
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

1996-04-03

Compressing Semi-structured Text Using Hierarchical Phrase Compressing Semi-structured Text Using Hierarchical Phrase

Identifications Identifications

Dan R. Olsen Jr.
dan_olsen@byu.edu

Craig G. Nevill-Manning

Ian H. Witten

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Nevill-Manning, C. G., Witten, I. H., Olsen, D. R.: "Compressing semi-structured text using

hierarchical phrase identification", Proceedings of the Data Compression Conference, IEEE

Press, Los Alamitos, CA (1996).

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Olsen, Dan R. Jr.; Nevill-Manning, Craig G.; and Witten, Ian H., "Compressing Semi-structured Text Using
Hierarchical Phrase Identifications" (1996). Faculty Publications. 1294.
https://scholarsarchive.byu.edu/facpub/1294

This Presentation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information,
please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1294?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Compressing Semi-structured Text Using
Hierarchical Phrase Identifications

Craig G. Nevill-Manning, Ian H. Witten
Computer Science, University of Waikato, Hamilton, New Zealand

email (cgn, ihw]@ waikato.ac.nz
Dan R. Olsen, Jr.

Computer Science, Brigham Young University, Provo, Utah, USA
email olsen@cs.byu.edu

1 .Introduction
Many computer files contain highly-structured, predictable information interspersed with
information which has less regularity and is therefore less predictable-such ais free text.
Examples range from word-processing source files, which contain precisely-expressed
formatting specifications enclosing tracts of natural-language text, to files containing a
sequence of filled-out forms which have a predefined skeleton clothed with reIatively
unpredictable entries. These represent extreme ends of a spectrum. Word-processing files
are dominated by free text, and respond well to general-purpose compression techniques.
Forms generally contain database-style information, and are most appropriately
compressed by taking into account their special structure. But one frequently encounters
intermediate cases. For example, in many email messages the formal headier and the
informal free-text content are equally voluminous. Short SGML files often contain
comparable amounts of formal structure and informal text. Although such files may be
compressed quite well by general-purpose adaptive text compression algorithms, which
will soon pick up the regular structure during the course of normal adaptation, better
compression can often be obtained by methods that are equipped to deal with both formal
and informal structure.

Semi-structured text represents a compromise between the demands of intelligibility
and efficiency: it is readable by humans, yet is arranged in a way that facilitates automatic
processing. Historically, formally-structured databases with rigid structure have been
favored over informally-structured text because of their greater efficiency. Fi.xed-length
records make indexing and access to information much simpler than free text. When
responding to specific queries, data files with a rigid, predefined format can be accessed
more efficiently than can looser textual representations of the same information-for an
entire arsenal of database technology can be summoned to provide efficient retrieval.

However, in many situations the balance seems slowly to be shifting in favor of semi-
structured information storage. Many factors are encouraging this trend: more emphasis
on flexibility; changing balance between human and machine costs; increasing
globalization; cheaper and more plentiful storage, processing, and bandwidth resources;
improved software technology. With the increasing availability and convenience of full -
text indexing, access to information in more flexible formats can also be performed
efficiently. It is becoming feasible to build high-use services such as web indlexes based
on textual databases.

But information in semi-structured form is often repetitive and verbose. Even when
compressed using standard text compression methods, it occupies far more storage than a
specially-tailored database file that represents the same information. From the point of
view of storage efficiency, you cannot do better than encode data in a way that takes
account of its particular structure. Some full-text retrieval systems also address the
storage problem, at least to some extent, since they compress the textual database.

1068-0314/96$5.00 0 1996 IEEE 63

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

mailto:olsen@cs.byu.edu

64

<TABLE>
<TR><TD VALIGN=TOP>Query type:<rrD>

However, they treat all information as free text and do not take account of any structure
that is present to increase the amount of compression obtained.

This paper takes a compression scheme that infers a hierarchical grammar from its
input, and investigates its application to semi-structured text. Although there is a huge
range and variety of data that comes within the ambit of "semi-structured,'' we focus
attention on a particular, and very large, example of such text. Consequently the work is a
case study of the application of grammar-based compression to a large-scale problem.

