algorithm.

Module selection and its exploration has three major steps in HOIMS. The

first step generates the set of candidate circuit modules for each operation. This

set determines the size of the module selection design space. The second step picks

an initial module selection as the starting point of the module selection exploration.

Pipeline scheduling and resource sharing are then performed. The third step modi-

fies the previous module selection, and performs another iteration of scheduling and

resource sharing. The third step is repeated until no module selection improvement

is feasible.

The modified HOIMS algorithm that includes module selection is illustrated in

Algorithm 5.1. The pipeline scheduling with resource sharing remains the same as in

Algorithm 3.2. However, various module selection related algorithms are integrated

into different places of the previous HOIMS algorithm. Before the pipelining design

space is explored, a candidate circuit modules set is determined for each operation

based on the input library of circuit modules and the synthesis constraints (line 1).

At each pipelining design point (f, δ), an initial module selection is performed (line

8) based on a non-dominated module set (line 7). The initial module selection is

70

corrected if necessary (line 9) before the scheduling is started. The loop at line 11

first performs pipeline scheduling and resource sharing based on the current module

selection, then it updates the module selection and the loop continues. The following

sections will discuss these module selection and exploration algorithms in detail.

Algorithm 5.1: HOIMS with module selection

HOIMS(DG, T, LIB) begin
CandidateModules(T, LIB);1

δmin ← MinII();2

δmax ← MaxII();3

Sbest ← ø;4

for δ ← δmin to δmax do5

fδ ← δ·T ;6

RemoveDominated(δ, fδ);7

InitialMS(δ,fδ);8

CorrectMS(DG);9

CreateWCG();10

repeat11

Initialize all operations to be never scheduled;12

HeightR(δ);13

Insert all operations into Q;14

Schedule(START, 0);15

while Q 6= ø do16

v ← HighestPriorityOperation(Q);17

tsmin
← CalculateEarlyStart(v);18

tsmax ← tsmin
+ δ − 1;19

(ts, m) ← DynamicAllocate(v,Tsmin
,Tsmin

);20

Schedule(v, ts, M);21

Q← Q + UnscheduleConflicts(v, ts, M);22

if Cost(Scurrent) < Cost(Sbest) then23

Sbest ← Scurrent;

until (not MS Improvable()) ;

end

71

5.5.1 Candidate Module Set Generation

The candidate module set is a list of circuit modules for an operation in the

dependence graph that are both functionally compatible with the operation and per-

formance compatible with the throughput constraint. A circuit module is functionally

compatible with an operation if it can perform the function of that operation. For

example, an ALU circuit module is compatible with an “add” or “sub” operation

because it can perform either operation’s function. A circuit module is performance

compatible with the throughput constraint if the throughput of the circuit module is

greater than or equal to the system throughput constraint:

fm

δm

≥ T, (5.7)

where fm is the module frequency, δm is the module data introduction interval and

T is the throughput constraint. There must be at least one circuit module in the

candidate module set for each operation in the dependence graph. Otherwise, there

will be no feasible circuit module to implement that operation, thus the dependence

graph cannot be implemented under the throughput constraint.

The candidate module set for an operation is illustrated in Figure 5.3. This

figure uses the same axis as Figure 3.3 for the pipelining design space. The round dots

represent the pipelining design space for a throughput constraint of 50 MSample/Sec.

The small rectangles represent all the compatible circuit modules for this operation

in the library. The location of each circuit module in this figure is in accordance with

the module’s operating frequency (fm) and module data introduction interval (δm).

Thus only the circuit modules above the (f, δ) dots have a module throughput larger

than the system throughput constraint, so M1, M2, M3 and M4 forms the candidate

module set for this operation.

The candidate module set should be further filtered at each pipelining design

point (f, δ). According to Equation 5.5, only circuit modules on the left and upper

side of (f, δ) can be used for that pipelining option. For example, when the system

72

1 2 3 4 5

System Data Introduction Interval

S
ys

te
m

 F
re

qu
en

cy
 (M

H
z)

50

100

150

200

250

M1

M2 M3

M4

Figure 5.3: Example of candidate module set

data introduction interval is 3 in Figure 5.3, only the circuit modules inside the gray

area can be used for the (150MHz, 3) point.

Some circuit modules might be dominated by other modules. For example,

M1 and M2 are two circuit modules in the candidate module set for an operation

at (150MHz, 3) in Figure 5.3. Module M1 and M2 have the same module data

introduction interval (i.e. same sharing capability) and latency, but the area of M2

is larger than the area of M1. In this case, module M2 is dominated by module M1,

because selecting module M2 always results in larger circuit area than when module

M1 is used. Dominated circuit modules can be removed from the candidate module

set to reduce the module selection design space.

5.5.2 Initial Module Selection and Correction

After the non-dominated candidate circuit module set is determined at each

pipelining design point, the module selection design space should be explored to

73

find the optimal module selection that generates the minimum hardware area FPGA

implementation. However, enumerating all module selection possibilities is an expo-

nential search process as discussed in Section 2.6. The module selection exploration

strategy employed in HOIMS starts with an initial selection and iteratively refines it.

For each operation in the dependence graph, the initial module selection as-

signs the minimum area circuit module among its candidate module set to that op-

eration. The selected circuit module is also configured to have the same bit-width as

the operation. The initial assignment thus creates the most specific module selection

for the dependence graph as discussed in Section 5.3. However, if there is a feedback

constraint, the initial module selection might not be valid because it may prevent the

dependence graph from being schedulable with the current system data introduction

interval value.

As discussed in Section 3.2.3 of the pipeline scheduling chapter, the minDist

matrix can be used to determine the pipeline schedulability of a dependence graph

with feedback edges. For example, the Biquad filter dependence graph (see Figure

3.4) contains one SCC which is composed of operation Add, a2, Add7, and a3. The

SCC is reproduced in Figure 5.4 part (a) for convenience. A sample module selection

for operations inside this SCC is also shown as the text beside each operation. The

minDist matrix for this SCC with this module selection is shown as part (b) of Figure

5.4, assuming a system data introduction interval of 4. Notice the diagonal matrix

elements for operation Add, a2 and Add7 are all positive, which means the sample

module selection will result in an infeasible pipeline scheduling.

The function CorrectMS() (line 9) in Algorithm 5.1 checks the schedulability

of the current module selection and modifies it until the graph is schedulable or

no further modification is possible. The algorithm for correcting the initial module

selection is illustrated in Algorithm 5.2. For each SCC of the dependence graph,

it first creates a list of modules for each operation in the SCC, the latency of each

module in the list must be smaller than the currently selected module (line 1). These

modules are sorted from lowest δa to highest δa (δa is the relative area increment

per latency decrease, as shown in Equation 5.8). The purpose of this sorting is to

74

1

1

0

1

0

Add

a2

a2

Add7

Ripple Carry Adder 1

Array Multiplier 2

Ripple Carry Adder 1

Array Multiplier 2

(a) SCC of Biquad filter with module selection

Add a2 a3 Add7

Add 2 -3 -3 1

A2 5 2 2 4

A3 1 -2 -2 0

Add7 1 -2 -2 0

(b) minDist matrix with = 4

Figure 5.4: Module selection for the Biquad filter’s SCC and the corresponding
minDist matrix

reduce the latency of the operation with minimum area increase. For example, if two

circuit modules have the same latency and both are smaller than the current module’s

latency, then the module with smaller area cost will be selected as a replacement of

the current module:

δa =
Anew − Aold

λmold
− λmnew

. (5.8)

Algorithm 5.1 then checks the schedulability of the current SCC (line 3). If

it is schedulable, the current module selection for this SCC is valid (line 4), so the

outer-most loop continues and the next SCC is processed. If not, the operations with

positive slack are recorded and sorted based on descending slack value (line 5). The

next loop iterates through these operations and tries to find the first operation whose

latency can be reduced (line 6). If none of the operations have a shorter latency

module, the current module selection for this SCC cannot be further modified for a

valid schedule, so the function returns false (line 7). If a shorter latency module is

found for an operation, it is set as the current module selection for that operation,

and the schedulability check loop is repeated (line 2).

75

Algorithm 5.2: Correcting the Initial Module Selection

boolean correctMS(DG) begin
foreach scc of DG do

setup smaller latency modules for each v ∈ scc;1

validMS ← false;
while not validMS do2

(slack, posSlackOps) ← minDist(scc);3

if slack ≤ 0 then
validMS ← true;4

else
sort posSlackOps;5

update ← false;
foreach v ∈ posSlackOps do

if setSmallerLatencyModule(v) then6

update ← true;
break;

if not update then
break;

if not validMS then7

return false;

return true;
end

5.5.3 Module Selection Refinement

After a schedulable module selection is obtained, pipeline scheduling and re-

source sharing are explored for the dependence graph. The module selection is then

refined based on the current scheduling and sharing result. Another iteration of

scheduling and sharing is then performed based on the modified module selection.

This refinement is repeated until no module selection improvement can generate a

better hardware implementation. This iterative module selection exploration includes

two parts: local module selection refinement and global module selection refinement.

The local module selection refinement tries to improve the module utilization

efficiency for each operation. For operations that are not shared, their module se-

lections are updated with the circuit module which has the lowest area cost. For

76

operations shared with others, their module selections are updated with the circuit

module which has the lowest amortized area cost (see Equation 5.6).

The global module selection refinement tries to improve the module utilization

efficiency between operations. Algorithm 5.3 illustrates the outline for this global

refinement. All circuit module instances that are not fully utilized are collected first

in line 1. The refinement is performed for each operation in the dependence graph that

is worth sharing (see line 2 and 3). The algorithm then iterates through the module

instances (line 4). If the module type of an instance is the same as the operation’s

current module selection, or if the instance is fully utilized or free, it is skipped (see

line 5). Otherwise, the feasibility of the module instance is checked for this operation

(line 6). The module instance is feasible if it is both compatible (i.e. in the operation’s

candidate module set) and changeable (i.e. the latency of the module will not make

the SCC this operation belongs to unschedulable). A feasible module instance results

in the module selection change for this operation (line 7). The utilization status of

the current and new module instance are also updated (line 8).

Algorithm 5.3: Global Module Selection Refinement

globalMSRefine() begin
initialize mi2free[];1

foreach op ∈ DG do2

if notWorthShare(op) then3

continue; ;

foreach mi ∈ mi2free[] do4

if moduleType(mi)=MS(op) or fullOrEmpty(mi) then5

continue;

if compatible(op, mi) and changeable(op, mi) then6

setMS(op, mi);7

update mi2free[] for current and new module of op;8

break;

end

77

5.5.4 Bit Width Morphing

To generate the most area efficient implementation for a bit-accurate compu-

tational algorithm, the bit width of the circuit module to which an operation is bound

must be equal or larger than the operation’s bit width. Unlike the previous two algo-

rithms, which assume a single bit width that covers all operations in the dependence

graph, the HOIMS algorithm selects the most efficient bit width circuit module for

each operation. It also morphs the operation’s preferred bit width for best resource

sharing between operations with different bit widths.

The initial module selection not only picks the cheapest circuit module for each

operation, it also sets the bit width of the circuit module to match the bit width of the

operation. This avoids the waste of unused extra bits for operations with wider circuit

modules. However, mapping an operation to a wider circuit module may decrease the

overall area due to resource sharing. When searching for compatible module instances

(see line 1 in Algorithm 4.1), circuit modules with bit width wcompatible are returned.

Equation 5.9 shows the method for calculating the compatible bit width. This ensures

that the area of the multiplexer needed for sharing will not exceed the module area

for the operation’s current bit width:

MuxAreawcompatible
≤ModuleAreawcurrent . (5.9)

The preferred bit width of an operation is morphed during the module selection

improvement step, based on the current schedule (s). Algorithm 5.4 illustrates the

steps for bit width morphing with the current schedule (s). The algorithm iterates

through each shared circuit module in the current schedule (line 1). For each shared

module ms, all its allocated circuit module instances (ms.mi) are sorted in descending

order according to their bit width (line 2). A map from each module instance to the

number of free slots (mi2free[]) is initialized based on the current schedule (line

3). Then the algorithm goes through each instance (mi1) and tries to increase its

utilization ratio (line 4). If the module instance is fully utilized, the next instance is

checked. Otherwise, the next width compatible module instances mi2 are explored

78

for possible bit width morphing (line 5). Each operation bound to mi2 is checked

(line 6). If bit width morphing is set for an operation op, the corresponding entry

in mi2free[] is updated (line 7). This algorithm sets the preferred bit-width of an

operation to its closest bit-width module instance which is under-utilized.

Algorithm 5.4: Bit Width Morphing

bitWidthMorph(s) begin
foreach ms ∈ s.sharedModule() do1

sort(ms.mi);2

initialize mi2free[];3

foreach mi1 ∈ ms.mi excluding the last one do4

if mi2free[mi1].full() then
continue;

mi2 ← mi1.next();
while not mi2free[mi2].empty() do5

if mi2.width() == mi1.width() then
mi2 ← mi2.next();
continue;

if mi2.width() < mi1.width() - wcompatible then
break;

bOps ← mi2.boundOps();
sort(bOps);
foreach op ∈ bOps do6

if op.width() < mi1.width() - wcompatible then
break;

bit width morph op with mi1.width();
update mi2free[mi1] and mi2free[mi2];7

mi2 ← mi2.next();

end

The bit width morphing information obtained in Algorithm 5.4 is used in the

next iteration of pipeline scheduling. When a new module instance is created for

an operation, the bit width of the new instance prefers the morphed width instead

of the operation’s native bit width. This creates a more general resource that is

79

compatible with more operations, and encourages resource sharing between operations

with similar bit-widths.

Integrating module selection with pipeline scheduling and resource sharing

completes the HOIMS algorithm. Module selection adds another dimension to the

whole pipeline synthesis design space and can significantly improve the quality of the

synthesized circuit, as will be shown in the next chapter. However, the exponen-

tial design space of module selection makes an exhaustive search impractical. The

iterative module selection refinement algorithm proposed in this chapter makes the

exploration of the module selection design space more efficient.

5.6 Summary

This chapter describes a very important yet seldom applied technique for high-

level synthesis: module selection. Many FPGA specific circuit modules have been

proposed for implementing various computation tasks over the years. Module selec-

tion leverages these implementation varieties to synthesize a minimum overall area

FPGA implementation. Selection between multi-cycle and pipelined circuit modules

within the context of pipeline scheduling is novel compared with previous module

selection work. Because of the exponential nature of the module selection design

space, an iterative module selection refinement algorithm is proposed in this chapter.

