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Decentralized Cooperative Aerial Surveillance

using Fixed-Wing Miniature UAVs
Randal Beard, Timothy McLain, Derek Nelson, and Derek Kingston

Abstract

Numerous applications require aerial surveillance. Civilian applications include monitoring forest

fires, oil fields and pipelines, and tracking wildlife. Applications to homeland security include border

patrol and monitoring the perimeter of nuclear power plants. Military applications are numerous. The

current approach to these applications is to use a single manned vehicle for surveillance. However,

manned vehicles are typically large and expensive. In addition, hazardous environments and operator

fatigue can potentially threaten the life of the pilot. Therefore, there is a critical need for automating

aerial surveillance using unmanned air vehicles (UAVs). This paper gives an overview of a cooperative

control strategy for aerial surveillance that has been successfully flight tested on small (48 inch wingspan)

UAVs. Our approach to cooperative control problems can be summarized in four steps: (1) the definition

of a cooperation constraint and cooperation objective; (2) the definition of a coordination variable as the

minimal amount of information needed to effect cooperation; (3) the design of a centralized cooperation

strategy; and (4) the use of consensus schemes to transform the centralized strategy into a decentralized

algorithm. The effectiveness of the solution will be shown using both high fidelity simulation and actual

flight tests.

Index Terms

Cooperative control, consensus, surveillance, unmanned air vehicles.

I. I NTRODUCTION

Group cooperative behavior implies that individuals in the group share a common objective and

act according to the mutual interest of the group. Effective cooperation often requires that individuals

This work was supported by AFOSR grants FA9550-04-1-0209 and FA9550-04-C-0032.

The authors are with Brigham Young University, Provo, Utah 84602. R. Beard (beard@ee.byu.edu) is the corresponding

author.
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coordinate their actions. Coordination can take many forms ranging from “staying out of each others

way” to directly assisting another individual. In general, group cooperation is facilitated by coordinating

the actions of individuals. However, each individual may not necessarily need to directly coordinate with

every other individual in the group to effect group cooperative behavior. For example, fish engaged in

schooling behavior only react to other fish that are in close physically proximity. We will term this type

of coordinationlocal coordination. At the other extreme isglobal coordination, where an individual

coordinates its action with every other individual in the group. Due to communication constraints and

computational feasibility, we are primarily interested in group cooperation problems where the coordina-

tion occurs locally. One of the interesting challenges in robotics is to design coordination strategies such

that local coordination will result in group cooperation.

While there have been numerous publications detailing specialized approaches to cooperation problems,

general design methodologies are only beginning to emerge. For the most part, these methodologies

assume a group of homogeneous robots with local coordination. The objective of this paper is describe

a design philosophy for cooperation problems that is general enough to include both homogeneous and

heterogeneous teams of robots. In addition, our approach allows a range of coordination strategies ranging

from local to global coordination. We do not claim that our approach will be appropriate for all cooperation

problems. In fact we expect that it will be many more years before the general principles underlying

cooperative systems will be fully understood. However, we hope that our approach contributes toward

that goal.

The essence of our approach is explained in the following steps:

Step 1.Cooperation Objective and Constraints.The first step is to analytically define the cooperation

objective. Cooperation can often be identified when certain relationships between state variables

are satisfied. These relationships are called the cooperation constraints.

Step 2. Coordination Variable and Coordination Function. The next step is to identify the essential

information that each vehicle must know to coordinate with the team. This information is called

the coordination variable. It will often be the case that cooperation can be achieved through

a variety of individual actions. To facilitate the selection of the individual actions that best

contribute to the cooperation objective, we quantify the relationship between the coordination

variable and the cooperation objective and call this function the coordination function.

Step 3. Centralized Cooperation Scheme.The next step is to derive a cooperation strategy for

minimizing the team objective function assuming that each member of the team has global

knowledge of the coordination variable and the coordination functions of each member of the
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team.

Step 4. Consensus Building.In a decentralized situation where communication links are noisy and

not persistent, and where the communication topology is dynamically changing and unknown

to each team member, the centralized solution will fail. The final step of our approach is

to implement a consensus building algorithm that assures that each member of the team has

consistent coordination information despite the inadequacies of the communication network.

In this paper we will focus on flying robots: in particular, fixed-wing unmanned air vehicles. This

class of systems has been our primary focus and motivation in looking at cooperative control problems.

There has been extensive work in cooperative control for teams of ground robots, however, since this

special issue contains other papers that describe approaches targeted at ground robots, we will focus on

describing the approaches that have been developed for fixed-wing UAVs.

Cooperation between UAVs has it own set of unique challenges. For example, unlike ground robots,

there is generally very little physical coupling except in the obvious cases of close formation flight. The

most significant challenge that is unique to UAVs is three-dimensional flight with immediate implications

on path planning algorithms. Another characteristic unique to fixed-wing UAVs is that forward motion is

required. Therefore, stop-and-wait path deconfliction algorithms (e.g., [1]) are not applicable. In addition

small fixed-wing UAVs are highly susceptible to wind. Therefore cooperation strategies must incorporate

feedback at the highest levels to account for objective failure modes.

However, cooperation problems for ground robots and UAVs share a number of similarities. For

example, both ground and aerial robots have strict communication constraints: team members must be

in close physical proximity to communicate, bandwidth is limited, and the communication topology

may change unpredictably with time. Both ground and aerial robots must deal with collision avoidance

constraints. Ground robots are necessarily concerned with maneuvering around each other in confined

spatial environments. On the other hand, aerial robots usually have more room to maneuver but collisions

are typically catastrophic. Another similarity is that decentralized cooperation strategies are generally

required for both ground and aerial robots. In addition, cooperation strategies must be robust to the

failure of individual team members.

Studies specific to cooperative control of UAVs have recently appeared in the literature. Extensive

efforts have been directed toward close formation flight. Early studies reported in [2] and [3] reported

significant potential fuel savings that could be gained by close formation flight. In [4] the physical

equations that describe a fixed-wing aircraft flying in the vortex of the leader are described and a control

system based on the linearized model is developed. The approach is extended to nonlinear aerodynamic
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coupling terms in [5]. Standard inner/outer loop designs are extended to close-formation flight in [6].

A behavioral approach to aircraft formation flight is given in [7]. In [8], differential flatness is used

to generate group formation maneuvers. The effects of communication constraints on close formation

flight are studied in [9]. Rigorous conditions for stable formation flight with limited communication are

developed in [10], [11].

Multiple UAV cooperative timing problems have also received significant attention. One version of this

problem is where multiple UAVs are required to converge on the boundary of a radar detection area to

maximize the element of surprise [12], [13], [14], [15], [16]. Cooperative timing problems also arise in

re-fueling scenarios, fire and hazardous material monitoring [17], moving area of regard problems, and

continuous surveillance problems [18].

Cooperative timing problems are sensitive to the assignment and ordering of tasks. One approach for

handling cooperative timing is to apply timing constraints to the task assignment problem. In [19], [20],

[21], mixed-integer linear programming (MILP) is used to solve tightly-coupled task assignment problems

with timing constraints. The advantage to this approach is that it yields the optimal solution for a given

problem. The primary disadvantages are the complexity of problem formulation and the computational

burden involved. Pruning strategies for simplifying the MILP problem have been proposed to enable

near-real-time solutions.

Although path planning for single UAVs has been an active area of research for some time (e.g.,

see [22], [23], [24], [25], [26]), cooperative path planning approaches for UAVs have only recently begun

to appear. In [27], a decentralized optimization method based on a bargaining algorithm is developed and

applied to a multiple aircraft coordination problem. A hybrid hierarchical control architecture is used for

air traffic control in [28], [29].