The structure of this paper is as follows. We begin by identifying some characteristics
of semi-structured text that have special relevance to data compression. We then give a
brief account of a particular large textual database, and describe a compression scheme
that exploits its structure. In addition to providing compression, the system gives some
insight into the structure of the database. Finally we show how the hierarchical grammar
can be generalized, first manually and then automatically, to yield further improvements
in compression performance.

2 Semi-structured text
We characterize scmi-structured text as data that is intended for automatic processing, but
which is also human-readable. Figure 1 shows four representative examples: fragments of
HTML, an email message, a genealogical database, and a structured data file. Of course,
the ratio of free text to structured fields varies greatly in such files. Compression schemes
that perform well on text also perform well on semi-structured text: they often perform

t
. ..

<TD>
<INPUT TYPE="radio" NAME="querytype"
<INPUT TYPE="radio" NAME="querytype"
<lTD>
<lTR>
<TR><TD VALIGN=TOP>Search type:dD>
<TD>
<INPUT TYPE="radio" NAME="collection" VALUE="
<INPUT TYPE="radio" NAME="collection"
VALUE="nz
<INPUT TYPE="radio" NAME="collection" VALUE="

@attribute 'education-allowance' ryes','no')
@attribute 'statutory-holidays' real
0 attribute 'vacation' ('below-average','average','g
0 attribute 'longterm-disability-assistance' ('yes','n
@attribute 'contribution-to-dental-plan' ('none','half'
@attribute 'bereavement-assistance' {'yes','nO')
0 attribute 'contribution-to-health-plan' ('none','half'
@attribute 'class' ('bad','good')
@data
1 5 , ? ,? ,? ,40,? ,? ,2,? ,I 1 ,'average',? ,? ,'yes',? ,'good
3,3.7,4,5,'tc',?,?,?,?,'yes',?,?,?,?,'yes',?,'good'
3,4.5,4.5,5,?,40,?,?,?,?,1 Z,'average',?,'half','yes',
2,2,2.5,?,?,35,?,?,6,'yes',l2,'average',?,?,?,?,'go
3,4,5,5,'tc',?,'empl_contr',?,?,?,l Z,'generous','yes

Replied: Tue, 17 Oct 1995 09:53:52 +I300
Replied: "M.Apperley0 1ucy.cs.waikato.ac.nz (Mar
Retum-Path: M.Apperley@ 1ucy.cs.waikato.ac.nz
Return-Path: <M.Apperley@ 1ucy.cs.waikato.ac.nz
by waikato.ac.nz (PMDF V5.0-4 #11755) id <01 HVI
Received: from [130.217.248.1 I] (judie.cs.waikato.
by cs.waikato.ac.nz (5.xISMI-SVR4) id AA17856;
Date: Mon, 16 Oct 1995 10:25:16 +I300
From: M.Apperley@ lucy.cs.waikato.ac.nz (Mark A
Subject: OZCHI Proceedings
X-Sender: mapperle @ 1ucifer.cs.waikato.ac.nz
Resent-To: ihw@cs.waikato.ac.nz
Message-Id: <9510152125.AA17856@cs.waikato.

Thanks for offering to explore the possibility of ACM
Mark

0 @26DS-KX@ INDl
1 AFN 26DS-KX
1 NAME Dan Reed /OLSEN/
1 SEXM
1 BlRT
2 DATE 22 JUN 1953
2 PLAC Idaho Falls,Bonneville,ldaho
1 FAMC @00206642@
0 @00206642@ FAM

1 WIFE 093GB-DD@
1 CHlL Q26DS-KXO

1 HUSB @N048-3F@

1 CHlL O21B7-WRQ
0 @26DN-7N@ INDl
1 NAME Mary Ann /BERNARD (OR BARNElT)

Figure 1 Examples of semi-structured text: (a) HTML source, (b) email, (c) textual data
file, and (d) genealogical data

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

65

even better because the structured information is more predictable. However, it should be
possible to leverage the special qualities of semi-structured text to improve on the
performance of general-purpose schemes.