It is based on the close inter-relationship between module selection and the other

two synthesis techniques of pipeline scheduling and resource sharing. The goal of

this module selection refinement algorithm is to efficiently explore the huge pipeline

synthesis design space while obtaining a good synthesis result. The next chapter will

present and discuss experimental results for the combined algorithm.

80

Chapter 6

Experimental Results

This work is the first to perform concurrent pipeline scheduling, resource shar-

ing and module selection. Most previous work combines just two of the three tech-

niques, assuming the third one is performed independently. Combining the three

techniques together creates a much larger design space than traditional non-combined

approaches and significantly improves the quality of the synthesized circuit.

However, combining the three techniques is very difficult for two reasons. The

first reason is the close inter-relationship between the three techniques as discussed in

the previous two chapters. This inter-relationship makes the exploration sequence of

these techniques in the combined algorithm difficult to manage. The second reason

is the size of design space exposed by the combination of these techniques. Each

technique alone has an exponential design space as discussed in previous chapters,

and a combined approach makes the design space even larger. This work demonstrates

that it is feasible to efficiently explore such a large design space and generate close to

optimal results using novel algorithms.

This chapter presents and discusses the experimental results of three combined

algorithms, the ASAP exploration algorithm, the IMS exploration algorithm, and the

HOIMS algorithm proposed in the previous chapters. It begins with an analysis

of the pipeline synthesis design space generated by appyling module selection only,

resource sharing only, and combined module selection and resource sharing, within the

context of pipeline scheduling. It then illustrates and analyzes the pipeline synthesis

area results from the first two algorithms for several sample computational kernels.

The results from the combined approach are compared quantitatively to the results

from traditional non-combined approaches.

81

This chapter then presents and discusses the area results from the HOIMS

algorithm, which explores a bigger resource sharing design space using weighted com-

patibility graph, and a bigger module selection design space for non-uniform bit-width

dependence graphs. Finally, the computational complexity and runtime of these al-

gorithms are presented and discussed. This chapter shows that HOIMS is able to find

better solutions than the two previous algorithms and do it efficiently.

6.1 Pipeline Synthesis Design Space Analysis

The design space of module selection or resource sharing or a combination of

these two techniques within the context of pipeline scheduling can be best visualized

with a two dimensional diagram as shown in Figure 6.1. The y-axis of the diagram

represents the estimated area of the synthesized circuit (in FPGA slices). The x-axis

represents unique (f, δ) design points of the pipeline design space, ordered by increas-

ing values of δ and corresponding f . All design points meet the system throughput

constraint (i.e. f = δ ∗ T).

Several hypothetical lines are shown on this figure to demonstrate the impact

of module selection and resource sharing on the design space. The thin solid line

represents the design space associated with module selection only. The dotted lines

represent design spaces associated with resource sharing only. These dotted lines

are representative of most previous work where scheduling is performed without the

exploration of module selection design space (i.e. assuming a fixed module selection).

The thick solid line represents the design space for the combined module selection

and resource sharing exploration strategy. The design space associated with each of

these lines will be discussed in detail below.

6.1.1 Module Selection Only

The module selection only line represents a fictitious design space in which

the lowest cost circuit module is chosen for each operation in the dependence graph

at each (f, δ) design point. No resource sharing between operations is performed.

Changes in the area cost of synthesized architecture are associated only with changes

82

A
re

a

(f,)

Combined

MS Only

I II III

RS Only 3RS Only 2

RS Only 1

(T,1) (nT,n) (maxT, max)...

Figure 6.1: Projected pipeline synthesis design space with module selection and/or
resource sharing under a fixed throughput constraint

in the corresponding module selection that is possible at each (f, δ). The actual shape

of the line will depend on the circuit module library and the operations within the

dependence graph.

The area cost of the module selection only method will change up or down

along the (f, δ) design points of the x-axis. In some cases, the cost will increase as

the frequency increases, because more deeply pipelined, faster, and more expensive

circuit modules are necessary. In other cases, the cost will decrease as δ increases

because a less expensive, sequential circuit module (i.e. larger δm) may be usable at

the higher values of δ.

6.1.2 Resource Sharing Only

The resource sharing only method assumes a fixed module selection for each

operation in the dependence graph and maximally shares the module instances be-

tween operations. Three dotted lines shown in Figure 6.1 represent three examples of

the design space associated with the resource sharing only method. Each line repre-

sents the design space associated with a unique module selection. A typical module

selection in the resource sharing only method binds all operations of the same type

83

to the same circuit module. Thus, the difference in the area cost between the three

lines is due solely to the difference in their module selection and the resource sharing

capability of that module selection.

As Figure 6.1 shows, the design space of the resource sharing only method

does not cover the full range of (f, δ) values. Because the selected modules will

only operate within a fixed frequency limit, the upper bound of the design space is

thus limited by the slowest module in the module selection. The lower bound of the

design space is limited by the minimum feasible system data introduction interval

with that module selection. For dependence graphs without feedback, this is equal

to the maximum module data introduction interval (δm) among all operations for

that module selection. For graphs with feedback, it is also affected by loop latency

and loop distance (see Equation 3.10). Note that with a fixed module selection, the

breadth of the design space can be very limited.

Within the limited design space, these sample resource sharing only lines show

that the cost of the circuit decreases with larger values of δ. The decreasing area is

due to the ability to increase the sharing of the allocated modules among operations

(see Equation 4.1). The amount of increased sharability also depends on the module

selection assumed. More resource sharing can be obtained with increased δ if more

general circuit modules are used than if more specific circuit modules are used.

6.1.3 Combined Module Selection and Resource Sharing

The third design space represents combined module selection and resource

sharing (thick solid line). This space represents the best architecture identified when

both techniques are used during architecture exploration. As shown in Figure 6.1,

this combined design space should be similar to a “bathtub” curve and can be divided

into three stages.

The first stage (stage I) occurs at small values of δ. The small values of δ

in this stage limit the ability to exploit resource sharing (see Equation 4.1). In the

extreme case where δ=1, no resource sharing is possible1 and the area cost of the

1Resource sharing between mutually exclusive paths is still possible when δ=1.

84

combined technique will be the same as the module selection only technique. As δ

increases in this stage, the area cost of the architecture decreases due to the benefits

of resource sharing. As described earlier, increasing (f, δ) may require the use of more

expensive circuit modules, which might offset some of the benefits by doing resource

sharing. In stage I, however, the benefits of resources sharing normally overcome the

increasing cost of more expensive module selection, thus generating a lower area cost

solution with increasing f and δ.

Stage III represents the other extreme of the design space with very large

values of δ and very high operating frequencies. At these high frequencies, only deeply

pipelined or sequential circuit modules can operate. If deeply pipelined modules are

selected, the advantages of large resource sharing capability might not justify the

high cost of these modules. If sequential modules are used, their low area cost might

not justify the limited resource sharing capability due to their larger module data

introduction interval (see Equation 4.1). In either case, inefficient circuit architectures

will be generated.

Stage II represents the interesting design space where the trade-offs between

module selection and resource sharing can be explored and an optimal synthesis re-

sults can be obtained. Module selection between specific (less resource sharing) and

general (more resource sharing) can be explored with the feedback from resource

sharing. The architecture of the dependence graph and the operation variety have a

big impact on the trade-off decision. In some cases, a more specific module selection

is favored due to the difference between operations and limited sharing possibility

because of dependence constraints. In other cases, a more general module selection

might be favored due to the similarity between operations and good sharing possibil-

ity. This stage is called the valley which contains a slowly changing design space and

the optimal design points.

6.1.4 Pipeline Synthesis Design Space Summary

This section shows that combining module selection and resource sharing

within the context of pipeline scheduling creates a much larger design space than

85

traditional non-combined approaches. First, traditional pipeline synthesis approaches

only explore a fixed frequency with a fixed data introduction interval. Instead, this

work explores all feasible (f, δ) pairs, which not only creates a much larger pipelining

design space, but a larger module selection and resource sharing design space as well.

Second, during the exploration of the pipelining design space, module selection

and resource sharing techniques can be used to largely reduce the area cost of the

synthesized result. However, module selection only just explores the module selection

design space without the sharing possibilities among operations, and resource sharing

only just explores the sharing design space without the alternative module selection

possibilities for operations. Integrating these two techniques creates a larger design

space and finds better solutions than when either technique is applied alone.

6.2 Pipeline Synthesis Area Results

The next two sections will illustrate and analyze the area results from three

combined algorithms, the ASAP Exploration algorithm [58], the IMS Exploration al-

gorithm [59], and the HOIMS algorithm discussed in previous chapters. These three

algorithms were developed successively during this research of integrating module se-

lection, resource sharing and pipeline scheduling to synthesize area efficient pipelined

circuits for computationally intensive algorithms.

The ASAP Exploration algorithm performs pipeline scheduling, module selec-

tion, and resource sharing concurrently. It is a recursive branch and bound algorithm

that explores every module selection and resource sharing possibilities. This sched-

uler is a relatively simple adaptation of a non-pipelined ASAP list scheduler. The

objective of this algorithm is to identify the lowest area cost architectural solution

that meets the constraint of a user specified throughput. The details of the algorithm

are summarized in Algorithm D.1 of Appendix D.

The IMS Exploration algorithm combines module selection with a backtracking

scheduler based on IMS [33]. IMS performs pipeline scheduling and resource sharing

simultaneously. The scheduler is iterative and allows backtracking (unschedule and

reschedule) to find solutions that are otherwise not attainable by non-backtracking

86

scheduling approaches. This algorithm uses a heuristic to significantly reduce the

module selection design space and obtains sub-optimal results. The details of the

algorithm are summarized in Algorithm E.1 of Appendix E.

There are two main purposes of this section. The first is to demonstrate

quantitatively the advantage of a combined approach than traditional non-combined

approaches. Comparing the results with previous work is difficult because of lim-

ited research on throughput constrained synthesis and different circuit modules used

in synthesis. However, synthesis under fixed frequency and data introduction inter-

val, the resource sharing only approach, and the module selection only approach are

representative of previous work, thus will be compared with the results from the com-

bined approach. The second purpose is to show the relationship between throughput

constraint and the resulting pipeline synthesis design space.

A number of signal processing kernels were tested. The detailed test setup and

results are described in Appendix D and E. Although these results are obtained from

the ASAP Exploration algorithm and the IMS Exploration algorithm, the HOIMS

algorithm generates similar results. This section illustrates some of these test results

to show the important characteristics of the design space, and to demonstrate the

benefits of the combined approach. Although these test-cases are relatively small

compared to real life applications, their results are easier to be analyzed to demon-

strate the advantages and disadvantages of these algorithms.

6.2.1 Area Results for a Single Throughput Constraint

Figure 6.2 illustrates results of the ASAP Exploration algorithm for the IDCT

example. In this figure, the area of the combined resource sharing and module se-

lection is shown as bars, which is segmented into the circuit module area (colored as

gray) and resource sharing area overhead (colored as dark). The solid line shows the

area cost with module selection only method. The two dotted lines represent the area

cost of two different resource sharing only methods.

As Figure 6.2 shows, the actual pipeline synthesis design space of the IDCT

example has a similar shape to the projected design space described in Figure 6.1.

87

0

500

1000

1500

2000

2500

3000

3500

4000

4500

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Data Introduction Interval and System Frequency

Sl
ic

e

Combined Circuit Module Combined Overhead RS1 RS2 MS

Figure 6.2: ASAP Exploration area result with different synthesis techniques for the
IDCT example under a 12 MSamples/Sec throughput constraint

The figures for other kernels (see Appendix D) have the same shape with different

scales, they are omitted here for brevity. At the left of the curve, increases in δ

will reduce the cost due to the benefits of resource sharing. In the middle of the

curve, the area costs are all similar (δ=13 to 21). In this stage, one CoreGen Parallel

2 multiplier module is allocated and shared among all multiplier operations in the

dependence graph. The design point at (156 MHz, 13) represents the lowest cost

within the entire design space. At the right of the curve, (δ=22 to 25), a more

expensive multiplier (Array Multiplier 5) is allocated and shared, yielding higher area

cost than those in stage II.

The best design results are found when both resource sharing and module

selection are applied. In this case, the algorithm is able to apply both techniques to

provide a superior result than the use of either technique alone. In many cases, the

advantages of both techniques are combined and applied during the scheduling and

allocation of the pipeline. For the IDCT example, the average hardware area within

the pipelining design space obtained with the combined approach is 43% smaller

than when only resource sharing is applied, and 53% smaller than when only module

selection is applied. Table 6.1 shows the average area comparison between different

88

synthesis techniques for various test-cases. These results suggest that module selection

and resource sharing are complementary and can be used together to identify lower

cost circuit pipelines.

Most previous HLS research only explore the design space with a fixed clock

frequency. For the IDCT example, as Figure 6.2 shows, the largest area solution (δ

= 1) is 3 times bigger than the smallest area solution (δ = 13), with the combined

approach. When only module selection is applied, the biggest area solution is 50%

bigger than the smallest area solution. When only resource sharing is applied, the

biggest area solution is about 3 times bigger than the smallest area solution on aver-

age. Thus, exploring a bigger pipelining design space with different clock frequencies

can significantly reduce the hardware area of the synthesized circuit.

Table 6.1: Average area comparison between different synthesis techniques.
Circuit Combined RS1 RS2 MS

Color Space Conversion 340.32 492.5 (31%) 519.67 (35%) 561.84 (39%)
FIR 488.3 833.7 (41%) 842.9 (42%) 1078.6 (55%)
FFT 641.3 986.7 (35%) 995.9 (36%) 1231.7 (48%)

Linear Interpolator 562.8 1027.7 (45%) 1031.2 (45%) 1305.6 (57%)
IDCT 890.72 1541.9 (42%) 1577.2 (44%) 1911.5 (53%)

6.2.2 Area Results for Multiple Throughput Constraint

The relationship between throughput constraint and the pipeline synthesis

design space can be seen by visualizing the exploration results for a given dependence

graph under a range of throughput constraints. The more complete view also reveals

some characteristics of the design space that are not able to be observed under a single

throughput constraint. This enlarged design space was computed for the Biquad and

FIR filters using the IMS Exploration algorithm with a wide range of throughput

values, because it has a much shorter runtime than the ASAP Exploration algorithm.

