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Our Situation

= Operating on a fixed budget
= Need morphologically annotated text

" For a significant part of the project, we can
only afford to annotate a subset of the text

= Where to focus manual annotation efforts in
order to produce a complete annotation of
highest quality?




Improving on Manual Tagging

= Can we reduce the amount of human effort while
maintaining high levels of accuracy?

= Utilize probabilistic models for computer-aided tagging

= Focus: Active Learning for Sequence Labeling
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Probabilistic POS Tagging

" Train a model to perform precisely this task:

= Estimate a distribution over tags for a word in given
contexts.

" Probabilistic POS Tagging is a fairly easy computational
task

= On the Penn Treebank (Wall Street Journal text)
= No context
= Choosing most frequent tag for a given word
= 92.45% accuracy
" There are much smarter things to do
= Maximum Entropy Markov Models






Presenter
Presentation Notes
This diagram shows a graphical model for a typical maximum-entropy Markov model used for POS tagging.
An MEMM is the model that results from a training procedure that learns weights for given features.
In this example, looking at t_i, we can look at the arrows that go into node t_i and we extract features from those nodes.
These are the features whose weights are learned during training.


Active Learning Data Sets

= Annotated: data labeled by oracle

* Unannotated: data not (yet) labeled by oracle

= Test: labeled data used to determine accuracy




Active Learning Models

= Sentence Selecting Model
= Model that chooses the sentences to be annotated

= MEMM

= Model that tags the sentences
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Determining Sentence Importance

= Determining which samples will provide the
most information:

= Random Baseline (Random)
= Query-By-Uncertainty

» Using entropy (QBU)

= Using Viterbi score (QBUV)
" Query-By-Committee (QBC)




Random Baseline

" |nstead of giving informative sentences to the
oracle, we choose random sentences.

" This is very fast
" Not the smartest thing to do




Query by Uncertainty

Importance of a sample corresponds to the uncertainty
in the model’s decision

“Uncertainty Sampling”

Thrun & Moeller, 1992
Lewis & Gale, 1994
Hwa, 2000

Anderson, 2005
Ringger et al., 2007




Query-by-Uncertainty using Entropy

" How is uncertainty determined?

= Per-word entropy

= Measure of the uncertainty in the distribution
over tags for a single word

= Easy to calculate

= Qur approximation to sentence entropy = the sum
of per-word entropies

" This performs equivalently to full-sequence
entropy.




QBUV

= Alternative approach to QBU

= Ringger et al., 2007 show that it often
outperforms QBU

" Estimate per-sentence uncertainty with 1-P(t)

= Where tis the best tag sequence from the
Viterbi decoder (hence the “V”)




Query by Committee

= Utilize a committee (or ensemble) of N models

= Each model is bootstrap sampled (with
replacement) from annotated data
= Each model “votes” on the correct tagging of a
sentence

» Those sentences on which the committee has
most disagreement should vield the most
useful information




Previous Work on QBC

= Seung, Opper, & Sompolinsky, 1992
" Freund, Seung, Shamir, & Tishby, 1997
= Analysis of QBC

" Engelsohn (Argamon) & Dagan, 1996
= QBC with HMMs for POS tagging
= Most relevant to our work




Experimental Setup

We use 80% of data for training data
= Data is Penn Treebank
Start with one random sentence

Assume the rest of training data to be unlabeled
(hide the tags)

We simulate annotation by the oracle by revealing
labels

Results are averaged from 10 randomized runs
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Which model?

" The best active learning model depends on how the
annotator is paid

= We usually pay by the hour
= \We need a good cost model




User Study

= See Ringger et al., 2008
" 47 participants (undergraduate linguistic students)
= Each tagged 36 sentences from Penn Treebank

" Tracked correcting times for correcting tags in a
sentence
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Cost Model

" From the User Study, we performed linear regression
to infer a cost model.

Cost (in seconds)=3.795 * L + 5.387 * C+ 12.57

L = length of the sentence

C = number of tags the annotator needs to change
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Presenter
Presentation Notes
We see how algorithms compare with cost model measured in terms of time.
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Presenter
Presentation Notes
We see how algorithms compare with cost model measured in terms of time.


Is active learning better, though?

The Penn Treebank has approximately one million
words.

According to the cost model, an average PTB
sentence would take about 4 minutes.

This means 26,908 hours for the full corpus.

With active learning we achieve 96% accuracy after
about 70 hours.




Portability

= Do the results hold up on other data?

*" We use random selections of English poetry from
the BNC

= We also use Kiraz Syriac New Testament
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Conclusions

= Active learning model depends on how cost is
determined

" Demonstrated significant annotation savings for
POS tagging

" On English news prose
= On English poetry
= On Syriac




Questions?

NATURAL
LANGUAGE




