
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2011-06-01

BYU Indoor Flight System Circa June 2011 BYU Indoor Flight System Circa June 2011

John C. Macdonald

Robert Leishman

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Macdonald, John C. and Leishman, Robert, "BYU Indoor Flight System Circa June 2011" (2011). Faculty
Publications. 1301.
https://scholarsarchive.byu.edu/facpub/1301

This Report is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please
contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1301?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Indoor Navigation Baseline System Report - June 2011
John C. Macdonald Jr. and Robert Leishman

Abstract—This report documents the theory, implementation,
and performance of the baseline indoor navigation system as of
June 2011. This date was chosen for a report because it marks
the first time the HexaKopter flew without any direct input from
the motion capture system. There are many improvements yet
to be made in the performance of the system at this time, but it
flies. Capturing our understanding of our system as it currently
stands by means of this report should provide the basis for those
future improvements.

I. INTRODUCTION

Autonomous indoor flight in an unknown environment
presents several challenges. An appropriate vehicle must be
small and agile enough to maneuver in confined spaces. Due
to its size, such a vehicle will have limited payload capacity
for sensing and computing. The vehicle’s agility also poses
a problem: it will require an accurate navigation solution to
enable autonomous control. However, flying indoors without
prior knowledge of the environment prohibits reliance on GPS
or prior maps to aid the navigation solution. This leaves inertial
dead reckoning and simultaneous localization and mapping
(SLAM) as the only two options for solving the navigation
problem. Both of these approaches will be problematic. Inertial
guidance will suffer from the low quality inertial measurement
unit (IMU) the vehicle will be able to carry, and SLAM will be
impacted by the limited processing power available onboard.
In this report we present our work to date on solving this
problem.

Our current objective is to develop a baseline system for
testing the fundamental aspects of the problem. To do this we
plan to use a vehicle equipped with an IMU and a computer
flying inside our motion capture (MoCap) facility. MoCap
temporarily takes the place of exteroceptive sensors (e.g.
stereo camera, scanning laser range finder, etc.) and SLAM
algorithms by modeling their measurements with corrupted
and delayed MoCap data. Using this setup we can tune the
vehicle’s controller as well as refine the details of integrating
IMU-based and SLAM-based navigation information. Once
this system is working we can readily produce performance
bounds (e.g. maximum measurement error, maximum process-
ing delay, minimum update rate, etc.) that must be met by the
real sensors and SLAM algorithms.

We’ve made considerable progress toward completing this
baseline system. That progress is reported in the following
sections. In Section II we briefly discuss some related work
and then present the theory behind our approach to solving
the navigation problem. We discuss some details of how this
theory is implemented in Section III. We present our current
results in Section IV followed by a discussion in Section V of
some remaining steps needed to complete the baseline system
and prepare for future work. In Section VI we offer some
concluding thoughts.

II. BACKGROUND AND THEORY

A. Related Work

Multirotor aircraft have recently become popular research
platforms for indoor flight. These aircraft are useful for this
type of research because they are simple, relatively inexpen-
sive, easily repairable, and provide hover capability. However,
because of size, weight, and power (SWaP) limitations, these
aircraft are limited to a lower quality IMU and less onboard
processing power.

Despite these limitations, there have been a few successful
implementations of SLAM-based estimation and control on
multirotor aircraft. MIT’s Robust Robotics Group was the
among the first [1], [3]. To produce estimates quickly enough
for use within the control loop they used an extended Kalman
filter (EKF) to estimate the robot states from laser scan match-
ing and IMU updates at 30 Hz. Laser scans were also used in
a particle filter-based SLAM approach to correct drift at a rate
of 1 Hz. Another implementation was presented by Grzonka,
et al. [7]. They created an open source quadrotor SLAM
system also using a laser scanner and IMU. To simplify the
estimation, the states were partitioned. The autopilot estimated
and controlled roll and pitch based on IMU data. North, East,
and yaw were estimated with particle filter-based SLAM, and
height was estimated with an EKF based on portions of the
laser scan deflected toward the ground.

Laser scanners are popular sensors for SLAM implemen-
tations as they offer fast and accurate information. Yet for
a vehicle moving in six degrees of freedom (DOF), they
offer a more limited awareness of the vehicle’s immediate
surroundings. Other researchers have tried to use vision instead
of a laser scanner to navigate a multirotor aircraft indoors.
Blosch, et al. [5] used a single downward-looking camera
in a SLAM implementation that relies on computationally
expensive bundle adjustment to construct a map. They were
able to navigate with SLAM in the control loop through an
unknown environment. However, their approach requires some
non-trivial manual input due to scale and rotational drift in
their SLAM-generated map. Their controller also requires a
wired USB connection from the vehicle to a ground computer
to maintain a shorter and more deterministic communication
delay. Ahrens, et al. [2] used an EKF to predict states using
integrated IMU information. Updates were provided by a
forward-looking camera tracking visual landmarks. They were
able to demonstrate short flights in fairly controlled conditions
with the estimates in the control loop. They also mention that
without the camera updates, the state estimates diverged before
the aircraft could take off.

To control the fast dynamics of a rotorcraft, accurate esti-
mates of the aircraft states must be available at a sufficiently
high rate. In this paper, we outline a new estimation and con-

trol approach utilizing a better dynamic model for multirotor
aircraft. This new model, originally presented by Martin and
Salaun [9], includes terms for rotor drag. The rotor drag term
is key to providing a better estimator, especially for roll, pitch,
forward velocity and side velocity. We have worked to extend
this method by estimating states using an EKF to fuse IMU and
vision-based updates. Utilizing the more accurate rotorcraft
dynamic model allows more reliable estimates of the aircraft
states than can be done with the traditional approach, even
with relatively slow (about 40Hz) IMU updates. These better
estimates also allow for less frequent vision measurement
updates, which is helpful given the processing limitations of
the system.

B. Equations of Motion

The equations of motion below are taken, with only slight
deviations, from [9]. Those authors have taken an innovative
approach to multirotor dynamic modeling by including terms
for the rotor drag, or the aerodynamic terms proportional to
the propeller angular velocity multiplied by the forward or side
velocities of the aircraft. First the single propeller model is
stated and then the full hexacopter dynamic model is derived.

1) Single Propeller Model: The force and moment equa-
tions for a single propeller near hover are given by

fi = −kFω2
i

#»

k b − ωi
(
λ1v

⊥
i − λ2Ωi ×

#»

k b

)
, (1)

mi = −kM εiω2
i

#»

k b − ωi
(
µ1v

⊥
i + µ2Ωi ×

#»

k b

)
, (2)

where the ⊥ operator for some vector x is defined as

x⊥ =
#»

k b × (x× #»

k b) = x− (x · #»

k b)
#»

k b. (3)

The angular velocity of motor i is denoted ωi,
#»

k b is the
unit vector for the body k axis, and kF is the force per
angular velocity squared of the motor/propeller combination.
The constant kM is the reaction torque per angular velocity
squared of the motor/propeller. Aerodynamic constant λ1 is the
force per forward velocity times angular velocity of the motor,
and λ2 is the force per angular velocity of the aircraft times the
angular velocity of the motor. The constant µ1 is the reaction
moment per forward velocity times angular velocity of the
propeller and µ2 is the reaction moment per angular velocity
of the aircraft times angular velocity of the propeller. The
vector forward velocity of the center of mass Gi is denoted
vi, and Ωi is the angular velocity of the center of mass Gi.
The constant εi denotes the direction the rotor is spinning, -1
for clockwise and 1 for counter-clockwise.

2) Complete Hexacopter Equations: The above equations
for a single propeller/motor can be combined to model a full
hexacopter platform. As shown in Fig. 1, the hexacopter is
characterized by six motors attached on a rigid frame. The
center of mass of the combined assembly is at G. The motors
rotate according to the figure, with three motors turning one
direction and three the other. The inertial frame is defined by
north

#»
i i, east

#»
j i, and down

#»

k i directions and the body frame
by

#»
i b,

#»
j b, and

#»

k b, as shown. Here we have assumed that the
motors are attached to the links at their centers of mass and
that the center of mass for the whole vehicle is some distance

α

l1

ib

jb

kb ii

ki

ji

h

 1

 2

3

4

5

6

→

→

→
→

→

→

A

G

Fig. 1. Hexacopter Sketch

h in direction
#»

k b from the geometric center A. The motors are
all positioned at a length l1 from A, but in body coordinates,
l2 = l1 sin(α) is in the

#»
j b direction and l3 = l1 cos(α) is

in the
#»
i b direction. The states in the hexacopter model are

the inertial north, east and down positions, the body frame
velocities, the Euler angles defining the orientation of the body
frame and the angular velocities in the body frame [4]:

x =
[
n e d u v w φ θ ψ p q r

]T
. (4)

We assume the only forces and moments acting on the body
are the forces and moments from the propellers and the weight
of the body. We neglect all other forces and moments, such as
the aerodynamic drag on the body. The generalized equations
are then

mv̇G +mΩ× vG = m
[
RBI (φ, θ, ψ)

]
g +

∑
fi (5)

[IG]Ω̇ + Ω× [IG]Ω =
∑

GGi × fi + mi, (6)

where
[
RBI (φ, θ, ψ)

]
is the rotation matrix from the inertial to

the body frame [4].