89

These results are visualized in the three dimensional plots of Figure 6.3 and Figure

6.4.

Figure 6.3: 3D Design Space for the Biquad Filter

These plots demonstrate the wide range of implementation possibilities for

a single dependence graph. Each design point is represented as a bar in the three

dimensional bar graph. The height of the bar (z axis) is the estimated area cost of

the minimum cost implementation identified during architectural exploration. The y

axis represents the throughput constraints and the x axis represents the (f, δ) pairs

90

Figure 6.4: 3D Design Space for the FIR Filter

(increasing δ). The single throughput design space plots can be obtained from a cross

section perpendicular to the throughput axis of these three dimensional plots.

Several important observations can be seen from these figures. The first ob-

servation is that the size of the design space shrinks as the throughput constraint

increases. In both figures the maximum data introduction interval δmax decreases

with increasing throughput as shown in Equation 3.3. Also, the δmin increases for de-

pendence graphs with feedback as shown in Figure 6.3. Higher frequency constraints

require the use of more deeply pipelined, higher latency circuit modules. Use of higher

latency modules increases the cycle delay of feedback loops, thus increasing δmin as

shown in Equation 3.10.

91

Another observation from these full design space figures is the presence of a

valley (i.e. stage II of Figure 6.1). This somewhat continuous valley represents the

stage II region of the design space for multiple throughput constraints (see Figure

6.1). This valley contains the minimum cost design points for a range of throughput

constraints. As expected, increasing the throughput constraint increases the mini-

mum area cost of the architecture. Table 6.2 demonstrates this by tabulating the

minimum area cost of the FIR filter for several throughput constraints. Note that

the minimum area increases as the throughput constraint increases.

Table 6.2: Minimum area FIR design points.
Throughput Minimum Area

12 MSamples/sec 301 Slices
15 MSamples/sec 327 Slices
33 MSamples/sec 524 Slices
65 MSamples/sec 754 Slices
86 MSamples/sec 984 Slices
129 MSamples/sec 1647 Slices
258 MSamples/sec 4383 Slices

6.3 HOIMS Area Results

Although the ASAP Exploration algorithm and IMS Exploration algorithm

demonstrate the advantage of a combined approach, they are limited in design space

exploration efficiency, resource sharing design space exploration, and module selec-

tion exploration for dependence graphs with non-uniform bit-width operations. The

purpose of this section is to illustrate and analyze the advantages of the HOIMS

algorithm compared to the previous two algorithms. The first subsection shows the

improvements by exploring the resource sharing design space with weighted compat-

ibility graph. The second subsection shows the improvements by using bit-width

morphing technique for non-uniform bit-width dependece graphs.

92

6.3.1 Uniform Bit-Width Area Results

The HOIMS results for the Biquad example are illustrated in Figure 6.5. To

compare with the previous results, it assumes uniform bit-width for all operations,

which is the same as the ASAP Exploration and IMS Exploration algorithms. This

figure only shows the area result for the combined module selection and resource shar-

ing method along the whole pipeline design space (the grey bar). The corresponding

result in Figure E.2 is repeated in this figure (the dark bar) for comparison.

0

50

100

150

200

250

300

350

400

450

500

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

31
2

32
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Data Introduction Interval and System Frequency

Sl
ic

e

IMS exploration HOIMS exploration

Figure 6.5: Area comparison between HOIMS and IMS Exploration for the Biquad
example with 12M Samples/Sec throughput constraint

As Figure 6.5 shows, the HOIMS exploration approach yields almost an iden-

tical result as the IMS Exploration does for all the feasible (f, δ) design points. The

only notable difference is at (f, δ) = (36MHz, 3). With the IMS Exploration algo-

rithm, two Array Multiplier 1 are allocated, with two multiplier operations bound to

each of them. This requires four 2-input multiplexers plus the 3 to 2 encoder logic.

The HOIMS algorithm still allocates two Array Multiplier 1. However, the binding

of the operations is quite different. One module instance is bound to three multiplier

operations and the other is bound to one multiplier operation. This requires only

93

two 3-input multiplexers without the encoder logic. The different binding is caused

by the different resource sharing algorithm used in the two approaches. In the IMS

Exploration approach, the ASAP scheduling time of each operation is always favored

and conflicting operations are always unscheduled (i.e. different binding possibilities

are not weighted). In HOIMS exploration approach, the whole scheduling window

for each operation is explored and different bindings are compared and selected (i.e.

weighted clique partitioning). The result of this exploration is a more area efficient

implementation as shown in this case.

The 8-tap FIR filter was also tested with the HOIMS exploration approach.

To compare the result with ASAP Exploration and IMS Exploration result, the same

throughput constraint (12 MSamples/Sec), the same circuit module library, and the

same assumption (uniform bit-width) were used. In Figure 6.6, the ASAP Exploration

result, the IMS Exploration result and the HOIMS exploration result are displayed

with white, dark and grey bars respectively. As the figure shows, the HOIMS al-

gorithm generates a more area efficient or the same implementation for all of the

pipeline design points than the IMS Exploration approach. Its result is very close to

the ASAP Exploration approach. At (f, δ)=(24MHz, 2) and (36MHz, 3), it generates

better result than the ASAP exploration algorithm. The reason for this is the same as

the Biquad example, where the non-backtracking ASAP scheduling algorithm results

in inefficient utilization of allocated circuit modules, thus using more multiplexers.

At the (f, δ) = (288MHz, 24) pipelining design point, the HOIMS algorithm

generates a bigger area solution than the ASAP Exploration algorithm. The ASAP

Exploration algorithm allocated 3 CoreGen Sequential for the 8 multiply operations

in the dependence graph. The HOIMS algorithm initially selected the Shift & Add

Multiplier for each multiply operation because it is the smallest circuit module that

can run at 288MHz. The module selection refinement algorithm then changed the

module selection to the circuit module which has the smallest amortized cost (see

Equation 5.6. So the new module selection became Array Multiplier 5. No further

module selection refinement is performed. The amortized cost equation only considers

the maximum number of operations that can be shared on a circuit module. In this

94

0

200

400

600

800

1000

1200

1400

1600

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Data Introduction Interval and System Frequency

Sl
ic

e

ASAP exploration IMS exploration HOIMS exploration

Figure 6.6: Area comparison between ASAP Exploration, IMS Exploration and
HOIMS algorithm for the FIR filter with 12 MSamples/Sec throughput requirement

case, the amortized cost for the Array Multiplier 5 is about 540 / 24 = 22.5. However,

the actual number of operations that can be shared is only 8, so the actual amortized

cost is about 540 / 8 = 67.5. The sharing capability of the CoreGen Sequential is 3,

so its amortized cost is 115 / 3 = 38.3 The inaccurate calculation of the amortized

cost caused the selection of the Array Multiplier 5 over the CoreGen Sequential, thus

generating an inferior result compared to the exhaustive ASAP Exploration algorithm.

If the actual amortized cost is calculated, the CoreGen Sequential will be selected,

and resulting the same hardware cost as the ASAP Exploration algorithm.

The uniform bit-width results of the HOIMS algorithm illustrate three advan-

tages over the ASAP Exploration and IMS Exploration algorithms. First, the explo-

ration of a larger scheduling design space can find better resource sharings than the

non-backtracking scheduling algorithm in the ASAP Exploration approach. Second,

the resource sharing exploration based on the weighted compatibility graph clique par-

titioning can generate more area efficient circuit architectures than the unweighted

approach in the IMS Exploration algorithm. Third, the more targeted module se-

lection exploration approach yields better results than the untargeted exploration

approach in the IMS Exploration algorithm.

95

6.3.2 Non-uniform Bit-Width Results

All of the previous results are based on the assumption that all of the shared

operations have a uniform bit-width. However, operations with different bit-width are

very common for computationally intensive algorithms. Uneven bit-width operations

make the architectural exploration process more complicated in several ways. First,

module selection needs to determine not only the circuit module for each operation,

but also the optimal bit-width of the module. Second, different bit-widths may result

in a different candidate module sets at each pipelining design point due to different

module frequencies, which makes the module selection between different operations

more complicated. Third, resource sharing between different bit-width operations

requires the “morphing” of smaller bit-width operations to the biggest bit-width size.

The trade off between sharing to save circuit module area and the wasting of wider

multiplexers requires careful consideration. This section will use some bit-width dif-

ferentiated computing models to illustrate how the HOIMS algorithm addresses this

problem and presents its experimental results for these models.

Figure 6.7 shows the Biquad example with non-uniform bit-widths for the op-

erations (number in the parentheses following each operation name). The throughput

constraint remains the same (12 MSamples/Sec). Although the circuit module library

is the same as in previous results, and the area and timing characteristics for each

circuit module are now assumed proportional to the actual bit-width. For example,

the Array Multiplier 1 in Table 5.1 consumes 162 slices and runs at 41MHz for 16-bit,

a 10-bit Array Multiplier 1 is assumed to consume 162 * (10 / 16) = 101 slices and

can run at 41 * (16 / 10) = 65MHz.

Figure 6.8 shows the HOIMS exploration result for the non-uniform bit-width

Biquad filter (solid line). The HOIMS result for the uniform bit-width model is

repeated in this figure as a comparison (dotted line). As shown in Figure 6.8, the

HOIMS exploration for the non-uniform bit-width model generates 11% less hardware

area than the uniform bit-width model on average. The module selection refinement

and bit-width morphing algorithms are the key in generating such improvement.

96

START(0)

input(0)

0

STOP(0)

._2biquad.Add(16)

0

output(0)

0

._2biquad.Add1(16)

0

._2biquad.b3(14)

._2biquad.Add2(16)

1

0

._2biquad.a2(13)

._2biquad.Add7(16)

0

._2biquad.a3(15)

11

2 1 1

._2biquad.b(10)

1

0

1

Figure 6.7: Non-uniform bit-width dependence graph of the Biquad filter

0

50

100

150

200

250

300

350

400

450

500

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

31
2

32
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Data Introduction Interval and System Frequency

Sl
ic

e

Uniform bit-width Uneven bit-width

Figure 6.8: Area comparison between uniform bit-width and non-uniform bit-width
Biquad filter with 12 MSamples/Sec throughput constraint

The area improvement at the pipelining design point of (36MHz, 3) in Figure

6.8 is the result of the bit-width morphing algorithm. The initial module selection

for all multiplier operations is the same with Array Multiplier 1. The bit-width of

97

the module is set to be the same as the operation bit-width, which is the most effi-

cient selection without resource sharing. The first iteration of the integrated pipeline

scheduling and resource sharing algorithm binds a3(15 bit) to a 15-bit module, a2(13

bit) to a 13-bit module, and both b3(14 bit) and b(10 bit) to a 14-bit module, as

shown in part (a) of Figure 6.9. This binding is not optimal since none of the mod-

ules are fully utilized. Although module selection refinement is not necessary at this

point (both the lowest absolute cost module and the lowest amortized cost module

are the same), bit-width morphing results in a more efficient binding as shown in part

(b) of Figure 6.9. All of the b3, b and a3 operations are bound to a 15-bit module

so it is fully utilized, and the a2 operation is bound to a 13-bit module. The more

efficient bit-width allocation results in a total area cost of 349 slices compared to the

original 474 slices.

a3
(15 bit)

a2
(13 bit)

b3
(14 bit)

b
(10 bit)

module (15 bit)

module (13 bit)

module (14 bit)

a3
(15 bit)

a2
(13 bit)

b3
(14 bit)

b
(10 bit)

module (15 bit)

module (13 bit)

(a) Binding before bit-width morphing (b) Binding after bit-width morphing

Figure 6.9: Effects of bit-width morphing at (36MHz, 3) for the non-uniform bit-width
Biquad filter with HOIMS

In contrast, the area improvement at the pipelining design point of (48MHz,

4) in Figure 6.8 is the result of the module selection refinement algorithm. At this

98

pipelining design point, the candidate module set for the multiplier operations is

different. The Array Multiplier 1 is not in the candidate module set for operation b3

and a3, because it cannot run at this frequency with these two operation’s bit-width

configurations. So Coregen Parallel 1 is assigned to these two operations. Both Array

Multiplier 1 and Coregen Parallel 1 are in the candidate module set for operation a2

and b. Initially Array Multiplier 1 is assigned to these two operations because it is

smaller than Coregen Parallel 1. Although this is the most efficient module selection

for each operation alone as shown in part (a) of Figure 6.10, it is not efficient from a

global resource usage point of view, because each module is utilized only 50% of the

time. The module selection refinement algorithm changes the module choice for a2

and b to Coregen Parallel 1 as shown in part (b) of Figure 6.10. Although it is more

expensive for each single operation, resource sharing between operations reduces the

overall area from 358 slices to 228 slices.

a3

b3

a2

b

Coregen Parallel 1

Array Multiplier 1

(a) Initial module selection (b) Refined module selection

a3

b3

a2

b

Coregen Parallel 1

Figure 6.10: Effects of module selection refinement at (48MHz, 4) for the non-uniform
bit-width Biquad filter with HOIMS

99

The 8-tap FIR filter with non-uniform bit-width was tested with the HOIMS

exploration algorithm. The same throughput constraint (12 MSamples/Sec) and same

circuit module library were used. The area result is shown in Figure 6.11 with the

solid line. The uniform bit-width result is repeated in this figure for comparison. As

shown in Figure 6.11, the non-uniform bit-width filter generates more area efficient

architectures than the uniform bit-width model, especially at small data introduction

interval values.

0

200

400

600

800

1000

1200

1400

1600

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Data Introduction Interval and System Frequency

Sl
ic

e

Uneven bit-width Uniform bit-width

Figure 6.11: Area comparison between uniform bit-width and non-uniform bit-width
FIR filter with 12 MSamples/Sec throughput constraint

6.4 Runtime Results

In addition to the area cost of the synthesized circuit, runtime is another

important quality measure of pipeline synthesis algorithms. Runtime is the amount

of time the synthesis algorithm takes to generate the final schedule and binding from

a dependence graph. It is often represented by the computational complexity of the

algorithm [60]. The complexity of the algorithm is determined by the size of the design

space that the synthesis algorithm explores and the efficiency of such exploration.

