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A FERTILITY CHANNEL MODEL FOR POST-CORRECTION 
OF CONTINUOUS SPEECH RECOGNITION 

Eric K. Ringger & James E Allen 
Department of Computer Science; University of Rochester; Rochester, New York 14627-0226 

{ringger, james}Qcs. rochester. edu 
http://www.cs.rochester.edu/research/trains/ 

ABSTRACT 

We have implemented a post-processor called SPEECHPP to correct 
word-level  error^ committed by an arbitrary speech recognizer. A p  
plying a noisychannelmodel, SPEECHPPuses a Viterbi beam-search 
that employs language and channel models. Previous work demon- 
strated that a simple word-for-word channel model was sufficient 
to yield substantial incieases in word accuracy. This paper demon- 
strates that some improvements in word accuracy result from aug- 
menting the channel model with an account of word fertility in 
the channel. This work further demonstrates that a modern con- 
tinuous speech recognizer can be used in ”black-box” fashion for 
robustly recognizing speech for which the recognizer was not origi- 
nally trained. This work also demonstrates that in the case when the 
recognizercan be tuned to the new task, environment, or spealcer, the 
post-processor can also contribute to performance improvements. 

1. INTRODUCTION 

Consider the scenario in which a speech recognizer (SR) could be 
purchased as a “black-box:’ having a clearly specified function and 
well-defined input (audio signal) and output (word sequence) but 
otherwise providing no hooks to the user for altering or tuning in- 
ternal operations. The channel from the user to the recognizer could 
be arbitrarily different than the channel actually modeled during 
the recogaizer’s training process. Also, the language modeled in 
the recognizer can be arbitmily diffennt than the language used 
by a new user, including vocBbulary and collocational likelihoods. 
For example, several rescarch labs have considered +g speech 
recognition available to the research community by running publicly 
accessible speech servers on the Internet Such servers would likely 
employ general-purpose language and acoustic models. In order to 
employ such a speech server to recognize uttemces in a new task 
from a new user in a potentially new acoustical environment, one of 
two things would be necessary due to the modeling mismatch: 

0 the recognizer itself would need to adapt its models (in &U- 

0 the remote client would need some way to correct the errors 
pervised mode), or 

committed by the server. 

Our objective is to reduce speech recognition errors. SPEMIPP, ow 
post-processor. models the channel from the speaker to the output 
of a given recognizer as a noisy channel. Its models an constructed 
with no pnconcepdons of the channel’s nam beyond simple ob- 
servations of the channel’s effm on some training data. We adopt 
statistical techniques (some of them from statistical machine uans- 
lation) for modeling that channel in order to COITcct some of the 

errors introduced there. Previous work [8 J demonstrated that a sim- 
ple word-for-word channel model was sufficient to yield substantial 
increases in word accuracy. This paper demonstrates that some im- 
provements in word accuracy result from augmenting the channel 
model with an account of word fertility in the channel. The output 
of SPEECHPP contains fewer errors than the output of the recognizer 
it was txained to post-comct This is good in and of itself, but the 
error reduction also makes interpretation by higher-level modules 
such as a parser in a speech understanding system more reliable. 
This work has bem done as part of the lk~r~s -95  and TRAINS-96 
conversational planning systems, which are aimed at successfully 
understanding spontaneous spoken utterances in human-computer 
dialogue [ 11. Thus, higher word recognition rates contribute to bet- 
ter end-toend performance in the dialogue system. We use the 
Sphinx-II 141 speech recognizer in our systems, but results similar 
to those presented here could have been obtained with any modern 
SR 
Here are a few examples of the kinds of errors that occur when 
recognizing spontaneous uaerances in the TRAINS-95 domain using 
Sphinx-II and its models trained from ATIS data. They are drawn 
from problem-solving dialogues that we have collected from users 
interacting with the TRAINS-95 system. In each example, the words 
tagged REF indicate what was actually said, while those tagged with 
WP indicate what the speech recognition (SR) system proposed. As 
the first example shows, many recognition errors are simple word- 
for-word confusions: 