It is important to note that Eq. (1) and Eq. (2) cannot be
used directly in Eq.(5) and Eq. (6) since vi is not the same
as vG. The relationship between vi and vG is given by

v⊥i = v⊥G − (hΩ× #»

k b)
⊥ + (Ω×AGi)

⊥, (7)

where AGi is the vector from the geometric center A to the
center of mass of each of the motor/propeller components
Gi. This transformation results in the following change of
constants for the force and moment equations: λ́2 = λ2−λ1h,
and µ́2 = µ2 − µ1h.

The equations for the summation of body forces are∑
fi = −kF

6∑
i=1

(ω2
i)

#»

k b −
6∑
i=1

(ωi)(λ1v
⊥
G −

λ́2Ω×
#»

k b) + rλ1

6∑
i=1

(ωiAGi)×
#»

k b (8)

≈ −kF
6∑
i=1

(ω2
i)

#»

k b −
6∑
i=1

(ωi)λ1v
⊥
G. (9)

Martin and Salaun state that for a stiff propeller, λ́2 ≈ 0. The
last term in Eq. (8) is kept for the derivation of the moment
equation; after that it is dropped from the final equation,
Eq. (9).

The sum of all the moments is the force cross product
combined with the moments induced by the motors

6∑
i=1

GGi × fi + mi ≈ −kF (

6∑
i=1

ω2
iGGi)×

#»

k b−

kM (

6∑
i=1

εiω
2
i)

#»

k b − rλ1l2(

6∑
i=1

ωi)
#»

k b −

(

6∑
i=1

ωi)
(
µ́1v

⊥
G − λ1hv⊥G ×

#»

k b + µ́2Ω
⊥
)
. (10)

Combining Eq. (9) with Eq.(5) and Eq. (10) with Eq. (6)
leave us with the dynamic equations of motion

m

 u̇+ qw − rv
v̇ + ru− pw
ẇ + pv − qu

 =

 −mg sin(θ)
mg sin(φ) cos(θ)
mg cos(φ) cos(θ)

+

 −λ1(ω1 + ω2 + ω3 + ω4 + ω5 + ω6)u
−λ1(ω1 + ω2 + ω3 + ω4 + ω5 + ω6)v
−kF (ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6)

 , (11)

 I1 0 I13
0 I2 0
I13 0 I3

ṗq̇
ṙ

+

pq
r

×
 I1 0 I13

0 I2 0
I13 0 I3

pq
r

 =

 −kF l2(ω2
2 + ω2

3 − ω2
5 − ω2

6)
−kF l1(ω2

4 − ω2
1)− al3(ω2

3 + ω2
5 − ω2

2 − ω2
6)

−kM (ω2
1 − ω2

2 + ω2
3 − ω2

4 + ω2
5 − ω2

6)

+

 (ω1 + ω2 + ...+ ω6)(µ́2q + µ1u− λ1hv)
(ω1 + ω2 + ...+ ω6)(−µ́2p+ µ1v + λ1hu)

(ω1 + ω2 + ...+ ω6)λ1l
2
1r

 . (12)

The kinematic equations of motion are given by φ̇

θ̇

ψ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 p
q
r

 , (13)

 ṅ
ė

ḋ

 = (14)

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 u
v
w

 ,

where cθ = cos(θ), sθ = sin(θ), etc.
Equations (11) through (15) are the equations of motion for

the hexacopter model. It turns out that Eq. (11) is identical
to that derived by [9], but there are differences in Eq. (12).
The most noticeable changes are from the force cross product.
There are also slight differences in the last matrix term.

Since the hexacopter is symmetric about the plane spanned
by

#»
i b and

#»

k b, two of the products of inertia are zero. We have
not assumed a second plane of symmetry in our work because
of the way sensors have been mounted to the platform. Beard
and McLain [4] describe the method to isolate the [ṗ q̇ ṙ]T

vector in Eq. (12)
3) Motor Dynamics and Attitude Control: As there is

already an autopilot onboard the hexacopter, we only use the
information in this section in our simulation model, but we
have chosen to include it for completeness. We have chosen a
simple speedup model for the motor model, like that described
in [10]. Since the motors are always spinning about the

#»

k b
axis, we have dropped the vector notation from the motor
angular velocities.

ω̇i = km(ωi(des) − ωi) (15)

For the hexacopter, ωi(des) is determined from the matrix
equation

ω1(des)
ω2(des)
ω3(des)
ω4(des)
ω5(des)
ω6(des)

 =

1 0 1 −1
1 −1 1 1
1 −1 −1 −1
1 0 −1 1
1 1 −1 −1
1 1 1 1

δω + ωh
δφ
δθ
δψ

 , (16)

where δφ, δθ, δψ, and δω are changes in motor speed to obtain
desired roll, pitch, yaw angles, and thrust level. The motor
speed ωh is the amount of angular velocity required to hover
(ωh =

√
mg
6kF

).

C. State Estimation
We are estimating the first nine states in Eqn. (4) using a

continuous-discrete extended Kalman filter (EKF). We utilize
the standard algorithm for our implementation [4], except that
we use two asynchronous measurement updates. As is shown
below, care must be taken to handle these updates in the
correct manner for the filter to track truth correctly. We utilize
the information from our motion capture system as truth to
compare the estimates of this algorithm.

1) Prediction: We use the nonlinear functions of the states
and inputs ẋ = f(x, u) and the corresponding Jacobians
A = ∂f(x,u)

∂x and B = ∂f(x,u)
∂u to predict the state x and

its covariance P from the previous update time to the current
update time, designated δt. Rather than use the control inputs
as the u in the EKF, we chose to use the measurements
from the gyroscopes and motor speeds. These measurements
give us the information we need from the inner-loop of the
Mikrokopter autopilot without having to model it explicitly.
With this change comes a slight change in the prediction
equation for the covariance P :

P+ = P + δt(AP + PAT +BGBT +Q), (17)

where G is the diagonal covariance describing the noise on
the input u.

The filter states are

x =
[
n e d u v w φ θ ψ βx βy βz

]T
, (18)

where βx, βy and βz are the biases of the gyroscopes aligned
with the body axes. The input u to the EKF is

u =
[
p q r m1 m2 m3 m4 m5 m6

]T
, (19)

as we use the gyroscope measurements as the estimates for p,
q, and r directly.

Equations (11), (13), (15), and (20) are the nonlinear
equations used in the prediction step. The only change is the
replacement of the estimates p, q, and r in those equations
with the estimate subtracted by the gyro bias states; i.e.
p = (p− βx), q = (q − βy), and r = (r − βz). β̇x

β̇y
β̇z

 = 0 (20)

2) IMU Update: The improved dynamic model gives us
a better update for the states in the EKF. Traditionally, the
#»
i b and

#»
j b axis accelerometers are assumed to be zero and

the
#»

k b accelerometer is used to perform updates on φ and
θ by comparing that accelerometer value to a rotated gravity
acceleration. As Martin and Salaun [9] report, the

#»
i b and

#»
j b

axes accelerometers actually measure the rotor drag. We have
verified that this is true; see Figure 2. We are able to perform

25 30 35 40 45 50 55 60 65 70
-1

-0.5

0

0.5

1
X Acceleration Measured vs. Predicted

time (sec)

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

measured

predicted

25 30 35 40 45 50 55 60 65 70
-1

-0.5

0

0.5

1
Y Acceleration Measured vs. Predicted

time (sec)

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

measured

predicted

Fig. 2. Comparison of the accelerometer raw data with the rotor drag model
during flight.

a direct update on the velocities u and v using the following
nonlinear measurement equation[

accx
accy

]
= hacc(x,u) +

[
αx
αy

]
+ ηacc[n], (21)

hacc(x,u)=

[−λ1

m (ω1 + ω2 + ω3 + ω4 + ω5 + ω6)u
−λ1

m (ω1 + ω2 + ω3 + ω4 + ω5 + ω6)v

]
(22)

The values accx and accy are the measurements from the body
frame x and y axis accelerometers. The vector term hacc(x,u)
represents the model derived in [9] for body frame x and y

axis accelerometer measurements. The constants αx and αy in
(21) are predetermined biases in the respective accelerometer
measurements and are treated as constants during flight. The
ηacc term represents zero mean, white noise.

Since u and v are updated directly, we are able to obtain
much better estimates of the positions n and e than is possible
with the traditional approach of using the double integral
of acceleration [2], [1]. This is true even at slow (40 Hz)
accelerometer measurement updates. It is also noteworthy
that even though φ and θ are not updated directly by the
measurement equation, we are able to achieve better estimation
of these angles than can be done using the traditional approach.
This is due to the high correlation between φ and θ and u and
v.

