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ABSTRACT

OPTIMIZING WIRELESS NETWORK THROUGHPUT:

METHODS AND APPLICATIONS

Pengcheng Zhan

Department of Electrical and Computer Engineering

Doctor of Philosophy

Ever since Marconi succeeded in his first demonstration on the possibility to

communicate over the air overseas about a century ago, wireless communications

have experienced dramatic improvements. Today’s world sees the penetration of

wireless communications into human life almost everywhere, from a simple remote

control for TV to a cellular phone. With a better understanding of the adverse

nature of the wireless propagation channels, engineers have been able to invent various

clever techniques, i.e. Multiple Input Multiple Output (MIMO) technology, spread

spectrum communications, Orthogonal Frequency Division Multiplexing (OFDM) to

name a few, to achieve fast and reliable communications over each point-to-point link.

Communications between multiple parties create networks. Limited Radio Frequency

(RF) resources, e.g. transmit power, channel bandwidth, signaling time slots, etc.,

call for an optimal distribution of these resources among the users in the network.

In this dissertation, two types of communication networks are of particular interest:

cellular networks and mobile-relay-aided networks.





For a symmetric cellular network, where a fixed communication infrastructure

is assumed and each user has similar average Signal-to-Noise Ratio (SNR), we study

the performance of a Maximum SNR (Max-SNR) scheduler, which schedules the

strongest user for service, with the effects of channel estimation error, the Modulation

and Coding Scheme (MCS), channel feedback delay, and Doppler shift all taken into

account. The degradation of the throughput of a Max-SNR scheduler due to outdated

channel knowledge for a system with large Doppler shift and asymmetric users is

analyzed and mathematical derivations of the capacity of the system based upon an

Auto-Regressive (AR) channel model are presented in the dissertation as well. Unlike

the schedulers proposed in the literature, which instantaneously keep track of the

strongest user, an optimal scheduler that operates on the properties of Doppler and

the average SNR of each user is proposed.

The high flexibility and easy deployment characteristics that Unmanned Aerial

Vehicles (UAVs) possess endow them with the possibility to act as mobile relays

to create secure and reliable communication links in severe environments. Unlike

cellular communications, where the base stations are stationary, the mobility in a

UAV-assisted network can be exploited to improve the quality of the communications.

Herein, the deployment and optimal motion control problem for a mobile-relay-aided

network is considered. A network protocol which achieves optimal throughput and

maintains a certain Quality of Service (QoS) requirement is proposed from a cross-

layer perspective. The handoff problem of the Access Point (AP) between various

relays is studied and the effect of the mobility on the handoff algorithm is addressed.
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Chapter 1

Introduction to Wireless Communication and Networks

About 110 years ago, Gulielmo Marconi’s first demonstration of radio teleg-

raphy marked the beginning of the epoch of wireless communication. However, it

wasn’t until 1979 that the first analog cellular system, i.e. the Nippon Telephone

and Telegraph (NTT) system, became operational [1]. Ever since then, the ability to

communicate without a tether has evolved dramatically. From TV remote controls

to the Global Positioning System, from a Bluetooth mouse to cell phones and pagers,

our daily life is inseparable from the ability to communicate wirelessly.

1.1 The Development of the Wireless Transmission Technology

Due to the inhospitable nature of the radio propagation environment, i.e. mul-

tiple propagation paths, time variation, large-scale path loss and so on [2], the wireless

channel is unfriendly to reliable communication. Over decades, different clever meth-

ods have been proposed by engineers to increase the robustness of a point-to-point

wireless link. One of the most famous of these technologies is error control coding.

By introducing extra redundant bits for transmission, error control coding is able to:

1) detect the occurrence of the error in the received data (i.e. error detection codes),

2) correct the bit error corrupted in the noisy channel (i.e. error correction codes).

Interleavers are designed to spread the codewords apart to avoid bursts of errors in

order for the received data to be corrected. Error correction codes with an interleaver

structure are shown to closely approach the Shannon capacity limits and have found

popular applications in commercial wireless standards.

As the multimedia era approaches, the need for higher data rate commu-

nication has attracted significant interest in wideband communications. When the

1



channel bandwidth gets larger, the multipath nature of the wireless channel will cause

frequency dependent fading. This effect will show up in the time domain as a self-

interference phenomenon, i.e. previously transmitted data symbols will interfere with

the current and/or future data symbols. Without compensating for this effect, the

aforementioned Inter-Symbol Interference (ISI) causes an error floor in the wireless

link performance. Techniques that attempt to mitigate ISI effects are referred to

as equalizers. In the early days, equalization was mostly done in the time domain

by modeling the ISI effects of the channel as a linear filter. With the linear ISI

assumption, time domain equalization resembles deconvolution, which attempts to

undo the effects induced by linear filtering. Depending on the cost function that an

equalizer tries to optimize, different filters can be designed to accomplish the com-

pensation task; examples include the Zero forcing (ZF) and Minimum Mean Square

Error (MMSE) equalizers. When the equalizer is not constrained to be linear, deci-

sion feedback equalizers which exploit previously detected symbols to minimize the

impact of ISI have also been developed. Adaptive equalizers that automatically track

the time variation of the channels have been proposed to account for the time varying

nature of the wireless channel. Modulating signals over multiple carriers opens the

door to Multi-Carrier Communication, where a data stream is decomposed into a set

of slower rate streams and modulated over several carriers for simultaneous trans-

mission. This simple demultiplexing creates a group of separate data pipes, each

of which is essentially a channel with a smaller effective bandwidth. The reduction

of the bandwidth can eliminate ISI in the transmitted data. Data detection can be

done separately for each slower stream and then multiplexed to estimate the original

transmitted information. Multi-carrier communication techniques can be considered

as another means of implementing an equalizer in the frequency domain.

Another modulation scheme that transmits signals by using a bandwidth that

is several orders of magnitude larger than otherwise required is called spread spectrum

modulation. From a single user point of view, this modulation scheme is highly

bandwidth inefficient. However, when multiple users are present in the network, and

multiple access interference is of concern, spread spectrum technology allows many

2



users to have access to a limited channel bandwidth without generating significant

interference on other users, and is therefore very bandwidth efficient. In addition,

spread spectrum modulation is widely used in military communication, where secure

voice/data links are necessary. By spreading the signal energy over a large bandwidth,

signals can be hidden below the background noise level to avoid interception. The

de-spreading procedure at the receiver side will retrieve the desired transmitted signal

energy and spread narrowband jammers to achieve a good operating SNR for signal

detection. Rake receivers for spread spectrum modulation collect the energy from

different propagation paths to gain a certain degree of diversity reception benefit.

The exponential decay of the transmit power with distance limits the pos-

sible coverage area of radio networks. Hence, 1) improvements in system capac-

ity/throughput, 2) link reliability and 3) network coverage are usually major concerns

in wireless network design. To enlarge the coverage area of the network, a simple

solution would be to increase the transmit power; however, this will cause more inter-

ference to other co-channel users and limit the network capacity. To combat fading,

coding across time or frequency will always cause a reduction in effective bandwidth.

By introducing extra degrees of freedom in the spatial domain, i.e., through the use

of multiple antennas, many of the problems associated with wireless communications

can be greatly mitigated. Coherent combining at the transmitter, receiver or both

increases the operating SNR, and improves coverage with no further power expendi-

ture. With channel knowledge, receive antennas can properly combine independently

faded signals to reduce signal fluctuation due to fading [3]. When Channel State In-

formation at the Transmitter (CSIT) is available, similar techniques can be applied to

improve link reliability; i.e., signals can be pre-combined at the transmitter to achieve

transmit diversity. Even when CSIT is not possible, space-time coding [4, 5] creates a

way to simultaneously obtain coding gain and diversity gain, as well as high spectral

efficiency [6]. For a Multiple Input Multiple Output (MIMO) channel under favorable

conditions, transmitting a few independent streams over the channel at the same time

improves the link capacity/throughput linearly in the number of transmit antennas or

receive antennas. Furthermore, interference cancellation can be performed to reduce
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co-channel interference, and subsequently improve both link capacity (due to higher

Signal-to-Interference Ratio (SIR)) and network capacity (due to possible aggressive

frequency reuse factor). Multiple antenna technology to some extent resolves the

conflicts among the three major design issues discussed above. How well these goals

are balanced largely depends on the signaling scheme and receiver design [7].

1.2 Wireless Networks and OSI Models

The marriage between wireless and computer networks creates one of the most

important fields of wireless network applications, i.e. the Wireless Local Area Net-

work (WLAN). Wi-Fi is a typical WLAN implementation that provides connection

in various hotspots, e.g. airports, universities or restaurants. To cover a much larger

area and deal with more mobile users, Wireless Metropolitan Area Network (WMAN)

technologies, e.g. IEEE 802.16, a.k.a Worldwide Interoperability for Microwave Ac-

cess (WiMAX), are designed to provide fast data rate (63 Mbps per sector downlink,

28 Mbps per sector uplink for 10 MHz channel bandwidth), high vehicular speeds

(60-120 km/h) and large coverage areas (up to 50 km) [8, 9, 10]. Other telecommuni-

cations standards, like Global System for Mobile Communications (GSM), Personal

Communications Service (PCS), Digital Advanced Mobile Phone Service (D-AMPS)

etc., have been widely used. Wireless personal area networks (WPAN) are used to

maintain communication among computer devices (including telephones and personal

digital assistants), and are becoming feasible with IrDA, Bluetooth and UWB tech-

nologies [11].