One feature of semi-structured text is repeating template structures, such a:< the INPUT
TYPE lines in Figure la. Each radio button in a World Wide Web page is defined using
the <INPUT TYPE ... > tag, which has a specific format evident in the five similair lines. The
buttons are grouped into table cells, which are introduced by the <TD> tag and end with
the corresponding </m> tag. A scheme that takes advantage of the predictability of this
structure may yield better compression than a general-purpose scheme.

A salient aspect of all semi-structured text is the use of keywords: fixed tokens that
fulfil a structural role, and therefore occur more frequently and predictably than words in
free text. Examples are evident in all the fragments in Figure 1. Standard text
compression methods will benefit from the frequency of such terms, but will not reap full
benefit from their relatively predictable context.

Semi-structured files sometimes display global as well as local structure. Figure IC
shows an excerpt from a structured file of data about employment contracts. The first part
lists attribute names and values, one per line, in a simple format, effectively defining data
types. Each line of the second part gives a list of attribute values, each value being drawn
from those given in the corresponding attribute definition. Using the attribute information
to encode the values would compress the file very significantly.

Yet another source of redundancy in semi-structured text is predictability within the
free text. The DATE tag in Figure Id is always followed by a day of month, a month
name, and a year, while the NAME tag is followed by some number of first names and
then the family name in uppercase, delimited by virgules.

3 The example text
Our example text takes the form of a genealogical database, expressed in a semi-

structured textual form that is specifically designed to represent such information. There
is great variability in the kinds of genealogical information that must be stored.
Genealogical evidence comes from a wide variety of source records from ar variety of
cultural norms. This creates a strong requirement for flexibility. Despite this there is a
high degree of structure. Places, dates and significant events all occur with great
regularity and where similar information occurs, a similar representation is used.

THE GENEALOGICAL DATABASE

The LDS Church, for various reasons, maintains the most comprehensive collection of
on-line genealogical information in the world. The two largest of these databases are the
International Genealogical Index, which contains birth, death and marriage records, and
the Ancestral File, which contains linked pedigrees for families all over the world. The
former contains the records of over 265 million people while the latter contains records
for over 21 million; they are growing at a rate of 10% to 20% per year. In uncompressed
GEDCOM format (see below), these databases total 62.5 Gbytes in size. They are currently
compressed in an ad hoc manner and occupy 20 Gbyte and 5 Gbyte, respectively.

GEDCOM FORMAT

The GEDCOM standard for exchanging genealogical information stores information as
textually encoded trees. Each node has a tag which identifies its type and some textual
content. The content of a node is highly stylized dependlng on the node’s type. Any node
can have child nodes that provide additional information. This form is very flexible,

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

66

easily transmitted and yet is amenable to automatic processing because of its tree
structure. Its variability, however, makes it more suited to full text retrieval than to
traditional database queries.

The records are variable-length, and may have any combination of fields. Each record
is a line of text with a level number, tag and textual contents. The level numbers provide
a hierarchy within a record in a scheme reminiscent of COBOL data declarations. Lines at
the zero level can have labels that are used elsewhere in the file to refer to the entire
record. These records are generally individuals (INDI) or families (FAh4).

Figure Id shows an example of an individual record, a family record, and the
beginning of another individual record. The first gives name, gender, birth date,
birthplace, and a pointer to the individual’s family. The family record, which follows
directly, gives pointers to four individuals: husband, wife, and two children-one of
which is the individual himself. This example, however, gives an impression of regularity
which is slightly misleading. For most of the information-bearing fields such as NAME,
DATE, and PLACE, there are records that contain free text rather than structured
information. For example, the last line of Figure Id shows a name given with an
alternative. The DATE field might be “Abt 1767” or “Will dated 14 Sep 1803.” There is a
NOTE field (with a continuation line code) that frequently contains a brief essay on family
history.

