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Compressing Semi-structured Text Using 
Hierarchical Phrase Identifications 

Craig G. Nevill-Manning, Ian H. Witten 
Computer Science, University of Waikato, Hamilton, New Zealand 

email (cgn, ihw]@ waikato.ac.nz 
Dan R. Olsen, Jr. 

Computer Science, Brigham Young University, Provo, Utah, USA 
email olsen@cs.byu.edu 

1 .Introduction 
Many computer files contain highly-structured, predictable information interspersed with 
information which has less regularity and is therefore less predictable-such ais free text. 
Examples range from word-processing source files, which contain precisely-expressed 
formatting specifications enclosing tracts of natural-language text, to files containing a 
sequence of filled-out forms which have a predefined skeleton clothed with reIatively 
unpredictable entries. These represent extreme ends of a spectrum. Word-processing files 
are dominated by free text, and respond well to general-purpose compression techniques. 
Forms generally contain database-style information, and are most appropriately 
compressed by taking into account their special structure. But one frequently encounters 
intermediate cases. For example, in many email messages the formal headier and the 
informal free-text content are equally voluminous. Short SGML files often contain 
comparable amounts of formal structure and informal text. Although such files may be 
compressed quite well by general-purpose adaptive text compression algorithms, which 
will soon pick up the regular structure during the course of normal adaptation, better 
compression can often be obtained by methods that are equipped to deal with both formal 
and informal structure. 

Semi-structured text represents a compromise between the demands of intelligibility 
and efficiency: it is readable by humans, yet is arranged in a way that facilitates automatic 
processing. Historically, formally-structured databases with rigid structure have been 
favored over informally-structured text because of their greater efficiency. Fi.xed-length 
records make indexing and access to information much simpler than free text. When 
responding to specific queries, data files with a rigid, predefined format can be accessed 
more efficiently than can looser textual representations of the same information-for an 
entire arsenal of database technology can be summoned to provide efficient retrieval. 

However, in many situations the balance seems slowly to be shifting in favor of semi- 
structured information storage. Many factors are encouraging this trend: more emphasis 
on flexibility; changing balance between human and machine costs; increasing 
globalization; cheaper and more plentiful storage, processing, and bandwidth resources; 
improved software technology. With the increasing availability and convenience of full - 
text indexing, access to information in more flexible formats can also be performed 
efficiently. It is becoming feasible to build high-use services such as web indlexes based 
on textual databases. 

But information in semi-structured form is often repetitive and verbose. Even when 
compressed using standard text compression methods, it occupies far more storage than a 
specially-tailored database file that represents the same information. From the point of 
view of storage efficiency, you cannot do better than encode data in a way that takes 
account of its particular structure. Some full-text retrieval systems also address the 
storage problem, at least to some extent, since they compress the textual database. 
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<TABLE> 
<TR><TD VALIGN=TOP>Query type:<rrD> 

However, they treat all information as free text and do not take account of any structure 
that is present to increase the amount of compression obtained. 

This paper takes a compression scheme that infers a hierarchical grammar from its 
input, and investigates its application to semi-structured text. Although there is a huge 
range and variety of data that comes within the ambit of "semi-structured,'' we focus 
attention on a particular, and very large, example of such text. Consequently the work is a 
case study of the application of grammar-based compression to a large-scale problem. 

The structure of this paper is as follows. We begin by identifying some characteristics 
of semi-structured text that have special relevance to data compression. We then give a 
brief account of a particular large textual database, and describe a compression scheme 
that exploits its structure. In addition to providing compression, the system gives some 
insight into the structure of the database. Finally we show how the hierarchical grammar 
can be generalized, first manually and then automatically, to yield further improvements 
in compression performance. 

2 Semi-structured text 
We characterize scmi-structured text as data that is intended for automatic processing, but 
which is also human-readable. Figure 1 shows four representative examples: fragments of 
HTML, an email message, a genealogical database, and a structured data file. Of course, 
the ratio of free text to structured fields varies greatly in such files. Compression schemes 
that perform well on text also perform well on semi-structured text: they often perform 

t 
. .. 