3) Delayed Camera Update: Initially when writing the
filter, we made an assumption that camera data was instantly
available to incorporate into the filter when a picture was
taken. However we knew that this was not correct. There is
a long delay between when an image is taken and when the
data has been processed and is ready to be incorporated into
the filter. Now a synthesized delayed camera update is used
to correct the estimates. We have been able achieve adequate
estimates while only using a very slow 2 to 3 Hz update rate.

We currently model the camera measurement as

hcam(x) =

camn

came

camd

campsi

 =

n
e
d
ψ

+ ηcam[n]. (23)

We utilize information from our motion capture system to
create a measurement for the update. Based on a rough first-
draft visual odometry program, we developed an estimate of
the delay and noise characteristics that we might expect for
the state estimates that it produces. We use this information
to corrupt MoCap data. The data are delayed by up to one
image time step (e.g. at 2 Hz, the data may be delayed by 0.5
seconds). Noise, corresponding to ηcam[n], is also added and
modeled as zero mean and white.

It is important that the delays in the image information are
handled appropriately. To handle the delay, the filter must save
the state and covariance estimates and IMU data from the filter
time step immediately before the picture is taken and then
save IMU information as it is received until the picture data
is available. During that interval the filter continues to use the
IMU information for prediction and updates as normal. Upon
receiving the camera data, the filter recalls the saved state
and covariance, predicts it forward to the time the picture was
taken, applies the camera measurement update, and then re-
applies the remaining IMU information. We currently require
these steps to be accomplished before more IMU information
is received by the filter. Figures 3 through 5 illustrate the
problems with delay. Figure 3 shows the estimation without a
delay. Figure 4 shows the same dataset, but with a 0.33 second
delay that is not handled correctly. Figure 5 shows the results
when the 0.33 second delay is handled as described above.
The delayed-updated estimator does produce results that are
visibly worse than when there is no delay, but the filter is still
able to function, in contrast to the filter where the delay is

20 40 60 80 100 120 140
-0.5

0

0.5

1

1.5

2

2.5

time (sec)

d
is

ta
n
c
e
 (

m
)

North Comparison

truth

estimate

Fig. 3. Estimation applied with no delay in 0.33 second camera updates.

20 40 60 80 100 120 140
-200

-150

-100

-50

0

50

100

150

time (sec)

d
is

ta
n
c
e
 (

m
)

North Comparison

truth

estimate

Fig. 4. Estimation applied with a delay in 0.33 second camera updates that
is not handled.

20 40 60 80 100 120 140
-0.5

0

0.5

1

1.5

2

2.5

3

time (sec)

d
is

ta
n
c
e
 (

m
)

North Comparison

truth

estimate

Fig. 5. Estimation applied with a delay in 0.33 second camera updates that
is handled properly.

simply ignored.

D. LQR Control

Our control method revolves around the idea of a differen-
tially flat system. A differentially flat system is one in which
the state and control inputs can be expressed as functions of the
output and its time derivatives [6], [12], [8]. Using differential
flatness, feedforward control commands are calculated based
on a desired, time-based trajectory. In particular, we are able
to define as a path any twice-differentialable function of time.
Since we do not have a perfect model of the system and it
does not respond perfectly to control commands, we added an
LQR feedback controller to keep the hexacopter on the desired
path. The system diagram, with the estimation in the loop, is
shown in figure 6.

Trajectory

Differentially

Flat
Hexacopter

LQR

+

–

+

+

ud

xd
x

x~

~u

u 1f

Rb2i

Vision

Algorithm

EKF

ωi gj

ak

Fig. 6. System block diagram.

Using the traditional multi-rotor dynamic model to derive
our differentially flat equations, we were able to define a
linear state-space model for the control by wrapping the
nonlinearities of the system into an input function uc. The
states for the control are

x =
[
n e d ṅ ė ḋ ψ

]T
. (24)

Our equations of motion for these states are p̈n
p̈e
p̈d

 = Rib(ψ, θ, φ)

 0
0
−T

(1

mh

)
+

 0
0
g

 , (25)

where T is the thrust, mh is the mass of the hexacopter, and
Rib(ψ, θ, φ) is the rotation matrix from the body frame to the
inertial frame, the transpose of the rotation in Eq. (6). The
control inputs that the hexacopter expects are

ν =

T
φ
θ
r

 ,
which we can wrap into a non-linear function of the inputs uc
as shown below.

uc =

n̈
ë

d̈

ψ̇

 =

[
up(3x1)
uψ(1x1)

]
4
=

[
fp (x, ν)
fψ (ν, q)

]
, (26)

where

fp (x, ν) = Rib(ψ, θ, φ)

 0
0
−T

(1

mh

)
. (27)

and
fψ (x, ν, q) = q

sinφ

cos θ
+ r

cosφ

cosθ
. (28)

This wrapping permits us to express the dynamics as the
following linear model

ẋ = Ax +Bu + bg, (29)

where

A =

 03x3 I3x3 03x1
03x3 03x3 03x1
01x3 01x3 01x1

 ,
B =

 03x3 03x1
I3x3 03x1
01x3 1

 ,
and

b =
[

0 0 0 0 0 1 0
]T
.

Once the feedforward and feedback control commands are
combined, the inverses of Eqs. (27) and (28) are used to map
the input uc into the nonlinear input ν that is expected by
the platform, f−1 on figure 6. This trick greatly facilitates the
analysis and tuning of the control, as the input uc is in units
of acceleration and the gains for the control can be computed
using Matlab and the lqrd command.

III. IMPLEMENTATION DESCRIPTION

This section is intended to serve as a detailed description
of the hardware and software currently being used to im-
plement the baseline system. The goal of this section is to
enable anyone with the same software and hardware (including
possibly ourselves at a later date) to easily reproduce our
current results. This section is especially needed for making
future improvements. The development process has naturally
progressed through several configurations of hardware and
generated several versions of rather messy software that can
be hard to decipher even when familiar. We should crystallize
the current configuration in this report to ensure we’re clear
on where we’re at and how to move forward.

A. Overview of Major Hardware Components

1) Hardware in the Air: We’ll start with a discussion of the
hardware setup of the air vehicle. To facilitate the description
see Fig. 7 through Fig. 12.

We have chosen to implement our system based on the
HexaKopter by MikroKopter. The basic HexaKopter has an
impressive payload capacity of about 1.0 kg (2.2 lbs). We
power our HexaKopter using a four cell lithium-polymer
(LiPo) battery with a 5000 mA-h capacity. While we haven’t
directly tested the limits of its flight time, our experience
suggests we can expect about 10 minutes of continuous flight
time with the setup described in this report. Any hardware
not described in the remainder of this section is part of the

standard HexaKopter kit which is available from at least two
US-based distributors ([11], [13]).

Fig. 7. This figure shows the HexaKopter configured as flown for the results
in this report.

Our fully equipped HexaKopter is pictured in Fig. 7. At the
point marked “A” you can see our Bumblebee2 stereo camera
by Point Grey in our custom plastic case. For the results in
this report the camera is not used, but it was mounted to the
vehicle to provide realistic weight distribution. At the point
marked “B” we’ve installed an ultrasonic ranger. This sensor
was also not used for results in this report, but was installed
just prior to this report to test its viability for integration into
our system. (As an aside, we found this ranger was incapable
during flight of detecting the floor when greater than 14 inches
away; we believe this was due to the acoustic noise generated
by the motors.) At the point marked “C” and around the whole
perimeter of the HexaKopter we’ve installed propeller guards
for added safety. The propeller guards are made of kite parts
and flexible carbon rods, and the assembly is attached to the
HexaKopter frame using cable ties and tape.

In Fig. 7 at the points indicated by “D” we have positioned
the reflective markers tracked by the MoCap cameras. The
positioning of these markers is only important if one is to
reuse the template (called a ‘prop’ by the MoCap software) we
created for tracking the HexaKopter as a single rigid body. If
markers are placed in different locations, a new template can
be easily created. There is one additional important note to
mention here related to these markers. In the MoCap software
we reduced the minimum number of horizontal lines per
marker required for tracking to two. This setting makes it
easier for the MoCap system to track the markers even when
they are only visible by a small subset of the total MoCap
cameras.

At the point indicated by “E” in Fig. 7, the standard piezo-
electric speaker from MikroKopter is installed. The software
in the MikroKopter controller monitors the battery voltage
and activates this speaker when the voltage reaches a certain
level. The result is a high-pitch beeping tone. If you are using
the battery to power the little computer between flights, the
HexaKopter should be left on to alert you to a low-voltage
condition. It is also important to note that this speaker can

be difficult to hear during flight due to the noise of the
HexaKopter motors.

Fig. 8. This figure shows the underside of the Hex.