REF: RIGHT SEND THE TRAIN FROM MONTFSAL 
WYP: RATE SEND THAT TRAIN FROM MONTREX,  

In the next example, a single word was replaced by more than one 
smaller word: 

REF: GO FROM CHICAGO TO TOLEDO 
HYP: GO FROM CHICAGO TO TO LEAVE AT 

Why reduce recognition exrors by post-processing the SR output? 
Why not simply better tune the SR’s language and channel models 
for the task, speaker, acoustic environment, etc.? Fint, if the SR is 
a general-purpose black-box (running either locally or on the other 
side of a network on someone else’s machine), modifying the decod- 
ing algorithm to incorporate the post-processor’s model might not 
be an option. Using a general-purpose SR engine makes sense be- 
cause it allows a system to deal with diverse utterances from typical 
speaken in typical environments. If needed, the post-processor can 
tune the gend-purpose hypothesis in a domain-specific or user- 
specific way. Porting an entire system to new domains only requires 
tuning the post-processor by passing a relatively small training set 
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through the reco,@zer for observation; the general-purpose recog- 
nizer and its models can be reused with little or no change. Because 
the post-processor is light-weight by comparison, the savings may 
be significant. 

Second, even if the SR engine’s models can be updated with new 
domain-specific data, the post-processor uained on the sume new 
data can provide additional improvements in accuracy. 

Third, several human speech phenomena are poorly modeled in cur- 
rent continuous speech recognizers, and recognition is accordingly 
impaired. This provides further motivation for the placement of the 
SR module into our conception of a noisy channel. One poorly 
modeled phenomenon is assimilation of phonetic features. Most 
SR engines model phonemes in a contextdependent fashion (e.g., 
see [6]), and some attempt to model cross-word co-articulation ef- 
fects (c$ [6] also). However, as speaking speeds vary, the SRs 
models may not be well suited to the affected speech signal. Such 
errors can be corrected by the post-processing techniques discussed 
here, if enough training data from fast speakers is available. 

Finally, the primary advantage to the post-processing approach over 
existing approaches for overcoming SR errors lies in its ability to 
introduce options that are not availabie in the SR module’s output. 
Existing rescoring tactics cannot do so (c$ [q). 

2. THE MODELS AND ALGORITHM 

SPEECHPP yields fewer errors by effectively refining and tuning the 
vocabulary and language model used by the SR. To achieve this, 
we applied a noisy channel model and adapted techniques from 
statistical machine translation (such as [3]) and statistical speech 
recognition (c$ [2]) in order to model the errors that Sphinx-II 
makes in our domain. Briefly, the model consists of two parts: a 
channel model, which accounts for m r s  made by the SR, and the 
language model, which accounts for the likelihood of a sequence 
of words being uttered in the first place. Figure 1 illusmtes the 
relationship of the speaker, the channel (including the SR), and the 
errorcorrecting post-processor. 

I I 

Figure 1. Recovering Word-Sequences Cornqred in a Noisy Chun- 
neL 

More precisely, given an observed word sequence E’ from the SR, 
SPEECHPP finds the most likely original word sequence& by finding 
the word sequenceythatmaximizes the expressionFf& I 
where 

0 P w  is the probability that the user would utter sequence 3 

0 Pw I is the probability that the SR produces the sequence 
w‘ when was actually spoken. 

For efficiency and due to sparse data, it is necessary to estimate these 
distributions with relatively simple models by making independence 
assumptions. For PEW], we train a word-bigram “back-off language 
model [5] from hand-transcribed dialogues previously collected With 

the l”s-95 system. For 
model that assumes independent word-for-word substitutions; ie.,  

I d, we build a simple channel 

The channel model is mined by automatically aligning the hand 
transcriptions with the output of Sphinx-II on the utterances in the 
(SpEEcHPP) training set and by tabulating the confusions that oc- 
curred. We say that a word is aligned with the word it produces. 