Despite all the advantages that wireless networks have, e.g. convenience, fast

deployment, and low cost to name a few, they suffer from various problems such as

co-channel interference, product compatibility, communication data rate and security

issues. When different users are sharing the same Radio Frequency (RF) resources

(including time slots, frequency, codes, etc.) to transmit signals simultaneously in

the wireless network, they will to some extent block the reception of the rest of the

users by increasing the noise level of the front end receiver as interference. This

is handled by solving the problem of how to optimally allocate or distribute the
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limited RF resources amongst the users, i.e. frequency reuse planning, orthogonal

code design, smart time slot allocation, to name a few. In addition to the resource

allocation problem, wireless networks also suffer from compatibility problems, where

products from various vendors don’t work together due to lower level designs which

are inconsistent in the air interface. With regard to throughput, wireless networks

usually cannot provide links that are as fast as their wired counterparts, e.g. ethernet

connections, etc. In addition, since anyone can receive the broadcast signals of the

wireless network, their vulnerability to eavesdropping is very straightforward.

By layering the network systems, the various issues pinpointed above can be

decoupled and handled at different layer while remaining transparent to other layers.

The primary example, the Open Systems Interconnection Basic Reference Model (OSI

Model), is a layered, abstract description for communications and computer network

protocol design [12, 13]. As is well known in the literature [12], the OSI models break

a typical network down into seven layers, i.e. physical layer, data link layer, network

layer, transport layer, session layer, presentation layer and application layer, from the

bottom to the top. The correct functionality of each individual layer depends on the

service provided by the layer that is exactly one layer below and is responsible for

the requests from the layer that is exactly one layer above. Depending on different

network setups, some of the layers can be combined and some of them can be omitted

in each specific implementation. This dissertation is concerned with the design of a

few lower layers, including the physical layer, the data link layer, and to some degree

the network layer.

As the most fundamental layer of the network, the physical layer is responsible

for providing the means to transmit raw data bits over the data link layer (one layer

up) to connected network nodes [12]. Transmitters at the physical layer encode the

data bits, map them into complex data symbols and modulate the symbols onto a

certain set of carriers to be broadcast as an analog signal over some physical me-

dia. A number of services performed at this layer include: 1) inter-nodes bit stream

transmission, 2) standard interface for the transmission media, 3) baseband signal

modulation, 4) bit stream synchronization, 5) carrier sense and collision detection,
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6) equalization and pulse shaping, 7) forward error correction, 8) channel coding,

and 9) bit-interleaving, etc [12]. In a word, the details of the physical transmission

schemes are all determined at this level. Besides, the formation of the physical net-

work topology is also of concern to this specific layer, e.g. bus, ring, mesh or star

network.

With the service grade guaranteed from the physical layer, the data link layer

needs to provide the functional and procedural means to transfer data between net-

work entities and might provide the means to detect and possibly correct errors that

may occur in the Physical layer [13]. It typically consists of two sub-layers: the Media

Access Control (MAC) layer and the Logical Link Control (LLC) layer. The MAC

layer provides protocol and control mechanisms for multiple users to be able to share

the resources in the wireless channels. Depending on the mode the networks are op-

erating in, wireless networks can be categorized into packet switching networks and

circuit switching networks. In the packet switching mode, data packets at each node

are buffered and queued, resulting in various delay times. In the circuit switching

mode, a dedicated circuit or channel is created for each pair of nodes, resulting in a

constant delay. Network users apply different channel access techniques for different

networking modes. In a packet switching system, typical channel access techniques

include [14, 15]: 1) contention based random access methods, e.g. ALOHA, Carrier

Sense Multiple Access (CSMA), Carrier Sense Multiple Access with Collision De-

tection (CSMA/CD), etc, 2) resource reservation (scheduled) packet-mode protocols:

Dynamic Time Division Multiple Access (Dynamic TDMA), Packet Reservation Mul-

tiple Access (PRMA), Reservation ALOHA (R-ALOHA) to name a few. However,

when networks operate in circuit switching mode, channel access methods include

[14, 15]: 1) Frequency Division Multiple Access (FDMA), 2) Time Division Multi-

ple Access (TDMA), 3) Code Division Multiple Access (CDMA), 4) Space Division

Multiple Access (SDMA), etc.
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1.3 Schedulers and Practicalities in Communication Systems

When multiple users are competing for network bandwidth, intelligent algo-

rithms should be designed to distribute the resources among them for the purpose of

maximizing the throughput of the network. A scheduler is one of the units that can

fulfill this job. The designing of schedulers falls within the responsibilities of the MAC

layer. Schedulers make user selection decisions based on various degrees of channel

knowledge, e.g. channel-aware-only scheduler, channel-aware and queue-aware sched-

uler, etc. One particular type of the scheduler is called the opportunistic multiuser

scheduler, which distributes resources based on the instantaneous channel condition

of the active users and gives priority to the users with favorable channel conditions.

Adaptive modulation and coding schemes are typically implemented at the physical

layer for a system applying opportunistic schedulers.

For schedulers that only have channel knowledge of the active users available,

common methods to distribute the time slot resources include: 1) Round Robin (RR)

scheduling, which sequentially selects the user in the network for transmission (e.g.

GSM system), 2) Proportional Fair (PF) scheduling, which schedules the user with

the largest normalized instantaneous date rate obtained by dividing the instanta-

neous rate by its own average data rate (e.g. IS-856), 3) Maximum SNR (Max-SNR)

scheduling, which selects the user with the strongest channel gain, etc. The different

requirements and goals of various wireless system justify the existence of all these

various schedulers. The RR scheduler has no bias toward any party in the network,

and treats all users the same. However this scheduler wastes the time resource that

could otherwise be dedicated to users with better channel conditions, thus causing a

network throughput loss. The Max-SNR technique prioritizes the best total through-

put for the network, but its greedy behavior would consistently render no channel

access to those users with bad channel condition (due to possibly low transmit power

in a system without power control). The fairness aspect of the network is therefore

totally compromised. The PF scheduler is somewhere in the middle, since it takes

into account both the instantaneous channel condition and the users’ average chan-

nel statistics, and basically schedules the user whose channel is of the best quality
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with respect to his own average channel conditions over a certain time window. The

PF scheduler sacrifices throughput performance for fairness and represents a balance

between the RR and Max-SNR scheduler.

In order for any type of optimality to be claimed, a certain criterion or cost

function needs to be specified for the scheduler. When Shannon capacity is of concern,

a scheduler picking the strongest user at every time instant for transmission has been

shown to be optimal [16, 17]. The idea behind the Max-SNR scheduler is based on the

simple observation that when the network users fade independently, at any one time

instant, the probability that all users have poor reception is low. By allowing only

the strongest user to transmit, the system is always riding the peak of the channel

conditions across the network; the shared channel resource is used most efficiently and

system throughput is maximized [18]. This gain in the sum network capacity due to

the selection over multiple independently faded users is called multiuser diversity gain.

The larger the number of users, the greater the multiuser diversity gain. Besides,

another factor that contributes to the level of the gain is the tail of the user’s channel

fading distribution. The heavier it is, the greater the gain is, i.e. the Max-SNR

scheduler will induce a higher gain in a Rayleigh faded environment than one with a

Line-of-Sight (LOS) propagation path. Instead of combating and compensating for

the fading in the point-to-point link, multiuser diversity is actually exploiting the

fading in the network [18].

Unfortunately, this multiuser diversity gain does not come for free. The ben-

efits of the gain require the Base Station (BTS) to have the ability to obtain mea-

surements indicating the quality of the various channels. For cellular communication,

if uplink communication is of concern, the BTS can measure the SNR for each user

directly and schedule the strongest user. However for the downlink scenario, each

user has to keep track of its own channel condition and feed it back through a sepa-

rate frequency channel in a Frequency Division Duplexing (FDD) system, or channel

reciprocity has to be used to distinguish various users’ channel quality in a Time Di-

vision Duplexing (TDD) system. Therefore the accuracy of the channel estimation,

the delay in feeding back the estimates, etc., are all factors that affect the network
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throughput. In addition, when the channels of the users vary slowly over time, faster

and larger fluctuations should be created on purpose to extract the largest possi-

ble multiuser diversity gain; e.g. [19] uses antenna arrays to induce bigger channel

fluctuation.

Multiuser diversity has been studied extensively in the literature [20, 21, 22,

23], and most attempts at solving the problem usually consider only the system’s

Shannon capacity. Shannon capacity is a bound that limits the maximum error-

free data transmission rate that can be achieved over an Additive White Gaussian

Noise (AWGN) channel given a certain amount of channel bandwidth. With the

development of channel coding techniques, Shannon capacity becomes more realistic,

e.g. Turbo codes approach Shannon capacity within a few tenths of a dB [24].