In this paper we describe our approach to cooperative control which is based on two main ideas. The

first is the notion of coordination variables and coordination functions, which were introduced in [30],

[13]. In essence, the coordination variable is the minimum amount of information that needs to be

exchanged between two agents to effect coordination. Although it is known by different names, the

notion of a coordination variable is found in many other works on cooperative control. For example [31],

[32] introduce an “action reference” which, if known by each vehicle, facilities formation keeping. In

leader-following applications [33], [34], the states of the leader constitute the coordination variable since

the action of the other vehicles in the formation are completely specified once the leader states are known.

In [35], [36], [37], the notion of a virtual structure is used to derive formation control strategies. The

motion of each vehicle is causally dependent on the dynamic states of the virtual structure, therefore the
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states of the virtual structure are the coordination variable. In [38] a team of autonomous underwater

vehicles (AUVs) are controlled to “swarm” around a desired mean location of the team with a specified

standard deviation. The action of each vehicle is dependent on the location of its nearest neighbor, and

the desired mean and standard deviation. This information is the coordination variable. Coordination

variables may also be more discrete in natures. For example, in [14], [20], cooperative task allocation

is addressed. Individual vehicle behavior is dependent on the task allocation vector which becomes the

coordination variable. Similarly, in [39], the coordination variable is the dynamic role assignment in a

robot soccer scenario.

The second main idea in our approach to cooperative control is the notion of consensus seeking.

Since coordination may be required between two agents that do not directly communicate, distributed

consensus algorithms are required to ensure that the agents share similar coordination variables [40].

There is a growing body of literature on distributed consensus seeking. For example, consensus problems

have recently been addressed in [41], [42], [43], [44], [45], [46], [47], [48], to name a few. In [42],

sufficient conditions are given for consensus of the heading angles of a group of agents under undirected

switching interaction topologies. In [43], average consensus problems are solved for a network of

integrators using directed graphs. In [46] and [47], an algebraic graph approach is used to show necessary

and/or sufficient conditions for consensus of information under time-invariant and switching interaction

topologies respectively. In [44], a set-valued Lyapunov function approach is used to consider consensus

problems with unidirectional time-dependent communication links. A Kalman filter approach to consensus

seeking that accommodates agent confidence is described in [49].

The remainder of the paper is organized as follows. In SectionII we describe different types of coupling

and coordination that occurs in cooperative control problems. In SectionIII we give an overview of our

approach to cooperative control problems and illustrate the approach with a simple academic example.

A high level description of how that approach is applied to several cooperative UAV scenarios is given

in SectionIV. SectionV gives a detailed description of the application of our approach to cooperative

aerial surveillance using miniature UAVs and presents simulation and hardware results. Finally, SectionVI

contains conclusion and some final thoughts.

II. COUPLING IN COOPERATIVECONTROL PROBLEMS

One of the primary challenges in developing generalized strategies for cooperative control is the

identification of broad classes of problems that are amenable to well-defined, straightforward approaches.

One way to classify cooperative control problems is by the level and type of coupling involved. For
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example, using a team of robots to cooperatively maneuver the position of an object has very tight

physical coupling between the robots. On the other hand, a team of UAVs tasked to cooperatively search

a particular region is coupled primarily through the cooperation algorithms employed by the individual

UAVs. We believe that our approach is particularly suited to algorithmically coupled problems. In this

section we describe different types of coupling that occurs in cooperative control problems.

Cooperative control problems can typically be formulated with a cooperation objective or cooperation

constraints or both. A cooperation objective is typically optimized to increase the level of cooperation.

Cooperation constraints, when satisfied, can be used to define the occurrence of cooperation.

With respect to the cooperative control of multi-agent systems, the degree and form of the coupling

between the agents composing the system is of paramount importance to the nature and level of the

cooperation that can be achieved. Cooperation implies some degree of coupling, if only through the

cooperation objective or constraints involved. Generally speaking, the greater the degree of the coupling,

the more challenging it is to formulate effective cooperative solutions.

A. Objective Coupling

Objective coupling describes the least restrictive form of coupling in cooperative systems. Objective

coupling occurs when an agent’s decisions affect only its costs and outcomes and do not influence

another agent’s costs and outcomes directly. Each agent’s decisions affects the cooperation objective and

the feasibility of cooperation constraints. Objective coupling requires agents to coordinate to ensure that

constraints are satisfied and that the objective is optimized. An example of objective coupling is the

cooperative timing problem described in [30]. Suppose that two vehicles are to navigate independently

through an obstacle field to arrive at a destination simultaneously. The cooperation constraint requires

them to arrive at the same time, while the cooperation objective could be minimization of the collective

power required to do so. The trajectory taken by one vehicle (its decisions) does not affect the trajectory

taken by the other vehicle directly, but it does affect the other vehicle through the cooperation constraint

and objective. As this example illustrates, some degree of coupling is necessary for cooperation to occur.

For objective coupling the only coupling that exists comes from the formulation of the cooperative control

scenario.

B. Local Coupling

Local coupling describes a more restrictive coupling in cooperative systems. As with objective coupling,

each agent’s decisions influence the cooperation objective and the feasibility of the cooperation constraints.
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Under local coupling, however, an agent’s decisions affect not only its own costs and outcomes, but also

the decisions (and hence the costs and outcomes) of its nearest neighbors. A simple example of local

or nearest neighbor coupling is shown in the cooperative search problem described in [50], whereN

vehicles are assigned the task of cooperatively searching an area of interest. To provide some structure

to the search task, the vehicles are required to maintain a loose row formation. To avoid collisions,

the vehicles are not allowed to overlap laterally. To maintain communication, the lateral spacing of the

vehicles must be kept less than the communication range. These lateral spacing constraints can be viewed

as cooperation constraints. The cooperation objective could be to visit as many targets as possible. The

decision by one vehicle to alter its trajectory to visit a sequence of targets will directly affect the decisions

of its neighbors and the costs and benefits associated with their decisions. The key difference between

objective coupling and local coupling is that for objective coupling, the cost accrued for any agent is a

function of that agent’s decisions only. For local coupling, the cost accrued for any agent is a function

of its own decisions as well as the decisions of its local neighbors.

C. Full Coupling

Fully coupled systems involve agents whose decisions affect the costs and outcomes for all other

members of the team, and thus their decisions, i.e., what a single agent chooses to do is influenced by what

all other agents on the team are doing. Coupling exists through the cooperation objective and cooperation

constraint as before, but in this most restrictive form of coupling the decisions of the individual agents

are coupled directly. An example of full coupling is the wide area search munition problem described

in [51]. In this problem a team of autonomous munitions are tasked to search a region and identify

potential targets. Once a target is identified, it must be classified by multiple passes over the target using

one or more munitions. Upon identification and verification, the target is attacked removing one of the

munitions from the team. The target must then be revisited for the purpose of battle damage assessment.

If the minimum turning radius of the munition is large in relation to the search area, then each of these

tasks will likely be performed by a different vehicle. The coupling in this scenario is complex and requires

that each member of the team knows the intentions and flight paths of all the other members of the team.

D. Dynamic Coupling

When the vehicles are coupled through physical interactions we call it dynamic coupling. The coupling

in these systems can be either local or full coupling. For example, in close-formation flight of aircraft,

the aerodynamic coupling that exists is local in that it affects those aircraft in the immediate wake of
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a leading aircraft. Those aircraft on the outer edges of the formation are not affected by those in the

center of the formation. An example that exhibits full coupling is that of a robot team attempting to

cooperatively carry a large rigid object. The forces and motions imposed by a single robot are felt by all

other robots carrying the object. Dynamic coupling can also be imposed algorithmically though through

the presence of virtual objects and leaders (c.f. [35]).