<TD> 
<INPUT TYPE="radio" NAME="querytype" 
<INPUT TYPE="radio" NAME="querytype" 
<lTD> 
<lTR> 
<TR><TD VALIGN=TOP>Search type:dD> 
<TD> 
<INPUT TYPE="radio" NAME="collection" VALUE=" 
<INPUT TYPE="radio" NAME="collection" 
VALUE="nz 
<INPUT TYPE="radio" NAME="collection" VALUE=" 

@attribute 'education-allowance' ryes','no') 
@attribute 'statutory-holidays' real 
0 attribute 'vacation' ('below-average','average','g 
0 attribute 'longterm-disability-assistance' ('yes','n 
@attribute 'contribution-to-dental-plan' ('none','half' 
@attribute 'bereavement-assistance' {'yes','nO') 
0 attribute 'contribution-to-health-plan' ('none','half' 
@attribute 'class' ('bad','good') 
@data 
1 5 , ?  ,? ,? ,40,? ,? ,2,? ,I 1 ,'average',? ,? ,'yes',? ,'good 
3,3.7,4,5,'tc',?,?,?,?,'yes',?,?,?,?,'yes',?,'good' 
3,4.5,4.5,5,?,40,?,?,?,?,1 Z,'average',?,'half','yes', 
2,2,2.5,?,?,35,?,?,6,'yes',l2,'average',?,?,?,?,'go 
3,4,5,5,'tc',?,'empl_contr',?,?,?,l Z,'generous','yes 

Replied: Tue, 17 Oct 1995 09:53:52 +I300 
Replied: "M.Apperley0 1ucy.cs.waikato.ac.nz (Mar 
Retum-Path: M.Apperley@ 1ucy.cs.waikato.ac.nz 
Return-Path: <M.Apperley@ 1ucy.cs.waikato.ac.nz 
by waikato.ac.nz (PMDF V5.0-4 #11755) id <01 HVI 
Received: from [130.217.248.1 I ]  (judie.cs.waikato. 
by cs.waikato.ac.nz (5.xISMI-SVR4) id AA17856; 
Date: Mon, 16 Oct 1995 10:25:16 +I300 
From: M.Apperley@ lucy.cs.waikato.ac.nz (Mark A 
Subject: OZCHI Proceedings 
X-Sender: mapperle @ 1ucifer.cs.waikato.ac.nz 
Resent-To: ihw@cs.waikato.ac.nz 
Message-Id: <9510152125.AA17856@cs.waikato. 

Thanks for offering to explore the possibility of ACM 
Mark 

0 @26DS-KX@ INDl 
1 AFN 26DS-KX 
1 NAME Dan Reed /OLSEN/ 
1 SEXM 
1 BlRT 
2 DATE 22 JUN 1953 
2 PLAC Idaho Falls,Bonneville,ldaho 
1 FAMC @00206642@ 
0 @00206642@ FAM 

1 WIFE 093GB-DD@ 
1 CHlL Q26DS-KXO 

1 HUSB @N048-3F@ 

1 CHlL O21B7-WRQ 
0 @26DN-7N@ INDl 
1 NAME Mary Ann /BERNARD (OR BARNElT) 

Figure 1 Examples of semi-structured text: (a) HTML source, (b) email, (c) textual data 
file, and (d) genealogical data 
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even better because the structured information is more predictable. However, it should be 
possible to leverage the special qualities of semi-structured text to improve on the 
performance of general-purpose schemes. 

One feature of semi-structured text is repeating template structures, such a:< the INPUT 
TYPE lines in Figure la. Each radio button in a World Wide Web page is defined using 
the <INPUT TYPE ... > tag, which has a specific format evident in the five similair lines. The 
buttons are grouped into table cells, which are introduced by the <TD> tag and end with 
the corresponding </m> tag. A scheme that takes advantage of the predictability of this 
structure may yield better compression than a general-purpose scheme. 

A salient aspect of all semi-structured text is the use of keywords: fixed tokens that 
fulfil a structural role, and therefore occur more frequently and predictably than words in 
free text. Examples are evident in all the fragments in Figure 1. Standard text 
compression methods will benefit from the frequency of such terms, but will not reap full 
benefit from their relatively predictable context. 

Semi-structured files sometimes display global as well as local structure. Figure IC 
shows an excerpt from a structured file of data about employment contracts. The first part 
lists attribute names and values, one per line, in a simple format, effectively defining data 
types. Each line of the second part gives a list of attribute values, each value being drawn 
from those given in the corresponding attribute definition. Using the attribute information 
to encode the values would compress the file very significantly. 