The underside of the HexaKopter is pictured in Fig. 8. At
the point indicated by “F” we have installed a 120 GB solid
state SATA hard drive. This hard drive is connected to the
onboard computer through the red SATA cable, and it receives
power through a connection to the left of the SATA cable.
Originally we were using smaller solid state SATA drives
that could directly connect to the SATA jack on the onboard
computer. However, we found that even fairly gentle landings
were sometimes sufficiently shocking to unseat these drives
from their connection and cause the computer to crash. Also
picture in Fig. 8 at the point indicated by “G” is the large deans
connector to plug into the battery. Only the HexaKopter is
powered directly from the battery; everything else receives its
power through the DC power output of the onboard computer.
The onboard computer, in turn, receives its power at 12V from
a step-down voltage regulator connected between it and the
battery. The battery is held to the frame of the HexaKopter
by velcro straps pictured near the top of Fig. 8. This position
allows it to counter balance the weight of the camera pictured
opposite this position near the bottom of Fig. 8.

Fig. 9 shows a closer view of the HexaKopter payload from
the right-hand side of the vehicle. At the point indicated by
“H” you can see the switch installed between the battery and
the HexaKopter. This switch is not connected between the
onboard computer and the battery. At the point indicated by “I”
you can see the step-down voltage regulator mentioned above.
The regulator is strapped to a balsa wood ring that is mounted
on standoffs connected to the HexaKopter frame. All of the
electronics pictured in Fig. 9 below that balsa ring are standard
MikroKopter electronics (brushless motor speed controllers
and flight control board). At the point indicated by “J” in
Fig. 9, a USB-to-Wifi card is strapped to the balsa ring. The
antenna for the USB-to-Wifi card is strapped to the rear motor
spar of the HexaKopter (see also Fig. 7 near the point indicated
by “E”). This 802.11g link is the only communication channel
between the HexaKopter and the ground computer.

Fig. 10 shows a view of the HexaKopter payload looking

Fig. 9. This figure shows the right-hand side of the Hex (the red spar indicates
the front of the Hex).

Fig. 10. This figure shows the front left-hand side of the Hex (the red spar
indicates the front of the Hex).

back from the front left-hand side of the vehicle. At the point
indicated by “K” a MikroKopter-provided USB-to-Serial card
is strapped to the balsa ring. On the USB side this card is
connected to the onboard computer. On the serial side this
card connects to the flight control board of the HexaKopter.
This communication channel is the only connection to the
underlying HexaKopter hardware. Through it the HexaKopter
pushes IMU and motor speed data to the onboard computer
and the onboard computer pushes control commands back to
the HexaKopter. Note that the card also has a 10-pin header
open to the outside of the balsa ring. These pins are for
connecting to the flight control board via the serial cable only
when reprogramming the brushless motor controllers.

Fig. 11 shows a top-down view of the HexaKopter payload

Fig. 11. This figure shows a top-down view of the Hex.

to illustrate the numerous connections made to the onboard
computer. At the point indicated by “L” power is supplied to
the computer from the voltage regulator. Point “M” indicates
the connection for power and control of the computers cooling
system. Point “N” indicates an On/Off switch for the computer
that functions in the same way as the front panel buttons on
a desktop (hold it down for a while to force a hard shut-off);
it connects to the computer at the pins just below the point
indicated by “M”. Point “O” indicates an unused LAN port on
the computer, and the SATA cable to the hard drive connects at
the point indicated by “P”. Extra USB connections are plugged
into the computer at the point indicated by “Q”. Extra serial
port connections are plugged in at the point indicated by “R”.
The USB connections for the USB-to-Wifi and the USB-to-
Serial cards are indicated by “S”. And finally, there is a mini-
PCIe-to-Firewire card installed at the point indicated by “T”.
This card provides communication and power for the stereo
camera when in use. Fig. 12 provides an additional close-up
view of the payload from yet another angle.

Fig. 12. This figure shows the rear left-hand side of the Hex (the red spar
indicates the front of the Hex).

2) Hardware on the Ground: While the airborne hardware
is more significant to document, a few notes should also be
made about the necessary hardware employed on the ground.
For the initial part of this discussion, see Fig. 13 through
Fig. 15. These figures show images of our motion capture
facility.

Fig. 13. This figure shows the “south” end of the MoCap facility. The north-
east-down coordinate system used in the room is aligned such that the south
direction is approximately normal into the wall completely pictured here. That
would put the east direction roughly normal into the wall partially pictured
in the left of this image. Care is taken with the MoCap calibration device
(equipped with bubble levels) to align the down direction as close as possible
with gravity.

Fig. 14. This figure shows additional markings on the floor defining the
approximate bounds of the flyable volume.

Fig. 13 shows the south end of the facility as per the north-
east-down coordinate system defined during the calibration
process. Pictured around the top of the image from left to
right are Cameras 1-4. These cameras emit bursts of infrared
light with a pulse repetition frequency of 200 Hz. Their lenses
are filtered to only detect reflections of this infrared light, and
that is how they track the reflective markers placed on the
vehicle. Pictured in the middle of the left-hand side of Fig. 13
is the MoCap computer devoted to handling communication
with the cameras and running the MoCap software (named

Fig. 15. This figure shows the “north” end of the MoCap facility.

Cortex). Each of the computers in the local network is assigned
a static IP address; the MoCap computer is 192.168.1.100. We
should mention here that the airborne computer’s IP address
is 192.168.1.104.

The MoCap computer is hard wired to a router on the table
in the center of Fig. 13. The table also holds two computers.
The one on the left is the ground station computer, and its IP
address is 192.168.1.101. The ground station computer hosts
all the ground-based software specific to our baseline system.
This includes the ground station software and the Cortex server
(both discussed in greater detail below).

In order to acquire valid data, the MoCap system requires
the vehicle fly within a volume well covered by its cameras’
fields of view. In Fig. 13, the approximate south corners of
that volume are marked with black masking tape (hard to see
in this image) near the feet of the left-most chair and near
the right foot of the plexiglass safety shield. North corners of
the volume are marked again with black masking tape near
the center-right and center-bottom sides of Fig. 14. Finally,
Fig. 15 shows the north end of the MoCap facility showing
(from left to right) Cameras 5-8 across the top of the image.

The flyable volume is really defined by the space the MoCap
cameras are able to see. To help make that aspect of the setup
more clear, Fig. 16 through Fig. 21 are included in this report.
They show the motion capture system’s belief, based on its
calibration procedure, about where the cameras are and how
they’re oriented. Only screenshots for Cameras 1 and 2 are
included because Camera 1 is typical of Cameras 4, 5, and
8 in its pose relative to the volume. Such is also the case
for Cameras 2, 3, 6, and 7. Saved with this report should
also be a short movie giving an animated view of the camera
arrangements; it is titled CortexSetup.avi

Fig. 16. This figure illustrates the MoCap system’s belief about the position
and orientation of Camera 1 as seen in a perspective view from behind Camera
1.

Fig. 17. This figure illustrates the MoCap system’s belief about the position
and orientation of Camera 1 as seen in a perspective view from south of
Camera 1.

Fig. 18. This figure illustrates the MoCap system’s belief about the position
and orientation of Camera 1 as seen in an orthographic view from above
Camera 1.

Fig. 19. This figure illustrates the MoCap system’s belief about the position
and orientation of Camera 2 as seen in a perspective view from behind Camera
2.

Fig. 20. This figure illustrates the MoCap system’s belief about the position
and orientation of Camera 2 as seen in a perspective view from east of Camera
2.

Fig. 21. This figure illustrates the MoCap system’s belief about the position
and orientation of Camera 2 as seen in an orthographic view from above
Camera 2.

B. Overview of Major Software Components

There are three pieces of software needed to produce
the results presented in this report. In order of increasing
complexity, they are:
• The Cortex Server
• The Ground Station
• The HexaKopter Estimator and Controller

The former two operate on the ground station computer, while
the latter resides on the computer onboard the HexaKopter.
Each will be discussed in turn below.

1) The Cortex Server: The Cortex Server is relatively sim-
ple, and it has been a stable piece of code for several months
now. It monitors the TCP/IP port for messages of certain,
known types. One message type is pushed to the ground
station computer by the MoCap software and contains the
MoCap measurements of the vehicle’s 3-D position and Euler
angles representing orientation. When this message arrives, the
Cortex Server reformats the MoCap data from its native x-y-z
coordinate frame into the north-east-down coordinate frame.
It also adjusts the units of the MoCap data such that positions
are given in meters and angles are given in radians. This data
is saved in a buffer until new MoCap data arrives or until the
Cortex Server detects the other message type it listens for. This
other message indicates a request from the Ground Station
software. On this request the Cortex Server sends back to the
Ground Station software the most recent reformatted MoCap
data.

2) The Ground Station: As it exists at this writing, the
Ground Station software is actually a fairly extensive bit of
code. This is largely because it can also be configured to
work with the Dynamics Server software (a C# implementation
of the HexaKopter dynamics using a Runge-Kutta differential
equation solver) to run simulations. Because of this option
the Ground Station contains a version of the estimator and
controller that would, in real flights, reside on the HexaKopter
computer.