This one-for-one model is insufficient for handling all 5R errors, 
since many are the result of faulty alignment, causing many-to-one 
and one-to-many mappings. For the channel model, we relax the 
constraint that replacement errors be aligned on a word-for-word 
basis, since not all recognition errors consist of simple replacement 
of one word by another. As we have seen, it is possible for a pre- 
channel word to “cause” multiple words or a partial word in the SR 
output. We will use the following utterance from the TRAINS-95 
dialogues as an example. 

REF: TAKE A TRAIN FROM CHICAGO TO TOLEDO 
HYP: TICKET TRAIN FROM CHICAGO TO TO LEAVE 

Following Brown er d, we refer to the number of post-channel 
words produced by a pre-channei word in a particular alignment 
as the f e d @  of that p-channel word. In the above example, 
”TOLEDO” is said to have a fertility of two, since it yielded two 
post-chanuel words. When a word’s fertility k is an integer value, 
it indicates that the pre-channel word resulted in k post-channel 
words. When a word‘s fertility is a fraction i, then the word and 
n - 1 neighboring words have grouped together to result in a single 
post-channel word. We call this situationfrarrionul fenifiry. 

We also borrow from Brown et d the concept of an alignment, such 
as Figure 2. To augment our one-for-one channel model, we require a 

i I 

Figure 2 Alignment of a Hyp~thcsis  and drc Reference Tmnsnip- 
tion 
probabilistic model of fertility and alignment. Initially, we thought 
that this model could simply consist of P[k I w] indicating how 
likely each word w in the pre-channel vocabulary has a particular 
fertiliry k. However, for our experiments, such a model could not 
be adequately constructed due to the sparseness of the training set. 
htead, our fertility model consists of several components, one for 
each k we wish to model. For the component that models fertility 
two events, we have a distribution P[w;, w; I w].  In other words, 
we model the probability that pre-channel word w is replaced by the 
two words wl and UQ in the post-channel sequence. Similarly, for 
fertility one-half events, we have a disaibution p(w’ I w1, wt]. 

SPEECHPP searches among possible prethannel sequences for 
the most likely comction of a given post-channel sequence E’. 
The search pursues the sequence that yields the gnatest value of 

I wJ by building possible source sequences E one 
word at a time and scoring them. At stage i of the search, each 
hypothesis built at stage i - 1 is extended in all possible ways. 
Possible extensions are dictated by the channel model components. 
Given, the i-th post-channel word, if the channel model predicts a 
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non-zero probability that a particular pre-channel word (or words) 
generated that word, then that pre-channel word forms the tail of a 
new hypothesis. Thus, each word in w' is exploded (or collapsed 
with neighbors) using all possible combinations having non-zero 
probabilities in the model. While the source hypotheses are built, 
they are scored according to the language model and the channel 
model so that the most promising hypotheses can be pursued first. 
The search is efficient because it is dynamic programming on partial 
pre-channel sequencehypotheses, and because al l  partial hypotheses 
falling below a threshold offset from the best cumnt hypothesis (a 
beam) are pruned. This is a Viterbi beam-search. 

Observe that in the initial conception of the fertility model, the 
channel model scored only the number of words used to replace a 
particular word, and the language model scond the contents of the 
replacement. This was motivated by the related approach of Brown 
er aL, who appear to have taken this direction because their language 
model was sufficiently dense to accurately score the replacement 
contents. Having a relatively small amount of training data, our 
model is not nearly as dense as theirs, so we handle the problem 
in the fertility model, as described above, by tabulating only those 
replacements observedin the training session. For example, to build 
the fertility two model, we count the number of times that each 
pre-channel word w is recognized as a pair wi, wi and compute 
P[wl, wl I 4. 