Yet another source of redundancy in semi-structured text is predictability within the 
free text. The DATE tag in Figure Id is always followed by a day of month, a month 
name, and a year, while the NAME tag is followed by some number of first names and 
then the family name in uppercase, delimited by virgules. 

3 The example text 
Our example text takes the form of a genealogical database, expressed in a semi- 

structured textual form that is specifically designed to represent such information. There 
is great variability in the kinds of genealogical information that must be stored. 
Genealogical evidence comes from a wide variety of source records from ar variety of 
cultural norms. This creates a strong requirement for flexibility. Despite this there is a 
high degree of structure. Places, dates and significant events all occur with great 
regularity and where similar information occurs, a similar representation is used. 

THE GENEALOGICAL DATABASE 

The LDS Church, for various reasons, maintains the most comprehensive collection of 
on-line genealogical information in the world. The two largest of these databases are the 
International Genealogical Index, which contains birth, death and marriage records, and 
the Ancestral File, which contains linked pedigrees for families all over the world. The 
former contains the records of over 265 million people while the latter contains records 
for over 21 million; they are growing at a rate of 10% to 20% per year. In uncompressed 
GEDCOM format (see below), these databases total 62.5 Gbytes in size. They are currently 
compressed in an ad hoc manner and occupy 20 Gbyte and 5 Gbyte, respectively. 

GEDCOM FORMAT 

The GEDCOM standard for exchanging genealogical information stores information as 
textually encoded trees. Each node has a tag which identifies its type and some textual 
content. The content of a node is highly stylized dependlng on the node’s type. Any node 
can have child nodes that provide additional information. This form is very flexible, 
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easily transmitted and yet is amenable to automatic processing because of its tree 
structure. Its variability, however, makes it more suited to full text retrieval than to 
traditional database queries. 

The records are variable-length, and may have any combination of fields. Each record 
is a line of text with a level number, tag and textual contents. The level numbers provide 
a hierarchy within a record in a scheme reminiscent of COBOL data declarations. Lines at 
the zero level can have labels that are used elsewhere in the file to refer to the entire 
record. These records are generally individuals (INDI) or families (FAh4). 

Figure Id  shows an example of an individual record, a family record, and the 
beginning of another individual record. The first gives name, gender, birth date, 
birthplace, and a pointer to the individual’s family. The family record, which follows 
directly, gives pointers to four individuals: husband, wife, and two children-one of 
which is the individual himself. This example, however, gives an impression of regularity 
which is slightly misleading. For most of the information-bearing fields such as NAME, 
DATE, and PLACE, there are records that contain free text rather than structured 
information. For example, the last line of Figure Id shows a name given with an 
alternative. The DATE field might be “Abt 1767” or “Will dated 14 Sep 1803.” There is a 
NOTE field (with a continuation line code) that frequently contains a brief essay on family 
history. 

4 SEQUITUR 
Nevill-Manning et al. (1994) describe a scheme, dubbed SEQUITUR, that infers a 
hierarchical description of a sequence based on repeating subsequences. This outperforms 
most other dictionary-based compression methods on the Calgary corpus, although it 
does not do quite so well as the best statistical methods. 

SEQUITUR creates a grammar in which each rule represents a repeating subsequence 
within the sequence. Short rules can be used within longer ones, resulting in a compact 
hierarchy that also provides a plausible, human-readable structure for the sequence. 
Figure 2 shows a short sequence and the grammar that is produced for it. S is the start 
symbol, and rule S expands to the original sequence. The short rule A is reused in rule B 
to describe a longer repetition in the original sequence. SEQUITUR’S grammars obey two 
constraints: no digram appears twice, and every rule is used more than once. The heart of 
the algorithm is the enforcement of these two constraints by rule creation and deletion 
respectively. 

In general, the resulting grammar contains a rather long first rule, and a large number 
of much smaller rules-although this is not evident in the small example of Figure 2. The 
first rule contains all the unstructured, non-repeating, parts of the input sequence. For 
example, when compressing a large segment of text on a character-by-character basis, the 
first rule is typically nearly half the size of the original text, in terms of the number of 
non-terminals and terminals together. Typically, the number of different non-terminals- 
that is, the number of rules-is around 4% of the number of characters in the original 
input, and the average length of the right-hand side of a rule is just over two symbols. 