When used for real flights, the Ground Station software
actually does very little. Its most important function is to peri-
odically request MoCap data from the Cortex Server and then
send that MoCap data along to the airborne computer where
it is used to simulate stereo camera-based measurements. For
the results presented in this report, the Ground Station requests
and sends that data at a rate of about 10 Hz. In addition
to the MoCap data sent from the Cortex Server, the Ground
Station software computes and sends estimates of the vehicle’s
body frame linear and angular velocities. All twelve of these
MoCap derived values are sent to the HexaKopter (along with
a timestamp indicating when they were relevant), but only
the three position measurements and the heading measurement
are used to synthesize the camera measurement. The Ground
Station also plots in real-time all twelve states measured or
derived from MoCap using a GUI displayed on the ground
station computer. As an additional option, the Ground Station
software can also use its version of the controller to plot what
it thinks the commanded states should be.

3) The HexaKopter Estimator and Controller: The Hex-
aKopter Estimator and Controller software (hereafter Hex-

aKopter Software) is run by the computer onboard the Hex-
aKopter. It implements the EKF used to fuse the IMU-
based state estimates with the delayed camera measurements
synthesized from MoCap data. The HexaKopter Software also
implements the path planning and control algorithms. Since
these are fundamental pieces of code we will discuss some of
the more important parts in greater detail below.

For the results in this report, there are three main ways the
HexaKopter Software interacts with things outside of itself.
First, it listens for messages over the TCP/IP port and takes
action when messages are received based on what type of
predetermined message is given. This process is defined in
the ProcessRequest method of the HexacopterServer class (see
HexaKopterServer2.cs). If the message is a length four array
of type double the software assumes it is a control command
message being sent from the Ground Station software. This is
a vestigial feature leftover from times before the controller was
implemented on the HexaKopter Software, and it is not used
for these results. Another unused message type the software
listens for consists of an array of type char. This type of
message used to be sent from the ground station to request
that the HexaKopter Software send back certain types of data.
The one message type that is still used is a length thirteen
array of type double. In this case the software assumes the
message contains the MoCap values needed to synthesize a
delayed camera measurement. In response the software copies
the sent values into class variables for eventual use by the EKF
estimator and sets a flag high to indicate that new MoCap data
has arrived.

The software’s response to this last message type also
contains a residual feature left-over from earlier development
that almost became a serious bug. The software keeps a
counter that it increments every time it receives MoCap data
from the Ground Station. It tests the value of this counter when
each new MoCap transmission comes in , and it only copies
the values into the class if this zero-based counter is greater
than 3. In other words, this little line of code has the effect
of throwing away four of every five MoCap transmissions
from the Ground Station. Therefore, for the results presented
here, the estimator and controller are only benefiting from
synthesized camera measurements at a rate of about 2 Hz.

The HexaKopter Software’s remaining interactions with the
outside world occur over the serial port. These interactions
are governed by an instance of the HexacopterSerialLink class
instantiated in the constructor of the HexacopterServer class.
When the software receives a message from the HexaKopter
on the serial port, it triggers the ProcessHexacopterMessage
method in the HexacopterServer class. This method executes
the code implementing the EKF estimator as well as the code
that sends new control commands back to the HexaKopter.
The messages pushed from the HexaKopter, which trigger all
this activity, contain the most recent IMU and motor speed
data from the HexaKopter and arrive at around 40 Hz.

C. Configuring For a Flight Test

We now present the steps necessary to configure the hard-
ware and software for a flight test such as those presented

in this report. We begin with a description of the many
parameters and flags that can be set in the software and where
to find them. We then provide a step-by-step checklist to
follow before and during the flight test.

1) Software parameters and flags: As we’ve developed the
software we’ve naturally focused more on getting changes to
work at that moment than on writing it well for long-term use.
As a result, there are many locations within the code where
parameters are assigned values that affect the performance
of the software. In this section we will list those parameters
and their locations as they exist in the current version of the
software. This section should be relevant to those in the future
who may decide to go back and use the current version, but
its near-term significance is to be used as a tool to help us
rewrite some elements of the software.

A few of these parameters are set in the HexacopterServer
class variable declarations. The boolean flag ‘useOnlineCon-
trol’ is set there (@ line 24 of HexacopterServer2.cs) to ‘true’
for the results presented in this report. This flag is used
in a few ‘if’ statement conditions to differentiate between
actions that should be taken when either the Ground Station
or the HexaKopter Software is responsible for control. An-
other boolean flag, USEALTITUDE, can also be found here
(@ line 31 of HexacopterServer2.cs) set to ‘false’. It is used in
‘if’ statements to wrap actions specific to using the altimeter,
and it is passed into the instance of the Estimator class for the
same purpose.

The most important parameter set in the HexacopterServer
class variable declarations is Time Bias millisec. This critical
parameter captures the current best estimate of the offset
between the clocks of the ground station and HexaKopter
computers. Time Bias millisec must be adjusted before each
flight because the HexaKopter Software will add this value to
the timestamp sent by the Ground Station with its transmission
of psuedo-camera data. The offset value is determined using
the NTP Time Server Monitor software from Meinberg. For
more details, see the description below in Section III-C2.

The poster child for why we’re writing this section is the
integer variable HexacopterServer.c counter. This variable is
initialized to zero and incremented whenever new MoCap
information is received from the Ground Station. Only when
c counter is strictly greater than 3 (a threshold hardcoded at
line 455 of HexacopterServer2.cs) will the HexacopterServer
class copy the MoCap data into the appropriate class variables
and set the flag indicating that new “camera” data is available.
When this happens c counter is reset to zero and the process
repeats. The result is that the HexaKopter Software only im-
plements 1 out of 5 of the camera updates it might otherwise.
There is no current reason for doing this; it is leftover from a
previous developmental expedient.

The method HexacopterServer.ProcessHexacopterMessage
(@ line 227 of HexacopterServer2.cs) contains a hardcoded
time threshold which is compared to the change in time
(call it δt) between when the current and previous IMU data
were received. If δt > 0.07 (the value used in this report’s
results) then we assume a hiccup occurred in the IMU data
transmission and take corrective action. Also in this method
(beginning at line 250) we have hardcoded several values

used to convert into SI units the IMU data transmitted by
the HexaKopter. These conversions ought to be constant, but
we mention them here in case this list of parameters is ever
used to help apply this code to different hardware. Finally,
a little further on in the method (@ line 351) a hardcoded
argument of 10 is passed into the prediction step of the EKF.
This argument controls the number of times by which the
current δt is subdivided for intermediate prediction steps. A
higher number here makes prediction more accurate but at the
cost of increased computation.

The Estimator class contains even more parameters to
be aware of. The first several lines of the class variable
declarations (beginning at line 33 of Estimator.cs) contain
important constants and their assigned values. Some of these
are well known or easily found (e.g. gravity, mass of the
vehicle). Others are derived from sensor measurements or are
parameters of the HexaKopter model (e.g. kF, lam1x, lam1y)
and may be the subject of some future tuning efforts.

Several parameters are assigned values in the Estimator
class constructor. The initial values of the EKF covariance
matrix, P , are assigned here (beginning at line 157 of Es-
timator.cs); these values were chosen without much experi-
mentation or theoretical motivation. The process uncertainty
matrix, Q, is also assigned values (beginning at line 191) in the
constructor. For this report all but the last three diagonal entries
of Q are left at zero since process uncertainty in the prediction
step also enters through the BGBT term as shown in Eq. (17)
of Section II-C1. The values of Q have again not been
experimented with much and may need tuning. Also included
in this constructor are measurement uncertainty values derived
from sensor tests for the altimeter (@ line 217) and for camera
measurements (beginning at line 222). We should note here
that the camera measurement variances assigned here are used
in the Estimator.PseudoGPSlike MeasureUpdate DELAYED
method to scale the random numbers added to MoCap data to
synthesize the camera measurements.

A few remaining hardcoded parameters can be found in
other methods of the Estimator class. Two instances occur
in Estimator.Initialize. First (beginning at line 327 of Estima-
tor.cs), the gyro biases in the EKF state vector are hardcoded
with their initial values. Later (@ line 350), there are hard-
coded thresholds to compare to current motor speed values.
These thresholds and the initial values for the gyro biases
could be the subject of future tuning. Finally, the Estima-
tor.PseudoGPSlike MeasureUpdate DELAYED method con-
tains three instances (@ lines 712, 749, and 765) where
the EKF prediction method is called with a hardcoded input
argument of five. As mentioned above, higher values for this
input should make prediction more accurate but will increase
the computational cost of this step.

The remaining parameters in the HexaKopter Software are
currently found in the HexacopterPathControl class. Several
are found in the class declarations, including a hardcoded path
and text-file name (@ line 39 of HexacopterLQRControl.cs)
and a few constants (beginning at line 16). The file referenced
here contains values for the gain matrices used in calculating
control commands. The constants assigned values here ought
to be juxtaposed with some of the constants assigned else-

where (especially the estimator) because they should be the
same or related.

A few boolean flags are also set (beginning at line 23) in
the HexacopterPathControl declarations. These flags, named
useIntegrator and useKfromFile, control whether an integrator
is used in calculating control commands and whether or not
the gain values are read in from the text-file just discussed.
For the results in this report, these flags were set to ‘false’ and
‘true’, respectively. If the gains were not to be read in from the
file, their hardcoded values are assigned (beginning at line 132
of HexacopterLQRControl.cs) in the HexacopterPathControl
class constructor.