Although the physics of dynamic coupling can be quite complex, there is one significant advantage

when the actions of one agent are captured directly in the equations of motion describing other agents.

These systems can be treated as one large system by combining their equations of motion. In this

way, these large systems are amenable to control theoretic approaches. With one model to characterize

the behavior and interaction of multiple agents, conventional single-agent approaches can be applied to

achieve cooperation.

III. A N APPROACH TODISTRIBUTED COOPERATIVECONTROL PROBLEMS

In this section we give an overview of our approach to cooperative control problems and illustrate it

with a simple example. The approach has been applied to problems with objective coupling [30], [49],

loose coupling [50], and dynamic coupling [52]. We will illustrate the main ideas through the use a

simple academic example.

Example Problem

Suppose that five vehicles are placed in assigned lanes as shown in Figure1. We will assume that the

lateral position of the vehicles are maintained by an on-board controller, and that the longitudinal position

yi of each vehicle is governed by the dynamicsẏi = ui. The vehicles start at different longitudinal

positions in the lane. The cooperation goal is to maneuver the vehicles so that they proceed along a

uniform front at a constant known velocityv as shown in Figure1.

A. Cooperation Constraints and Objectives.

The first step in our approach is to identify and quantify the cooperation constraint and the co-

operation objective. The cooperation constraint is a formal definition of the team goal and indicates

exact conditions when cooperation is achieved. More precisely, ifxi is the situation state of theith

vehicle andui is the decision variable, then the cooperation constraint is a positive definite mapping

Jconstraint(x1, u1, x2, u2, . . . , xN , uN ) that is identically zero when cooperation is achieved. In our example
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Fig. 1. A team of vehicles are tasked to proceed along a uniform front at a constant velocity.

problem, ifN is the number of agents then a possible cooperation constraint is the mapping

Jconstraint=
1
2

N∑

i=1

N∑

j=1

(yi − yj)2, (1)

which is identically zero whenyi = yj . Note in the example problem, that if the team is closely, but not

precisely, aligned, that the team may still be considered to be in cooperation. WhenJconstraint< ε we say

that the team has achievedε-cooperation.

For a given world situation stateX = {x1, . . . , xN} there may be many different decision variables

U = {u1, . . . , uN} that achieveε-cooperation. In addition, there may be auxiliary objectives that we

would like to minimize. For instance, in the example problem we may also want to minimize overall fuel

expenditure. To capture these auxiliary objectives we introduce a positive definite functionJobjective(X ,U)

that quantifies these objectives. This function is called the coordination objective [30]. In our example

problem, a possible coordination objective is given by the linear quadratic regulator equation [53]

Jobjective=
N∑

i=1

∫ ∞

t
q(yi(τ)− θ∗(τ))2 + r(ui(τ)− v)2 dτ,

whereq andr are positive constants, and whereθ∗ is the position of the uniform front.

It is often the case that the primary goal is to effect cooperation in a team without an auxiliary

cooperation objective. In that case, there is not a cooperation objective and the algorithms focus on

satisfying the cooperation constraint.
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B. Coordination Variables and Coordination Functions

The second step in our approach is to determine the information that must be shared to achieve

cooperation and to organize that into a single vector called the coordination variable. We will letθ∗

denote the coordination variable. The philosophy is to distill the essentials of the cooperation problem

to a set of parameters that, if known by every agent in the group, can be used to select the decision

variable so that the cooperation constraint is achieved. In the example problem, if every vehicle knows

the desired position of the front, then it can regulate its position to align with the front. Therefore, let

θ∗ be the desired position of the uniform front. In the example problem, we will assume thatθ∗ evolves

according to the equation

θ̇∗ = v.

Our method assumes that the cooperation constraint can be written as a function of the coordination

variable. Note that for our example problem, the cooperation constraint given in Equation (1) can be

bounded by a function of the coordination variableθ∗, as

Jconstraint≤ 1
2

N∑

i=1

N∑

j=1

[
(yi − θ∗)2 + (yj − θ∗)2

]
< ε.

To facilitate minimization of the auxiliary cooperation objective subject to the cooperation constraint,

we desire to write the cooperation objective in terms ofθ∗. To this end, we assume that the cooperation

objective can be expressed as a convex function of myopic objective functions for each vehicle that

depend only on the situation state and decision variable of that vehicle, and the coordination variable.

This myopic objective function is called the coordination function [30] and is denotedJcf,i(xi, ui, θ
∗).

In our example, we have

Jobjective=
N∑

i=1

Jcf,i.

The coordination function parameterizes the effect of the coordination variable on the objectives of each

agent, i.e. the coordination function describes how the myopic objective of each agent changes with

changes in the coordination variable. In the example problem we have

Jcf,i =
∫ ∞

t
q(yi(τ)− θ∗(τ))2 + r(ui(τ)− v)2 dτ. (2)

Posing the cooperation problem in terms of coordination variables and coordination functions will

usually reduce the dimensionality of the problem. The example problem is already a scalar problem and

so the dimensionality has not been reduced.
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C. Centralized Cooperation Scheme

Given the terminology introduced in the previous two sections, we can pose the cooperation problem

as the following optimization problem:

θ∗ =arg min

{
lim
t→∞

N∑

i=1

Jcf,i(θ; xi, ui)

}
(3)

subject to: lim
t→∞Jconstraint(θ;X ,U) < ε

A fundamental part of our approach to cooperative control is the design of acentralizedstrategy that

solves this optimization problem. Centralized strategies are usually easier to design than decentralized

strategies. (Note that the centralized algorithm will be problem dependent.) In the process of solving

problem (3) the centralized algorithm produces a decision variable for theith vehicle denoted [30]

ui = f †i (θ∗, xi), (4)

where we assume thatf †i is continuous inθ∗. Equations (3) and (4) represent what we term thecooperation

algorithm.

For the example problem, the centralized solution requires that each vehicle knows the position of the

front θ∗(t). Accordingly, the vehicles implement the control law

ui = v + k(θ∗ − yi),

where k =
√

q/r is chosen to minimize the coordination function given in Equation (2). Given that

θ̇∗ = v, it is straightforward to show that using this strategy yieldsyi(t) → θ∗(t) for eachi = 1, . . . , N ,

which implies that

lim
t→∞Jconstraint→ 0,

i.e., the cooperation constraint is satisfied for everyε. Figure2 shows a simulation plot of the centralized

solution wherev = 0.1 andk = 1.

D. Consensus Building

The final step in our approach is to use consensus schemes to decentralize the cooperation algorithm.

Multiple vehicle cooperation requires communication between vehicles. In real-world environments the

communication links will be noisy and non-persistent, and the communication topology will be dynam-

ically changing and unknown to each team member. Therefore centralized solutions are rarely feasible.

The key insight is that if each agent locally instantiates the cooperation algorithm, and the inputs to
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Fig. 2. Centralized solution to the example problem. The position of the uniform front is transmitted to all vehicles from a

centralized location.

each local instantiation are identical, then assuming that the algorithm is deterministic, it will produce

identical outputs on each vehicle. However, if the local inputs are different, than each vehicle will compute

a different instantiation of the coordination variable which we label asθi. Therefore, from Equation (4)

we see that the decision variable for theith vehicle is given by

ui = f †i (θi, xi).

Sincef †i is continuous,f †i (θi) → f †i (θ∗) as θi → θ∗. Therefore, the objective of the consensus algo-

rithm is to ensure thatθi → θj for every i, j despite noisy communication channels and time-varying

communication topologies.

Our approach to consensus building is built on the intuitive notion of compromise. Each agent adjusts

its instantiation ofθi to be a weighted average of those agents with whom it communicates[54], [49].