100

Table 6.3: Bit-width morphing and binding at (24MHz, 2) for the FIR filter.
Operation Original Bit-width Bound Module

Mult 13 ArrayMultiplier1 13 1
Mult4 11 ArrayMultiplier1 13 1
Mult7 15 ArrayMultiplier1 15 1
Mult8 14 ArrayMultiplier1 15 1
Mult5 10 ArrayMultiplier1 10 1
Mult6 9 ArrayMultiplier1 10 1
Mult2 12 ArrayMultiplier1 12 1
Mult3 12 ArrayMultiplier1 12 1

The ASAP Exploration and IMS Exploration algorithms explore the pipeline

synthesis design space in different ways, thus they have different algorithm complexity

and runtime. The ASAP Exploration algorithm explores all of the module selection

design space, all of the resource sharing design space of scheduled operations, but

a limited portion of scheduling design space due to its non-backtracking scheduling.

Its computational complexity is O(MNN2), where M is the average number of com-

patible circuit modules for each operation, and N is the total number of operations

in the dependence graph. The IMS Exploration algorithm explores part of the mod-

ule selection design space with a heuristic module selection algorithm, more of the

scheduling design space than the ASAP Exploration algorithm with an iterative back-

tracking scheduling approach, and part of the resource sharing design space which is

performed concurrently with scheduling. The experimental computational complexity

of the ASAP Exploration algorithm is O(N3 ln(N)).

The computational complexity of the HOIMS algorithm is difficult to calculate.

There are three main loops of the HOIMS algorithm as shown in Algorithm 3.2. The

outermost loop (line 5) explores the pipelining design space. The size of this design

space is determined by the throughput constraint and the maximum system clock

frequency. It can be treated as a constant. The second loop (line 16) explores the

pipeline scheduling and resource sharing design space. In the worst case where each

operation is sharable with any other operations, the computational complexity of

this loop is O(N2R), where N is the number of operations in the dependence graph

101

and R is the average scheduling number for each operation. The third loop (11)

explores the module selection design space based on the module selection refinement

heuristic. The computational complexity of this loop is difficult to calculate, because

the number of iterations is based on the candidate module set size of each operation

as well as the scheduling and sharing result with each module selection refinement.

The average number of iterations from the experimental results is close to the average

module set size for each operation (M). So the computational complexity of HOIMS

is O(MN2).

Figure 6.12 illustrates the logarithmic computational complexity of the three

algorithms, assuming R = 2 and M = 4. As the figure shows, the computational

complexity of the ASAP Exploration algorithm is exponential and is not practical for

large designs. The growth of the IMS Exploration algorithm is much slower than the

ASAP Exploration algorithm, and the HOIMS algorithm is even slower. A runtime

report for the three algorithms is shown in Table 6.4. This is roughly in consistent

with the computational complexity of the three algorithms. The HOIMS algorithm

actually performs better than Figure 6.12 shows. The reason for this is that the actual

number of module selection refinement iterations, the average operation rescheduling

count, and the resource sharing exploration count is less than the above analysis.

Table 6.4: Runtime report for ASAP Exploration algorithm, IMS Exploration
algorithm and HOIMS algorithm.

Algorithm Circuit Time (Seconds)

ASAP

Color Space Conversion 0.8
FIR 955.9
FFT 5053.7

Linear Interpolator 32036.5
IDCT 543142.8

IMS
Biquad 36.4

FIR 273.6

HOIMS
Biquad 2.6

FIR 4.5

102

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

N

ln
(O

)

ASAP Exploration
IMS Exploration
HOIMS Exploration

Figure 6.12: Logarithmic computational complexity compare.

Figure 6.13 illustrates the number of module selection iterations performed

by the HOIMS algorithm for the Biquad example. The solid line shows the iteration

number for the uniform bit-width Biquad filter, and the dotted line shows the iteration

number for the non-uniform bit-width Biquad filter. As the uniform bit-width result

shows, the module selection iterations explored at each (f, δ) by HOIMS is obviously

less than the exponential count of the ASAP Exploration algorithm, it is also much

less than the IMS Exploration algorithm. In the IMS Exploration algorithm, Nlog2N

iterations of module selection are performed. In the case of the Biquad example,

N = 12 so it tries 48 different module selections at each pipelining design point. The

HOIMS algorithm only takes 4.7 iterations of module selection on average as Figure

6.13 shows.

The non-uniform bit-width Biquad filter requires slightly more module selec-

tion exploration iterations than the uniform bit-width version (6.56 versus 4.7 for the

uniform bit-width model). The non-uniform bit-width among the operations requires

a bigger module selection design space which is explored by the bit-width morphing

technique as described in Section 5.5.4, so more iterations of module selection refine-

103

0

1

2

3

4

5

6

7

8

9

3 5 7 9 11 13 15 17 19 21 23 25 27

System Data Introduction Interval

N
um

be
r

of
 M

S
it

er
at

io
ns

Uniform bit-width Non-uniform bit-width

Figure 6.13: Number of module selection iterations by HOIMS at each pipelining
design point for the Biquad example

ment and bit-width morphing are necessary to find the optimal circuit module and

bit-width configuration for each operation.

The module selection iteration count for the 8-tap FIR filter also demonstrates

the efficiency of the HOIMS algorithm. The average module selection iteration count

for the FIR filter with uniform bit-width is 4.6 times as shown by the solid line in

Figure 6.14. This is much less than the IMS Exploration algorithm which requires

15log215 = 60 iterations of module selection exploration. The module selection iter-

ation count for the FIR filter with non-uniform bit-width is illustrated by the dotted

line in Figure 6.14. Similar to the Biquad example, it performs slightly more iterations

of module selection refinement (6.1 versus 4.6 on average).

The HOIMS algorithm also explores the pipeline scheduling and binding (pos-

sibly resource sharing) design space more efficiently than the other two algorithms.

The ASAP Exploration algorithm only explores the ASAP scheduling design space,

and all of the resource sharing design space among all previously scheduled oper-

ations under that schedule. The IMS Exploration algorithm explores more of the

pipeline scheduling and resource sharing design space with its backtracking schedul-

104

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25

System Data Introduction Interval

N
um

be
r

of
 M

S
ite

ra
tio

ns

Non-uniform bit-width Uniform bit-width

Figure 6.14: Number of module selection iterations by HOIMS at each pipelining
design point for the FIR filter

ing approach. However, because it doesn’t differentiate between multiple sharing

possibilities, it requires quite a few iterations of unscheduling and rescheduling until

it finds a schedule (along with binding and sharing). The HOIMS algorithm uses the

weighted compatibility graph to explore the resource binding/sharing and pipeline

scheduling design space as described in Section 4.5. This approach greatly reduces

the number of unscheduling and rescheduling steps compared to the IMS Exploration

algorithm. The experimental results show that the IMS Exploration algorithm re-

quires N (number of operations in the dependence graph) iterations of unscheduling

and rescheduling until it finds a valid pipeline schedule and binding, while the HOIMS

algorithm requires no unscheduling for the Biquad and FIR examples.

6.5 Summary

This chapter presents and discusses the experimental results of three pipeline

synthesis algorithms that concurrently explores pipeline scheduling, module selection

and resource sharing. It focuses on the benefits of the combined design space and the

efficiency of the synthesis algorithms that explore such a space. The analysis of the

pipeline synthesis design space shows that combining module selection and resource

105

sharing while performing pipeline scheduling can significantly increase the entire de-

sign space and reduce the overall hardware area cost. The results from the ASAP

Exploration and IMS Exploration algorithms are in accordance with such an analysis.

The results from the HOIMS algorithm show that it further improves the quality of

the synthesized circuit. The bit-width morphing capability of the HOIMS algorithm

generates more efficient hardware when the operations have non-uniform bit-width.

The algorithm complexity and runtime results from these three algorithms are finally

presented and discussed. Although the combined design space is intractable, the it-

erative module selection refinement and weighted compatibility graph based resource

sharing of the HOIMS algorithm enable it to explore the combined design space very

efficiently while generating good results.

106

Chapter 7

Conclusion and Future Work

This work demonstrates a high-level synthesis methodology that automati-

cally synthesizes area efficient FPGA implementations from untimed computation-

ally intensive algorithms under a throughput constraint. Automatically generating

hardware implementations from untimed algorithms can significantly improve the pro-

ductivity of implementing these algorithms in hardware. This methodology can also

greatly enhance the synthesized hardware quality by automatically evaluating a huge

number of design alternatives which all meet the throughput constraint. Although we

used an FPGA-specific circuit module library and addressed FPGA-unique resource

sharing cost issue, this research can be applied to ASICs as well, given a corresponding

circuit module library and sharing cost.

This work proposes a novel pipeline synthesis algorithm that combines three

closely inter-related synthesis techniques: pipeline scheduling, resource sharing and

module selection. Pipeline scheduling not only generates a pipelined schedule from an

untimed algorithm description, it also explores the entire pipelining design space to

evaluate different circuit architectures that meet the throughput constraint. Resource

sharing is performed concurrently during pipeline scheduling. This work proposes a

resource sharing algorithm that is based on a unique weighted compatibility graph,

which differentiates all the sharing possibilities for each operation. Module selection

is integrated with the other two techniques in the proposed pipeline synthesis algo-

rithm. This work proposes a novel iterative module selection refinement algorithm

that efficiently explores the exponential module selection design space.

This work demonstrates that combining module selection with resource sharing

during pipeline scheduling can generate 43% smaller circuit architecture than when

107

either technique is used independently on average. By trading off between using

specific circuit modules (i.e. less resource sharing) and using general circuit modules

(i.e. more resource sharing), this combined pipeline synthesis approach explores a

much bigger design space than when either technique is applied alone. The result of

the combined approach shows that the best hardware architecture is always obtained

at some pipelining design point, and by exploring both module selection and resource

sharing.

This work also demonstrates that efficiently exploring the combined design

space of pipeline scheduling, resource sharing and module selection while generating

superior results is feasible. The design space of each technique is exponential, and

the combined design space of these three techniques is even bigger. Three combined

algorithms are discussed in this work, and each explores the combined design space in

a different way. The HOIMS exploration algorithm is the best algorithm in this work,

which efficiently explores the combined design space and generates superior results.

This work provides three major contributions to FPGA specific high-level syn-

thesis for computationally intensive algorithms. First, this work proposed a through-

put driven pipeline synthesis methodology that explores the entire pipeline design

space. Most pipeline synthesis algorithms do not explore the whole pipelining design

space to discover the most efficient hardware architecture under the throughput con-

straint. For this work, given a fixed throughput constraint, it explores all feasible

frequency and data introduction interval design points that meet this throughput

constraint. This expanded pipelining design space exploration results in hardware

architectures that are far superior to those resulting from previous pipeline synthesis

work.

Second, this work proposes a unique module selection algorithm which not

only considers different module architectures, but also different pipelining options for

each architecture. This not only addresses the unique architecture of most FPGA

circuit modules, it also performs retiming at the high-level synthesis level. This is

very important when the whole pipelining design space is explored, because different

108

pipelined circuit modules can be used under different system frequency and data

introduction interval requirements.

Third, this work proposes a novel approach for integrating three deeply inter-

related synthesis techniques: pipeline scheduling, module selection and resource shar-

ing. To the author’s best knowledge, this is the first attempt to do this. Although

the three techniques are deeply inter-related and extremely difficult to integrate, a

study of each technique and their inter-dependency has been providedw. Efficient

integrated algorithms were then proposed and it was able to identify more efficient

hardware implementations than when only one or two of the three techniques are

applied.

When implementing computationally intensive streaming algorithms in FP-

GAs, this work can be applied to significantly improve the design productivity and

quality. First, with this work, algorithm designers need to only specify the untimed

function of the algorithm, and the hardware architecture of the FPGA implementation

will be automatically created. Automatic transformation from untimed algorithm to

concrete hardware implementation is key to solve the design productivity gap chal-

lenge as discussed in Chapter 1. Second, this work can be used by algorithm designers

to explore a large number of micro-architectures. The different architectures gener-

ated by this work vary in module selection, scheduling and resource sharing, so that

the designers can choose the ones that meet specific requirements. Third, this work

can be used to evaluate various FPGA circuit modules. As dicussed in Chapter 5,

candidate circuit modules have a big impact on the synthesis result. Since the HOIMS

algorithm can efficiently explore the module selection design space under the context

of pipeline scheduling and resource sharing, it can be applied to test the impact of

candidate circuit modules on the synthesis result.

7.1 Future Work

There are several areas where this work can be further improved: programming

languages support, hybrid timing model for the circuit modules, coarser grain circuit

modules and more accurate cost estimation. Improving these areas will have a positive

109

impact on the applicability of the synthesis algorithm, so that it can support more

complexed design input and targeted for more hardware architectures. The proposed

future work can also improve the quality of the synthesized circuit.

When more complicated computationally intensive algorithms need to be rep-

resented, the SDF specification format becomes inconvenient. High level program-

ming languages offer more flexibilities and control. In this case, control constructs

must be supported in the synthesis process. The scheduling algorithm should be ex-

tended to determine the start time of operations which belong to different control

sequences, so should the resource sharing algorithm. With programming languages,

not only traditional compiler optimization techniques [61] such as loop unrolling, loop

merging, arithmetic optimization and data-flow optimization, but also custom hard-

ware specific optimizations [62] such as bit-width optimization, multiplexer reduction

etc, are essential in generating efficient hardware implementaitons.

The multi-cycle, pipelined circuit module timing model used in this work can

be extended to a hybrid timing model [63], where combinational delays are also mod-

eled in addition to possible pipeline stages. This hybrid timing model can not only

represent more circuit modules, but also allow chaining in the hardware implemen-

tation, which can reduce the circuit latency. The hybrid timing model also expands

the pipelining design space for a finer grain of frequency exploration.

The granularity of the circuit modules can be improved in future work. This

work utilizes only simple circuit modules that implement basic arithmetic functions

such as add and multiply. Coarser grain circuit modules which implement more

complex functions such as square root, complex multiply and FFT butterfly, can be

included in the circuit module library. Because coarser grain circuit modules can

cover a subgraph of the dependence graph, they can be used to support hierarchical

design as well as reusing previously synthesized subgraphs. However, module selec-

tion becomes more challenging because it has to identify the optimal subgraph which

can be implemented by the coarse-grain circuit module. The resource sharing algo-

rithm also becomes more complicated because sharing does not only occur between

operations, but between subgraphs as well.