The HexacopterPathControl class contains several paths
which the vehicle can be commanded to follow. Each of
these paths contain a number of hardcoded values that define
their behavior in time. For the results in this report we
used the path defined in the method SmoothLinePathDRAFT
(beginning at line 226 of HexacopterLQRControl.cs), and we
will only discuss its hardcoded parameters here. The variable
‘maxVel’ is set to 0.25 meters per second; this determines
the maximum velocity along the line to be followed by the
vehicle. The variable ‘shift’, set to 40, is a unitless number
that determines the amount of time the vehicle hovers before
smoothly transitioning into following the line. The ‘initState’
and ‘endState’ arrays also have hardcoded values assigned to
some of their elements in the beginning of the method. All
of these hardcoded values should eventually be replaced with
arguments passed into the method and determined by a higher-
level path planner.

Finally, all calls to the HexacopterPathControl.Saturate
method (see lines 420, 462, and 475 of HexacopterLQR-
Control.cs to identify all 12 occurrences) contain hardcoded
arguments to set the saturation limits to be used for that call.
These saturation limits need to be further explored and set to
acheive better flight performance.

While one can find most of the parameters needed to
control the system’s performance in the HexaKopter Software
as discussed above, some elements of the Ground Station also
need to be considered. There are important values hardcoded
values (beginning at line 140 of SimpleGroundStation.cs) in
the constructor of the base class SimpleGroundStation. Here
the IP addresses and port numbers are set that control whether
the Ground Station is configured to interact with hardware
or in a simulation mode. Similarly, the SimpleGroundSta-
tion.ConnectToServers method contains method calls (begin-
ning at line 190) to connect to different servers that must be
commented out based on how the hardware or simulation is
configured.

We can find an interesting example of how the current
code base can be confusing in the parameter SimpleGround-
Station.lowLoopSpeedLimit. This private member of the base
class is assigned a value of zero in the constructor (@ line
156), but it is reset to a value of 0.006 in the leaf class
HexacopterGroundStationPath by means of a public getter and
setter function. The parameter itself sets a bound (see line 670)
on how fast the the Ground Station can execute the functions
in its lower loop, including requesting MoCap data from the
Cortex Server.

As stated in Section III-B2, the Ground Station software
uses MoCap measurements to derive estimates of the ve-
hicle’s linear and angular velocities. This is implemented
in the SimpleGroundStation.CalculateVelocities method using
the “dirty derivative” algorithm [4]. The parameters controlling
the cutoff frequency in this calculation are assigned hardcoded
values in the base class declarations (beginning at line 70 of
SimpleGroundStation.cs).

Lastly, the method SimpleGroundStation.runLowLoop con-
tains a couple of items to consider. First, the call to the
requestRobotControlChange method (see line 731 of Simple-
GroundStation.cs) should be commented out for the results in
this report. This ensures that the Ground Station doesn’t try
to send control commands to the HexaKopter. Immediately
thereafter (@ line 734) we find the important hardcoded
threshold used to compare against the time elapsed since the
last transmission of MoCap data to the HexaKopter. If the
elapsed time exceeds this threshold (set to 100 milliseconds for
this report’s results) then the software sends new MoCap data
to the HexaKopter and performs some other related actions.

This concludes a fairly comprehensive list of the many
parameters and code elements that need to be adjusted to
configure the software appropriately. Some additional settings
can be made, particularly in the ground station, that are not
relevant for generating the results in this report. However, if
one was to use the software for anything significantly different
from this report (e.g. for simulation instead of hardware
testing) then these parameters and settings should be sought
out and understood. There is also a reasonable chance that we
have overlooked in this list something important to our results.
As stated in Section V, the code needs revision and refining
to make it more user friendly in the future.

2) Flight Test Checklist: Several steps should be observed
to prepare for a successful flight test. Those steps are docu-
mented in this section.

The first thing to do is to turn on the motion capture
cameras and start the Cortex software on the motion capture
computer. After connecting the Cortex software to the cameras,
an important default setting in that software needs to be
changed. In the ‘Settings’ menu under the ‘Tracking’ tab the
‘Min horizontal lines per marker’ should be set to 2. This
setting allows the motion capture system to better track the
vehicle. Back in the main Cortex GUI, the correct *.prop file
also needs to be selected so that the Cortex software knows
in what configuration to expect to see the markers. With the
‘Motion Capture’ tab selected, under the small ‘Objects’ tab on
the right of the GUI, select “mikrokopter prop oct 20.prop”
for the markers positioned according to this report. If the
markers are positioned differently select the appropriate *.prop
file here or create your own new one (only takes a few
minutes). Finally, click ‘Run’ to start the motion capture
system. Also, over on the ground station computer the Cortex
Server software needs to be started at this point.

The next step is to set up the computer onboard the
HexaKopter. Plug in and strap down the 4-cell LiPo battery.
The computer should start automatically, but if it does not push
the power button shown in Fig. 11 at the point indicated by
“N”. After waiting about 15 seconds, plug a keyboard into one

of the extra USB ports on the onboard computer, type “circuit”
and press enter. This logs into the user account on the onboard
computer and allows it to finish booting up. Back at the ground
station computer open the remote desktop connection software.
Make sure the correct IP address is used for the remote desktop
connection (192.168.1.104 for the onboard computer being
used for the vision-based HexaKopter). The username for
this computer is “MAGICCian” and the password is again
“circuit”. If the remote desktop connection fails, the most
likely cause was not waiting long enough before entering
“circuit” into the onboard computer.

Once the onboard computer is running, open the NTP
monitoring software mentioned in Section III-C1 on both
the onboard and ground station computers. The NTP service
should be configured to begin even before this monitoring
begins; ensure that it is running as desired. Then wait for 7 -
10 minutes while the NTP algorithm settles down into a fairly
steady state. At a minimum this will be after the ‘Reach’ field
has incremented to 377. It is probably also good to wait until
the ‘Poll’ field has incremented from its initial value of 64 to
its next value of 128. While waiting for the NTP algorithm
to settle, open the Ground Station software on its computer
and the HexaKopter Software on its computer. Once the NTP
service has reached the state described above, hard code the
‘Offset’ value (as it appears in the HexaKopter computer’s
NTP monitoring software) into the HexacopterServer class
variable Time Bias millisec.

To ensure the desired performance during the flight it is
worthwhile here to also check near the end of the Hexa-
copterServer class method ProcessHexacopterMessage. Ensure
that only the desired path planner is uncommented.

At this point we should now be ready to turn on the
HexaKopter using the switch pictured in Fig. 9 at the point
labeled “H”. Also turn on the RC transmitter. On top of the
RC transmitter there is a two-position switch on the left-hand
side. This switch controls whether the HexaKopter will accept
control commands over its serial port and must be activated
during the flight to allow the onboard computer to send control
commands. To set the switch, it should be thrown toward
the face of the RC transmitter. The RC transmitter should
also be used at this stage to calibrate the gyroscopes on the
HexaKopter. This is done by moving the throttle/yaw stick to
its topmost and leftmost positions and holding it there until the
HexaKopter makes three beeps from its piezoelectric speaker.
Gyro calibration should only be done while the HexaKopter
is left completely motionless.

The preceding steps conclude the preflight portion of the
checklist. To begin flight, first run the HexaKopter Software
and wait for the corresponding console to display a mes-
sage indicating it has made a successful connection with the
HexaKopter microprocessor. Next, run the Ground Station
software and watch for the backgrounds to turn from red to
green on the port numbers and IP addresses corresponding to
the Cortex Server and HexaKopter. This indicates the Ground
Station software is successfully communicating with the other
pieces of software. Finally, start the motors at their idle speed
by moving the throttle/yaw stick on the RC transmitter to its
bottommost and rightmost position.

Now gradually increase the throttle on the RC transmitter
to allow the HexaKopter to fly under computer control. The
standby pilot holding the RC transmitter should especially be
prepared to takeover control of the vehicle at this point and
should remain vigilant during the duration of the autonomous
flight. The HexaKopter can move very quickly. As a reminder,
the RC transmitter can be used to give yaw rate and roll
and pitch commands that will be added to whatever the
computer is commanding the HexaKopter for these variables.
However, the throttle command is different. The HexaKopter
takes as its throttle command whichever is lower between
the RC transmitter and the computer. For the computer to
have the full control authority it expects, the throttle stick
on the RC transmitter must be raised above the highest
value we expect the computer to command. If the standby
pilot must take control of the flight, we’ve found the best
approach to be decreasing the throttle commanded by the RC
transmitter while giving roll and pitch commands as needed
to make a landing as gracefully as possible. It is generally
not recommended to flip the switch on the RC transmitter that
disables computer control because the throttle stick may be in
a high position, in which case the HexaKopter might really do
something unsavory.