For continuous-time systems the consensus strategy is given by

θ̇i =
n∑

j=1

gij(t)Kij(t) ((θj + νij)− θi) , (5)

wheregij(t) is one if there is a communication channel from thejth vehicle to theith vehicle at timet

and zero otherwise,Kij(t) is a time-varying weighting matrix, andνij is the communication noise. For
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discrete-time systems, the consensus strategy is given by

θi[n + 1] = θi[n] +
n∑

j=1

gij [n]Kij [n] ((θj [n] + νij [n + 1])− θi[n]) , (6)

wheren is the sample index, and
∑n

j=1 gij [n]Kij [n] = 1 for eachn. In [49] we have shown the following

result.

Theorem 3.1:Assume that the communication noise is zero. If there exist infinitely many consecutive

uniformly bounded time intervals such that the union of the communication graph across each interval

has a spanning tree, then Equation (5) guarantees thatθi(t) → θj(t) and Equation (6) guarantees that

θi[n] → θj [n] asymptotically.

The conditions for consensus in Theorem3.1 are surprisingly mild. In essence the theorem states that

if the agents communicate with other agents sufficiently often, that all vehicles will come into agreement.

Theorem3.1 guarantees consensus in the absence of communication noise. If communication noise is

present in the system then we need to show thatε-consensus is achieved, i.e.,

lim
t→∞

∑

ij

‖θi(t)− θj(t)‖ < ε.

To that end we stack the local instantiation of the coordination variables asθ = (θT
1 , . . . , θT

N )T and the

noise vector asν = (νT
11, . . . , ν

T
NN )T and write Equation (5) as

θ̇ = A(t)θ + B(t)ν. (7)

In [49] we have shown that Equation (7) is input-to-state stable which implies that the consensus error

is uniformly bounded by a gain times the power in the communication noise.

A fundamental result in nonlinear control theory is that the cascade of two input-to-state stable systems

is also input-to-state stable [55]. Consider the control diagram shown in Figure3. The consensus algorithm

on each vehicle is input-to-state stable from the communication noise to the consensus error. Therefore,

if the cooperation algorithm is input-to-state stable from the consensus error to the cooperation con-

straint, then the cascade system is input-to-state stable from the communication noise to the cooperation

constraint: implying thatε-cooperation is achieved for low-enough levels of communication noise.

The application of the consensus strategy given in Equation (5) to the example problem implies that

each vehicle updates its coordination variable according to

θ̇i = v + α
∑

j 6=i

gij(t)(θj − θi).
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Fig. 3. Cascade system where the output of the consensus building mechanism drives the coordination algorithm which uses

feedback from the agent to achieve coordination.

Each vehicle then implements the modified control law

ui = f †i (θi, yi)
4
= v + k(θi − yi),

wherek can be chosen to minimize the modified coordination function

Jcf,i =
∫ ∞

t
q(yi(τ)− θi(τ))2 + r(ui(τ)− v)2 dτ. (8)

Since the system
d

dt
(yi − θi) = −k(yi − θi) + kνij

is input-to-state stable, we are guaranteed to achieveε-cooperation. Note that since each vehicle tracks

its own notion of the front in an optimal manner (with respect to Equation (8)), this does not imply that

the overall team has optimal performance. In fact, centralized solutions that minimize the coordination

function will always have better performance than decentralized solutions. Figure4 shows a simulation

plot of the decentralized solution wherev = 0.1 andk = 1 and the standard deviation of the noise on the

communication channels isσ = 0.1. The first subplot shows the evolution of the coordination variables.

The second subplot shows the evolution of the longitudinal position of the vehicles, and the third subplot

shows the number of unidirectional communication links that are active in the network as a function of

time. Note that updates ofθi only occur when theith vehicle is communicating with another vehicle.

Despite the low levels of communication, the coordination constraint is still satisfied.
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Fig. 4. Decentralized solution to Example 1. A consensus algorithm is used to negotiate a common position of the uniform

front despite low levels of communication between vehicles.

IV. A PPLICATIONS OF THEMETHODOLOGY

We have applied the approach of SectionIII to a variety of problems. To demonstrate the applicability

of the approach we provide a brief sketch of some of these applications.

A. Spacecraft Formation Flying

Numerous space-based observation applications have been proposed that utilize spacecraft flying in

formation to cooperatively sense objects of interest [35], [56], [57], [58], [59]. In this illustrative example,

we consider a formation of spacecraft that synthesize a space-based interferometer to image celestial

objects. To image objects, the spacecraft must maintain a tight formation and the formation must be able

to point at the objects to be imaged. Under the assumption that the formation becomes disabled when any

one of the spacecraft exhausts its fuel supply, it is important to equalize the fuel levels of the spacecraft

in the formation as the formation reorients to point at various objects. By so doing, the useful life of the

formation is maximized. For a formation undergoing pointing rotations, the rate of fuel consumption for

each spacecraft will be influenced by their distance from the center of rotation. This scenario is depicted

in Figure5 and described in detail in [60], [61].

This problem can be formulated as a cooperative control problem where the cooperation constraint,

Jconstraint, is to maintain the formation and the cooperation objective,Jobjective, is to equalize fuel levels
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Fig. 5. Spacecraft formation rotation maneuver.

across the formation. Utilizing the mathematical framework described in SectionIII , the coordination

variable,θ∗, is the center of rotation for the formation. The situation statexi is the formation shape, the

fuel levels for each spacecraft, the pointing directions, and the rotation rate. The decision variableui is

the trajectory they fly during transition between pointing directions. The coordination variable (center of

rotation) is functionally dependent on the decision variable (trajectory arc flown by the spacecraft). The

coordination function,Jcf,i expresses the fuel expenditure rate as a function of the rotation center location.

With coordination function information from each spacecraft, a rotation center for the formation can be

selected that will equalize the fuel at the completion of the formation maneuver thereby minimizing

the cooperation objective. As each spacecraft flies circular arcs about the same center of rotation with

the same angular rate, the formation will be maintained and the cooperation constraint will be satisfied.

Consensus strategies can be used to ensure a robust decentralized implementation of the algorithm.

B. Cooperative Timing

Cooperative timing tasks for UAVs are of interest in many military missions. A simple example of this

is shown in Figure6 where several UAVs are spatially distributed over a wide area. The goal is for the

UAVs to arrive at their target simultaneously (or perhaps with a specified time spacing), while avoiding

threats and terrain-based obstacles [30]. We assert that cooperation is achieved if the simultaneous arrival

constraint is satisfied and that the quality of the cooperation is measured by the degree to which threats

and obstacles are avoided.

This problem can be placed in the cooperative control framework of SectionIII by defining the arrival

February 28, 2005 DRAFT



PROCEEDINGS OF THE IEEE. SUBMITTED FOR REVIEW. 17

target

threats

obstacle

target

threats

obstacle

Fig. 6. Cooperative timing scenario where multiple vehicles must maneuver through a threat and obstacle field to rendezvous

at a target simultaneously.

time as the coordination variable,θ∗. As expected the arrival time for each vehicle is a function of the

situation statexi and the decision variableui. In this case the situation state describes the location of

threats and terrain obstacles as well as the location of the target. The decision variable is the trajectory

that is flown, which can be represented by a set of waypoints and a flight velocity. The coordination

function Jcf,i for each vehicle describes the threat and obstacle exposure it faces versus the arrival

times that it can achieve [30]. The cooperation constraintJconstraint requires that all vehicles arrive at the

target simultaneously, which is implicitly achieved through the selection of a team-optimal coordination

variableθ∗. The coordination variable is chosen to minimize the cooperation objectiveJobjective, which is

the maximum threat cost faced by any team member.