110

Future work should improve the area and timing estimation algorithm for the

circuit modules and resource sharing overhead. Accurate area and timing estimation

is very important yet challenging for high level synthesis. The regular structure of

FPGA devices makes the estimation even more difficult because operations can be

mapped, merged and placed differently by downstream tools under different design

context. Some early work [64, 65, 66] has proposed ways to improve the estimation

accuracy by considering more effects from RTL synthesis, placement and layout tools.

However, more FPGA specific research needs to be conducted in this area to improve

the quality of high level synthesis for FPGA designs.

7.2 Summary

Hardware synthesis has become indispensible in the past and current design of

electronic circuits and systems. However, with the ever increasing design complexity

combined with decreasing design time requirements, hardware synthesis tools have

to be improved in several ways. First, they must support synthesis from high-level

specification to significantly improve the design team’s productivity. Second, they

must perform extensive design space exploration to meet critical design goals such as

area, timing and power consumption. Third, they must support various technologies

such as ASICs and FPGAs. Initial research in these areas has shown quite promising

results. This work has proposed a good pipeline synthesis algorithm that transforms

untimed high-level specification into area optimized FPGA implementation. It also

provides a good framework for the above proposed future work. With the improve-

ments in front-end, circuit module library and estimation algorithms, this work will

provide invaluable techniques and algorithms for future high-level synthesis research

as well as tool development.

111

112

Bibliography

[1] R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospec-
tive,” in DATE ’01: Proceedings of the conference on Design, automation and
test in Europe. Piscataway, NJ, USA: IEEE Press, 2001, pp. 642–649. xxiii, 2

[2] A. Allan, D. Edenfeld, J. William H. Joyner, A. B. Kahng, M. Rodgers, and
Y. Zorian, “2001 technology roadmap for semiconductors,” Computer, vol. 35,
no. 1, pp. 42–53, 2002. xxiii, 4

[3] R. Porter, J. Frigo, M. Gokhale, C. Wolinski, F. Charot, and C. Wagner, “A
programmable, maximal throughput architecture for neighborhood image pro-
cessing,” in FCCM ’06: Proceedings of the 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’06). Washington,
DC, USA: IEEE Computer Society, 2006, pp. 279–280. 1

[4] Altera, “Stratix-II device handbook,” May 2007. 1

[5] Xilinx, “Virtex-II complete data sheet,” March 2005. 1

[6] K. U. Järvinen, M. T. Tommiska, and J. O. Skyttä, “A fully pipelined mem-
oryless 17.8 gbps AES-128 encryptor,” in FPGA ’03: Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field programmable gate ar-
rays. New York, NY, USA: ACM Press, 2003, pp. 207–215. 1

[7] Xilinx, “Virtex-E complete data sheet,” January 2006. 1

[8] J. Singaraju, L. Bu, and J. A. Chandy, “A signature match processor architec-
ture for network intrusion detection,” in FCCM ’05: Proceedings of the 13th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’05). Washington, DC, USA: IEEE Computer Society, 2005, pp. 235–
242. 1

[9] Y.-L. Lin, “Recent developments in high-level synthesis,” ACM Trans. Des. Au-
tom. Electron. Syst., vol. 2, no. 1, pp. 2–21, 1997. 4

[10] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education, 1994. 5, 12, 14, 42, 47, 64

[11] G. D. Micheli, D. Ku, F. Mailhot, and T. Truong, “The olympus synthesis sys-
tem,” IEEE Des. Test, vol. 7, no. 5, pp. 37–53, 1990. 6, 32

113

[12] R. Brayton, R. Camposano, G. D. Micheli, R. Otten, and J. van Eijndhoven,
“The Yorktown silicon compiler system,” IBM Research Report RC 12500, Tech.
Rep., February 1986. 6

[13] S. Note, J. V. Meerbergen, F. Catthoor, and H. D. Man, “Automated synthesis of
a high-speed cordic algorithm with the CATHEDRAL-III compilation system,”
in Proceedings of ISCAS’88, June 1988, pp. 581–584. 6

[14] R. Woudsma, F. Beenker, J. van Meerbergen, and C. Niessen, “PIRAMID: an
architecture-driven silicon compiler for complex DSP applications,” in Proc. of
IEEE International Symposium on Circuits and Systems, 1990, pp. 2696–2700.
6

[15] P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: a multi-paradigm ap-
proach to automatic data path synthesis,” in DAC ’86: Proceedings of the 23rd
ACM/IEEE conference on Design automation. Piscataway, NJ, USA: IEEE
Press, 1986, pp. 263–270. 6, 12, 16

[16] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in FPGA
’06: Proceedings of the 2006 ACM/SIGDA 14th international symposium on
Field programmable gate arrays. New York, NY, USA: ACM Press, 2006, pp.
21–30. 11

[17] M. Xu and F. J. Kurdahi, “Layout-driven high level synthesis for FPGA based
architectures.” in 1998 Design, Automation and Test in Europe (DATE ’98).
IEEE Computer Society, Febuary 1998, pp. 446–450. 12

[18] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Accurate area and delay
estimators for FPGAs,” in DATE ’02: Proceedings of the conference on Design,
automation and test in Europe. Washington, DC, USA: IEEE Computer Society,
2002, p. 862. 12

[19] D. Chen, J. Cong, and Y. Fan, “Low-power high-level synthesis for FPGA archi-
tectures,” in ISLPED ’03: Proceedings of the 2003 international symposium on
Low power electronics and design. New York, NY, USA: ACM Press, 2003, pp.
134–139. 12

[20] D. Ku and G. DeMicheli, “HardwareC – a language for hardware design (version
2.0),” Stanford, CA, USA, Tech. Rep., 1990. 12

[21] P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi,
S. Pal, N. Tripathi, D. Zaretsky, R. Anderson, and J. R. Uribe, “Overview of a
compiler for synthesizing MATLAB programs onto FPGAs,” IEEE Trans. VLSI
Syst., vol. 12, no. 3, pp. 312–324, 2004. 12

[22] R. Camposano and W. Rosentiel, “Synthesizing circuits from behavioral descrip-
tions,” IEEE Trans. on CAD, vol. 8, no. 2, pp. 171–180, February 1989. 12

114

[23] V. K. Raj, “DAGAR: An automatic pipelined microarchitecture synthesis sys-
tem,” in Proc. of ICCD’89, October 1989, pp. 428–431. 12

[24] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proc. of the IEEE,
vol. 75, no. 9, pp. 1235–1245, September 1987. 13

[25] E. A. Lee and A. Sangiovanni-Vincentelli, “Comparing models of computation,”
in ICCAD ’96: Proceedings of the 1996 IEEE/ACM international conference on
Computer-aided design. Washington, DC, USA: IEEE Computer Society, 1996,
pp. 234–241. 13

[26] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, “Ptolemy: A framework for
simulating and prototyping heterogeneous systems,” Int. Journal of Computer
Simulation, special issue on ”Simulation Software Development”, vol. 4, pp. 155–
182, April 1994. 13

[27] M. Barbacci, “Automatic exploration of the design space for register transfer
(RT) systems,” Ph.D. dissertation, Carnegie-Mellon University, November 1973,
department of Computer Science. 15

[28] S. Davidson, D. Landskov, B. Shriver, and P. W. Mallett, “Some experiments in
local microcode compaction for horizontal machines.” IEEE Trans. Computers,
vol. 30, no. 7, pp. 460–477, 1981. 15

[29] C. A. Mandal, P. P. Chakrabarti, and S. Ghose, “Complexity of scheduling in
high level synthesis,” VLSI Design, vol. 7, no. 4, pp. 337–346, 1998. 15, 18

[30] R. J. Cloutier and D. E. Thomas, “The combination of scheduling, allocation, and
mapping in a single algorithm,” in DAC ’90: Proceedings of the 27th ACM/IEEE
conference on Design automation. New York, NY, USA: ACM Press, 1990, pp.
71–76. 16

[31] S. Raje and R. Bergamaschi, “Generalized resource sharing,” in Digest of Tech-
nical Papers, IEEE/ACM International Conference on Computer-Aided Design.
IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA, November
1997, pp. 326–332. 16, 18, 47, 48, 49

[32] N. Park and A. Parker, “Sehwa: A software package for synthesis of pipelines
from behavioral specifications,” IEEE Transactions on Computer-Aided Design,
vol. 7, no. 3, pp. 356–370, March 1988. 17, 21, 33

[33] B. R. Rau, “Iterative modulo scheduling: an algorithm for software pipelining
loops,” in MICRO 27: Proceedings of the 27th annual International Symposium
on Microarchitecture. New York, NY, USA: ACM Press, 1994, pp. 63–74. 21,
30, 34, 56, 86, 147

[34] P. M. Kogge, The Architecture of Pipelined Computers. McGraw-Hill Book,
1981. 22

115

[35] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer Algorithms.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1974. 32

[36] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral
synthesis of ASIC’s,” IEEE Transactions on Computer-Aided Design, vol. 8,
no. 6, pp. 661–679, June 1989. 33

[37] W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst, J. L. van
Meerbergen, and A. van der Werf, “Improved force-directed scheduling in high-
throughput digital signal processing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, no. 8, pp. 945–960, August
1995. 33

[38] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin, “PLS: a scheduler for pipeline synthesis.”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 12, no. 9, pp. 1279–
1286, 1993. 34

[39] M. Lam, “Software pipelining: an effective scheduling technique for VLIW ma-
chines,” in PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation. New York, NY, USA: ACM
Press, 1988, pp. 318–328. 34

[40] C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez, “Optimal scheduling
strategies in a multiprocessor system,” IEEE Transactions on Computer, vol.
C-21, no. 2, pp. 137–146, Febuary 1972. 35, 130

[41] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list schedules
for parallel processing systems,” Commun. ACM, vol. 17, no. 12, pp. 685–690,
1974. 35, 130

[42] D. L. Springer and D. E. Thomas, “Exploiting the special structure of conflict and
compatibility graphs in high-level synthesis.” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 13, no. 7, pp. 843–856, 1994. 47

[43] D. C. Ku and G. D. Micheli, High level synthesis of ASICs under timing and
synchronization constraints. Norwell, MA, USA: Kluwer Academic Publishers,
1992. 48

[44] S. Mondal and S. O. Memik, “Resource sharing in pipelined CDFG synthesis,” in
ASP-DAC ’05: Proceedings of the 2005 conference on Asia South Pacific design
automation. New York, NY, USA: ACM Press, 2005, pp. 795–798. 48

[45] Xilinx, “Xilinx Coregen reference manual,” 2005. 61, 124

[46] J. Abke, E. Barke, and J. Stohmann, “A universal module generator for LUT-
based FPGAs,” rsp, vol. 00, p. 230, 1999. 61

116

[47] J. P. Singh, A. Kumar, and S. Kumar, “A multiplier generator for Xilinx
FPGA’s,” in 9th International Conference on VLSI Design, January 1996, pp.
322–323. 61

[48] Z. Shen and C. Jong, “Exploring module selection space for architectural syn-
thesis of low power designs,” in Proceedings of the 1997 IEEE International
Symposium on Circuits and Systems, June 1997, pp. 1532–1535. 63, 69

[49] R. Jain, A. Parker, and N. Park, “Module selection for pipelined synthesis,”
in Proceedings of the 25th Annual ACM/IEEE Design Automation Conference,
June 1988, pp. 542–547. 63, 69

[50] I. G. Harris and A. Orailoglu, “Intertwined scheduling, module selection and
allocation in time-and-area constrained synthesis,” in IEEE International Sym-
posium on Circuits and Systems, May 1993, pp. 1682 – 1685. 64

[51] I. Ahmad and M. K. Dhodhi, “Integrated scheduling, allocation and module
selection for design-space exploration in high-level synthesis,” Proceedings of the
IEE Computers and Digital Techniques, vol. 142, no. 1, pp. 65–71, January 1995.
64

[52] D. Thomas and G. Leive, “Automating technology relative logic synthesis and
module selection,” IEEE Transactions on CAD/ICAS, vol. CAD-2, no. 2, pp.
94–105, April 1983. 68

[53] R. Jain, “MOSP: Module selection for pipeliend designs with multi-cycle opera-
tions,” in Proceedings of the 1990 IEEE International Conference on Computer-
Aided Design – ICCAD’90, November 1990, pp. 212–215. 69

[54] K. Ito, L. Lucke, and K. Parhi, “ILP-based cost-optimal DSP synthesis with
module selection and data format conversion,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 6, no. 5, pp. 582–594, December 1998. 69

[55] S. Bakshi and D. D. Gajski, “Component selection for high-performance
pipelines,” IEEE Transactions on Very Large Scale Integration(VLSI) Systems,
vol. 4, no. 2, pp. 181–194, June 1996. 69

[56] S. Bakshi, D. Gajski, and H. Juan, “Component selection in resource shared and
pipelined DSP applications,” in EURO-DAC ’96/EURO-VHDL ’96: Proceedings
of the Conference on European Design Automation. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1996, pp. 370–375. 69

[57] L. Hafer and A. C. Parker, “A formal method for the specification, analysis,
and design of register-transfer level digital logic,” in DAC ’81: Proceedings of
the 18th conference on Design automation. Piscataway, NJ, USA: IEEE Press,
1981, pp. 846–853. 69

117

[58] W. Sun, M. J. Wirthlin, and S. Neuendorffer, “Combining module selection
and resource sharing for efficient FPGA pipeline synthesis,” in FPGA ’06: Pro-
ceedings of the 2006 ACM/SIGDA 14th international symposium on Field pro-
grammable gate arrays. New York, NY, USA: ACM, 2006, pp. 179–188. 86

[59] ——, “FPGA pipeline synthesis design exploration using module selection and
resource sharing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 254–265, Febuary 2007. 86

[60] D. E. Knuth, “Big omicron and big omega and big theta,” SIGACT News, vol. 8,
no. 2, pp. 18–24, 1976. 100

[61] S. S. Muchnick, Advanced compiler design and implementation. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997. 110