This scheme improves on other dictionary schemes in three ways. First, the entire 
grammar is kept in memory at once, so phrases that are separated by many symbols can 
still be matched. This contrasts with most dictionary compression schemes, which search rIE1 

Figure 2 A short sequence and the grammar that SEQUlTUR produces 
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for matches in a window of a few thousand characters to bound processing time. 
SEQUITUR’S grammar not only provides an efficient in-memory record of the sequence, 
but it also enables fixed-time lookup for matching phrases. 

Second, because of the way in which Ziv-Lempel schemes add phrases to the 
dictionary, many phrases become redundant. In LZ78 (Ziv and Lempel, 1978), new 
phrases are produced from older ones by adding a single symbol. This means that phrases 
are generated on the way to a long repeated phrase, and are not used again. In LZMW, a 
variation of LZ78, new phrases are constructed by concatenating the two previous 
phrases encoded. While this allows phrases to grow more quickly, it still gives rise to 
unused phrases which consume code space. SEQU~~UR’S phrases must occur at least twice 
to avoid deletion, and a phrase is removed if it is superseded by a longer one. 

Third, SEQUITUR’S hierarchy of phrases represents the dictionary more concisely 
because long phrases often contain shorter ones. Representing dictionary entries in terms 
of other dictionary entries reduces the size of pointers required to specify both the starting 
point and the length of a new dictionary entry. 

The key to SEQUITUR’S suitability for semi-structured text is its emphasis on 
hierarchical structure, and its ability to match repetitions that are widely separated and 
arbitrarily long. 

5 Compression of the genealogical database 
In order to assess the performance of various compression methods on semi-structured 
text, we extracted 38 000 individual records and 17 000 family records from the 
genealogical database, totalling 9 Mbyte in GEDCOM format. Table 1 shows the results of 
a number of standard compression programs on this sample, along with those from 
SEQUITUR in several different configurations. In this section, we describe the standard 
programs, then the use of SEQUITUR. In the following section, we discuss how the 
grammar can be generalized and show how SEQUITUR’S grammar can be interpreted. 

STANDARD COMPRESSION PROGRAMS 

The LDS genealogical databases are currently stored in a system called AIM which 
performs special-purpose compression designed specifically for the GEDCOM format. This 
begins by assembling a dictionary of the most frequently occurring one-, two- and three- 
word phrases. Any words or phrases that do not occur at least three times are dropped. 
This dictionary then is encoded with the 63 most frequent entries in one byte and the 
remaining entries in two bytes. In addition to this there are special encodings for dates 
and other types. This first-level approach provides about 40% compression, which is 
considerably worse than any of the other schemes we tested. However, the files so 
produced are then compressed using the standard STACKER compression product. This 
provides a further 40% compression for a total compression in AIM of 16%. 
Table 1 shows the results of a number of compression programs on the 9 Mbyte sample 
of the genealogical database that we used for evaluation. The standard compression 
programs (except MG) do not support random access to records of the database, and so 
they are not suitable for use in practice because random access is always a sine qua non 
for information collections of this size. 

The first block of Table 1 summarizes the performance of some popular byte-oriented 
schemes. Unix compress illustrates what is obtainable using a robust implementation of 
Ziv and Lempel’s LZ78 technique (Ziv and Lempel, 1978). The gz ip  utility is an 
exemplary implementation of the earlier LZ77 method (Ziv and Lempel, 1977), and 
achieves substantially better compression. PPMC (Bell et al., 1990), a statistical data 
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I original I no compression I 9.18 1 100.0% 1 

byte-oriented 

word-oriented 

compression scheme that normally outperforms dictionary schemes, performs extremely 
well on the data, giving a compression rate of over six to one. For all these schemes, 
compression rates are about twice as great as they are on book1 from the Calgary corpus 
(Bell et al., 1990), which indicates the high regularity of this database relative to normal 
English text. 

The next block of Table 1 summarizes the performance of some word-oriented 
compression schemes. These schemes split the input into an alternating sequence of 
words and non-words-the latter comprising white space and punctuation. WORD uses a 
Markov model that predicts words based on the previous word and non-words based on 
the previous non-word, resorting to character-level coding whenever a new word or non- 
word is encountered (Moffat, 1987). We used both a zero-order context (WORD-0) and a 
first-order one (WORD-1). MG is a designed for full-text retrieval and uses a semi-static 
zero-order word-based model, along with a separate dictionary (Witten et al., 1994). In 
this scheme, as in wORD-0, the code for a word is determined solely by its frequency, not 
on any preceding words. This proves rather ineffectual on the genealogical database, 
indicating the importance of inter-word relationships. WORD- 1 achieves a compression 
rate that falls between that of compress and gzip. The relatively poor performance of this 
scheme is rather surprising, indicating the importance of sequences of two or more words 
as well perhaps as the need to condition of inter-word gaps on the preceding word, and 
vice versa. 