To end the autonomous flight we currently have the conclu-
sion of the autonomous path planned such that the vehicle is
trying to indefinitely hover at a point not far off the ground. We
then simply decrease the throttle on the RC transmitter until
the HexaKopter has landed. Motors are turned off by moving
the throttle/yaw stick on the RC transmitter to its bottommost
and leftmost position

IV. CURRENT PERFORMANCE

The following results show estimates generated during flight
using IMU information at 40 Hz and synthesized camera
information at 2 Hz. Camera information is delayed before
updating the EKF due to two reasons. First, we artificially
added a delay of 0.1 seconds before sending MoCap data
from the Ground Station to simulate image processing time.
There is also a random communication delay over the wireless
TCP/IP connection between the Ground Station and Hex-
aKopter software. Using data from several flights we estimate
this communication delay to have a mean of about 0.19
seconds and a standard deviation of 0.06 seconds. Thus, the
delay of each camera data point was probably around 0.29
seconds, half of what it could have been for a 2 Hz update
rate (assuming that the rate is obtained by the time needed to
take a picture, transmit, process, and submit the pose data up
to the estimator).

Because of the bug discussed in Section [13], we initially
viewed the following results as very good. Discovering that
bug clarified that we were only doing pseudo-vision updates
at 2 Hz when we thought we were doing them at 10 Hz.
However, in the course of writing this report, we uncovered
another bug in our software that causes us now to put a little
more salt on these results.

To synthesize camera data we use the information in the
camera measurement uncertainty matrix to scale a standard

TABLE I
SUMMARY OF THE ESTIMATION ERROR STATISTICS.

State Mean Error Standard Deviation
(m, rad, m/s) (m, rad, m/s)

n 0.0048 0.0371
e 0.0553 0.0703
d -0.053 0.12
φ -0.019 0.0154
θ 0.02 0.0111
ψ -0.0003 0.0146
u 0.0102 0.0789
v 0.1133 0.1233
w -0.1359 0.2765

normal random number generated. These random numbers
provide the noise to add to MoCap data to produce the
pseudo-camera measurements. The recently discovered bug
was that we omitted taking the square root of the variances
when scaling these random numbers. This meant that we
were generating random numbers for position with a standard
deviation of only 0.0004 meters instead of the 0.02 meters we
expected. For heading angle, we were adding noise of only
0.0003 radians standard deviation instead of 0.017 radians.

Obviously, we will need to rerun these flight tests with
the bugs fixed (see also Section V). The bug just discussed
was found just 1 day before completing this report, and the
HexaKopter is currently reconfigured to produce results for
another effort. As soon as it is available again we will likely
conduct new flight tests. For now, the following results are still
worth discussing because they represent many other realistic
conditions (e.g. communication delays, actual IMU and flight
hardware, etc.).

The controller onboard the hexacopter was set to hover
about the point 1.5, -0.5, -0.5 in north, east, and down
coordinates for the following experiment. We did not make
a great effort to tune the controller. We kept the gains
conservative so that any spikes in the estimates would not
cause drastic position changes for the hexacopter. Our goal
was to fly without crashing, not necessarily to track paths with
the lowest possible error. We are confident that significantly
better performance will be achieved with better tuned gains.
The total flight time was four and a half minutes, but only a
segment of the flight is shown in figures 22 through 30 for
clarity.

Table I summarizes the statistics of the estimation error that
are mentioned in the captions of Figures 22 through 30.

Table II describes the error in the control in the different
directions. As is illustrated by these values, there is work
needed in tuning the controller. It is a delicate balance,
however, since there are occasional spikes in the estimates
and it is undesirable to have the controller respond quickly to
these spikes.

These estimation results agree well with the offline estima-
tor with synthesized camera updates at 2 Hz. After examining
the code of the two estimators, it seems that with the bug of
only using every fifth data packet eliminated, we should be

180 185 190 195 200 205 210 215 220 225 230
0.5

1

1.5

2

North: truth vs. estimate

time (sec)

d
is

ta
n
c
e
 (

m
)

truth

estimate

Fig. 22. The estimation error in north has a mean of 0.0048 m and a standard
deviation of 0.0371 m for the whole flight.

180 185 190 195 200 205 210 215 220 225 230
-0.5

0

0.5

1

East: truth vs. estimate

time (sec)

d
is

ta
n
c
e
 (

m
)

truth

estimate

Fig. 23. East has an error characterized by a mean of 0.0553 m and a
standard deviation of 0.0703 m for the flight. The estimation of east was poor
due to a poor estimation of v, which is most likely due to a poor choice for
the constant λ1.

180 185 190 195 200 205 210 215 220 225 230
-1

-0.5

0

0.5

Down: truth vs. estimate

time (sec)

d
is

ta
n
c
e
 (

m
)

truth

estimate

Fig. 24. The mean error is -0.053 m and standard deviation is 0.12 m. In
the beginning of this flight, it took awhile for the estimates to settle onto the
truth (not shown in figure).

180 185 190 195 200 205 210 215 220 225 230

-0.1

-0.05

0

0.05

0.1

Phi: truth vs. estimate

time (sec)

a
n
g
le

 (
ra

d
)

truth

estimate

Fig. 25. As is seen in the figure, there is a bias in our estimate of φ: -0.019
rad and a standard deviation of 0.0154 rad.

180 185 190 195 200 205 210 215 220 225 230
-0.1

-0.05

0

0.05

0.1

0.15

Theta: truth vs. estimate

time (sec)

a
n
g
le

 (
ra

d
)

truth

estimate

Fig. 26. The estimate of θ also has a bias, in the other direction: 0.02 rad,
with a standard deviation of 0.0111 rad.

180 185 190 195 200 205 210 215 220 225 230

-0.1

-0.05

0

0.05

0.1

Psi: truth vs. estimate

time (sec)

a
n
g
le

 (
ra

d
)

truth

estimate

Fig. 27. Our estimate of ψ are very good, with a mean error of -0.0003 rad
and a standard deviation of 0.0146 rad.

180 185 190 195 200 205 210 215 220 225 230
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Forward Velocity u: truth vs. estimate

time (sec)

s
p
e
e
d
 (

m
/s

)

truth

estimate

Fig. 28. Estimates of u are close. There is a mean error of 0.0102 m/s and
standard deviation of 0.0789 m/s.

180 185 190 195 200 205 210 215 220 225 230
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Side Velocity v: truth vs. estimate

time (sec)

s
p
e
e
d
 (

m
/s

)

truth

estimate

Fig. 29. Estimates of v struggle. We need to modify our constant for λ1 in
this direction. This should provide better estimates. Mean error for this flight
is 0.1133 m/s and a standard deviation of 0.1233 m/s.

180 185 190 195 200 205 210 215 220 225 230
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Down Velocity w: truth vs. estimate

time (sec)

s
p
e
e
d
 (

m
/s

)

truth

estimate

Fig. 30. Error bias is -0.1359 m/s and a standard deviation of 0.2765 m/s.
In the beginning of the flight it took awhile for this estimate to settle onto
the truth, at this point we are still unsure of why this was the case. That did
not happen on the second hover flight we performed.

TABLE II
STATISTICS OF THE POSITION ERROR FROM CONTROL EFFORT.

Direction Mean Standard Deviation
(m, rad) (m, rad)

North 0.2075 0.2413
East -0.4482 0.2288

Down 0.0236 0.6935
ψ 0.0095 0.0308

able to expect the same performance in the online filter as
we get with the offline filter. If we can get the real camera
updates to 10 Hz or more, we should have excellent estimation
performance. Table III describes some typical results that are
achieved with camera updates occurring at 10 Hz. This data is
from the same dataset as the online data above, with the same
parameters (λ1 = 0.0001 and kF = 0.00017) used in both
cases. The only difference is that the camera updates occur at
10 Hz.

TABLE III
STATISTICS OF ESTIMATION ERROR WITH 10 HZ CAMERA UPDATES.

State Mean Standard Deviation
(m,rad,m/s) (m,rad,m/s)

n -0.00002 0.0293
e 0.0028 0.0327
d -0.0012 0.0171
φ -0.03 0.0388
θ 0.0214 0.0355
ψ -0.0001 0.0068
u -0.0007 0.1819
v 0.0093 0.1952
w 0.0085 0.1159

Figures 31 through 34 show some updated results where an
accelerometer bias was updated for the jb direction (data from
6 10 1116). Not all the states are shown as they exhibit about
the same results as those shown in figures 22 through 30. The
IMU data was sent at a rate of 40 Hz and synthesized camera
updates were completed at a rate of 2 Hz for this flight as
well.

V. NEXT STEPS

While we are encouraged by our developments thus far,
many improvements remain to be made. The following is a
discussion of some ideas for near-term work.

As discussed in Section IV, we made a mistake in not
taking the square root of the variance to scale the random
numbers being added to MoCap data to synthesize camera
measurements. This undoubtedly made our results better than
they might have otherwise been. We need to rerun those
flight tests with the more realistic camera measurements to
determine the significance of this effect.