3. EXPERIMENTALRESULTS 

3.1. Simple Channel Model 

This section presents results that use only the one-forone channel 
model and a back-off bigram language model. Having a relatively 
small number of TRAINS-95 dialogues for training, we wanted to 
investigate how well the data could be employed in models for both 
the SR and the SKECHPP. We ran several experiments to weigh 
our options. For a baseline, we built a class-based badt-off lan- 
guage model for Sphinx-11 using only transcriptions of ATIS spoken 
utterances. Using this model, the performance of Sphinx-II alone 
was 58.7% on utterances in the "s-95 domain. Note that this 
figure is not necessarily an indictment of Sphinx-11, but reflects the 
mismatch between the ATIS models and the TRAINS-95 task. 

First, we used varying amounts of training data exclusively for build- 
ing models for the SP~CHPP; this scenario would be most relevant 
if the SR wen a black-box and we were unable to train its model(s). 
Second, we used varying amounts of the training data exclusively for 
augmenting the ATIS data to build language models for Sphinx-II. 
Third, we combined the methods, using the training data both to ex- 
tend the language models for Sphinx-II and to then train SPEECHPP 
on the newly trained SR. 

The results of the fint experiment are shown by the boaom cum of 
Figure 3, which indicates the p e r f o m c e  of the SPEECHPP over the 
baseline Sphinx-II. The first point comes from using approximately 
2% of the available training data in the SPEECHPP models. The 
second and third points come from using approximately 50% and 
75%, respectively, of the available training data. The curve cl&y 
indicates that the SPEECHPP does a reasonable job of boosting our 
word recognition rates over baseline Sphinx-II. Also, peiformance 
improves with additional training data, up to a word mor rate reduc- 
tion of 14.9% (relative). We did not train with all of our available 
&ita, since the remainder was used for testing to detennine the re- 
sults via repeated leave-oneout cross-validation. The mor bars in 
the figure indicate 95% confidence intervals. 

85 1 ,  1 
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Figure 3. InpUence of the post-processor with aaUiriom1 truining 
dam. 

Similarly, the results of the second experiment are shown in the mid- 
dle curve. The points reflect the performance of Sphinx-II (without 
SPEECHPP) when using 25%, 50%, and 75% of the available train- 
ing data in its LM. These results indicate that equivalent amounts of 
training data can be used with greater impact in the language model 
of the SR than in SPEEWPP. 

Finally, the outcome of the third experiment is reflected in the upper- 
most m e .  Each point indicates the performance of the SPEECHPP 
using a set of models trained on the behavior of Sphinx-II for the 
comsponding point from the second experiment The results from 
this experiment indicate that even if the language model of the SR 
can be modified, then SPEECHPP trained on the same new data can 
still significantly improve word recognition accuracy on a separate 
test set, up to a word enor rate reduction of 24.0% (relative). Hence, 
whether the SRs models are tunable or not, SPEECHPP is in neither 
case redundant. 

. 

33. Fertility Channel Model 

We performed additional experiments using fertility models in the 
channel. The results reported here arc relative to those achieved by 
the SPEECHPP refiected in the righanost point of the third m e  in 
the graph. Using the fertility two model along with the one-for- 
one model used for that reference point, we observed a 0.42% drop 
in substitutions, a 14.2% drop in insertions, and an 3.78% rise in 
deletions. As expected, the model comcts several insertion errors 
that wen beyond the reach of the one-for-one model. However, the 
fertility two model is clearly not perfect, since it proposes comctions 
from two words to one word, causing the number of deletion errors 
to rise. 

A second experiment involved the fertility one-half model with the 
one-forone channel model. Here we have the reverse scenario from 
the prior experiment, as the number of deletion errors fell by 4.7395, 
and insertions rose by 6.78% over the base channel model. We 
observed a 0.93% rise in substitutions. This is also not sulprishg, 
since the model triggers search hypotheses in which one word is 
expanddinto two, somehmes erroneously. Unfortunately, the total 
number of mors overall is slightly higher than without this channel 
model. 