However, the drawbacks of using Shannon capacity lie mainly in its idealized

assumptions. In a real communication system, finite modulation schemes are used

and the system’s spectral efficiency will be capped by the highest modulation class,

which means that the Shannon capacity will practically never be achievable in the

high SNR regime. To accomplish or approach the Shannon capacity limit, usually

code blocks with infinite length are assumed, however in a realistic communication

system, the Forward Error Correction (FEC) module generates codewords with finite

length, which violates the assumption of capacity-achieving schemes. Furthermore,

current communication systems nowadays typically don’t have the luxury of operating

in an error-free mode. For example, systems employing Automatic Repeat reQuest

(ARQ) or Hybrid ARQ, can operate at a relatively high block error rate.

Besides the impracticality of the criterion itself, there are still other issues

that affect the analysis and design of a practical scheduler. As pointed out in the

paragraphs above, channel quality measurements are the keys to scheduler imple-

mentation. First of all, when pilots are embedded in data for channel estimation,

a portion of the channel bandwidth is wasted. The percentage of the pilots in each

data frame and how often the pilots need to be transmitted both affect the system’s

capacity. Secondly, the transmit power of the pilots to a large extent determines

the channel estimation accuracy, which then affects the decisions at the scheduler.
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Thirdly, when users need to feedback the channel conditions (e.g. SNR values) to

the BTS, this information needs to be quantized before being transmitted back using

a reverse channel link, because the bandwidth of the control channel for feedback is

usually very narrow. Consequently, the number of quantization bits will determine

the accuracy of the knowledge obtained at the BTS side. The more bits the quan-

tizer has, the easier it is for the BTS to distinguish two users’ channel quality. If

the quantization resolution is too rough, two users with different SNRs might not be

distinguished and the scheduler may decide to schedule a non-optimal user, leading

to capacity loss in the network. The degraded SNR report will also affect the modu-

lation selection decision made at the BTS if adaptive modulation scheme is employed

in the system. In addition to quantization issues, the delay that feedback induces

is also another factor that needs to be accounted for when the scheduler is under

inspection. The delay that information feedback takes will by itself lead to inaccu-

rate channel knowledge at the BTS, because the wireless channel will change in the

meantime. The smaller the mobility is, the greater the channel is correlated, and the

better the fidelity of the channel knowledge. When a realistic performance analysis

of a practical scheduler is of concern, all these aspects need to be considered jointly.

1.4 Doppler Effects on Communication System Performance

When the parties involved in the communications are mobile, the movement

of the transceivers will result in a shift of the carrier frequency of the radio signal,

referred to as the Doppler effect [25]. The presence of multiple propagation paths in

the wireless channel means that there will in general be more than one frequency shift

in the radio signal. When the number of paths increases, the transmitted unmod-

ulated carrier (a single tone) will be spread out in the frequency domain, resulting

in a phenomenon referred to as Doppler spread. The larger the motion of the user

terminal, the wider the Doppler spread.

The most obvious and direct impact of the Doppler effect is its shifting the

carrier frequency of the RF signals. Misalignment of the frequency of the demodulator

reference signal and that of the received signal will leave the baseband signal with a
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phase rotation, which in the frequency domain will lead to a shift of the received signal

spectrum. If the shift is large enough and not well accounted for, it will prevent the

receiver filter from capturing a proper amount of transmitted signal energy, causing

an error floor in the bit error rate performance curve. For systems that employ Multi-

Carrier Modulation (MCM) schemes like Orthogonal Frequency Division Multiplexing

(OFDM), an uncompensated Doppler shift will cause the data streams on all the

sub-stream to interfere with each other, i.e. referred to as Inter-carrier Interference

(ICI), therefore reducing the effective SNR on individual sub-streams, deteriorating

the reception quality.

In [26], the effects of mobility on communication system performance are stud-

ied. One of the basic influences of mobility is that it will impose a certain correlation

pattern on the time-varying channel [3], which further determines if the successive

symbols are experiencing similar fading conditions. For data service networks that

are required to provide high Quality of Service (QoS) even for high mobility users, the

system level design should take Doppler spread into account. A larger Doppler spread

indicates a rapidly fading channel environment, and therefore requires more frequent

channel estimation and tracking, which would cause more training pilots and lower

the spectral efficiency. How long can a receiver performs its signal detection without

estimating the channel again? How much capacity loss would be incurred when the

channel is assumed to be constant when it is truly not? These questions can be better

answered by more closely examining the Doppler effect in the communication prob-

lem setup. For example, [27] studies the coherent and non-coherent signal detection

problem with partial channel knowledge in a channel with large Doppler spread.

As pointed out above, Doppler spread can cause a large performance degra-

dation from the perspective of the physical layer. But what is the effect of Doppler

spread on the scheduler from the MAC layer point of view? When the users in the

network have various levels of mobility, the channel condition of each user can be very

different. For schedulers that operate based on the instantaneous channel conditions

for various users, the Doppler effect will outdate the channel knowledge so that when

the user gets his own scheduled time slot, the optimality of the scheduler may not
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hold any more. Therefore, when a fixed amount of time is assigned to the selected

user without its receiver tracking the variation of the channel, picking the strongest

user based on each user’s individual instantaneous signal strength may not be the

optimal approach. Instead, one should consider both the average SNR and Doppler

spread in the MAC layer protocol.

1.5 Communications Over UAV-assisted Wireless Networks

Ad hoc networks are another type of wireless network, one that typically as-

sumes no fixed topology and are defined as a collection of autonomous nodes or ter-

minals that communicate with each other by forming a multihop radio network and

maintaining connectivity in a decentralized manner [28]. Similar to cellular based

networks, users in wireless ad hoc networks also need to combat the adverse nature

of the communication channels and compete for limited resources. However, in ad

hoc networks, each node acts both as a host and a router, and therefore routing al-

gorithms are critical to reduce the overhead and multihop delay [29]. Two types of

wireless ad hoc networks that are of greatest interest include: Mobile Ad-hoc Net-

works (MANETs) and Smart Sensor Networks (SSNs).

According to [30], a MANET is an autonomous system of mobile routers (and

associated hosts) connected by wireless links, the union of which form an arbitrary

graph. They are often used for establishing communications in emergency scenar-

ios. Mobility is one of the most important characteristics of a MANET. However,

the time-varying nature of the MANET topology requires the development of effi-

cient distributed algorithms to determine the network organization, link scheduling,

and routing algorithm, etc. Various constraints need to be taken into account when

designing a MANET, e.g. power constraints for battery-limited applications, mini-

mum probability of interception constraints for military applications, maximum hop

constraints for delay sensitive applications like voice communications and so on.

Compared with MANETs, the nodes in a wireless SSN are not necessarily

fully autonomous, but have basic communication capability and a certain level of

intelligence, i.e. signal processing and data networking. Examples of wireless SSNs
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can be found in both civilian and military applications, including traffic sensor net-

works, surveillance sensor networks, military sensor networks, etc. Wireless SSNs

can be classified according to two different criteria [28]: 1) whether each individual

node in the network is addressable, and 2) whether the data in the network is ag-

gregated. The common tasks of the wireless SSN are to 1) determine the value of

some parameter at a given location, 2) detect the occurrence of events of interest and

estimate parameters of the detected event or events, 3) classify a detected object, and

4) track an object. These tasks lead to a few shared requirements on the wireless

SSN, including: 1) a large number of sensors, 2) low energy consumption, 3) network

self-organization, 4) collaborative signal processing, and 5) querying ability [28].

Unmanned Aerial Vehicles (UAVs), including battlefield UAVs, miniature UAVs,

endurance UAVs, etc., have been designed to fulfill the tasks of providing military

communication links, traffic surveillance, border and coast patrol, fire perimeter mon-

itoring, search and rescue, and so on. UAVs are particularly well-suited for situations

that are too dangerous for direct human monitoring. In environments that are haz-

ardous to human operators, unmanned vehicles can be deployed to carry out tasks

that would otherwise be impossible to accomplish. Recent improvements in battery,

micro-controller, and sensor technologies have resulted in the development of au-

tonomous vehicles that are inexpensive, dependable, and simple to operate. Research

on exploiting the mobility and cooperation between a team of UAVs to obtain better

tracking of a moving target can be found in [31, 32, 33]. Applications involving UAVs

in telecommunications can also be found in the literature [34, 35].