Cleaning up the code is the most immediate need to
facilitate future development. The “feature” mentioned in Sec-
tion III-B3 (which caused delayed camera updates to operate
at a fifth of the anticipated rate) took a considerable number

80 85 90 95 100 105 110 115 120
-1

-0.5

0

0.5

1

1.5

2

North: truth vs. estimate

time (sec)

d
is

ta
n
c
e
 (

m
)

truth

estimate

Fig. 31. Improved estimation in the North direction after adjusting an
accelerometer bias for the body jb direction. Note the scale changes from
the previous North figure.

80 85 90 95 100 105 110 115 120
-1.5

-1

-0.5

0

0.5

East: truth vs. estimate

time (sec)

d
is

ta
n
c
e
 (

m
)

truth

estimate

Fig. 32. Improved estimation for the East direction. The value for λ1 was
kept the same, but the lateral accelerometer bias was increased after it was
observed to that the accelerometer had a bias during flight. Note the scale
changes from the previous East figure.

80 85 90 95 100 105 110 115 120
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Forward Velocity u: truth vs. estimate

time (sec)

s
p
e
e
d
 (

m
/s

)

truth

estimate

Fig. 33. Improved estimation in the body forward velocity, u after adjusting
an accelerometer bias for the body jb direction.

80 85 90 95 100 105 110 115 120
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Side Velocity v: truth vs. estimate

time (sec)

s
p
e
e
d
 (

m
/s

)

truth

estimate

Fig. 34. Improved estimation for the body side velocity v. The value for
λ1 was kept the same, but the lateral accelerometer bias was increased after
it was observed to that the accelerometer had a bias during flight.

of man hours to uncover, and a number of similar examples
could be given of code elements no longer needed left over
from earlier development. Section III-C1 also makes plain
the fact that configuration parameters are currently spread
throughout the code. Going forward, we need to remove
elements of the code base that are no longer needed and move
all configuration parameters into one place. We also need to
change some variable names that no longer correspond to their
actual function. These changes will make the code easier to
understand, modify, and apply.

After cleaning up the code, but perhaps before making any
other changes to the system, we would do well to pay a little
more attention to the controller. We expect we can make the
estimator track the true states rather accurately, yet our flight
performance does not track the desired flight path as well as
we probably could. This is likely just a matter of tuning the
gains in the controller. Current results were obtained with soft
gains that were primarily chosen to ensure the vehicle never
moved too aggressively. However, we may need to take more
involved steps to make sure the control is solid before moving
forward much more with the estimation. We probably don’t
need anything especially innovative in our control, we just
need it to work well.

Related to this last thought, we might need to dig a little
deeper into the workings of the MikroKopter flight control
code. Fortunately, there is an English rewrite of that firmware.
We should verify if it is compatible with our version of the
hardware. If it is, we may likely benefit during our polishing
of the control by having a better bottom-up feel for what it
is we’re controlling. We may also find it easier in the English
firmware to make other helpful changes (e.g. further speeding
up the output of IMU data).

Also related to control improvements, we should probably
more carefully redesign how we mount hardware on the
HexaKopter. We have noticed that tuning gains to achieve good
performance is easier when the hardware (onboard computer
in particular) is not mounted. This is true even when using full

state feedback from the motion capture system in both cases.
Of course this is not a surprising observation; the platform will
be inherently more stable when the center of gravity is further
down in the body-fixed reference frame. With some longer
landing gear and a little forethought, we should be able to
pretty painlessly improve our control performance simply by
moving what we can below the plane of the motors.

Another important change to the code has to do with the
way camera measurements are synthesized using MoCap data.
Currently, the Ground Station software pushes MoCap data to
the HexaKopter Software at a fixed rate set in the Ground
Station. We would better model the real camera system if we
have the HexaKopter Software notify the Ground Station when
the onboard computer thinks a picture should have been taken.
The Ground Station software should then go back into a queue
of saved MoCap data and retrieve the value closest in time
to when the picture was taken. The Ground Station can then
send up the MoCap data to the HexaKopter after waiting a
certain amount of time. This approach allows us to build in
the same communication delays we will experience with the
final system, and it also allows us to easily adjust how we
model the time taken to process the image.

Synthesizing camera measurements is, of course, just a step-
ping stone to implementing the real camera-based algorithms
which Stephen Quebe and John Macdonald began implement-
ing earlier this calendar year. Their initial visual odometry
algorithm needs to be polished up in preparation for integration
with this baseline system. That polishing will likely include
some of the same code cleanup as is needed in the baseline
system software. We should also quantify the processing time
needed for the various parts of that algorithm and take steps
to minimize it where possible. We also need to better quantify
the accuracy of the vision algorithm under various conditions
(on a tripod vs. moving continuously, looking at feature rich
vs. feature poor scenes, etc.). Quantifying better these aspects
of the vision algorithm will inform our development of the
baseline system that uses synthesized camera measurements.
The same should also be true in reverse; that is, fine tuning
the baseline system should inform our understanding of the
performance needed from the vision algorithms and the con-
ditions we can expect the camera to operate within.

Vision algorithm development would be facilitated by taking
a dataset with the current baseline system that includes time-
stamped images. This is something we can do in the immediate
future.

Another, perhaps less essential, task could be the integration
of a laser or infrared altimeter sensor into the baseline system.
We specify laser or infrared here because the ultrasonic range
sensor recently tested on the HexaKopter was unable to detect
the floor during flight when greater than 14 inches away. We
suspect this is due to the acoustic noise of the nearby motors.
A height-above-ground sensor would make position down and
down velocity more observable to the estimator. This may
be useful since we have not as yet been able to use the z-
axis accelerometer in our IMU-based updates to the EKF.
The problem with the accelerometer is its measurements don’t
agree well with those predicted by the theory. Alternatively,
we may do well to dig into the theory surrounding the z-

axis accelerometer measurements and see if we can adjust the
model to better explain what we get out of that sensor.

One final, longer-term idea for moving forward has to
do with the rate at which camera measurements are made
available to the EKF. Right now, we assume that the framerate
of the synthesized camera is low enough to allow for sufficient
time to process each image before the next image is taken. This
makes the delayed updates to the EKF using camera data much
simpler. However, if future tests suggest that we cannot meet
this condition and still achieve good flight results, we may
consider modifying the delayed update procedure.

VI. CONCLUSION

This concludes our attempts to document our work to date
on solving the indoor navigation problem. The report itself
is rather imperfect and rough around the edges, but then
so is our current code and performance. Despite this, the
process of writing the report has been very instructive. We’ve
uncovered another important code bug in the writing process
and generated a much more clear picture of the way forward
for ourselves. While more might be done to polish this report
for posterity, we will forgo that for the present time. We hope
to prepare a superseding report, along with cleaner code and
better results, sometime toward the end of this summer or early
fall.

ACKNOWLEDGMENTS

We’ve received tremendous amounts of help from fellow
students (Jeff Ferrin most notably) and from our professors,
Dr. McLain and Dr. Beard. The software and hardware under-
lying this system would not be possible without their support.

REFERENCES

[1] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Stereo
vision and laser odometry for autonomous helicopters in GPS-denied
indoor environments,” G. R. Gerhart, D. W. Gage, and C. M.
Shoemaker, Eds., vol. 7332, no. 1. SPIE, 2009, p. 733219. [Online].
Available: http://link.aip.org/link/?PSI/7332/733219/1

[2] S. Ahrens, D. Levine, G. Andrews, and J. P. How, “Vision-based
guidance and control of a hovering vehicle in unknown, GPS-denied
environments,” in Proc. IEEE Int. Conf. Robotics and Automation ICRA
’09, 2009, pp. 2643–2648.

[3] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unstructured
and unknown indoor environments,” in Proceedings of the EMAV Con-
ference. European Micro Air Vechicle, September 2009.

[4] R. Beard and T. McLain, Small Unmanned Aircraft. Princeton
University Press, 2011.

[5] M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based
MAV navigation in unknown and unstructured environments,” in Proc.
IEEE Int Robotics and Automation (ICRA) Conf, 2010, pp. 21–28.

[6] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and defect of
nonlinear systems: Introductory theory and examples,” CAS, Tech. Rep.
A-284, January 1994.

[7] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in Proc. IEEE Int. Conf. Robotics and
Automation ICRA ’09, 2009, pp. 2878–2883.

[8] P. Martin, R. Murray, and P. Rouchon, “Flat systems,” 1997.
[9] P. Martin and E. Salaun, “The true role of accelerometer feedback in

quadrotor control,” in Proc. IEEE Int Robotics and Automation (ICRA)
Conf, 2010, pp. 1623–1629.

[10] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP
multiple micro-UAV testbed,” IEEE Robotics & Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.

[11] Mikrokopter.us, “http://www.mikrokopter.us/index.php.”

[12] R. Murray, M. Rathinam, and W. Sluis, “Differential flatness of mechan-
ical control systems: A catalog of prototype systems,” in Int’l Mech Eng
Congress and Expo. ASME, Novermber 1995.

[13] Quadrocopter, “http://www.quadrocopter.us/index.php.”

	BYU Indoor Flight System Circa June 2011
	BYU ScholarsArchive Citation

	tmp.1409942176.pdf.yHFH1