4 SEQUITUR
Nevill-Manning et al. (1994) describe a scheme, dubbed SEQUITUR, that infers a
hierarchical description of a sequence based on repeating subsequences. This outperforms
most other dictionary-based compression methods on the Calgary corpus, although it
does not do quite so well as the best statistical methods.

SEQUITUR creates a grammar in which each rule represents a repeating subsequence
within the sequence. Short rules can be used within longer ones, resulting in a compact
hierarchy that also provides a plausible, human-readable structure for the sequence.
Figure 2 shows a short sequence and the grammar that is produced for it. S is the start
symbol, and rule S expands to the original sequence. The short rule A is reused in rule B
to describe a longer repetition in the original sequence. SEQUITUR’S grammars obey two
constraints: no digram appears twice, and every rule is used more than once. The heart of
the algorithm is the enforcement of these two constraints by rule creation and deletion
respectively.

In general, the resulting grammar contains a rather long first rule, and a large number
of much smaller rules-although this is not evident in the small example of Figure 2. The
first rule contains all the unstructured, non-repeating, parts of the input sequence. For
example, when compressing a large segment of text on a character-by-character basis, the
first rule is typically nearly half the size of the original text, in terms of the number of
non-terminals and terminals together. Typically, the number of different non-terminals-
that is, the number of rules-is around 4% of the number of characters in the original
input, and the average length of the right-hand side of a rule is just over two symbols.

This scheme improves on other dictionary schemes in three ways. First, the entire
grammar is kept in memory at once, so phrases that are separated by many symbols can
still be matched. This contrasts with most dictionary compression schemes, which search rIE1

Figure 2 A short sequence and the grammar that SEQUlTUR produces

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

67

for matches in a window of a few thousand characters to bound processing time.
SEQUITUR’S grammar not only provides an efficient in-memory record of the sequence,
but it also enables fixed-time lookup for matching phrases.

Second, because of the way in which Ziv-Lempel schemes add phrases to the
dictionary, many phrases become redundant. In LZ78 (Ziv and Lempel, 1978), new
phrases are produced from older ones by adding a single symbol. This means that phrases
are generated on the way to a long repeated phrase, and are not used again. In LZMW, a
variation of LZ78, new phrases are constructed by concatenating the two previous
phrases encoded. While this allows phrases to grow more quickly, it still gives rise to
unused phrases which consume code space. SEQU~~UR’S phrases must occur at least twice
to avoid deletion, and a phrase is removed if it is superseded by a longer one.

Third, SEQUITUR’S hierarchy of phrases represents the dictionary more concisely
because long phrases often contain shorter ones. Representing dictionary entries in terms
of other dictionary entries reduces the size of pointers required to specify both the starting
point and the length of a new dictionary entry.

The key to SEQUITUR’S suitability for semi-structured text is its emphasis on
hierarchical structure, and its ability to match repetitions that are widely separated and
arbitrarily long.

5 Compression of the genealogical database
In order to assess the performance of various compression methods on semi-structured
text, we extracted 38 000 individual records and 17 000 family records from the
genealogical database, totalling 9 Mbyte in GEDCOM format. Table 1 shows the results of
a number of standard compression programs on this sample, along with those from
SEQUITUR in several different configurations. In this section, we describe the standard
programs, then the use of SEQUITUR. In the following section, we discuss how the
grammar can be generalized and show how SEQUITUR’S grammar can be interpreted.

STANDARD COMPRESSION PROGRAMS

The LDS genealogical databases are currently stored in a system called AIM which
performs special-purpose compression designed specifically for the GEDCOM format. This
begins by assembling a dictionary of the most frequently occurring one-, two- and three-
word phrases. Any words or phrases that do not occur at least three times are dropped.
This dictionary then is encoded with the 63 most frequent entries in one byte and the
remaining entries in two bytes. In addition to this there are special encodings for dates
and other types. This first-level approach provides about 40% compression, which is
considerably worse than any of the other schemes we tested. However, the files so
produced are then compressed using the standard STACKER compression product. This
provides a further 40% compression for a total compression in AIM of 16%.
Table 1 shows the results of a number of compression programs on the 9 Mbyte sample
of the genealogical database that we used for evaluation. The standard compression
programs (except MG) do not support random access to records of the database, and so
they are not suitable for use in practice because random access is always a sine qua non
for information collections of this size.