The importance of being able to communicate in the battlefield is obvious, but

the hostile environment and the need for constant mobility and reliability makes it

hard to install fixed communication facilities. A MANET’s independence from fixed

communication infrastructure, its instant deployment and easy reconfigurability make

it very suitable for battlefield communication network applications. UAVs are good

candidates for relays in MANETs. Their altitude enables them to be seen by all

members of the network, and their size makes them resistant to attacks.
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Without using any existing network infrastructure and any centralized admin-

istration, the great benefits that MANETs promise are all based on robust and smart

routing algorithms. In [36, 37, 38], various multihop wireless ad hoc routing protocols

are discussed and compared. However, for applications involving a large number of

nodes, a pure flat ad hoc structure, where no hierarchical topology is assumed, faces

various problems such as long hop paths, heavy routing overhead, spatial concurrency

constraints of neighbor nodes, etc [34]. In a word, a flat structure encounters scala-

bility problems when the number of nodes in the ad hoc network increases, especially

in the face of node mobility. A hierarchical architecture is essential for achieving a

basic performance guarantee in a large scale MANET [35]. A diagram for a hierar-

chical UAV-aided network is shown in Fig. 1.1, where the colored nodes represent the

users at the lower level, and UAVs in the air act as backbones, providing higher level

connections. Any kind of topology can be assumed at the lower level. Usually due

to the probable LOS propagation path and larger payloads, the links between UAVs

can be assumed to be much stronger than the ones between lower level nodes.

Figure 1.1: Hierarchical UAV-aided networks.
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Applications using UAVs to help set up ad hoc network communications can

be widely found in the literature. An architecture for implementing a rapidly de-

ployable wireless network using UAVs is discussed in [39]. In [34, 40], a hierarchical

UAV-assisted network is assumed to be deployed in the battlefield, and routing algo-

rithms are studied to provide communications with higher throughput and to support

the scalability of the network. The movement pattern of the UAVs can impact the

networking performance of the system; therefore, in [41], algorithms for determin-

ing desirable mobility properties for UAVs was presented. In [42], artificial potential

fields were used to guide the motion of UAVs that are used to bridge the connection

between Autonomous Underwater Vehicles (AUVs) and Tactical Operation Centers.

For delay-tolerant applications, e.g. bulk data transfer, [43] proposed a scheme to

maximize network throughput by using UAVs to load data from the ground nodes,

carry the data while flying to the destination, and deliver the data to the destina-

tion nodes. A Mobile Backbone Network Protocol (MBNP) is proposed in [44] that

discusses network topological synthesis, proactive routing mechanisms, MAC layer

power control, etc., in UAV-assisted hierarchical networks. Fuzzy control of the mo-

tion of the UAVs to improve the connectivity of mobile ground nodes is approached

by mimicking the flocking rules of birds [45]. A feasibility study of using OFDM

signaling technology in UAV wireless communications was conducted in [46]. Perfor-

mance of the ad hoc ground network using swarm UAVs is studied from a physical

layer perspective in [47], where an air-to-ground wireless channel is used to model

the link condition, and the effects of the UAVs’ positions, velocities, etc, on Bit Error

Rate (BER) performances of different transmission strategies are analyzed.

In a word, networking using mobile backbones with a hierarchical structure has

attracted significant interests. Many aspects of such networks need to be explored,

including: routing algorithms, cross layer design, power control strategies, etc. An

extra degree of freedom which can be manipulated to obtain better control and achieve

higher performance is the motion of the UAVs. By optimally commanding the heading

or designing the flying pattern of the UAVs, network throughput can be improved

due to the reduction in the propagation distance of the RF signals or elimination
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of shadowing, etc. Another issue that is key to UAV networks is the possibility of

high Doppler shifts. The determination of time slot duration for scheduling needs to

account for the Doppler effect and appropriate channel estimation is necessary for the

network to provide acceptable data transmission rates.

1.6 Focus of the Research Topics in the Dissertation

This dissertation focuses on exploiting possible ways to optimize the perfor-

mance of two kinds of networks, i.e. cellular networks for civilian applications and

UAV-assisted hierarchical networks for military use. For cellular networks, schedulers

which have instantaneous channel information for all users are studied. Practicalities

like pilot insertion, channel estimation error, feedback delay, quantization error, etc,

are considered when evaluating the spectral efficiency of a traditional Single Input

Single Output (SISO) network with FEC blocks built in. Closed-form expressions

are derived to quantify the throughput of the network in terms of spectral efficiency.

As discussed above, when mobile relays are used in the network, the Doppler effect

is not a trivial aspect that can be ignored for a fixed network alternative any more.

The duration of allocated time slots affects the system throughput when channel es-

timation cannot be assumed to be perfect. The limited training capability of the

system outdates the channel knowledge at the scheduler and leads to faulty deci-

sions. The longer the slot allocation, the larger the loss it may induce. When the slot

duration is relatively long and the training for the scheduled user is limited, oppor-

tunistic scheduling which exploits instantaneous channel knowledge of the users may

not be optimal. The users’ average link SNR combined with their respective Doppler

spreads can be a good metric for scheduling algorithms, and therefore a Statisti-

cal Channel-aware (SCA) scheduler is proposed in the dissertation. In addition, the

performance of a Max-SNR scheduler for an asymmetric network, where users have

different average SNR, is studied and analytical results are obtained. For UAV-aided

networks, Multiple Input Multiple Output (MIMO) antenna systems are assumed,

and the optimal heading control problem for the mobile UAVs is of primary interest.

A closed-form solution for commanding a team of UAVs to fly in a trajectory that
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maximizes the data rate of a network with mobile nodes is found in the dissertation.

Handoff of the mobile nodes in this specific mobile relay network setup is different

from simply checking the receive signal strength and assigning the mobile user to the

UAV offering best link quality. Constraints on the UAVs’ mobility and minimum

communication rate for each user create more complexity for this handoff problem.

Extra UAVs need to be deployed in the network when the users cannot be accom-

modated by the current ones. The optimal UAV deployment problem is also part of

the focus of the research. A complete network protocol is proposed to achieve the

maximum transmission throughput.

The rest of the dissertation is organized as follows. Chapter 2 summarizes

the various channel models for wireless communications to give a general view of the

characteristics of the wireless propagation environment and the difficulties of com-

municating without wires. Chapter 3 reviews the state-of-the-art signaling strategies

over the wireless link to exploit the multipath nature of the channels and maintain re-

liable and high-speed communications. In Chapter 4, a realistic performance analysis

for a Max-SNR scheduler is conducted, including the effects of channel coding, chan-

nel estimation, Doppler shift, feedback delay etc. Chapter 5 is still concerned with a

Max-SNR scheduler’s performance in an asymmetric network consisting of users with

high mobility. The large Doppler spread of the channel quickly outdates the channel

knowledge. The effect of Doppler spread on the capacity of the system is studied,

and a statistical scheduler which assigns users based solely on the average SNR and

Doppler spread of the user is proposed. A hierarchical UAV-aided communication

network is then examined in Chapter 6. Link level analysis including the average

transmission rate and the probability of Symbol Error Rate (SER) is given in the

chapter. Optimal heading controls for the UAV relays that maximize the throughput

of the network are obtained. Cross layer issues, such as relay deployment and AP

handoff problems are also proposed for a complete networking protocol for this mobile

relay assisted network. Chapter 7 concludes the dissertation and proposes possible

research topics for future work.
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Chapter 2

Wireless Communication Channel

The most obvious difference between wire-line and wireless communication ap-

plications is their signal propagation environments. With more complicated channels

that have a randomly time-varying impulse response, the transmitters and receivers

in a wireless communication system need to combat more hostile transmission and

propagation effects. The generally hostile nature of the wireless channel has roots in

the mobility of both the propagation medium (time varying scatterers), multiple prop-

agation paths (small scale fading), shadowing (medium scale fading), path loss (large

scale fading), co-channel interference etc. The fading characteristics of the channel

cause the channel realization to vary dramatically at different locations, on the order

of a few wavelengths. Multiple copies of the transmitted signal arriving at the re-

ceiver at different symbol periods incur ISI; in other words, in the frequency domain,

it deforms the transmitted signal spectrum and induces a frequency selective channel.

All of the above issues make communication over the wireless channel less reliable.

The other bottleneck in wireless communication applications is its limited channel

capacity. To increase the robustness of the communication link, different approaches

to combat fading (thus to reduce the variation of the received signal strength), to

cancel self-symbol interference (thus to flatten channel responses) have been widely

studied in the literature. On the other hand, to increase data rate per channel use,

multiple antenna arrays have been proposed to create parallel data pipes for data

multiplexing. In addition, spread spectrum technology has been developed to enable

aggressive frequency reuse when cell planning is of concern so that higher network

capacity can be achieved. This chapter will briefly discuss the characteristics of the
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propagation environment for RF signals and introduce some wireless channel models

for different system configurations.

2.1 Wireless Propagation Environment

Figure 2.1: Signal strength as a function of T-R separation.

A Radio Frequency (RF) signal usually travels through a number of different

paths before it reaches the receiver. This is often referred to as multipath propaga-

tion. The propagating mechanism can be generally classified as reflection, diffraction

and scattering [2, 7]. The most important factor that determines the quality of the

communication link is the received signal power. Concerning the level of the received

signal power, three mutually independent, multiplicative propagation phenomena can

usually be distinguished: multipath fading (microscopic/small-scale fading), shadow-

ing (macroscopic fading) and large-scale path loss (mean propagation loss) [7, 48]. As

can be seen in Fig. 2.1, as the Transmitter-Receiver (T-R) separation increases, the
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signal power decreases, and the area-mean power decreases smoothly. Fading, espe-

cially small scale fading causes the received signal to fluctuate greatly over a small

period of time or over short distances, and therefore leads to unreliable communica-

tions. The rest of the section will be dedicated to describing these three propagation

characteristics.