[62] G. Snider, B. Shackleford, and R. J. Carter, “Attacking the semantic gap between
application programming languages and configurable hardware,” in FPGA ’01:
Proceedings of the 2001 ACM/SIGDA ninth international symposium on Field
programmable gate arrays. New York, NY, USA: ACM, 2001, pp. 115–124. 110

[63] G. Snider, “Performance-constrained pipelining of software loops onto reconfig-
urable hardware,” in Proceedings of the 2002 ACM/SIGDA Tenth International
Symposium on Field-programmable Gate Arrays, 2002, pp. 177 – 186. 110

[64] P. K. Jha and N. D. Dutt, “Rapid estimation for parameterized components in
high-level synthesis,” IEEE Trans. on CAD, vol. 1, no. 3, pp. 296–303, September
1993. 111

[65] S. Y. Ohm, F. J. Kurdahi, N. Dutt, and M. Xu, “A comprehensive estimation
technique for high-level synthesis,” in ISSS ’95: Proceedings of the 8th interna-
tional symposium on System synthesis. New York, NY, USA: ACM, 1995, pp.
122–127. 111

[66] B. So, P. C. Diniz, and M. W. Hall, “Using estimates from behavioral synthesis
tools in compiler-directed design space exploration,” in DAC ’03: Proceedings of
the 40th conference on Design automation. New York, NY, USA: ACM, 2003,
pp. 514–519. 111

[67] P. Bellows and B. Hutchings, “JHDL - an HDL for reconfigurable systems,” in
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM ’98), K. L. Pocek and J. M. Arnold, Eds., IEEE Computer Society.
IEEE Computer Society Press, April 1998, pp. 175–184. 124

[68] C. Leiserson and J. Saxe, “Retiming synchronous systems,” Algorithmica, vol. 6,
no. 1, 1991. 125

[69] M. C. Papaefthymiou, “Understanding retiming through maximum average-
weight cycles,” in SPAA ’91: Proceedings of the third annual ACM symposium

118

on Parallel algorithms and architectures. New York, NY, USA: ACM Press,
1991, pp. 338–348. 127

[70] C. Leiserson and J. Saxe, “Optimizing synchronous systems,” Journal of VLSI
and Computer Systems, vol. 1, no. 1, 1983. 127

119

120

Appendices

121

122

Appendix A

Multi-cycle Pipelined Circuit Modules

A.1 Circuit Module Characterization and Description

A sample list of FPGA-specific circuit modules are characterized and used for

this thesis. The characterization process for these modules is illustrated in Figure

A.1. The following circuit modules are characterized:

CoreGen
configuration script RTL VHDL EDIF Netlist

CoreGen XST

ngdbuild

map

trce

par

trce

Library
characterization

Final design files
(VHDL, EDIF)

Figure A.1: Circuit module characterization flow

123

Array Multiplier This parameterizable multiplier was created in RTL VHDL. It

employs the ripple carry adder to make use of the fast FPGA carry chain ar-

chitecture feature. The parameterizable pipeline stages divide partial product

adders evenly to increase the throughput at a cost of latency and area. Al-

though array multiplier 2 and 3 are dominated by CoreGen parallel multiplier

1 and 2, this multiplier provides more pipelining capabilities than the CoreGen

versions.

Booth Multiplier This multiplier was generated from a JHDL [67] module genera-

tor optimized for the Virtex architecture. The use of booth recoding reduces the

number of partial products and therefore improves the combinational latency of

the operation. This decrease in latency is obtained at a cost of increased area.

This multiplier also provides different pipelining capabilities.

CoreGen Parallel This multiplier was created by CoreGen[45], a module generator

tool supported by Xilinx. Although two variations of pipelining are supported

by this multiplier, the internal multiplier architecture is hidden from the user.

CoreGen Sequential This multiplier was also created by CoreGen using the “2

bits/cycle” option for sequential execution. This multiplier generates the partial

product by performing two bits of the computation each cycle. The reported

area of this module includes the control and other miscellaneous area overhead.

Shift & Add Multiplier This multiplier was also created by CoreGen using the “1

bit/cycle” option for sequential multiplier.

Bit-Serial Multiplier This multiplier was created by an RTL VHDL code. The

primary area cost in this design is the parallel to serial and serial to parallel

converters. The small combinational delay allows this module to operate at a

much higher clock rate than the parallel multipliers.

124

Dedicated Multiplier These multipliers were created by CoreGen and exploit the

dedicated hardware multiplier in the Virtex4 architecture. The dedicated mul-

tiplier is a custom resource that does not use logic slices. In order to use this

resource during module selection, a strategy for comparing the area cost of this

module against the slice-based modules must be introduced.

Ripple Carry Adder This is a conventional ripple-carry adder that exploits the

fast carry logic of the FPGA architecture. Ripple carry adder 2 is a pipelined

version of ripple carry adder 1.

Bit-Serial Adder This module performs addition using bit-serial arithmetic at one

bit per clock cycle. The area of this circuit includes the data format converters

and other control overhead.

A.2 Multi-cycle, Pipelined Circuit Module and C-Slow Retiming

Retiming [68] is a transformation on synchronous circuits [68]. It addresses the

problem of minimizing the cycle-time or the area of synchronous circuits by changing

the position of the registers. Because the system clock is bounded by the critical path

delay in the combinational component of a synchronous circuit, i.e., by the longest

combinational path between a pair of registers. Hence retiming aims at moving and

placing the registers in appropriate positions, so that the critical paths are as short

as possible.

An example of retiming is shown in Figure A.2. If an operation has registers

on all of its inputs, those registers can be moved to the output of the operation

without changing its functionality. Operation “a” meets this requirement, so its

input registers “r1” and “r2” can be moved to the position “r4”. Similarly, if the

output of an operation drives a register (and nothing else), that register may be

moved backwards to the inputs. In this example, “r3” on the output of operation

“d” may be moved back to create registers “r5” and “r6”. If all operations have a

125

propagation delay of 1, the top circuit has a minimum clock period of 2 (which can

be seen from the path (r1, a, d, r3)), while the retimed circuit has a minimum clock

period of 1.

r1

r2

r3

retime

r4

r5

r6

Figure A.2: Retiming a circuit. Rectangles represent registers and circles represent
operations. Registers r1 and r2 in the top circuit are moved forward to create r4 in the
bottom circuit; register r3 in the top circuit is moved backward to create r5 and r6

Feedback loops, or cycles, within the circuit are usually the limiting factor in

retiming. Leiserson proved that the number of registers around a cycle cannot be

changed without changing either the circuit’s basic structure or behavior. The “av-

erage weight” of a cycle is defined to be the sum of the propagation delays through

126

all operations on that cycle, divided by the number of registers on the cycle. Pa-

paefthymiou proved that the clock period of a retimed circuit could not be less than

the maximum average-weight of any cycle within the original circuit [69]. Suppose

that you have a circuit where all operations have the same unit propagation delay,

and that, for some reason, you require a clock period equal to that propagation delay.

But if the original circuit contains a cycle with an average weight greater than one,

it would appear that achieving this objective through retiming would be impossible

since the minimum clock period cannot be less than the average weight cycle.

This problem can be circumvented (at a price) through a synchronous circuit

transformation called slowdown [70] . In slowdown, each register in the original

circuit is replaced by a sequence of c registers, producing what is known as a c-slow

circuit. The resulting circuit is then retimed to distribute the registers and minimize

the clock period (Figure A.3). As long as the maximum average weight cycle of the

c-slow circuit is less than or equal to 1, the retimed, c-slow circuit will be able to

execute with the desired clock period of 1. The penalty of slowdown, though, is

suggested by its very name: if the original circuit were able to accept input values on

every cycle, the retimed, c-slow circuit would only able to accept inputs and produce

outputs every c cycles.

Since a c-slowed circuit can accept new input data every c cycles, it is equiva-

lent to a pipeline schedule with a data introduction interval of c. However, slowdown

technique can only be applied to a scheduled circuit. Pipeline scheduling, on the

other hand, constructs such a c-slowed schedule from an unscheduled, functional de-

pendence graph.

Module selection between circuit modules of the same type but with different

levels of pipelining is very similar to the retiming technique discussed previously. By

different levels of pipelining a circuit module, it is equal to moving the registers out

127

(a) original circuit (b) slowdown
transformation

© retimed for
minimum clock

period

Figure A.3: Slowdown and retiming. In the original circuit (a), each operation (white
rectangle) has a delay of 1, so the minimum clock period between the registers (black
rectangles) is 2. After a 2-slowdown transformation (b) followed by a retiming (c) the
minimum clock period has been reduced to 1

of the circuit module into the circuit module. This reduces the combinational delay

of the circuit module and potentially increases the system frequency.

Pipeline scheduling with combined module selection between differently pipelined

circuit modules are functionally the same as a c-slow retiming. C-slow and retiming

are very useful in increasing the system performance. However, they can only be

applied to a scheduled or even implemented circuit. Pipeline scheduling and module

selection achieve the same effects by constructing such an implementation from a

higher level. Thus, pipeline scheduling and module selection are very important to

generate high quality implementations, and the resulting circuit is predictable due to

the well-characterized circuit module library.

128

Appendix B

Supporting Functions in HOIMS

B.1 MinDist Matrix Calculation

Algorithm B.1 illustrates the details to compute the minDist matrix and check

the pipeline schedule validity of the input system data introduction interval for the

input SCC. The algorithm begins by initializing minDist[i,j] with the minimum per-

missible time interval between i and j considering only the edges from i to j. If

there is no such edge, minDist[i,j] is initialized to be −∞ (see line 2). If e(i,j) is an

edge from i to j, minDist[i,j] is initialized to be the effective delay from i to j (see

line 1), refer to Equation 3.8 for computing the effective delay). Once the minDist

matrix is initialized, the longest path between all nodes in the directed graph is used

to compute the minDist matrix for the candidate δ (see line 3, 4 and 5). If minDist

has a positive entry along the diagonal, the candidate δ is invalid (see line 6) and a

larger δ should be tried.

The minimum permissible system data introduction interval can then be ob-

tained by iteratively checking candidate δ using Algorithm B.1 for all SCCs in the

dependence graph. Starting from δ = 1, if any diagonal entry of the minDist for any

SCC is positive, δ is incremented by 1 and Algorithm B.1 is run with new δ. This

process is repeated until all diagonal entries are not positive and the current δ is the

minimum system data introduction interval.

129

Algorithm B.1: minDist calculation and δ validity check algorithm

input : δ, SCC(V, E)
output: true if δ is valid for this SCC,

false if δ is invalid for this SCC

for i ← 1 to |SCC| do
for j ← 1 to |SCC| do

if e(i,j) ∈ E then
minDist[i, j] ← λeff (i, j);1

else
minDist[i, j] ← -∞;2

for k ← 1 to |SCC| do
for i ← 1 to |SCC| do

for j ← 1 to |SCC| do
dist ← minDist[i, k] + minDist[k, j];3

if dist > minDist[i, j] then4

minDist[i, j] ← dist;5

if (i = j) and (dist > 0) then6

return false;

return true;

B.2 Scheduling Priority Calculation in Pipeline Scheduling

The IMS algorithm uses a priority function that is a direct extension of the

height-based priority [40] that is popular in acyclic list scheduling [41]. For acyclic

list scheduling, the height-based priority of an operation P, Height(P), is defined as:

Height(P) =

 0, if P is the STOP pseudo-op

maxQ∈Succ(P) (Height(Q) + Delay(P,Q)), otherwise.
(B.1)

This priority function has two important properties. First, since it computes

the longest path from P to the end of the graph (the STOP pseudo-operation), the

larger Height(P) is, the smaller is the amount of slack available to schedule operation

P. It is well known that giving priority to operations on the critical path is important

to achieving a good schedule, and the height-based priority function does so.

130

From the viewpoint of efficiency, it is preferable to schedule operations in some

topological sort order so that each operation is scheduled before any of its successors.

The second nice property of the height-based priority function is that it defines a

topological sort. A predecessor operation will have a larger height-based priority

than every one of its successors.

Extending the height-based priority function for use in IMS requires that we

take into account the inter-iteration dependences. Consider a successor Q of operation

P with a dependence edge from P to Q having a distance of D. Assume that the

operation Q that is in the same iteration as P (the current iteration) has a height-

based priority of H. Since P’s successor Q is actually D iterations later, its height-

based priority, relative to the current iteration, is effectively H-δ*D. Then the priority

function used for iterative modulo scheduling, HeighR(), is given by

HeightR(P) =

 0, if P is the STOP pseudo-op

maxQ∈Succ(P) (HeightR(Q) + EffDelay(P,Q)), otherwise.

(B.2)

131

132

Appendix C

Resource Sharing Overhead for FPGAs

Resource sharing is less common in architectural synthesis approaches that

target FPGAs, due to the higher cost of multiplexing and interconnecting resources.

Although the sharing costs within FPGAs is higher than custom circuits such as

ASICs, resource sharing can be used on FPGAs when the resources saved by sharing

is larger than the sharing overhead. For example, resource sharing can be justified

for large circuit elements such as multipliers, large memories, and other circuits that

consume a large amount of expensive FPGA resources.

Resource sharing overhead includes both area and time. Area overhead charac-

terization assures the resource sharing algorithm that the resources saved by sharing

is larger than the overhead area itself. The timing of sharing overhead must also be

characterized so that the extra hardware for resource sharing does not become the

critical path of the implementation.

To steer the input data to the shared circuit module, multiplexers and control

logic must be employed to guide the correct input data into the shared module at cor-

rect time. Figure 2.3 illustrates an example of sharing two multiplier operations with

one multiplier circuit module. As Figure 2.3 shows, the area overhead for resource

sharing is made up of two parts: the multiplexer and the controller. This section will

discuss the area and timing overhead of these two parts in detail.

133

C.1 Multiplexer Area

The primary cost of resource sharing in FPGAs are the multiplexers needed to

steer data to the shared resource. Although multiplexers are relatively expensive in

FPGAs, they are still much cheaper than large modules such as multipliers, RAMs etc.

Further, small multiplexers can often be merged into underutilized LUT resources.

The small relative size of multiplexers and the ability to merge multiplexing suggests

that resources sharing is feasible for FPGA circuits.

The multiplexer area cost in FPGAs is carefully characterized in this work.