The first block of Table 1 summarizes the performance of some popular byte-oriented
schemes. Unix compress illustrates what is obtainable using a robust implementation of
Ziv and Lempel’s LZ78 technique (Ziv and Lempel, 1978). The gz ip utility is an
exemplary implementation of the earlier LZ77 method (Ziv and Lempel, 1977), and
achieves substantially better compression. PPMC (Bell et al., 1990), a statistical data

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

68

I original I no compression I 9.18 1 100.0% 1

byte-oriented

word-oriented

compression scheme that normally outperforms dictionary schemes, performs extremely
well on the data, giving a compression rate of over six to one. For all these schemes,
compression rates are about twice as great as they are on book1 from the Calgary corpus
(Bell et al., 1990), which indicates the high regularity of this database relative to normal
English text.

The next block of Table 1 summarizes the performance of some word-oriented
compression schemes. These schemes split the input into an alternating sequence of
words and non-words-the latter comprising white space and punctuation. WORD uses a
Markov model that predicts words based on the previous word and non-words based on
the previous non-word, resorting to character-level coding whenever a new word or non-
word is encountered (Moffat, 1987). We used both a zero-order context (WORD-0) and a
first-order one (WORD-1). MG is a designed for full-text retrieval and uses a semi-static
zero-order word-based model, along with a separate dictionary (Witten et al., 1994). In
this scheme, as in wORD-0, the code for a word is determined solely by its frequency, not
on any preceding words. This proves rather ineffectual on the genealogical database,
indicating the importance of inter-word relationships. WORD- 1 achieves a compression
rate that falls between that of compress and gzip. The relatively poor performance of this
scheme is rather surprising, indicating the importance of sequences of two or more words
as well perhaps as the need to condition of inter-word gaps on the preceding word, and
vice versa.

None of these standard compression programs perform as well as the ad hoc scheme
used in AIM, except, marginally, PPM.

APPLYING SEQUITUR

In order to apply the S E Q U ” method to this data, it was resolved to take a word-based
approach to compression. Virtually all words were separated by single spaces, and so it
was not necessary to have a separate sequence of non-words. Instead, a single space was
defined as the word delimiter. In the rare occasions where extra spaces occurred they
were prepended to the next word-this generally happened only with single-digit dates.
Other punctuation was appended to the preceding word; again, this decision did not
materially increase the dictionary size. The dictionary was encoded separately from the

COMPRESS 2.55 27.8%
Gzlp 1 .I1 19.3%
PPM 1.42 15.5%

WORD-0 3.20 34.8%
WORD-1 2.21 24.1%
MG 0.14 - 2.87 3.01 32.8%

- - -
- - -

SEQUITUR codes generalised
dates generalised
gender generalised
names generalised

0.11 0.40 0.60 1.11 12.1%
0.11 0.64 0.31 1.06 11.5%
0.11 0.64 0.30 1.05 11.4%
0.11 0.76 0.17 1.04 11.3%

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

69

word sequence, which was represented as a sequence of numeric dictionary indexes.
The word indexes were compressed using SEQUITUR as if they were symbols drawn

from a large alphabet. The compression scheme was identical to that described by Nevill-
Manning et al. (1994). The dictionary was compressed in two stages: front coding
followed by compression by PPMC. Front coding involves sorting the dictionary, and
whenever an entry shares a prefix with the preceding entry, replacing the prefix by its
length. For example, the word baptized would be encoded as 7d if it were preceded by
baptize, since the two have seven letters in common. A more principled dictionary
encoding was also performed, but failed to outperform this simple approach.