C. Cooperative Search

Another example of cooperative control that is amenable to our formulation is that of cooperative

search. In this problem a team of UAVs are to fly in a loose echelon formation with forward-looking

sensors scanning for observation targets and hazards [50]. The UAVs are required to stay close enough to

their neighbors to maintain communications, but must also stay far enough apart to avoid colliding with

one another. Individually, the UAVs have the objective of observing as many targets as possible while

avoiding the hazards as they fly over the region of interest.

In this problem the cooperation constraintJconstraint is to maintain the loose formation by staying

within communication range of neighboring UAVs, but not crossing paths with neighboring UAVs. The

cooperation objectiveJobjective is to maximize the number of targets observed by the team as it traverses

February 28, 2005 DRAFT



PROCEEDINGS OF THE IEEE. SUBMITTED FOR REVIEW. 18

observation
targets

hazards

Fig. 7. Cooperative search scenario where multiple vehicles must maneuver around threats and pass over observation targets

while maintaining communication connectivity and avoiding collisions.

the region of interest. The situation statexi is comprised of the observation target locations, the hazard

locations, and the formation row ordering of the UAVs. The decision variableui is the trajectory that the

ith UAV flies over the observation region. The coordination variable for each vehicle is the lateral range

that it traverses as it flies its chosen trajectory. The coordination function expresses the number of targets

observed as a function of the lateral range (minimum and maximum displacement laterally). Based on

coordination function information, lateral ranges can be determined for each UAV that maximize the

number of targets viewed and satisfy the communication and collision avoidance constraint. From the

lateral range information, each UAV can choose its own trajectory to maximize the number of targets

that it views.

D. Cooperative Fire Surveillance

The final example that we will consider is cooperative fire surveillance. As shown in Figure8, multiple

UAVs are distributed around the periphery of a growing forest fire [17]. The goal for the team is to

monitor and track the periphery of the growing fire and to communicate the coordinates of the periphery

to fire fighters on the ground. The UAVs have a limited communication range that requires them to work

cooperatively to relay fire periphery information to the base station on the ground. In this scenario, each

UAV patrols a segment of the periphery. When it encounters another UAV, it exchanges information and

reverses direction until it encounters another UAV or arrives at a predetermined rendezvous point.

In this problem, the situation statexi describes the fire periphery and ground station location. The
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Fig. 8. Cooperative fire surveillance scenario.

decision variableui is the next rendezvous point. The cooperation constraintJconstraint is to equalize the

path lengths flown by the UAVs around the periphery of the fire. The cooperation objectiveJobjective is

to minimize the latency between the time that periphery information is sensed and the time that it is

received at the ground station. The coordination variableθ∗ is the length of the path last flown, which

is a function of the situation state and the decision variable. The coordination functionJcf,i models the

contribution to communication latency as a function of segment length. In this particular problem, the

cooperation constraint and the cooperation objective are coupled. As shown in [17], if the cooperation

constraint is satisfied (by equalizing the path lengths), then the cooperation objective will be minimized

(communication latency will be minimal). Because of this coupling, it is not necessary to explicitly share

coordination functions among vehicles.

V. DECENTRALIZED COOPERATIVESURVEILLANCE

The objective of this section is to illustrate the design methodology introduced in SectionIII through

a detailed example, and to demonstrate the effectiveness of the approach using high fidelity simulation

and flight tests of fixed-wing miniature air vehicles. The design problem centers on cooperative aerial

surveillance. We will consider two related variants of this problem. The first variant is persistent imaging,

depicted in Figure9, where a team ofN UAVs equipped with imaging senors is tasked to persistently

image a known target. If the field-of-view of the sensor is sufficiently small with respect to the turning

radius of the UAVs, the solution of this problem will require the team of UAVs to fly over the target

at regular intervals. The second variant of the cooperative aerial surveillance problem is cooperative
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Fig. 9. Persistent aerial surveillance. The UAVs are initially performing an auxiliary task. Upon command they coordinate

their action to fly over the target at fixed intervals of time.

identification where a team of UAVs is required to fly over a target simultaneously, but along different

approach angles. In the taxonomy introduced in SectionII , the decentralized aerial surveillance problems

are objectively coupled.

A. Solution Methodology

The first step in addressing the aerial surveillance problem is to identify the cooperation constraint. Let

ẑ represent the location of the target which we assume is known to every vehicle, and letzi(t) denote
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the location of theith vehicle at timet. The cooperation constraint is given by

Jconstraint(θ∗) =
N∑

i=1

‖zi(θ∗ + γi∆)− ẑ‖2 , (9)

where∆ is the desired spacing andγi = (k − 1) when theith vehicle is assigned thekth position in

the surveillance sequence. Note that ifJconstraint= 0 then the vehicles fly by the target location equally

spaced intervals∆ seconds apart.

In Equation (9), θ∗ is the time that the first vehicle passes over the target. It is clear that by increasing

the loiter time,θ∗ can be made arbitrarily large. Therefore, we need to introduce an auxiliary optimization

criteria that selects between the many possibilities forθ∗. Toward that end, we assume that a suitable

path planning algorithm is available for planning waypoint paths from the current location of the UAV

zi to the target̂z in a certain timeT . The algorithm will be denoted by the notation

W = planPath (zi, ẑ, T ).

In addition we assume a functionLength (W) that returns the path length ofW. The fuel expended in

traversing a path is approximated by

fuel = cfviLength (planPath (zi, ẑ, T )) ,

wherevi is the airspeed along the path andcf is a constant. Therefore, fuel will be minimized by selecting

the cooperation objective as

Jobjective(θ∗) =
N∑

i=1

cfviLength (planPath (zi(t0), ẑ, t0 + θ∗ + γi∆)) , (10)

wheret0 is the time at which the path planner is executed.

The second step is to make a suitable choice for the coordination variable. It is clear from the discussion

above, that the instant in time that the first vehicle passes over the target is a suitable coordination variable.

As seen in Equations (9) and (10) the cooperation constraint and the cooperation objective can be written

in terms of the coordination variable. The coordination function is given by

Jcf,i(θ∗) = cfviLength (planPath (zi(t0), ẑ, t0 + θ∗ + γi∆)) .

The third step is to devise a centralized cooperation algorithm that solves Equation (3). The formulation

of the path planning problem ensures that the cooperation constraint is trivially satisfied. The objective

function can be optimized with a Mixed Integer Linear Program (MILP) solver whereγi are integers

and θ∗ is real. As it turns out, this particular problem has sufficient structure that it admits an analytic
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solution [30]. Onceθ∗ has been determined (by a centralized unit) then, according to Equation (4) the

ith vehicle implements the path given by

ui = planPath (zi(t0), ẑ, t0 + θ∗ + γi∆). (11)

The final step is to decentralize the algorithm using a consensus scheme. To do so, letθi denote theith

vehicles instantiation of the coordination variableθ∗. Instead of Equation (11) the ith vehicle implements

ui = planPath (zi(t0), ẑ, t0 + θi + γi∆).

Given communication with the other vehicles, the coordination variableθi is then adjusted according to

the consensus dynamics given in Equation (5).

In the cooperative identification variant of this problem we desire all vehicles to arrive at the target

location simultaneously and at different approach angles. For this problem we set∆ = 0 and pass the

approach angle as an additional input to the path planning algorithm. In the next two sections we will

present simulation results for the cooperative identification problem and flight test results for the persistent

imaging problem.

B. High-Fidelity Simulation Results

To enable rapid prototyping of cooperative control algorithms, we have developed a high-fidelity

simulation environment for autonomous miniature air vehicles. The simulation environment consists of

two components. The first is a 6 DOF flight simulator with DEM terrain data and realistic wind models.