Multiplexers of different input port number (N) and port width (W) are automatically

generated and run through FPGA implementation tools. The selection line width

(S) of the multiplexer equals dlog2(N)e. The BCD (Binary Coded Decimal) value

of selection line is used to directly select from the input ports as the output. For

example, if there are seven input ports (N = 7), three selection lines will be needed

(S = 3). When S=”101”, input port 5 will be selected as the output. Figure C.1

plots the area of 1-bit multiplexers for a range of input port numbers. The X axis

represents the number of input ports (excluding the select line) of the multiplexer,

starting from 2 to 256. The Y axis represents the FPGA LUT count. Figure C.2 plots

the relationship between the input port width and the multiplexer area for several

multiplexers with different input port number. The X axis represents the bit-width

of input ports and the Y axis represents the FPGA LUT count.

The multiplexer area in FPGAs is linear to the port width, but not linear

to the number of input ports. As Figure C.2 shows, for most N-input multiplexer,

the relationship between the input port width and the area cost is linear. Although

a few multiplexers, such as for N=9,10,11, are not in accordance with this linear

relationship, the relative deviation is very small. The average deviation from a linear

estimation and the actual area cost, for multiplexers with input port number from

2 to 256 and bit width from 2 to 32, is only 1.74%. Thus, a general equation for

134

0

20

40

60

80

100

120

140

160

2 10 18 26 34 42 50 58 66 74 82 90 98 10
6

11
4

12
2

13
0

13
8

14
6

15
4

16
2

17
0

17
8

18
6

19
4

20
2

21
0

21
8

22
6

23
4

24
2

25
0

Number of Input Ports

A
re

a
(L

U
T)

Figure C.1: Relationship between the number of input ports (N) and area cost in
FPGA LUT count for N-input 1-bit multiplexers

computing the area cost for an N-input, W-bit multiplexer from an N-input, 1-bit

multiplexer can be linear:

AreaMUXN (W) = W ∗ AreaMUXN (1) (C.1)

where AreaMUXN (W) represents the area cost of an N-input multiplexer whose bit-

width is W. However, the linear equation does not hold for the relationship between

input port numbers and area cost for a 1-bit multiplexer though, as Figure C.1 shows.

This is caused by the specific architecture feature of Xilinx FPGAs: the 4 input LUT

and the internal multiplexers within each slice.

Multiplexers in FPGA are as expensive as an adder, but much cheaper than

large circuit elements. For example, a 2-input 16-bit multiplexer costs 16 LUTs, which

is equal to 8 slices. This is as expensive as a 16-bit two-input ripple carry adder. For

sharing an M-input circuit module, M multiplexers are needed. This makes sharing

an adder twice as expensive as using two dedicated adders. However, multiplexers

135

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Bit Width

A
re

a
(L

U
T

)
MUX 2
MUX 3
MUX 4
MUX 5
MUX 6
MUX 7
MUX 8
MUX 9
MUX 10
MUX 11
MUX 12
MUX 13
MUX 14
MUX 15
MUX 16

Figure C.2: Relationship between the bit width (W) and area cost in FPGA LUT
count for several N-input multiplexers

are much smaller than the multiplier circuits in FPGA. For example, sharing a 16-

bit Array Multiplier 1 requires two 16-bit multiplexers, which cost 16 slices. This is

less than 10% of allocating a new dedicated multiplier. Thus, sharing large circuit

modules such as multiplier, block RAMs, etc in FPGA can greatly reduce the overall

area cost.

In summary, multiplexers are essential parts for resource sharing. Although it

is too expensive to share an adder and other simple logic functions in FPGAs, it is

very cheap to share large circuit modules such as multipliers, RAM blocks etc. The

relationship between the input port number and the multiplexer area cost is hard to

be represented with a simple mathematical function, due to the regular architecture

of FPGA based on look up tables. The relationship between the port width and area

for fixed input port number is very close to linear. Thus, 1-bit multiplexer area is

characterized and used as the basis for estimating arbitrary bit width multiplexer

area cost.

136

X

X

X

X

0 1 2 3Scheduling
Step

a

b c

d
e

f
g

h

Modulo 4
Counter

Sel

In0 In1

Out

a c

In2 In3

e g

Sel

In0 In1

Out

b d

In2 In3

f h

2

Figure C.3: The simplest controller to share 4 operations with 1 circuit module

C.2 Controller Area

A multiplexer requires an external controller to choose the appropriated input

port at each clock cycle. This is implemented by using the controller to generate

the correct value at every clock cycle, and driving the multiplexer’s selection line

with these values. Under the context of pipeline scheduling, the modulo start time

of each operation is within 0 and system data introduction interval minus 1 (i.e.

0 ≤ ts ≤ δ − 1). So the controller only needs to have δ states, and for each state, it

generates the multiplexer selection line value according to the scheduling information

in each state.

In the simplest form, a modulo-δ counter can be used as the controller. The

output of the counter is connected directly to the multiplexer selection line input.

This is illustrated with an example in Figure C.3. In this example, circuit module

m is shared between four operations. The system data introduction interval is 4.

The scheduling for operation op1, op2, op3 and op4 is 0, 1, 2 and 3 respectively.

As the figure shows, the modulo-4 counter output is directly connected to the 4-1

multiplexor’s selection line, which selects the corresponding input at every pipelining

scheduling step. For 4-input LUT based FPGA architecture, a modulo M counter

costs ddlog2(M)e /2e slices.

137

If the circuit module is not reused in every pipeline phase, the input port

number of its corresponding multiplexer need not be as large as the pipeline stage

length (i.e. the system data introduction interval). According to Figure C.1 and

Figure C.2, the reduction in the input port number can save considerable amount of

hardware area. For example, if δ is 8, and the circuit module is only shared by 4

16-bit operations. Reducing the input port number from 8 to 4 can save 64 LUTs in

total. The cost for this area reduction is an encoder. The input width of the encoder

is the same as the output width of the counter (wδ = dlog2(δ)e). The output width

of the encoder is ws = dlog2(Ns)e, where Ns is the number of operations sharing the

circuit module. For FPGAs with a 4 input LUT architecture, a wδ to ws encoder

costs:

2max((wδ−4),0) ∗ ws(LUTs). (C.2)

For the previous example, a 3 to 2 encoder is needed, which only costs only 2 LUTs

but saves 64 LUTs.

C.3 Timing Overhead

Resource sharing overhead comes not only in the form of extra hardware area,

but extra time also. To make resource sharing working correctly and meeting the

system frequency requirement, the timing of the multiplexer and controller deserves

careful study.

The combinational delay grows with the increment of the number of multi-

plexer input ports. Figure C.4 shows the relationship between the number of multi-

plexer input ports N and its corresponding combinational delay. As the figure shows,

the multiplexer combinational delay increases in general with the number of input

ports because more stages of logic are needed. However, due to the logarithm rela-

tionship between the number of logic stages and the number of input ports, and the

special architectural structure of FPGAs, even a very wide multiplexer is very fast.

138

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 16 30 44 58 72 86 10
0

11
4

12
8

14
2

15
6

17
0

18
4

19
8

21
2

22
6

24
0

25
4

Number of Input Ports

C
om

bi
na

tio
na

l D
el

ay
 (n

s)

Figure C.4: Relationship between the number of input ports (N) and combinational
delay for N-input multiplexers

Although not shown in the figure, the characterization shows that the bit width of

the multiplexer input ports does not affect the timing of the multiplexer with the

same number of input ports.

The timing of the controller should include the modulo δ counter and the δ

inputs encoder. The critical path of a modulo δ counter is a dlog2(δ)e bit adder. Even

if the δ is very large, for example 256, only a 8-bit adder is needed. It is clear that

the modulo δ counter won’t become the critical path of the circuit. Since the counter

output width is very small, the level of LUT tree for the encoder is very limited, so

the encoder won’t become the critical path of the circuit either.

139

140

Appendix D

ASAP Exploration Algorithm

The first algorithm tried for combining scheduling, module selection, and re-

source sharing is a recursive branch and bound algorithm based on pipeline schedul-

ing with ASAP priority. This scheduler is a relatively simple adaptation of a non-

pipelined ASAP list scheduler to incorporate modulo resource constraints. The ob-

jective of this approach is to identify the lowest area cost architectural solution that

meets the constraints of a given (f, δ) pair. This algorithm, summarized in Algorithm

D.1, can be run multiple times to identify solutions with different (f, δ) pairs for a

fixed throughput constraint.

D.1 Algorithm Summary

The outer loop of this algorithm uses pipeline scheduling with ASAP priority.

Each operation n will be scheduled as soon as possible when all its predecessors are

scheduled (line 3 and 4, S is the set of unscheduled operations). After the operation

has been scheduled, it is bound to a circuit module before proceeding to another

operation in the dependence graph. The binding of an operation first tries to share

any previously allocated modules (lines 5–9). After exhausting all resources sharing

possibilities, a new circuit module is allocated for the operation (lines 10–16). Every

potential circuit module that is compatible with this operation is explored. This

process proceeds recursively for all remaining operations (lines 9 and 16).

To limit the search space, four bounding functions are used to prevent the

search from pursuing unnecessary paths. The first bound eliminates the paths when

141

Algorithm D.1: ASAP Exploration

Data: (f ,δ), λmax1

ASAP EXPLORE(S,Ccurr,Cbest) begin
if S 6= φ then2

Select a schedulable node n ∈ S;3

Modulo Schedule n ASAP and remove n from S;4

forall p ∈ Q(n) do5

if not SHARABLE(p) then continue;6

Reschedule n if necessary;7

M(n) = p;8

ASAP EXPLORE(S,Ccurr,Cbest);9

M(n) = φ;
Restore schedule n;

end
forall m ∈ T (n) do10

M(n) = m;11

if fm < f then continue;12

if δm > δ then continue;13

if ESTIMATE COST()> Cbest then continue;14

if ESTIMATE LATENCY()> λmax then continue;15

Ccurr+=COST(m);
ASAP EXPLORE(S,Ccurr,Cbest);16

M(n) = φ, Ccurr− =COST(m);
end
unschedule n and add n back to S;

else
if Ccurr < Cbest then Cbest = Ccurr;17

end

end

fm < f (line 12). The second eliminates the paths when δm > δ (line 13). These

two bounding functions reflect the constraints of pipeline scheduling design space on

the module selection. The third estimates a lower bound on the area cost of the

current branch and eliminates the paths when it is larger than the current best area

cost (line 14). ESTIMATE COST() assumes maximal resource sharing or lowest cost

module selection for all unscheduled operations, whichever is smaller. The fourth

eliminates the branches when the current branch violates the latency constraint (line

142

0

200

400

600

800

1000

1200

1400

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Data Introduction Interval and System Frequency

Sl
ic

e

Combined RS1 RS2 MS

Figure D.1: ASAP Exploration area result with different synthesis techniques for the
“Color Space Conversion” example under a 12 MSamples/Sec throughput constraint

15). ESTIMATE LATENCY() assumes ASAP scheduling with minimum latency

circuit modules for all unscheduled operations.

D.2 ASAP Exploration Results

A number of signal processing kernels were tested using this ASAP exploration

algorithm. The circuit modules listed in Table 5.1 were used for module selection and

resource sharing. To demonstrate the importance of combining module selection

with resource sharing, three synthesis methods were tested as described in Section

6.1. For resource sharing only method, RS1 uses Array Multiplier 3 and RS2 uses

Booth Multiplier 3 as the fixed module selection. Each method explores all possible

(f, δ) pairs that meet the throughput constraint of 12 MSamples/Sec. For each (f, δ),

the best pipeline schedule was created and the area result is listed.

Figure D.1 to Figure D.5 shows the area results for five kernels by the four

different exploration strategies. These algorithms are color space conversion, FFT

transformation, FIR filter, linear interpolator and the IDCT transformation. In these

figures, the area of the combined resource sharing and module selection is shown as

143

0

500

1000

1500

2000

2500

3000

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Data Introduction Interval and System Frequency

Sl
ic

e

Combined RS1 RS2 MS

Figure D.2: ASAP Exploration area result with different synthesis techniques for the
FFT example under a 12 MSamples/Sec throughput constraint

0

500

1000

1500

2000

2500

3000

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Data Introduction Interval and System Frequency

Sl
ic

e

Combined RS1 RS2 MS

Figure D.3: ASAP Exploration area result with different synthesis techniques for the
FIR example under a 12 MSamples/Sec throughput constraint

gray bars. The solid line shows the area cost with module selection only method.

The two dotted lines represent the area cost of two different resource sharing only

methods.

144

0

500

1000

1500

2000

2500

3000

3500

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Data Introduction Interval and System Frequency

Sl
ic

e

Combined RS1 RS2 MS

Figure D.4: ASAP Exploration area result with different synthesis techniques for the
“Linear Interpolator” example under a 12 MSamples/Sec throughput constraint

0

500

1000

1500

2000

2500

3000

3500

4000

4500

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Data Introduction Interval and System Frequency

Sl
ic

e

Combined Circuit Module Combined Overhead RS1 RS2 MS

Figure D.5: ASAP Exploration area result with different synthesis techniques for the
IDCT example under a 12 MSamples/Sec throughput constraint

D.3 Limitations

Although this branch and bound exploration algorithm identifies very efficient

design solutions by combining module selection with resource sharing under an ASAP

pipeline scheduling context, its computational complexity is prohibitively high. The

145

use of an exhaustive algorithm to explore module selections will typically not be

practical for large data-flow models and circuit module libraries. For example, design

exploration for the IDCT model took almost six days to complete (see Table 6.4).

A second disadvantage of this approach is the simplistic ASAP non-backtracking

scheduler. This greedy scheduling algorithm may not be able to generate schedules

for resource sharing or module selection alternatives that would otherwise reduce the

overall system area cost.

146

Appendix E

IMS Exploration Algorithm

To address the limitations of the ASAP exploration approach, a second explo-

ration strategy was developed which combines module selection with a backtracking

scheduler based on IMS (Iterative Modulo Scheduling) [33]. IMS performs pipeline

scheduling and resource sharing simultaneously by employing a modulo reservation

table for each circuit module. The algorithm is iterative and allows backtracking

(unschedule and reschedule) to find solutions that are otherwise not attainable for

non-backtracking scheduling approaches such as the one used in the previous section.