The input comprised 1.8 million words, and the dictionary contained 148 000 unique
entries. The grammar that SEQUI” formed had 71 000 rules and 648 000 symbols,
443 000 of which were in the top-level rule. The average length of a rule (excluding the
top-level one) was nearly 3 words. This grammar, when encoded using the method
described by Nevill-Manning et al. (1994), was 1.07 Mb in size. The dictionary
compressed to 0.1 1 Mb, giving a total size for the whole text of 1.18 Mb. This represents
almost eight to one compression, some 20% improvement over the nearest rival, PPMC.

6 Generalizing tokens for increased compression
Examination of S EQurruR’s output reveals that significant improvements could be made
quite easily by making small changes to the organization of the input file. We first
describe how this was done manually, by using human insight to detect regularities in
SEQUITUR’S output, next we show how the grammar can be interpreted, and finally show
how the process of identifying such situations can be automated.

MANUAL GENERALIZATION

Of the dictionary entries, 94% were codes used to relate records together for various
familial relationships. Two types of codes are used in the database: individual identifiers
such as @26DS-KX@, and family identifiers such as @00206642@. These codes obscure
template structures in the database-the uniqueness of each code means that no phrases
can be formed that involve them. For example, the line 0 @26DS-KX@ INDI in Figure Id
occurs only once, as do all other ZNDI lines in the file, and so the fact that 0 and INDI
always occur together is obscured: SEQUITUR cannot take advantage of it. In fact, the
token INDI occurs 33 000 times in the rules of the grammar, and in every case it could
have been predicted with 100% accuracy by noting that 0 occurs two symbols previously,
and that the code is in the individual identifier format.

This prediction can be implemented by replacing each code with the generic token
family or individual, and specifying the actual codes that occur in a separate stream.
Replacing the code in the example above with the token individual yields the sequence
0 individual INDI , which recurs many thousands of times in the file and therefore causes
a grammar rule to be created. In this grammar, INDI occurs in a rule that covers the
phrase JO individual INDIJI AFN individualdl NAME (J denotes the end of line). This is
now the only place that INDI occurs in the grammar.

Overall, the number of rules in the grammar halves, as does the length of the top-level
rule, and the total number of symbols. The compressed size of the grammar falls from
1.07 Mb to 0.60 Mb. The total size of the two files specifying the individual and family
codes is 0.40 Mb, bringing the total for the word indexes to 1.0 Mb, a 7% reduction.
Including the dictionaries gives a total of 1.1 1 Mb to recreate the original file.

Separating the dictionaries represents the use of some domain knowledge to aid
compression, so comparisons with general-purpose compression schemes is unfair. For

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

70

a

b

C

0 + m
0 +m
0 + @individual INDlDAFN individualaNAME
@ + @ F
0 +m
8 + l S E X
0 -+J1
@ -+ FAMS family

1 SEX F Jl FAMS family J O individual INDI Jl AFN individual JI NAME I
_ _ _ 0 Sybil Louise /MCGHIE/ (0 Eliza) Jane /LOSEW (0 Margaret) /SIMMONS/ (0 Marie) Elizabeth
/BERREY/ 0 Athena Augusta /ROGERS/ (0 William) Henry NI”/ ...

Figure 3 A phrase: (a) hierarchical decomposition; (b) graphical representation;
(c) examples of use

this reason, PPMC was applied to the same parts as SEQUITUR, to determine what real
advantage SEQUITUR provides. PPMC was first applied in a byte-oriented manner to the
sequence of word indexes. It compressed these to 1.07 Mb, far worse than SEQUITUR’S
0.60 Mb. In an attempt to improve the result, PPMC was run on the original file with
generic tokens for codes, yielding a file size of 0.85 Mb-still much worse than
SEQUITUR’S result. Note that this approach does outperform running PPMC on the
unmodified file. Finally, the WORD-1 scheme was applied to the sequence of generalized
codes, but the result was worse still.