2.1.1 Large Scale Path Loss

The large scale path loss is mainly the result of the inverse square law of the

power loss in free space. Its effect on the received signal’s attenuation is smooth

with respect to the geometry of the path profile in the propagating environment.

The large scale path loss is usually measured by averaging the power level over a

relatively large area (tens or hundreds of meters) to quantify the so-called area-mean

power level [48]. To estimate the radio coverage, mathematical models to predict the

mean signal strength for arbitrary Transmitter-Receiver (T-R) separation distances

are widely studied in the literature. Different large scale propagation models are

developed for different propagation environments and mechanisms.

When there is a clear unobstructed LOS path between the transmitter and

receiver, the received signal strength can be predicted using free space propagation

models. This is typically the case for satellite communication systems, air-to-ground

and microwave LOS links, to name a few. For a transmitter with transmit power Pt,

the signal power at a receiver that is d meters away, can be quantified using Friis free

space equation:

Pr(d) =
PtGtGrλ

2

(4π)2d2L
, (2.1)

where Gt and Gr are the antenna gain at the transmit and receive side respectively,

λ is the carrier’s wavelength, and L is miscellaneous loss due to other factors in the

system, including transmission line attenuation, filter losses and so on [2]. Equation

(2.1) is only valid when the receiver is in the far field (Fraunhofer region) of the

transmitter. In other words, (2.1) holds only when the separation distance satisfies

d >> df , where df = 2D2

λ
is the far field distance defined as a function of the
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transmit antenna’s linear dimension (D) and the RF carrier wavelength (λ). Hence,

in a mobile radio system, a reference distance d0 > df and less than any practical

distance is picked and the average power level is measured such that the received

signal power at any point of practical interest in the system can be expressed as:

Pr(d) = Pr(d0) ·
(
d0

d

)2

, (2.2)

where d ≥ d0 ≥ df .

For those paths that involve more than one propagation medium, reflection,

diffraction and scattering phenomena will impact system performance. When an

electromagnetic (EM) wave impinges upon an object with a large dimension when

compared to the wavelength of the EM wave, reflection occurs. If the wave is incident

on a perfect dielectric, part of the energy is transmitted into the second medium and

part of the energy is reflected back into the first medium. There is no absorption of

the energy in the propagation. If the second medium is a perfect conductor, all the

power of the EM wave is reflected back into the original medium. One of the many

interesting models that take into account the reflection mechanism is the ground

reflection (two-ray) model replicated below [49]. This model predicts the average

signal strength when the environment contains two major propagation paths, i.e. a

LOS path and a ground reflected path. The received power is modeled as:

Pr(d) = PtGtGr
h2

th
2
r

d4
, (2.3)

where d >>
√
hthr, Pt is the transmit power, Gt, Gr is the antenna gain, ht, hr are

the transmit antenna height and receive antenna height respectively, and d is the

separation distance between transmitter and receiver. This model works fairly well

for predicting signal strength over distances of several kilometers for mobile radio

systems that use tall antennas (ht > 50m), as well as for LOS microcell channels in

urban environments [2, 49]. When EM waves hit an object with sharp irregularities

(edges), diffraction will take place. Knife-edge models that are used to characterize

diffraction process can be found in [50, 51, 52, 53]. If the EM wave travels through
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medium containing dense obstacles that have smaller dimension when compared to

the carrier’s wavelength, scattering occurs. When a radio channel consists of large,

distant objects that induce scattering, e.g. the urban mobile radio environment, the

bistatic radar equation (2.4) can be used to model received signal strength:

Pr(d) =
PtGtGrλ

2σb

(4π)3d2
td

2
r

, (2.4)

where σb is the radar cross section (RCS), defined as the ratio of the power density of

the signal scattered in the direction of the receiver to the power density of the radio

wave incident upon the scattering object [2, 25, 54], and dt, dr are the distances from

the scatters to the transmitter and receiver respectively. Equation (2.4) is only valid

when the scatterers are in the far field of both the transmitter and receiver. Several

RCS values are determined in [55].

2.1.2 Shadowing Effects

Shadowing effects of buildings or natural features introduces additional fluctu-

ations so that the received local-mean power varies around the area-mean. Consider-

ing the different nature and characteristics of the scatterers, the receiver will perceive

vastly different power levels at different locations with the same T-R separation. This

effect causes inaccuracies in the previous area-mean prediction models. The fluctu-

ation of the signal strength in this case is called macroscopic fading as compared to

the case discussed in the next section (microscopic fading). The received signal power

is averaged over a few tens of wavelengths, typically 40λ so that the fluctuations of

the instantaneous received power due to multipath effects are largely removed [48].

According to [3, 56, 57], the macroscopic fading approaches a Gaussian distribution

when measured in log-scale, and therefore is referred to as log-normal shadowing:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , (2.5)
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where x (in dB) is the signal strength averaged over microscopic fading, µ is the

area-mean power (in dB) predicted by the different models discussed above, and σ is

the standard deviation of x (in dB).

2.1.3 Small-scale Multipath Propagation

Experiments conducted in the field reveal that when the receiver moves over

a small distance (a few wavelengths), the instantaneous signal fluctuates drastically

due to the superposition of a large number of independent scattered components.

This is called small scale (microscopic) fading. Multiple copies of transmitted signals

with different phases and amplitudes arriving at receivers at slightly different times

combine together to yield a rapidly fluctuating signal that degrades the quality of

the communication link. Multiple propagation paths are the cause of the small scale

fading, and the three most important effects are [2]:

• Rapid fluctuation in the signal strength over a short distance or time interval

• Random frequency modulation due to different Doppler shifts on various prop-

agation paths

• Time dispersion (echoes) caused by multipath propagation delays

Small-scale fading characterizes the case when the large-scale path loss can be ignored.

Many physical factors can affect the small-scale fading, and the most important few

include multiple propagation paths, relative motion between the transmitter and re-

ceiver, motion of the scatterers in the environment, transmitted signal bandwidth,

etc. In the typical mobile communication setup, due to the relatively lower height of

the mobile receiver, there is usually no strong LOS propagation path. In this scenario,

when the number of independent EM waves is assumed to be large, the distribution

of the received signal can be considered as a complex Gaussian process in both its

in-phase and quadrature component with no cross correlation. The amplitude of the

received signal is Rayleigh distributed as follows:

f(x) =
2x

γ̄
e−

x2

γ̄ , (2.6)
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where x ≥ 0 and γ̄ is the averaged received signal power. With a random variable

transformation, the distribution of the signal power can be found to be exponentially

distributed:

f(x) =
1

γ̄
e−

x
γ̄ , (2.7)

where x ≥ 0. However, when the surrounding scatterers around the mobile receiver

are smaller or fewer such that there is a dominant clear direct propagation path for

the EM waves (LOS path), a mean component will be present in the received signal.

In this case, the magnitude of the received signal is a random process with a Rician

distribution:

f(x) =
2x(K + 1)

γ̄
e−K− (K+1)x2

γ̄ I0

(
2x

√
K(K + 1)

γ̄

)
, (2.8)

where x ≥ 0 and K is the Rician factor defined as the ratio of the dominant signal

power (s2) over the scattered signal power (2σ2) in K = s2

2σ2 , with the total power

given by γ̄ = s2 + 2σ2. I0(x) = 1
2π

∫ 2π

0
e−xcosθdθ is the zero-th order modified Bessel

function of the first kind. Using some transform techniques [58], the signal power can

be shown to be distributed as non-central chi-square:

f(x) =
(K + 1)e−K

γ̄
e−

(1+K)x
γ̄ I0

(√
4K(K + 1)

γ̄
x

)
, (2.9)

where x ≥ 0. Using I0(0) = 1, we see that (2.6) is a special case of (2.8) with Rician

factor K = 0. Another popular distribution used to characterize the statistics of the

fading signal is the Nakagami distribution [59]:

f(x) =
2

Γ(m)

(
m

γ̄

)m

x2m−1e−
mx2

γ̄ , (2.10)

where the parameter m is defined as the ratio of moments, called the fading figure:

m =
γ̄2

E [x2 − γ̄]2
, (2.11)
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where m ≥ 1
2

and E(·) is the expectation operator. As can be easily seen, Rayleigh

fading is a special case of Nakagami fading when m = 1.

2.2 Wireless Channel Modeling

2.2.1 Single Input Single Output (SISO) Channel

For cell planning, large scale propagation effects dominate the system design.