Using all three models together, we observed an ovexall increase 
in word accuracy of 0.32% (relative) beyond the third c w e  in 
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the performance chart. This result and similar results for the other 
reference points in the third curve comprise the fourth and uppennost 
curve in the chatt. Clearly, this curve falls within the confidence 
intervals surrounding the points of the third curve. Although the 
results are not statistically significant, they hold promise. 

33. Fertility Model with Silence Cues 

Silence cues in the SRs hypothesis can help prevent some of the 
deletion errors triggered by fermity k models, €or k > 1. We 
performed experiments involving the use of silence marks in the 
output of Sphinx-II. For example, GO FROM CHICAGO TO TO 
<SIL> LEAVE FROM HERE should not be transformed into GO 
FROM CHICAGO TO TOLEDO FROM HERE by SPECHPPeven 
though P[TOLEDO I TO LEAVE] > 0. Out Of 1263 Utterances 
(8 164 words) in the test set, only three deletion errors were prevented 
above and beyond the fertility two results detailed above. 

4. DISCUSSION 

Existing continuous speech recognition techniques do not perform 
well when the training environment differs from the testing environ- 
ment. In other words, portability is not a feature of the state of the 
art. For example, if the microphone (type) used to gather training 
data is not used to gather the testing data, or if other critical aspects 
of the acoustic environment change, then performance on the test 
set suffers dramatically. Research seeking robust acoustic f e a m  
has been partially successful in remedying this particular problem. 
Likewise, a recognizer using models trained for one task does not 
perform well on speech in a task even closely related to the training 
task. Our experiments have shown that Sphinx-II does not perfonn 
well when moving from an &-travel reservation task to a train-route 
planning task as shown, it achieves less than 60% word accuracy 
on fluent utterances collected in problem-solving dialogues with the 
TRAINS-95 system. In those experiments, the acoustic model and the 
class-based language model were trained on ATIS data. Similarly, 
a recognizer built using HTK [9] on human-human speech 
Dialogue Corpus) performed poorly on computer-human speech. 
SPEECHPP can help in precisely these scenarios. 

With regard to the small margins of improvement from our fertility 
models, we observe that the amounts of training data we have used 
are still largely insufficient However, the techniques are sound, and 
we expect that fuxther refinements, such as smoothing (generalizing) 
the fextility models, will improve performance. 

5. CONCLUSIONS AND FUTURE WORK 

We have presented a post-correction technique for overcoming 
speech recognition mrs, based upon a noisy channel model. 
This technique is generally applicable for overcoming the prob- 
lems caused by mismatches between an SRs mining environment 
and the test environment The only pre-requisite is sufficient test 
data so that the the behavior of the channel on the test environment 
can be sufficiently observed. 

We have also demonstrated that with or without the ability to tune 
the models of the SR, we can use the SPEECHPP to boost word 
recognition accuracy significantly. In the W S - 9 5  system, the 
techniques presented here have yielded word error rate reductions 
as high as 24.0% (relative). 

We plan to further augment the fertility channel model to handle 
more complex cases. For example, the following (partial) utter- 
ance contains several emrs, including a more complex example in 
which adjacent words (WE COULD) are misrecognized in such a 
way that the two hypothesized words overlap the boundary between 
the reference words: 

REF: GREAT OKAY NOW WE COULD GO FROM SAY ... 
HYP: I’M GREAT OKAY NOW WEEK IT GO FROM CITY 

We expect that a two-for-two component (and other m-for-n com- 
ponents) in the channel model wiIl handle such errors. 

In the near future, we plan to pursue the use of word-lattices in 
place of simple word sequences and expect that they will provide 
more useful hypotheses to compete in the post-processor’s search 
process. We also expect silence cues to play a more significant 
role then. We will also investigate how explicitly including silence 
and other simple prosodic cues in our channel models can assist in 
improving the SpnmPP’s hypotheses. 
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