The second component is an autopilot module that executes the same code that is implemented on the

physical autopilot. The autopilot module connects to the same ground station software that is used to

fly the miniature air vehicles. A screen shot of the flight simulator and the Virtual Cockpit are shown in

Figure10.

The cooperative identification problem was simulated using four UAVs that were tasked to arrive at the

target simultaneously with arrival angles differing by ninety degrees. The average time to reach consensus

to within 0.02 units was 6.2 seconds where one communication packet per second was allowed to be

sent by each UAV to another UAV selected randomly from the team. Simulation results are shown in

Figure 11. Subplots (a) and (b) show the four UAVs loitering until the mission execution command is

issued at the end of subplot (b). The UAVs are all flying at distinct, pre-assigned altitudes to avoid

collision as they pass over the target. Subplots (c) and (d) show the UAVs executing the cooperative

identification mission.
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Fig. 10. Screen shot of the flight simulator (bottom left window in blue), and the virtual cockpit (background). The simulation

environment enables rapid prototyping of cooperative control problems for autonomous miniature air vehicles.

Twenty simulations of this scenario were executed with different initial conditions and different wind

conditions. The maximum time elapsed between arrival of the first plane at the target and the arrival

time of the last plane was 1.86 seconds, the minimum time was 0.02 seconds, and the average time

was 1.09 seconds. Figure12 plots the average distance from the target verses time for each UAV and

demonstrates the effectiveness of the approach.

C. Flight Test Results

During the past two years, BYU has developed a reliable and robust testbed for autonomous miniature

air vehicles [62], [63]. Figure13 shows the key elements of our testbed. The first frame shows BYU’s

Kestrel autopilot which is equipped with a Rabbit 3000 29 MHz processor, rate gyros, accelerometers,

absolute and differential pressure sensors, and GPS. The autopilot measures only1.5× 2.0× 0.75 inches

and weighs18 grams. The second frame in Figure13 show the airframes used for the flight tests reported

in this paper. The airframe is a 48 inch wingspan Zagi XS EPP foam flying wing that was selected for

its durability and adaptability to different mission scenarios. Embedded in the airframe are the autopilot,

batteries, a 1000 mW, 900 MHz radio modem, a GPS receiver, video transmitter, and a small analog

camera. The third frame in Figure13 shows the ground station components. A laptop runs the Virtual
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Fig. 11. Simulation results of a cooperative identification mission. In subplot (a) the UAV are loitering around a specified

waypoint. In subplot (b) the mission execution command is issued and the UAVs plan their approach trajectories. Subplots (c)

and (d) demonstrate the execution of the mission. The UAV are flying at distinct altitudes.

Cockpit software that interfaces through a communication box to the UAVs. An RC transmitter is used

as a stand-by fail-safe mechanism to facilitate safe operations.

Flight tests were performed using three UAVs that were commanded to persistently image a target with

fixed intervals of∆ = 10 seconds. The three UAVs were initially commanded to loiter at specified GPS

coordinates. The UAVs were then commanded to perform a persistent imaging mission and then return

to their loiter coordinates. The UAVs were then commanded to execute the same mission a second time,

after which they returned to their loiter patterns. Our current implementation does not correct for tracking

errors due to wind disturbances, the inability of the vehicles to track sharp corners in the waypoint paths,

or airspeed sensing inaccuracies. The weather conditions had a significant impact on the results of the
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Fig. 12. A plot of the average distance from the target verses time, for the simulated cooperative identification problem.

Fig. 13. Hardware platform used to obtain experimental results. The first frame shows the Kestrel autopilot designed at BYU.

The second frame shows the airframes used for this study. The third frame shows the ground station components for our testbed.

test. On the day of the flight test, the winds were 6–8 m/sec or approximately 30 to 50 percent of the

UAV airspeed.

The cooperation results of the flight tests were as follows. During the execution of the first mission the

actual fly-by intervals were∆1 = 25 seconds and∆2 = 6 seconds. During the execution of the second

mission the actual fly-by intervals were∆1 = 10 seconds and∆2 = 9 seconds.

Plots of the telemetry data are shown in Figure14. The imaging target is depicted by a green square.

The magenta triangles indicate the fly through entry and exit points and the circles are the loiter points

for the UAVs. In subplot (a) the UAV are loitering about their GPS locations. The mission command is
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executed just prior to subplot (b) which shows the UAVs en route to the entry waypoint. Subplots (c), (d),

and (e) show the arrival of the first, second, and third UAVs at the target. After completing the mission,

the vehicles returned to their loiter position as shown by subplot (f). A plot of the distance to the target

Fig. 14. Telemetry data for the flight tests of the persistent imaging mission (second pass). Figure (a) shows the UAV loitering

before the mission command is executed. Figure (b) shows the UAVs en route to the entry waypoint. Figures (c), (d), and (e)

show the UAVs transition through the imaging target. Figure (f) shows the UAVs returning to their loiter points.

verses time for the flight tests is given in Figure15

The cause of the large timing interval error in the first mission execution was due to the high wind

speeds present during the test. Both UAV 2 and UAV 3 were headed upwind while UAV 1 was flying

downwind when the mission execute commanded was issued. UAVs 2 and 3 took significantly longer

to reach their first waypoint than did UAV 1 which accounts for the 25 second interval between UAV 1

and UAV 2. The 6 second interval between UAVs 2 and 3 is reasonable due to the wind conditions.
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Fig. 15. A plot of the distance from the target verses time, for the second pass of the persistent imaging flight test.

The second fly-by yielded better results because the cooperative fly-by algorithm was executed when all

three vehicles were flying in a crosswind direction. With all of the vehicles in a similar wind condition

initially, the intervals between arrival times were much closer to desired.

While these results are promising, we are pursuing several enhancements that will improve the ro-

bustness and practical feasibility of the approach. The first enhancement is wind compensation in our

trajectory tracker. The second enhancement is to base the trajectory generator on predicted airspeed

verses ground speed. The third enhancement is to introduce feedback at the mission level by periodically

executing the cooperative control algorithm during execution.

VI. CONCLUSIONS

In this paper we have provided an overview of a general design methodology for multiple vehicle

decentralized cooperative control problems. The methodology consists of four main design steps. The

first step is to quantify the meaning ofcooperationas a functionJconstraint that is a positive definite

function of the situation state and the decision variables. In addition, auxiliary optimization criteria may

be encoded as a positive definite functionJobjective called the cooperation objective function. The second

step is to isolate the information that is essential for pair-wise coordination and to call this information the

coordination variableθ∗. The cooperation constraintJconstraint and the cooperation objectiveJobjective are

then formulated in terms of the coordination variables. The third step is to design a centralized cooperation
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algorithm that solves the optimization problem given in Equation (3) and determines a decision variable

as in Equation (4). The cooperation algorithm must be designed so that the mapping from perturbations

in the coordination variable to the cooperation constraint are input-to-state stable. The final step is to

instantiate the cooperation algorithm on every vehicle and then implement a consensus seeking strategy

that guarantees that the team will come into agreement on the coordination variable if there is sufficient

communication.

We have illustrated the approach with a simple example and by sketching the application of other

cooperation problems that we have addressed. We also described in some detail the application to

cooperative aerial surveillance using fixed-wing miniature UAVs and provided hardware results.

While the approach described in this paper shows promise, there are numerous problems that remain

to be addressed. For example, the control architecture shown in Figure3 is a cascade structure between

the consensus and the cooperation algorithm. If feedback from the cooperation algorithm is allowed

to influence the consensus scheme, then the appropriate conditions on the consensus and cooperation

algorithms remain to be determined. Another issue that has not been addressed is consensus algorithms

where the coordination variable is only valid over finite sets. This problem arises in cooperation timing

problems where the set of feasible paths for each UAV limits the range of possible rendezvous times. In

all of the cooperation problems that we have addressed to this point, the coordination variable is assumed

to be defined on an infinite field. However, there are numerous cooperation problems where the essential

information is integer (e.g., vehicle A is in the team or not). Therefore the consensus strategies need to

be extended to integer fields.