None of these standard compression programs perform as well as the ad hoc scheme 
used in AIM, except, marginally, PPM. 

APPLYING SEQUITUR 

In order to apply the S E Q U ”  method to this data, it was resolved to take a word-based 
approach to compression. Virtually all words were separated by single spaces, and so it 
was not necessary to have a separate sequence of non-words. Instead, a single space was 
defined as the word delimiter. In the rare occasions where extra spaces occurred they 
were prepended to the next word-this generally happened only with single-digit dates. 
Other punctuation was appended to the preceding word; again, this decision did not 
materially increase the dictionary size. The dictionary was encoded separately from the 

COMPRESS 2.55 27.8% 
Gzlp 1 .I1 19.3% 
PPM 1.42 15.5% 

WORD-0 3.20 34.8% 
WORD-1 2.21 24.1% 
MG 0.14 - 2.87 3.01 32.8% 

- - - 
- - - 

SEQUITUR codes generalised 
dates generalised 
gender generalised 
names generalised 

0.11 0.40 0.60 1.11 12.1% 
0.11 0.64 0.31 1.06 11.5% 
0.11 0.64 0.30 1.05 11.4% 
0.11 0.76 0.17 1.04 11.3% 
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word sequence, which was represented as a sequence of numeric dictionary indexes. 
The word indexes were compressed using SEQUITUR as if they were symbols drawn 

from a large alphabet. The compression scheme was identical to that described by Nevill- 
Manning et al. (1994). The dictionary was compressed in two stages: front coding 
followed by compression by PPMC. Front coding involves sorting the dictionary, and 
whenever an entry shares a prefix with the preceding entry, replacing the prefix by its 
length. For example, the word baptized would be encoded as 7d if it were preceded by 
baptize, since the two have seven letters in common. A more principled dictionary 
encoding was also performed, but failed to outperform this simple approach. 

The input comprised 1.8 million words, and the dictionary contained 148 000 unique 
entries. The grammar that SEQUI” formed had 71 000 rules and 648 000 symbols, 
443 000 of which were in the top-level rule. The average length of a rule (excluding the 
top-level one) was nearly 3 words. This grammar, when encoded using the method 
described by Nevill-Manning et al. (1994), was 1.07 Mb in size. The dictionary 
compressed to 0.1 1 Mb, giving a total size for the whole text of 1.18 Mb. This represents 
almost eight to one compression, some 20% improvement over the nearest rival, PPMC. 

6 Generalizing tokens for increased compression 
Examination of S EQurruR’s output reveals that significant improvements could be made 
quite easily by making small changes to the organization of the input file. We first 
describe how this was done manually, by using human insight to detect regularities in 
SEQUITUR’S output, next we show how the grammar can be interpreted, and finally show 
how the process of identifying such situations can be automated. 

MANUAL GENERALIZATION 

Of the dictionary entries, 94% were codes used to relate records together for various 
familial relationships. Two types of codes are used in the database: individual identifiers 
such as @26DS-KX@, and family identifiers such as @00206642@. These codes obscure 
template structures in the database-the uniqueness of each code means that no phrases 
can be formed that involve them. For example, the line 0 @26DS-KX@ INDI in Figure Id 
occurs only once, as do all other ZNDI lines in the file, and so the fact that 0 and INDI 
always occur together is obscured: SEQUITUR cannot take advantage of it. In fact, the 
token INDI occurs 33 000 times in the rules of the grammar, and in every case it could 
have been predicted with 100% accuracy by noting that 0 occurs two symbols previously, 
and that the code is in the individual identifier format. 

This prediction can be implemented by replacing each code with the generic token 
family or individual, and specifying the actual codes that occur in a separate stream. 
Replacing the code in the example above with the token individual yields the sequence 
0 individual INDI , which recurs many thousands of times in the file and therefore causes 
a grammar rule to be created. In this grammar, INDI occurs in a rule that covers the 
phrase JO individual INDIJI AFN individualdl NAME (J denotes the end of line). This is 
now the only place that INDI occurs in the grammar. 