The primary constraint for this algorithm is the minimum throughput T , for

the data-flow specification. Same as the exact exploration algorithm, the iterative

modulo exploration algorithm searches through a range of data introduction interval

values (and the corresponding system frequency) to identify the best solution. This

range is bounded by the minimum data introduction interval (δmin) due to the recur-

rence constraint (see Equation 3.10) and maximum data introduction interval (δmax)

due to the maximum feasible system clock frequency of the circuit (see Equation 3.3).

E.1 Algorithm Summary

The outline of iterative modulo exploration algorithm is presented in Algo-

rithm E.1. For a given throughput constraint (T) and a given module library, the

algorithm computes the bounds on δ first. Then, the outer for loop (line 1) of this

algorithm iterates over each feasible value of δ and computes the corresponding mini-

mum operating frequency (line 2). The solutions for each (f, δ) pair is then identified

147

by the inner loop of the algorithm (line 3 to 5) which performs module selection,

pipeline scheduling and resource sharing. Finally, the best solution and the corre-

sponding (f, δ) pair are picked (line 6) for the whole pipeline space.

Algorithm E.1: Iterative Modulo Exploration

IMS EXPLORE(T) begin
Calculate the δmin;
Calculate the δmax;
for δ ← δmin to δmax do1

fδ ← δ * T ;2

for i ← 1 to K do3

ms ← Module Selection(fδ);4

if ESTIMATE COST()> Cbest solution then continue; ;
IMS();
Update best solution for (fδ, δ) ;

Record the current best solution;5

Compare and pick the best solution;6

end

There are two important differences between this exploration strategy and the

previous approach. First, this approach performs module selection before scheduling

(see line 4 of Algorithm E.1). This significantly reduces the search space for scheduling

and resource sharing. Second, this approach does not explore the full module selection

design space. Instead, a finite number of “good” module selection possibilities are

identified. The size of this finite search space can be adjusted by the user to balance

execution time with the quality of the result (see line 3, which is detailed next).

E.2 Heuristic Module Selection

The inner loop of this algorithm performs module selection followed by IMS

(see Algorithm 3.1) which simultaneously performs pipeline scheduling and resource

sharing. As described earlier, performing module selection before resource sharing can

148

greatly limit the resource sharing design space. However, the whole module selection

space is too big, so a good coverage of module selection space is very important for

a heuristic algorithm. In this approach, an heuristic algorithm is used to identify

“good” module selection choices early in the exploration process.

The design space for module selection is significantly reduced by limiting the

number of modules that can be considered for each operation in the dependence

graph. This heuristic algorithm will select at most two candidate circuit modules for

each operation. With only two module possibilities for each operator, the module

selection design space is reduced to 2N where N is the number of operations in the

dependence graph. While still exponential in size, it is significantly smaller than the

design space described in section 2.5.

To further reduce the module selection space, not all 2N module selection

possibilities are searched. Instead, K unique module selection points will be selected

from the more limited 2N design space (see line 3). The constant K can be selected

by the user to control the size of the design space. Experiments have shown that K =

Nlog2N is sufficient for finding good results, where N is the number of operations in

the dependence graph. Other more targeted heuristic approaches for module selection

will be introduced in next section.

Because a smaller module selection design space is searched, it is very impor-

tant to select “good” subset of modules for each operation. The first step in this

selection process is to eliminate all circuit modules for consideration that cannot be

used under the system design constraints. These include those modules with an in-

sufficient data introduction interval (δm > δ) or and insufficient maximum operating

frequency (fm < f0).

The next step is to choose two circuit modules from the remaining compati-

ble circuit modules. The first module chosen is the smallest circuit module that is

compatible with the given operation. This selection limits the sharing of the circuit

149

module with other operations as smaller circuit modules usually have a larger δm, or

it is very specific to that operation. The second module chosen is the circuit module

with the smallest amortized cost (see Equation 5.6) and encourages more sharing.

E.3 Scheduling and Resource Sharing

Before proceeding to scheduling, a best case resource estimate will be com-

puted on the current module selection. This is similar to the estimate used in Algo-

rithm D.1. If the best case area estimate of the module selection is larger than the

current solution, the module selection is discarded and IMS scheduling is skipped.

The module selection process is repeated rather than proceeding to scheduling with

an inferior module selection.

Once a candidate module selection has been made, the algorithm proceeds to

scheduling. As described earlier, iterative modulo scheduling is then used to schedule

the operations of the graph using the modules chosen in the previous step. After

scheduling, a more accurate estimate of the circuit area can be made by taking into

account both the data-path and resource sharing overhead cost. This area estimate

is compared against the best solution for the current value of δ. If the estimate is

smaller than the current solution, the best solution is updated.

E.4 IMS Exploration Results

The iterative modulo exploration algorithm was applied to two sample data-

flow models, a Biquad IIR filter and an 8-tap FIR filter. Both models use 16-bit

precision to fully utilize circuit modules in Table 5.1. The throughput constraint

for both models is set at 12 MSamples/Sec. A large number of architectures were

synthesized under the constraint for each data-flow model. The architectural results

obtained from this synthesis flow are shown in Figure E.1 for the FIR filter and in

150

0

500

1000

1500

2000

2500

3000

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

31
2

32
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Data Introduction Interval and System Frequency

Sl
ic

e

Combined Circuit Module Combined Overhead MS RS1 RS2

Figure E.1: Area comparison between different techniques for FIR filter with 12M
Samples/Sec throughput constraint

0

100

200

300

400

500

600

700

800

900

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

31
2

32
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Data Introduction Interval and System Frequency

Sl
ic

e

Combined Circuit Module Combined Overhead MS RS1 RS2

Figure E.2: Area comparison between different techniques for Biquad filter with 12M
Samples/Sec throughput constraint

Figure E.2 for the Biquad filter. The meaning of the bars and lines in these figures

are the same as in Figure 6.2 and was described in Section D.2.

The minimum feasible δ for the Biquad example is 3 due to the feedback

constraint within the model. Without any feedback constraints, the feed-forward

151

FIR filter may operate at a minimum δ = 1. In Figure E.1, the maximum δ = 25

corresponds to a system frequency of f = 300 MHz, no circuit modules operate at

δ = 26, 27 with corresponding system frequency of f = 312, 324 MHz. Although

additional design points exist beyond these limits, they were omitted for brevity.

Both results exhibit the “bathtub” shape of the pipeline synthesis design space

described in Section 6.1. The best solution for the Biquad example occurs at (f = 44

MHz, δ = 4). At this design point, only one relatively low-area multiplier (CoreGen

Multiplier 1) is allocated and fully shared. Although such sharing involves multiplex-

ing overhead, the relatively low value of δ requires a simple controller. With larger

values of δ, more costly multipliers are required and the complexity of the sequencer

increases. At the (f = 264 MHz, δ = 24) design point, only the CoreGen Sequential

will operate. Each operator is allocated a dedicated multiplier due to the resource

sharing limitation of the sequential multiplier module.

The best solution for the FIR example occurs at (f = 96 MHz, δ = 8). At

this point, one multiplier (CoreGen Multiplier 1) is shared among the eight opera-

tors. Design points with δ < 8 require more multipliers that are clocked slower than

possible. At higher values of δ (up to δ = 21), the sequencing overhead area increases

slightly with no increase in module or sharing costs. At (f = 264 MHz, δ = 22)

design point, more expensive higher speed multipliers are required.

The module selection only results (solid line) shows that exploiting module

selection only is inferior to the best solutions from the combined approach. The

difference in area cost between the module selection only technique and the combined

technique is due to the limited resource sharing capability of the circuit modules

found with module selection only technique. For example, at δ=8, module selection

only will choose the CoreGen Sequential multiplier, but the combined technique will

choose the CoreGen Parallel 1 multiplier. Although the parallel multiplier is more

expensive than the sequential multiplier, the larger resource sharing capability of the

152

parallel module offsets the increased circuit module cost, and yields a lower overall

system area cost.

The resource sharing only (dotted lines) results in these figures show that the

design space associated with this technique is significantly limited by the module

chosen. For example, RS1 in the Biquad example uses the Array Multiplier 3. With

a latency of 4, the circuit must operate at a minimum δ = 6 due to the feedback loop.

Because the fastest operating frequency of this module is 127 MHz, the maximum δ

is limited to 13.

E.5 Comparison Between ASAP Exploration and IMS Exploration

Figure E.3 plots the ASAP exploration result and the IMS Exploration result

for the FIR filter using the same throughput constraint (12 MSamples/Sec). Between

δ from 1 to 7, both exploration approaches generate the same result, because the

heuristic module selection algorithm for the Iterative Modulo Exploration results in

only one circuit module for the multiplier operators (CoreGen Multiplier 1), which is

the same module selection found with the exact exploration. Between δ equals to 8

and above, the exact Exploration approach generates more area efficient architectural

solutions than the Iterative Modulo Exploration approach. With these δ values, there

are more than one candidate circuit modules for each multiplier operator. Since

the heuristic module selection algorithm doesn’t explore all the module selection

possibilities, it does not find the same solutions as the exact Exploration approach.

For example, at (f = 96 MHz, δ=8), the exact exploration selects CoreGen Parallel 1

multiplier for all the multiplier operators, while the IMS exploration selects CoreGen

Parallel 1 and CoreGen Sequential multipliers, which results in under-utilization of

the circuit modules and thus higher overall area cost.

153

0

200

400

600

800

1000

1200

1400

1600

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Data Introduction Interval and System Frequency

Sl
ic

e

ASAP Exploration IMS Exploration

Figure E.3: Area comparison between ASAP and IMS exploration approach for FIR
filter with 12 MSamples/Sec throughput constraint

E.6 Limitations

The iterative modulo exploration algorithm explores the combined design

space much more effectively than the ASAP exploration algorithm, while yielding

similar results. It is an implementation of the separated module selection and re-

source sharing strategy, while resource sharing is implicitly performed during pipeline

scheduling. The major disadvantages of this algorithm are: First, it does not differ-

entiate between different sharing. Although resource sharing overhead is counted,

different sharing possibilities are treated as the same. However, different sharing

can result in different interconnection architecture and control architecture. Second,

the results of resource sharing/pipeline scheduling is not fully utilized by the mod-

ule selection algorithm for future iteration’s refinement. Feeding back the result to

module selection can greatly improve the module selection search efficiency. Third,

it assumes that all operations in the dependence graph are of the same bit-width,

this simplifies module selection and resource sharing, but may results in inefficient

module utilization.

154

	Throughput Constrained and Area Optimized Dataflow Synthesis for FPGAs
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 High Level Synthesis for FPGAs
	1.2 Proposed FPGA HLS Methodology
	1.3 Dissertation Structure

	2 Overview
	2.1 Synthesis Constraint and Optimization Goal
	2.2 Design Representation
	2.3 Scheduling
	2.4 Resource Sharing
	2.5 Module Library and Module Selection
	2.6 Design Space Exploration
	2.7 Summary

	3 Pipeline Scheduling
	3.1 Pipelining
	3.1.1 Pipelining Terminology
	3.1.2 Pipelining Design Space

	3.2 Pipeline Scheduling Overview
	3.2.1 Modulo Start Time
	3.2.2 Effective Delay
	3.2.3 Feedback Constraints

	3.3 Previous Pipeline Scheduling Work
	3.4 HOIMS
	3.4.1 IMS Algorithm Overview
	3.4.2 Hardware Specific Issues for Pipeline Scheduling
	3.4.3 HOIMS Algorithm

	3.5 Summary

	4 Resource Allocation and Sharing
	4.1 Resource Allocation and Sharing Overview
	4.2 Resource Sharing and Pipeline Scheduling
	4.2.1 Multi-cycle, Pipelined Circuit Module
	4.2.2 Resource Sharing Capability with Pipeline Scheduling
	4.2.3 Resource Sharing and Pipeline Schedulability

	4.3 Previous Resource Sharing Work
	4.4 Weighted Compatibility Graph
	4.4.1 Port Similarity
	4.4.2 Source Similarity
	4.4.3 Sink Similarity

	4.5 Resource Allocation and Sharing in HOIMS
	4.6 Summary

	5 Module Selection
	5.1 Module Selection Overview
	5.1.1 Module Selection in HLS
	5.1.2 Sample FPGA Circuit Modules

	5.2 Module Selection and Pipeline Scheduling
	5.2.1 Module Selection and Scheduling Order
	5.2.2 Feedback Constraint and Module Selection
	5.2.3 Module Selection and Pipelining Design Space

	5.3 Module Selection and Resource Sharing
	5.4 Previous Module Selection Work
	5.5 HOIMS with Module Selection
	5.5.1 Candidate Module Set Generation
	5.5.2 Initial Module Selection and Correction
	5.5.3 Module Selection Refinement
	5.5.4 Bit Width Morphing

	5.6 Summary

	6 Experimental Results
	6.1 Pipeline Synthesis Design Space Analysis
	6.1.1 Module Selection Only
	6.1.2 Resource Sharing Only
	6.1.3 Combined Module Selection and Resource Sharing
	6.1.4 Pipeline Synthesis Design Space Summary

	6.2 Pipeline Synthesis Area Results
	6.2.1 Area Results for a Single Throughput Constraint
	6.2.2 Area Results for Multiple Throughput Constraint

	6.3 HOIMS Area Results
	6.3.1 Uniform Bit-Width Area Results
	6.3.2 Non-uniform Bit-Width Results

	6.4 Runtime Results
	6.5 Summary

	7 Conclusion and Future Work
	7.1 Future Work
	7.2 Summary

	Bibliography
	Appendices
	A Multi-cycle Pipelined Circuit Modules
	A.1 Circuit Module Characterization and Description
	A.2 Multi-cycle, Pipelined Circuit Module and C-Slow Retiming

	B Supporting Functions in HOIMS
	B.1 MinDist Matrix Calculation
	B.2 Scheduling Priority Calculation in Pipeline Scheduling

	C Resource Sharing Overhead for FPGAs
	C.1 Multiplexer Area
	C.2 Controller Area
	C.3 Timing Overhead

	D ASAP Exploration Algorithm
	D.1 Algorithm Summary
	D.2 ASAP Exploration Results
	D.3 Limitations

	E IMS Exploration Algorithm
	E.1 Algorithm Summary
	E.2 Heuristic Module Selection
	E.3 Scheduling and Resource Sharing
	E.4 IMS Exploration Results
	E.5 Comparison Between ASAP Exploration and IMS Exploration
	E.6 Limitations