INTERPRETING THE GRAMMAR

We now turn to the structure of the grammar. Occam’s razor asserts that simpler theories
should be preferred to more complex ones. Although this implies that compressed
representations provide good theories about the structure of a sequence, most
compression schemes produce models that are incomprehensible. SEQUITUR’S model, on
the other hand, has a natural, readable representation as a grammar. We can gain insight
into its performance by examining the model that SEQUITUR builds.

Figure 3a shows nine of the 71 000 rules in SEQUITUR’S original grammar, with
ungeneralized codes, renumbered for clarity. Rule 0 is the second most widely used rule
in the grammar: it appears in 261 other rules.’ The other eight rules are all those that are
referred to, directly or indirectly, by rule 0: Figure 3b shows the hierarchy graphically.
The topmost black bar in Figure 3b represents rule 0. The next two bars are rules 0 and
0, the contents of rule 0. The hierarchy continues in this way until all of the rules have
been expanded.

Rule 0 represents the end of one record and the beginning of the next. Rule @ is
effectively a record separator (recall that each new record starts with a line at level 0),
and this occurs in the middle of rule 0. Although grouping parts of two records together
achieves compression, it violates the structure of the database, in which records are

’ The most widely used rule is 2 PLAC, which occurs 358 times, indicating that the text surrounding the
place tag is highly variable. However, the stmcture of the rule itself is uninteresting.

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

71

to encode the Bs in
AabcB ... A...AhijkB...B

integral. However, the two parts are split apart at the second level of the rule hierarchy,
with one rule, 0, for the end of one record, and another, 0, for the start of the next. The
short rules 0 and @ capture the fact that every line begins with a nesting level number.
There is also a rule for the entire S E X field indicating the person is female, which
decomposes into the fixed part: I SEX, and the value F on the end, so that the first part
can also combine with M to form the other version of the SEX field. There is a similar
hierarchy for the end of a male record, which occurs 259 times.

As for the usage of this rule, Figure 3c shows part of the top-level rule. Here, rules
have been expanded for clarity: parentheses are used to indicate a string which is
generated by a rule. This part of the sequence consists mainly of rule 0 in combination
with different names. Separate rules have been formed for rule 0 in combination with
common first names.

AUTOMA~C GENERALIZATION

In order to automate the process of identifying situations where generalization is
beneficial, it is first necessary to define the precise conditions that give rise to possible
savings. In the case described above, the rule INDI 21 AFN occurred many times in the
grammar, and accounted for a significant portion of the compressed file. Conditioning
this phrase on a prior occurrence of JO greatly increases its predictability. The problem is
that other symbols may be interposed between the two. One heuristic for identifying
potential savings is to scan the grammar for pairs of phrases where the cost of specifying
the distances of the second relative to the first (predictive coding) is less than the cost of
coding the second phrase by itself (normal coding).

Figure 4 gives two illustrations of the tradeoff. In the top half of Figure 4, using
normal coding, the cost of coding the Bs is three times the cost of coding an individual B:
log2(frequency of B /total symbols in grammar) bits. For predictive coding, the statement
“A predicts B” must be encoded once at the beginning of the sequence. Reducing this
statement to a pair of symbols, A B , the cost is just the sum of encoding A and B
independently. Each time that A occurs, it is necessary to specify the number of
intervening symbols before B occurs. In the example, A<3> signifies that the next B
occurs after three intervening symbols. These distances are encoded using an adaptive
order-0 model with escapes to introduce new distances.

The bottom half of Figure 4 shows a more complex example, where two A s appear
with no intervening B, and a B occurs with no preceding A. The first situation is flagged
by a distance of CO, and the second is handled by encoding B using normal coding.