REFERENCES

[1] S. Akella and S. Hutchinson, “Coordinating the motions of multiple robots with specific trajectories,” inProceedings of

the IEEE International Conference on Robotics and Automation, Washington DC, May 2002, pp. 624–631.

[2] W. Blake and D. Multhopp, “Design, performance and modeling considerations for close formation flight,” inProceedings

of the AIAA Navigation, Guidance and Control Conference, Boston, MA, August 1998, pp. 476–486, aIAA-98-4343.

[3] D. F. Chichka and J. L. Speyer, “Solar-powered, formation-enhanced aerial vehicle systems for sustained endurance,” in

Proceedings of the American Control Conference, Philadelphia, PA, June 1998.

[4] A. W. Proud, M. Pachter, and J. J. D’Azzo, “Close formation flight control,” inProceedings of the AIAA Guidance,

Navigation, and Control Conference and Exhibit. Portland, OR: American Institute of Aeronautics and Astronautics,

August 1999, pp. 1231–1246, paper no. AIAA-99-4207.

[5] M. Pachter, J. J. D’Azzo, and A. W. Proud, “Tight formation flight control,”AIAA Journal of Guidance, Control and

Dynamics, vol. 24, no. 2, pp. 246–254, March–April 2001.

February 28, 2005 DRAFT



PROCEEDINGS OF THE IEEE. SUBMITTED FOR REVIEW. 29

[6] C. Schumacher and S. N. Singh, “Nonlinear control of multiple UAVs in close-coupled formation flight,” inAIAA Guidance,

Navigation, and Control Conference. Denver, CO: American Institute of Aeronautics and Astronautics, August 2000,

paper no. AIAA 2000-4373.

[7] M. R. Anderson and A. C. Robbins, “Formation flight as a cooperative game,” inProceedings of the AIAA Guidance,

Navigation and Control Conference. Boston, MA: American Institute of Aeronautics and Astronautics, August 1998, pp.

244–251, aIAA-98-4124.

[8] S. T. Pledgie, Y. Hao, A. M. Ferreira, S. K. Agrawal, and R. Murphey, “Groups of unmanned vehicles: Differential flatness,

trajectory planning, and control,” inProceedings of the IEEE International Conference on Robotics and Automation,

Washington DC, May 2002, pp. 3461–3466.

[9] F. Giulietti, L. Pollini, and M. Innocenti, “Autonomous formation flight,”IEEE Control Systems Magazine, vol. 20, no. 6,

pp. 34–44, December 2000.

[10] J. A. Fax and R. M. Murray, “Graph Laplacians and stabilization of vehicle formations,” Engineering and Applied Science,

California Institute of Technology, Pasadena, CA 91125, Tech. Rep. CDS Technical Report 01-007, July 2001,http:

//www.cds.caltech.edu/∼murray/cgi-bin/htdblist.cgi?papers/config.db.

[11] ——, “Graph Laplacians and stabilization of vehicle formations,” inIFAC World Congress, Barcelona, Spain, 2002.

[12] P. Chandler, S. Rasumussen, and M. Pachter, “UAV cooperative path planning,” inProceedings of the AIAA Guidance,

Navigation, and Control Conference, Denver, CO, August 2000, AIAA Paper No. AIAA-2000-4370.

[13] T. W. McLain and R. W. Beard, “Coordination variables, coordination functions, and cooperative timing missions,” in

Proceedings of the American Control Conference, Denver, CO, June 2003, pp. 296–301.

[14] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-task allocation and path planning for cooperating UAVs,”

in Cooperative Control: Models, Applications and Algorithms. Conference on Coordination, Control and Optimization,

November 2001, pp. 1–19.

[15] R. W. Beard, T. W. McLain, M. Goodrich, and E. P. Anderson, “Coordinated target assignment and intercept for unmanned

air vehicles,”IEEE Transactions on Robotics and Automation, vol. 18, no. 6, pp. 911–922, December 2002.

[16] T. McLain and R. Beard, “Cooperative rendezvous of multiple unmanned air vehicles,” inProceedings of the AIAA

Guidance, Navigation and Control Conference, Denver, CO, August 2000, paper no. AIAA-2000-4369.

[17] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. McLain, S.-M. Li, and R. Mehra, “Cooperative forest fire surveillance

using a team of small unmanned air vehicles,”International Journal of Systems Sciences, in review, available at Technical

Report available at https://dspace.byu.edu/handle/1877/55.

[18] D. B. Kingston, R. W. Beard, and D. W. Casbeer, “Decentralized perimeter surveillance using a team of

uavs,” in Proceedings of the AIAA Conference on Guidance, Navigation, and Control, in review, available at

https://dspace.byu.edu/handle/1877/57].

[19] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-task allocation and path planning for cooperating UAVs,”

in Cooperative Control: Models, Applications and Algorithms. Kluwer Academic Publishers, January 2003, ch. 2.

[20] A. Richards, J. Bellingham, M. Tillerson, and J. How, “Coordination and control of UAVs,” inProceedings of the AIAA

Guidance, Navigation, and Control Conference, Monterey, CA, August 2002, pp. AIAA–2002–4588.

[21] M. Alighanbari, Y. Kuwata, and J. How, “Coordination and control of multiple UAVs with timing constraints and loitering,”

in Proceedings of the American Control Conference, June 2003, pp. 5311–5316.

[22] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile autonomous vehicles,”Journal of Guidance,

Control, and Dynamics, vol. 25, no. 1, pp. 116–129, January-February 2002.

February 28, 2005 DRAFT

http://www.cds.caltech.edu/~murray/cgi-bin/htdblist.cgi?papers/config.db
http://www.cds.caltech.edu/~murray/cgi-bin/htdblist.cgi?papers/config.db


PROCEEDINGS OF THE IEEE. SUBMITTED FOR REVIEW. 30

[23] N. Faiz, S. K. Agrawal, and R. M. Murray, “Trajectory planning of differentially flat systems with dynamics and

inequalities,”AIAA Journal of Guidance, Control and Dynamics, vol. 24, no. 2, pp. 219–227, March–April 2001.

[24] O. A. Yakimenko, “Direct method for rapid prototyping of near-optimal aircraft trajectories,”AIAA Journal of Guidance,

Control and Dynamics, vol. 23, no. 5, pp. 865–875, September-October 2000.

[25] G. Yang and V. Kapila, “Optimal path planning for unmanned air vehicles with kinematic and tactical constraints,” in

Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, 2002, pp. 1301–1306.

[26] E. P. Anderson and R. W. Beard, “An algorithmic implementation of constrained extremal control for UAVs,” inProceedings

of the AIAA Guidance, Navigation and Control Conference, Monterey, CA, August 2002, aIAA Paper No. 2002-4470.

[27] G. Inalhan, D. M. Stipanovic, and C. J. Tomlin, “Decentralized optimization with application ot multiple aircraft

coordination,” inProceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, 2002, pp. 1147–1155.

[28] S. Sastry, G. Meyer, C. Tomlin, J. Lygeros, D. Godbole, and G. Pappas, “Hybrid control in air traffic management systems,”

in Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, 1995, pp. 1478–1483.

[29] J. K. Howlett, “Path planning for sensing multiple targets from an aircraft,” Master’s thesis, Mechanical Engineering,

Brigham Young University, Provo, Utah 84602, 2002.

[30] T. W. McLain and R. W. Beard, “Coordination variables, coordination functions, and cooperative timing missions,”AIAA

Journal of Guidance, Control and Dynamics, vol. 28, no. 1, pp. 150–161, January 2005.