Overall, the number of rules in the grammar halves, as does the length of the top-level 
rule, and the total number of symbols. The compressed size of the grammar falls from 
1.07 Mb to 0.60 Mb. The total size of the two files specifying the individual and family 
codes is 0.40 Mb, bringing the total for the word indexes to 1.0 Mb, a 7% reduction. 
Including the dictionaries gives a total of 1.1 1 Mb to recreate the original file. 

Separating the dictionaries represents the use of some domain knowledge to aid 
compression, so comparisons with general-purpose compression schemes is unfair. For 
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a 

b 

C 

0 + m  
0 +m 
0 + @individual INDlDAFN individualaNAME 
@ + @ F  
0 +m 
8 + l S E X  
0 -+J1  
@ -+ FAMS family 

1 SEX F Jl FAMS family J O  individual INDI Jl AFN individual JI NAME I 
_ _ _  0 Sybil Louise /MCGHIE/ (0 Eliza) Jane /LOSEW (0 Margaret) /SIMMONS/ (0 Marie) Elizabeth 
/BERREY/ 0 Athena Augusta /ROGERS/ (0 William) Henry NI”/ ... 

Figure 3 A phrase: (a) hierarchical decomposition; (b) graphical representation; 
(c) examples of use 

this reason, PPMC was applied to the same parts as SEQUITUR, to determine what real 
advantage SEQUITUR provides. PPMC was first applied in a byte-oriented manner to the 
sequence of word indexes. It compressed these to 1.07 Mb, far worse than SEQUITUR’S 
0.60 Mb. In an attempt to improve the result, PPMC was run on the original file with 
generic tokens for codes, yielding a file size of 0.85 Mb-still much worse than 
SEQUITUR’S result. Note that this approach does outperform running PPMC on the 
unmodified file. Finally, the WORD-1 scheme was applied to the sequence of generalized 
codes, but the result was worse still. 

INTERPRETING THE GRAMMAR 

We now turn to the structure of the grammar. Occam’s razor asserts that simpler theories 
should be preferred to more complex ones. Although this implies that compressed 
representations provide good theories about the structure of a sequence, most 
compression schemes produce models that are incomprehensible. SEQUITUR’S model, on 
the other hand, has a natural, readable representation as a grammar. We can gain insight 
into its performance by examining the model that SEQUITUR builds. 

Figure 3a shows nine of the 71 000 rules in SEQUITUR’S original grammar, with 
ungeneralized codes, renumbered for clarity. Rule 0 is the second most widely used rule 
in the grammar: it appears in 261 other rules.’ The other eight rules are all those that are 
referred to, directly or indirectly, by rule 0: Figure 3b shows the hierarchy graphically. 
The topmost black bar in Figure 3b represents rule 0. The next two bars are rules 0 and 
0, the contents of rule 0. The hierarchy continues in this way until all of the rules have 
been expanded. 

Rule 0 represents the end of one record and the beginning of the next. Rule @ is 
effectively a record separator (recall that each new record starts with a line at level 0), 
and this occurs in the middle of rule 0. Although grouping parts of two records together 
achieves compression, it violates the structure of the database, in which records are 

’ The most widely used rule is 2 PLAC, which occurs 358 times, indicating that the text surrounding the 
place tag is highly variable. However, the stmcture of the rule itself is uninteresting. 
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to encode the Bs in 
AabcB ... A...AhijkB...B 

integral. However, the two parts are split apart at the second level of the rule hierarchy, 
with one rule, 0, for the end of one record, and another, 0, for the start of the next. The 
short rules 0 and @ capture the fact that every line begins with a nesting level number. 
There is also a rule for the entire S E X  field indicating the person is female, which 
decomposes into the fixed part: I SEX, and the value F on the end, so that the first part 
can also combine with M to form the other version of the SEX field. There is a similar 
hierarchy for the end of a male record, which occurs 259 times. 

As for the usage of this rule, Figure 3c shows part of the top-level rule. Here, rules 
have been expanded for clarity: parentheses are used to indicate a string which is 
generated by a rule. This part of the sequence consists mainly of rule 0 in combination 
with different names. Separate rules have been formed for rule 0 in combination with 
common first names. 