Table 2 lists pairs of phrases ranked according to the number of bits saved by using
one phrase to predict the other. At the top of the list is the prediction do=, INDI JI AFN,
which is the relationship that we exploited by hand-the intervening symbol between JO
and INDI JI AFN is an individual code. Predictions 2, 3 and 6 indicate that the codes
should be generalised after the AFN, FAMS and FAMC tags respectively. Taken together,

encode ... B...B...B
cost 3 X entropy(B)

encode “A predicts B”, and Ac3> ... A<-=> ... A<4> ... B
cost: entropy(A) + entropy(B) + entropy(3, -, 4) +

entropy(B)

manual predictive
to encode the Bs in 1 encode ... B...B...B... I encode “A predicts B”, and A<3> ... A<4> ... A<4> I

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

72

Prediction

J O 3 I N D I J lAFN
INDI J l A F N =+J lNAME

FAMS =+JQ
J l S E X * J 2

BAPL a J 1 ENDL
FAMC J 1 FAMS

J 1 BIRTJ 2 DATE a J 2 PLAC

ENDL a J 1 SLGC
J lNAME 3 J lSEX

Normal

1.25
2.15

Predicted
(bits/symbol)

0.01
0.01
0.81
0.06
0.76
1.47
1.11
0.82
1.58

Saving
(total bits)
2297.90
2297.23

638.30
655.90
508.53
427.14
381.96
315.42
265.88

Table 2: Predictions based on part of the GEDCOM database

these four predictions achieve the 7% improvement described in the last section.
Predictions 5 , 7 and 9 indicate that dates should be generalised. Doing this by replacing
dates with the token date, and encoding the sequence of dates in a separate file, reduces
the total size of the compressed files a further 5%. Prediction 4 indicates that the SEX
field can be generalised by replacing the two possible tags, F and M. Acting on this
reduces the size by a further 1%. Finally, prediction 8 indicates that names should be
generalised, resulting in a final compressed size of 1.04 Mb, or a ratio of almost nine to
one. The final block of Table 1 summarizes these improvements.

SEQUITUR produces deterministic grammars, and this process is analogous to adding
non-deterministic rules to the grammar. The new non-terminal is the generic token (e.g.
date), and it heads many rules, each right-hand side being one date. It is planned to
integrate this generalisation process into S EQUrrUR.

7 Conclusion
Semi-structured text proves to be an interesting domain for compression, and one that
provides a strong incentive for hierarchical grammar-based techniques such as
SEQUITUR. Although there is a huge range and variety of semi-structured text, we have
gained significant insight by studying one particular example in detail-insight that we
believe will apply widely to different genres of semi-structured text. We have shown that
the grammar-based approach outperforms the best text compression methods-by 20%,
in this example; that significant improvement can be obtained by performing some small
generalizations on the grammar-giving a further 10% improvement; and that
opportunities for such generalizations can be detected automatically. The full method
achieves compression of nearly 9: 1 on this data, considerably better than PPM’s 6.5: 1.

References
Bell, T.C., Cleary, J.G. and Witten, I.H. (1990) Text Compression. Prentice Hall, Englewood Cliffs, NJ
Nevill-Manning, C., Witten, I.H. and Maulsby, D. (1994) “Compression by induction of hierarchical

grammars.” Proc Dam Compression Conference, edited by J.A Storer and M. Cohn. IEEE Press, pp.
244-253.

and images, Van Nostrand Reinhold, New York.

day Saints, Salt Lake City, Utah.

Information Theory, IT-23 (3), 337-343, May.

Trans. Information Theory, ZT-234(5), 530-536, September.

Witten, I.H., Moffat, A., and Bell, T.C. (1994) Managing Gigabytes: Compressing and indexing documents

“GEDCOM Standard: Draft release 5.4”, Family History D e p m e n t , The Church of Jesus Christ of Latter-

Ziv, J. and Lempel, A. (1977) “A universal algorithm for sequential data compression,” IEEE Trans.

Ziv, J. and Lempel, A. (1978) “Compression of individual sequences via variable-rate coding,” IEEE

Authorized licensed use limited to: Brigham Young University. Downloaded on August 09,2010 at 17:23:53 UTC from IEEE Xplore. Restrictions apply.

	Compressing Semi-structured Text Using Hierarchical Phrase Identifications
	Original Publication Citation
	BYU ScholarsArchive Citation

	Compressing Semi-Structured Text Using Hierarchical Phrase Identifications - Data Compression Conference, 1996. DCC '96. Proceedings