[31] W. Kang and H.-H. Yeh, “Coordinated attitude control of multi-satellite systems,”International Journal of Robust and

Nonlinear Control, vol. 12, pp. 185–205, 2002.

[32] W. Kang, N. Xi, and A. Sparks, “Formation control of autonomous agents in 3D workspace,” inProceedings of the IEEE

International Conference on Robotics and Automation, San Francisco, CA, April 2000, pp. 1755–1760.

[33] S. Sheikholeslam and C. A. Desoer, “Control of interconnected nonlinear dynamical systems: The platoon problem,”IEEE

Transactions on Automatic Control, vol. 37, no. 6, pp. 806–810, June 1992.

[34] P. K. C. Wang and F. Y. Hadaegh, “Coordination and control of multiple microspacecraft moving in formation,”The

Journal of the Astronautical Sciences, vol. 44, no. 3, pp. 315–355, 1996.

[35] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A feedback architecture for formation control,”IEEE Transactions on Control

Systems Technology, vol. 9, no. 6, pp. 777–790, November 2001.

[36] J. Lawton and R. Beard, “A projection approach to spacecraft formation attitude control,” in23rd Annual AAS Guidance

and Control Conference, Breckenridge, Colorado, February 2000, paper no. AAS 00-011.

[37] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coordinated control of groups,” inProceedings of

the IEEE Conference on Decision and Control, Orlando, Florida, December 2001, pp. 2968–2973.

[38] D. J. Stilwell and B. E. Bishop, “Platoons of underwater vehicles,”IEEE Control Systems Magazine, vol. 20, no. 6, pp.

45–52, December 2000.

[39] R. Emery, K. Sikorski, and T. Balch, “Protocols for collaboration, coordination and dynamic role assignment in a robot

team,” inProceedings of the IEEE International Conference on Robotics and Automation, Washington DC, May 2002, pp.

3008–3015.

[40] W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and consensus building in multiple vehicle systems,”

in Cooperative Control, ser. Lecture Notes in Control and Information Systems, V. Kumar, N. Leonard, and A. S. Morse,

Eds. Block Island, RI: Springer-Verlag, 2004, vol. 309, pp. 171–188.

[41] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,”IEEE Transactions on

Automatic Control, vol. 49, no. 9, pp. 1465–1476, September 2004.

February 28, 2005 DRAFT



PROCEEDINGS OF THE IEEE. SUBMITTED FOR REVIEW. 31

[42] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,”

IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, June 2003.

[43] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,”

IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, September 2004.

[44] L. Moreau, “Stability of multi-agent systems with time-dependent communication links,”IEEE Transactions on Automatic

Control, vol. 50, no. 2, pp. 169–182, February 2005.

[45] Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups of mobile autonomous agents,”IEEE Transactions

on Automatic Control, vol. 49, no. 4, pp. 622–629, 2004.

[46] W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and consensus building in multiple vehicle systems,”

in Cooperative Control: A Post-Workshop Volume 2003 Block Island Workshop on Cooperative Control, V. Kumar, N. E.

Leonard, and A. S. Morse, Eds., vol. 309. Springer-Verlag Series: Lecture Notes in Control and Information Sciences,

2004, pp. 171–188.

[47] W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems under dynamically changing interaction topologies,”

IEEE Transactions on Automatic Control, (to appear).

[48] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”Systems and Control Letters, vol. 53, pp. 65–78,

2004.

[49] W. Ren, R. W. Beard, and D. B. Kingston, “Kalman consensus strategies and their application to cooperative control,”

IEEE Transactions on Automatic Control, (in review), technical Report available at https://dspace.byu.edu/handle/1877/53.

[50] R. W. Beard and T. W. McLain, “Multiple UAV cooperative search under collision avoidance and limited range

communication constraints,” inProceedings of the IEEE Conference on Decision and Control, Maui, Hawaii, December

2003, pp. 25–30.

[51] C. Schumacher, P. R. Chandler, and S. J. Rasmussen, “Task allocation for wide area search munitions via network flow

optimization,” in Proceedings of the AIAA Guidance, Navigation and Control Conference, Montreal, Canada, 2001.

[52] W. Ren and R. W. Beard, “A decentralized scheme for spacecraft formation flying via the virtual structure approach,” in

Proceedings of the American Control Conference, Denver, CO, June 2003, pp. 1746–1751.

[53] F. L. Lewis, Optimal Control. New York: John Wiley and Sons, 1986.

[54] W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems under dynamically changing interaction topologies,”

IEEE Transactions on Automatic Control, (to appear).

[55] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.

[56] J. R. Carpenter, “Decentralized control of satellite formations,”International journal of Robust and Nonlinear Control,

vol. 12, pp. 141–161, 2002.

[57] A. Das, R. Cobb, and M. Stallard, “TECHSAT 21: A revolutionary concept in distributed space based sensing,” in

Proceedings fo the Guidance, Navigation and Control Conference. Boston, MA: American Institute of Aeronautics

and Astronautics, August 1998, pp. 1–6, paper no. AIAA-98-5255.

[58] V. Kapila, A. G. Sparks, J. M. Buffington, and Q. Yan, “Spacecraft formation flying: Dynamics and control,”Journal of

Guidance, Control, and Dynamics, vol. 23, no. 3, pp. 561–564, May-June 2000.

[59] C. A. Bailey, T. W. McLain, and R. W. Beard, “Fuel saving strategies for dual spacecraft interferometry missions,”Journal

of the Astronatical Sciences, vol. 49, no. 3, pp. 469–488, July-September 2001.

[60] R. W. Beard, T. W. McLain, and F. Y. Hadaegh, “Fuel optimization for constrained rotation of spacecraft formations,”

AIAA Journal of Guidance, Control, and Dynamics, vol. 23, no. 2, pp. 339–346, March-April 2000.

February 28, 2005 DRAFT



PROCEEDINGS OF THE IEEE. SUBMITTED FOR REVIEW. 32

[61] R. W. Beard and F. Y. Hadaegh, “Fuel optimization for unconstrained rotation of spacecraft formations,”Journal of the

Astronautical Sciences, vol. 43, no. 3, pp. 259–273, July-December 1999.

[62] R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson, T. McLain, and M. Goodrich, “Autonomous

vehicle technologies for small fixed wing uavs,”AIAA Journal of Aerospace, Computing, Information, and Communication,

2005, (to appear).

[63] R. W. Beard, D. Lee, S. Thakoor, and S. Zornetzer, “A new approach to observation of descent and landing of

future mars mission using bioinspired technology innovations,”AIAA Journal of Aerospace Computing, Information, and

Communication, 2005, (to appear).

February 28, 2005 DRAFT


	Decentralized Cooperative Aerial Surveillance using Fixed-Wing Miniature UAVs
	Original Publication Citation
	BYU ScholarsArchive Citation

	I Introduction
	II Coupling in Cooperative Control Problems
	II-A Objective Coupling
	II-B Local Coupling
	II-C Full Coupling
	II-D Dynamic Coupling

	III An Approach to Distributed Cooperative Control Problems
	III-A Cooperation Constraints and Objectives.
	III-B Coordination Variables and Coordination Functions
	III-C Centralized Cooperation Scheme
	III-D Consensus Building

	IV Applications of the Methodology
	IV-A Spacecraft Formation Flying
	IV-B Cooperative Timing
	IV-C Cooperative Search
	IV-D Cooperative Fire Surveillance

	V Decentralized Cooperative Surveillance
	V-A Solution Methodology
	V-B High-Fidelity Simulation Results
	V-C Flight Test Results

	VI Conclusions
	References