AUTOMA~C GENERALIZATION 

In order to automate the process of identifying situations where generalization is 
beneficial, it is first necessary to define the precise conditions that give rise to possible 
savings. In the case described above, the rule INDI 21  AFN occurred many times in the 
grammar, and accounted for a significant portion of the compressed file. Conditioning 
this phrase on a prior occurrence of JO greatly increases its predictability. The problem is 
that other symbols may be interposed between the two. One heuristic for identifying 
potential savings is to scan the grammar for pairs of phrases where the cost of specifying 
the distances of the second relative to the first (predictive coding) is less than the cost of 
coding the second phrase by itself (normal coding). 

Figure 4 gives two illustrations of the tradeoff. In the top half of Figure 4, using 
normal coding, the cost of coding the Bs is three times the cost of coding an individual B: 
log2(frequency of B /total symbols in grammar) bits. For predictive coding, the statement 
“A predicts B” must be encoded once at the beginning of the sequence. Reducing this 
statement to a pair of symbols, A B ,  the cost is just the sum of encoding A and B 
independently. Each time that A occurs, it is necessary to specify the number of 
intervening symbols before B occurs. In the example, A<3> signifies that the next B 
occurs after three intervening symbols. These distances are encoded using an adaptive 
order-0 model with escapes to introduce new distances. 

The bottom half of Figure 4 shows a more complex example, where two A s  appear 
with no intervening B,  and a B occurs with no preceding A. The first situation is flagged 
by a distance of CO, and the second is handled by encoding B using normal coding. 

Table 2 lists pairs of phrases ranked according to the number of bits saved by using 
one phrase to predict the other. At the top of the list is the prediction do=, INDI JI AFN, 
which is the relationship that we exploited by hand-the intervening symbol between JO 
and INDI JI AFN is an individual code. Predictions 2, 3 and 6 indicate that the codes 
should be generalised after the AFN, FAMS and FAMC tags respectively. Taken together, 

encode ... B...B...B 
cost 3 X entropy(B) 

encode “A predicts B”, and Ac3> ... A<-=> ... A<4> ... B 
cost: entropy(A) + entropy(B) + entropy(3, -, 4) + 

entropy(B) 

manual predictive 
to encode the Bs in 1 encode ... B...B...B... I encode “A predicts B”, and A<3> ... A<4> ... A<4> I 
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Prediction 

J O  3 I N D I  J lAFN 
INDI J l A F N  =+J lNAME 

FAMS =+JQ 
J l S E X * J 2  

BAPL a J 1 ENDL 
FAMC J 1 FAMS 

J 1 BIRTJ 2 DATE a J 2 PLAC 

ENDL a J 1 SLGC 
J lNAME 3 J  lSEX 

Normal 

1.25 
2.15 

Predicted 
(bits/symbol) 

0.01 
0.01 
0.81 
0.06 
0.76 
1.47 
1.11 
0.82 
1.58 

Saving 
(total bits) 
2297.90 
2297.23 

638.30 
655.90 
508.53 
427.14 
381.96 
315.42 
265.88 

Table 2: Predictions based on part of the GEDCOM database 

these four predictions achieve the 7% improvement described in the last section. 
Predictions 5 ,  7 and 9 indicate that dates should be generalised. Doing this by replacing 
dates with the token date, and encoding the sequence of dates in a separate file, reduces 
the total size of the compressed files a further 5%. Prediction 4 indicates that the SEX 
field can be generalised by replacing the two possible tags, F and M. Acting on this 
reduces the size by a further 1%. Finally, prediction 8 indicates that names should be 
generalised, resulting in a final compressed size of 1.04 Mb, or a ratio of almost nine to 
one. The final block of Table 1 summarizes these improvements. 

SEQUITUR produces deterministic grammars, and this process is analogous to adding 
non-deterministic rules to the grammar. The new non-terminal is the generic token (e.g. 
date), and it heads many rules, each right-hand side being one date. It is planned to 
integrate this generalisation process into S EQUrrUR. 

7 Conclusion 
Semi-structured text proves to be an interesting domain for compression, and one that 
provides a strong incentive for hierarchical grammar-based techniques such as 
SEQUITUR. Although there is a huge range and variety of semi-structured text, we have 
gained significant insight by studying one particular example in detail-insight that we 
believe will apply widely to different genres of semi-structured text. We have shown that 
the grammar-based approach outperforms the best text compression methods-by 20%, 
in this example; that significant improvement can be obtained by performing some small 
generalizations on the grammar-giving a further 10% improvement; and that 
opportunities for such generalizations can be detected automatically. The full method 
achieves compression of nearly 9: 1 on this data, considerably better than PPM’s 6.5: 1. 
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