However, when a specific link is under inspection, large scale path loss can typically

be ignored, and only the small scale fading has to be taken into account for channel

modeling. In this section, wireless channel models are discussed for systems that have

only one antenna at both the transmitter and receiver. Channel here refers to the

composite effect of the transmit pulse shaping filter, wireless propagation environ-

ment and the matched filter at the receiver. As explained above, due to multiple

propagation paths, relative motion of scatterers in the environment, different angular

distributions of the incoming waves, the wireless channel can be modeled as a function

of three individual parameters, including time (t), delay (τ) and spatial dimensions

(r), and we denote it to be h(t, τ, r). Under the assumption of linearity, the received

signal in the time domain can be expressed as:

y(t, r) =

∫ ∞

−∞
h(t, τ, r)x(t− τ)dτ . (2.12)

Equivalently it can be expressed using the Fourier transform as follows [60, 61]:

y(t, r) =
1

2π

∫ ∞

−∞
h(t, f, r)X(f)e2πftdf . (2.13)

The variation of the channel over time (t), frequency (f), and space (r) leads to the

selectivity concept of the channel. By introducing their corresponding Fourier trans-

form pairs: Doppler domain (ω), delay domain (τ), and wave number (k) domain,

the coherence concept of the channel can be defined as the “window” over which the

channel’s response does not vary significantly. For example, the coherence time can

be defined as the time window over which a narrow band channel (no frequency or
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spatial dependence) remains almost constant [61]. In other words, when |t− t0| ≤ Tc

2
,

the following equation is satisfied:

|h(t)| ≈ V0 , (2.14)

where V0 is some constant voltage, t0 is some arbitrary moment in time, and Tc is

the size of the time window of interest. The largest value of Tc on average defines the

coherence time of the channel. If the transmit symbol rate of the system is comparable

to the coherence time Tc, it will be difficult for the receiver to recover the information.

A much faster transmit rate (Ts << Tc) yields a slow fading channel, otherwise when a

slower transmit rate is applied to average out the variation of the channel (Ts >> Tc),

the channel is said to be fast fading. Similarly, when |f − f0| ≤ Bc

2
, we have:

|h(f)| ≈ V0 , (2.15)

and the largest value of Bc is defined to be the coherence bandwidth of the channel.

When the bandwidth of the transmitted signal B < Bc, the signal is considered

narrowband, and no severe distortion occurs in the time domain; otherwise the signal

is said to be wide-band. When a channel has a coherence bandwidth that is larger

than the signal bandwidth, it is said to be a frequency flat fading channel, otherwise

it is referred to as a frequency selective fading channel. The coherence distance

Dc is defined as the largest one-dimensional displacement over which the channel is

approximately constant:

|h(r)| ≈ V0 . (2.16)

when |r − r0| ≤ Dc

2
holds.

The above definitions assume that the channel is deterministic. A stochastic

channel model serves to better describe the random nature of the wireless propagation

environment. A detailed treatment of random time-variant linear channels can be

found in [61, 62, 63]. A statistical perspective of the channel is to view it as a random

process in terms of time, frequency and space. Correlation is usually used to describe
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a random process when only one dependency of the channel is of interest, e.g. for a

time dependent channel h(t), its auto-correlation is defined as:

Rh(t1, t2) = E [h(t1) · h∗(t2)] , (2.17)

where as mentioned above, E(·) is the expectation operator. A random process is

strictly stationary if the joint distribution p(ht1 , ht2 , · · · , htk) is identical to that of

p(ht1+t, ht2+t, · · · , htk+t) for all t, and an arbitrary positive integer k. In other words,

strict stationarity requires an arbitrary order of joint distribution invariance under

time shifts [64]. This is a very difficult condition to verify for a practical process.

A wide-sense stationary (WSS) process is a random process with weaker stationarity

conditions. A process is WSS when its mean is time invariant (2.18):

E(h(t)) = h , (2.18)

and its covariance is time invariant (2.19):

Rh(t1, t2) = Rh(t1 + t, t2 + t) . (2.19)

To fully characterize a WSS channel h(t, f, r), its joint correlation should be defined:

Rh(t1, f1, r1; t2, f2, r2) = E [h(t1, f1, r1) · h∗(t2, f2, r2)] . (2.20)

For the purpose of mathematical tractability, we assume the random channel is a

jointly WSS process in (t, f, r). According to the property of WSS processes, the

WSS assumption leads to uncorrelated spectral components, i.e. the channel pro-

cess is uncorrelated in the spectral domain (ω, τ, k). Mathematically, this wide-sense

stationary, uncorrelated scattering (WSS-US) assumption can be written as:

Sh(ω1, τ1, k1;ω2, τ2, k2) = E [h(ω1, τ1, k1) · h∗(ω2, τ2, k2)] (2.21)

= Sh(ω1, τ1, k1) · δ(ω1 − ω2) · δ(τ1 − τ2) · δ(k1 − k2) ,
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where Sh(·, ·, ·) is the power spectral density of the channel process h(t, f, r). Accord-

ing to the Wiener-Khinchine theorem, Rh(∆t,∆f,∆r) and Sh(ω, τ, k) are a Fourier

transform pair. The relationships between the autocorrelation function and power

spectral density (PSD) of the channel can be found in various textbooks [59, 61, 65].

The channel’s dependency on multiple different parameters complicates the analysis;

by integrating over the other two parameters in the spectral domain, the channel’s

Doppler spectrum, delay spectrum and wave-number spectrum can be defined respec-

tively as follows:

Sh(ω) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Sh(ω, τ, k)dτdk , (2.22)

Sh(τ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Sh(ω, τ, k)dωdk , (2.23)

and

Sh(k) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Sh(ω, τ, k)dτdω . (2.24)

By setting the other two parameters to be zero in the original domain, a channel’s

time/frequency/space correlation can be defined as:

Rh(∆t) = Rh(∆t, 0, 0) , (2.25)

Rh(∆f) = Rh(0,∆f, 0) , (2.26)

and

Rh(∆r) = Rh(0, 0,∆r) . (2.27)

Sh(ω) and Rh(∆t), Sh(τ) and Rh(∆f), Sh(k) and Rh(∆r) form Fourier transform

pairs respectively.

With the stochastic channel model, the coherence definition introduced above

can be quantitatively measured in terms of the spread in the spectrum domain. The

delay/Doppler/wavenumber spread (στ/σω/σk) is defined as the root-mean-square

(RMS) width of the corresponding spectrum. Mathematically, the definition men-
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tioned above can be written as (2.28)-(2.30):

σ2
τ = τ 2 − (τ̄)2 , (2.28)

where τn =
R ∞
−∞ τnSh(τ)dτR ∞
−∞ Sh(τ)dτ

,

σ2
ω = ω2 − (ω̄)2 , (2.29)

where ωn =
R ∞
−∞ ωnSh(ω)dωR ∞
−∞ Sh(ω)dω

, and

σ2
k = k2 − (k̄)2 , (2.30)

where kn =
R ∞
−∞ knSh(k)dkR ∞
−∞ Sh(k)dk

. As is well known in Fourier analysis, when a signal has a

wide spread in one domain, its corresponding transform pair has a narrow spread in

the other domain. Therefore, as a rule-of-thumb, the spreads defined above have a

roughly reciprocal relationship with their corresponding coherence counterparts. If

coherence bandwidth is defined as the frequency interval over which the channel’s

complex frequency transfer function has a correlation of at least 0.9, the coherence

bandwidth is approximately Bc ≈ 1
50στ

[66, 67]. A more popular approximation of Bc

corresponding to a bandwidth interval having a correlation of at least 0.5 is Bc ≈ 1
5στ

[2, 59, 61, 67]. When coherence time Tc is defined as the time duration over which the

channel’s response to a sinusoid has a correlation greater than 0.5, the relationship

between Tc and σω is approximately Tc ≈ 9
16πσω

[68]. The relationship between the

wavenumber spread and coherence distance can be found in [61].

Another important metric to characterize the variation of the random channel

is fading rate variance defined as:

σ2
t = E

{∣∣∣∣d [h(t) · e−jω̄t]

dt

∣∣∣∣2
}
,

σ2
f = E


∣∣∣∣∣d
[
h(f) · e−j2πτ̄f

]
df

∣∣∣∣∣
2
 ,
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and

σ2
r = E


∣∣∣∣∣∣
d
[
h(r) · e−jk̄r

]
dr

∣∣∣∣∣∣
2
 , (2.31)

where ω̄, τ̄ , k̄ are the centroids of the corresponding spectra, and can be found

by evaluating the function f(x) =
R ∞
−∞ x·Sh(x)·dxR ∞
−∞ Sh(x)·dx

. Exploiting the basic theorem in

stochastic theory that relates the mean-square derivatives of complex processes to

PSDs [61, 69],

E

{∣∣∣∣dnh(t)

dtn

∣∣∣∣2
}

=
1

2π

∫ ∞

−∞
ω2nSh(ω)dω , (2.32)

we can easily show (2.33)-(2.35):

σ2
t = E{P (t)} · σ2

ω , (2.33)

σ2
f = (2π)2 · E{P (f)} · σ2

τ , (2.34)

and

σ2
r = E{P (r)} · σ2

k , (2.35)

where P (·) ≡ |h(·)|2 is the power of the channel, and σω, στ , σk are Doppler spread,

delay spread and wavenumber spread respectively.

When the coherence bandwidth Bc is larger than the signal bandwidth, the

signal does not get severely distorted in the time domain, and the channel can be

modeled using a linear random scalar response and the received signal can be written

as (2.36):

y(t, r) = h(t, r) · x(t) + z(t) , (2.36)

where E(x(t)2) = Es is the power of the transmitted signal, and z(t) ∼ CN(0, σ2) is

zero mean circularly symmetric complex Gaussian noise. Depending on whether there

is a dominant signal component or not, the received signal envelope is distributed as

Rayleigh (2.6) or Rician (2.8).

However, when the signal bandwidth is larger than the coherence bandwidth

Bc, which in other words means the delay spread of the channel (στ ) spans multi-
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ple transmit symbol durations Ts, the received signal will be composed of multiple

delayed copies of the transmitted signal, and thus will possess ISI. This fading is

called frequency selective fading, and the received signal in the time domain can

be greatly distorted. Any low-pass signal x(t) with two-sided bandwidth W and

time duration t ∈ [0, T ] may be represented by a N = WT dimensional vector

x = [x(0), x(1/W ), · · · , x(T − 1/W )]T in the following equation [60, 70]:

x(t) =
WT−1∑
n=0

x[n] · sinW · (t− n/W )

W · (t− n/W )
, (2.37)

where x[n] denotes the n-th component of the vector x. The Fourier transform of

x(t) can be easily derived as:

X(f) =

 1
W

∑WT−1
n=0 x[n] · e−j 2πfn

W |f | ≤ W
2

0 |f | > W
2

. (2.38)

If we recall (2.13), and plug in (2.38), we have the noise corrupted received signal:

y(t, r) =

∫ ∞

−∞
H(t; f, r) ·X(f) · ej2πftdf + z(t)

=
1

W

∑
n

x[n]

∫ ∞

−∞
H(t; f, r) · ej2πf [t− n

W
]df + z(t)

=
1

W

∑
n

x[
n

W
]h(t; t− n

W
, r) + z(t)

=
L−1∑
n=0

x[t− n

W
]hn(t, r) + z(t) , (2.39)

where hn(t, r) = 1
W
h(t;n/W, r) and L = [W/Bc] is the number of resolvable multi-

paths as seen by the transmitted signal. For each path, hn(t) is a complex Gaussian

process as described in the narrowband case, and for different propagation paths

(m 6= n), hm(t) is uncorrelated with hn(t) due to the uncorrelated scattering assump-

tion.
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2.2.2 Multiple Input Multiple Output (MIMO) Channel

The extension of the SISO channel model to the Multiple Input Multiple Out-

put (MIMO) channel to address the case when both the transmitter and receiver

are equipped with multiple antennas is straightforward. The rest of the section will

mostly follow the notation and the discussion from [7]. By defining the impulse re-

sponse for each antenna pair (between the j-th transmit antenna and the i-th receive

antenna) as hi,j(t, τ), we can describe the whole system using the channel matrix

H(t, τ):

H(t, τ) =


h1,1(t, τ) h1,2(t, τ) · · · h1,MT

(t, τ)

h2,1(t, τ) h2,2(t, τ) · · · h2,MT
(t, τ)

...
...

. . .
...

hMR,1(t, τ) hMR,2(t, τ) · · · hMR,MT
(t, τ)

 , (2.40)

where MT and MR are the number of transmit and receive antennas respectively.

The relationship between the transmit and received signal without noise in

(2.12) still holds in the MIMO case, with the only difference being that the transmit

and receive signals are vectors instead of scalars. Therefore, modeling the MIMO

channel to a large extent boils down to modeling the entries of the matrix H(t, τ).

Assuming a single scatterer present in the channel, one can model a MIMO channel

as:

H(τ) =

∫ π

−π

∫ τmax

0

S(θ, τ ′) · a(θ) · b(φ)T · g(τ − τ ′) · dτ ′ · dθ , (2.41)

where S(θ, τ) is the scattering amplitude drawn from some angle-delay scattering

function, a(θ) and b(φ) are the array response at the receiver and transmitter re-

spectively, g(τ) is the combined effect of the pulse-shaping filter at the transmitter

and the matched filter at the receiver. Under the assumption that there is only one

scatterer, θ and τ uniquely defines φ in the above equation. However, in practical

applications, (2.41) has a number of limitations and cannot adequately model all the

observed channel effects. The removal of the dependency of φ on θ and τ is necessary,

and this leads to a requirement of a multiple scattering model, e.g. S(φ, θ, τ). One

can show that in richly scattered environment the entries of H(t, τ) are independent
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zero mean circularly symmetric complex Gaussian random variables. Properly sam-

pling the signals will induce a discrete time channel model, which will simplify the

system design. Hereafter, we drop the dependency of the channel H(t, τ) on t and τ ,

and simply denote the channel as H.

Due to insufficient antenna spacing at the transmit and/or receive array, or

the presence of a dominant channel component, etc., quite often one can find that the

practical channel is not distributed as IID complex Gaussian. When the elements of

the antenna arrays are closely spaced, or the environment has few scatterers, there

will be correlation between the entries of the channel matrix H, referred to as spatial

fading correlation. If the entries of H are still jointly distributed as complex Gaussian

with zero mean and covariance matrix E(vec(H) ·vec(H)H) = R, a correlated channel

H can then be modeled as:

vec(H) = R
1
2 · vec(Hw) , (2.42)

where Hw denotes a matrix with each of its entries distributed as an iid complex

Gaussian random variable, and the vec(·) operator denotes taking the elements of a

matrix and stacking them column by column [71]. To reduce the degrees of freedom

required to describe the channel correlation matrix R, a Kronecker product correlation

model is often assumed:

R = Rt ⊗Rr , (2.43)

where Rt and Rr are the spatial correlation matrix seen from the transmitter side

and receiver side respectively, and the ⊗ operator denotes the Kronecker product.

With this assumption, a wireless channel H with given correlation matrices Rt and

Rr can be modeled as:

H = R
1
2
r ·Hw ·R

T
2
t . (2.44)

The above model assumes that there is no dominant propagation path in the

environment, therefore each entry of the channel matrix has zero mean. However,

when a line-of-sight propagation path exists, or when a certain signal component
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dominates, each entry of H is no longer zero mean, and a Rician channel model is

assumed [72]:

H =

√
K

1 +K
H̄ +

√
1

1 +K
Hw , (2.45)

where
√

K
1+K

H̄ = E(H) is the dominant component of the channel, the other term in

the above equation denotes the fading component, and the Rician factor K is defined

as the ratio of the power of the dominant path and that of the fading paths.
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Chapter 3

Signaling Technology over Wireless Channels

As explained in Chapter 2, two major adverse effects of wireless propagation

environments are multiple propagation paths (multipath fading) and the time varying

nature of the channels (Doppler spread). These effects render the communication links

unreliable; e.g. for a fast moving user, multipath fading will lead to fast amplitude

and phase fluctuations; for a wide-band signal user, it will create signal dispersion

in the time domain and inter-symbol interference; for an analog television signal, it

will create ”ghost” images (slightly shifted to the right); for a multi-carrier signal,

it will induce a varying frequency response at different subcarriers, to name a few

[48]. The Doppler spread effect requires constant channel estimation to keep channel

knowledge up to date, which therefore reduces the bandwidth efficiency and causes

transmission overhead. Another major effect of Doppler spread is that it will cause

ICI for a multi-carrier signal and frequency offset for a typical Single Carrier (SC)

modulated signal.

Today, there are several popular communication systems in service, includ-

ing Global System for Mobile Communications (GSM), Digital Enhanced Cordless

Telecommunications (DECT), a cellular phone system based on Direct Sequence (DS)

CDMA multiple access (IS95), wireless LANs and so on. These systems use differ-

ent techniques to combat multipath fading and Doppler spread. For example, in a

GSM system, the transmitter uses error correction coding to mitigate the effect of

multipath fading. Encoders interleave the coded bits to avoid burst errors. And at

higher levels, operators design extra fade margins into their cell planning. DECT

systems apply diversity reception at the base station. For a IS95 system, wideband

transmission technology averages channel behavior and avoids burst errors and deep
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fades. For a wireless LAN setup, retransmission protocols such as ARQ and hybrid-

ARQ are designed to request retransmission of corrupted data, and short data packets

are constructed to combat the fading process. The Doppler spread effect is typically

handled by transmitting signals at a much higher rate than the rate at which the

channel decorrelates dictated by Doppler spread (GSM, DECT), constantly tracking

the variation of the channel (GSM, ISM) and so on.

To create a robust communication link, different signaling techniques tailored

for wireless propagation environments are exploited to combat the adverse nature of

the channels. The rest of the chapter is dedicated to a summary of the most commonly

used transmission and signal strategies for wireless communication, including channel

coding, equalization, multi-carrier communication, MIMO technology, etc.

3.1 Error Correction Coding

The random nature of the propagation medium causes the link to be unpre-

dictable, and therefore transmission over the link is most likely erroneous every now

and then. Inspired by the idea that human error correction capability comes from the

ability to make use of redundancy in the information, modern transmission schemes

add extra bits to the information before sending them into the channels. However, this

redundant information embedded in transmission would certainly reduce the capacity

of the communication channel.

Shannon’s ground-breaking work in [73], founded the fields of information

[74, 75] and coding theory [76, 77, 78, 79], which focus on studying the properties of

information and redundancy, as well as the methods to introduce properly controlled

redundancy for the purpose of correcting the corrupted message before further pro-

cessing. With redundancy introduced, the valid messages span only a subspace of all

possible transmitted messages. This set of valid messages is referred to as the code,

and the valid messages are called codewords. A rule of thumb in designing good codes

is to generate codewords that are well-separated according to some metrics. During

error detection, the receiver first checks the received message to see if it is a valid

codeword. If so, it can be assumed that no error is present, because for a well de-
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signed code, it is not likely that there will be enough errors to turn one codeword into

another valid one. If not, after the detection of the presence of the error, the receiver

has two ways to maintain robustness of the link, i.e. 1) request a retransmission 2)

correct the errors. It is not uncommon for the receiver to recover the message by

requesting retransmission, but in some situations, e.g. when the propagation delays

due to the distance are too large for a delay-sensitive application, this technique is

impractical. Under these circumstances, a codeword that is “closest” to the received

signal is chosen to correct the errors in the message. This technique is also called

Forward Error Correction (FEC).

An exhaustive search over all the codewords to come up with a “nearest”

solution to the received signal is often not feasible for codewords with a large number

of bits. More intelligent decoding methods that exploit the structure in generating

the codewords need to be developed for realistic receiver design. A certain “reliability

factor” delivered by a general channel about the qualifying information for each bit

can be used to influence the concept and evaluation of “nearness” [76]. This sort of

decoding technique is called “soft-decision” decoding. The benefit of a soft-decision

technique over one based on hard-decisions can be seen from the analysis of the Binary

Erasure Channel [75].

One of the most popular assumptions of coding theory is that the receiver

has no prior information about the error pattern, and the errors are supposed to

be random and uniform over all bits. However, bursty errors are more probable in a

realistic wireless communication system due to short fades, etc. [76]. Various methods

are designed to tackle this problem, including 1) introducing an interleaver to spread

information over intervals longer than a typical error burst, 2) creating codes that

exploit the bursty nature of the errors, and 3) grouping chunks of bits together to

form code symbols (e.g. Reed-Solomon codes).

Generally speaking, there are two main types of popular codes: block codes

and convolutional codes. Block codes are composed of a collection of fixed length

vectors. The generation and analysis of block codes are based on rigorous algebra,

which allows codes to be constructed with certain predetermined properties and also
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leads to efficient decoding techniques. A subset of block codes that has the property

that a linear combination of the codewords is still a codeword, is referred to as linear

block codes. Some widely used block codes include: Hamming codes, Hadamard

codes, Golay codes, cyclic codes, etc. On the other hand, a convolutional code is

generated by passing the information sequence through a few shift register stages.

When compared with block codes, the mathematical basis of the construction and

analysis of convolutional codes is much weaker. The famous decoding algorithm for

convolutional codes, i.e. the Viterbi algorithm, essentially involves searching the

codespace with some restrictions to improve the efficiency.

Abundant discussions on the differences between block codes and convolu-

tional codes can be found in the literature [80, 81, 82]. According to [76], block codes

usually have higher code rates than convolutional codes. When channel capacity is

of concern and no waste of spectral efficiency can be afforded, block codes are more

favorable candidates than convolutional codes. When processing time is precious and

computing resources are limited, block codes are also preferred due to the existence

of efficient decoding algorithms. However, for applications where the communication

channels have large bandwidth, a lower code rate can be afforded and higher compu-

tational complexity can be justified (e.g. deep space communications), convolutional

codes provide a stronger error correcting solution.

To summarize, redundancy can be introduced into the transmission of raw

information to allow the possibility of achieving error detection, correction, and even

message security. With the fundamental pioneering work of Shannon, various codes

have been developed to approach the limit of the channel capacity that Shannon

predicted. In modern communications, where larger data rates and higher QoS are

desired, benefits of channel coding are many, including: 1) lowering the necessary

transmit power for a certain BER performance, 2) adaptively changing the code rate

to optimize the system throughput based on instantaneous channel conditions, 3)

combining with multiple antenna technology to achieve higher throughput and more

reliable link quality.
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3.2 Wide-band Communication

In wide-band communication systems, the bandwidth of the transmitted signal

(W ) is much larger than the coherence bandwidth (Bc) of the channel. For this type

of communication, the channel has a fairly large time dispersion compared with the

signaling time interval, so ISI is usually the factor that causes the error floor in the

performance of the communication system. To combat the adverse effect of ISI, two

signaling strategies are widely used, including: 1) time domain equalization that tries

to undo the ISI, or 2) multicarrier modulation schemes that modulate the signal on

a large number of subcarriers so the equivalent signal bandwidth for each subcarrier

is smaller than the coherence bandwidth. The rest of this section is devoted to the

review and brief discussion of these methods.

3.2.1 Time Domain Equalization

For certain channel realizations, the received signal can be modeled as a trans-

mitted signal passing through a linear filter corrupted by additive white Gaussian

noise at the receiver front end. A matched filter followed by appropriate sampling

will convert the continuous signal model to a discrete model without loss of optimal-

ity. However, due to the self interference caused by multiple propagation paths, signal

detection cannot be performed on a symbol-by-symbol basis without a preprocessing

to cancel or reduce this interference, otherwise a large performance degradation will

result. The preprocessing stage that undoes the interference is called an equalizer in

the communication literature.

Equalizers can be classified into two categories: linear and nonlinear. Usually

with higher complexity and implementation cost, nonlinear equalizers outperform

linear equalizers. From a probability-of-error point of view, an equalizer based on

Maximum Likelihood (ML) sequence detection is optimum, but the computational

complexity is exponential in the length of the channel time dispersion [59]. This

prohibitive cost calls for suboptimal equalizers which exploit criteria such as peak

distortion or mean square error (MSE). Both of these criteria lead to linear equalizer

implementations. To achieve better performance over a linear equalizer, but avoid
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the exponential complexity of MLSE, equalizers that use previously detected symbols

to cancel ISI are called Decision Feedback Equalizers (DFEs). To capture the time

variation of the channel, equalizers that adaptively change their weights are designed

to automatically track the channel and cancel the ISI.

A good treatment of equalization can be found in [83]. Here, the discussion

follows the notation in [59]. The received signal can be expressed as:

rl(t) =
∑

n

In · h(t− nT ) + z(t) , (3.1)

where T denotes the symbol period of the system, In is the complex symbol for the

n-th symbol, h(t) =
∫∞
−∞ c(τ) · g(t− τ) · dτ represents the response of the channel c(t)

to the signal pulse-shaping filter g(t), and z(t) is AWGN noise. It can be shown [59]

that a sufficient statistic for estimating the information symbol In is:

yn ≡ y(nT ) =

∫ ∞

−∞
rl(t) · h∗(t− nT ) · dt , (3.2)

which can be implemented at the receiver by matching the pulse h(t) and sampling the

output with the symbol period T . By defining xn ≡ x(nT ) =
∫∞
−∞ h∗(t) ·h(t+nT ) ·dt,

we have the discrete signal model as follows:

yk =
∑

n

In · xk−n + νk , (3.3)

where νk is additive Gaussian noise, but with a power spectral density Φν(ω) =

N0 ·X(ejωT ) when |ω| ≤ π
T
, and X(ejωT ) is the z-transform of xn evaluated at ejωT .

The received signal samples yk should be filtered to whiten the noise process. This

can be easily achieved by factoring the z-transform X(z) of the sequence xn. Thus

we can rewrite the whitened yk as:

vl =
L∑

n=0

fn · Ik−n + ηk , (3.4)
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where ηk is a white Gaussian noise process, and fk is the composite response of pulse

shaping, channel, matched filter, sampler and whitening filter. The diagram for this

signal model is shown in Fig. 3.1.

Figure 3.1: Discrete-time model for a system with ISI.

The Maximum Likelihood Sequence Estimator (MLSE), which is equivalent to

estimating the state of a discrete-time finite-state machine, uses the Viterbi algorithm

to determine the most probable path through the ML-state channel trellis. It is the

optimal equalizer in the probability-of-estimation-error sense. However, the high

complexity of the MLSE limits its usage in practical systems. Suboptimal linear

transversal filters that have linear computational complexity are much more popular

in practical communication systems. Zero-forcing (ZF) equalizers that minimize the

peak distortion defined by

D(w) =
∞∑

n=−∞, n6=0

|qn| =
∞∑

n=−∞, n6=0

|
∞∑

j=−∞

wj · fn−j| , (3.5)

where w is the weight vector of the linear transversal filter, and qn is the composite

filter response of the equalizer and channel. When the dimension of the weight vector

w is not limited, it can be shown that the equalizer satisfies C(z) = 1
F (z)

, and by
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lumping the whitening filter and C(z) together, an equivalent ZF equalizer is written

as:

C ′(z) =
1

F (z)F ∗(z−1)
=

1

X(z)
. (3.6)

As can be intuitively seen, the ZF equalizer directly inverts the channel. The SNR

for the ZF equalizer has the form:

γ∞ =

[
T 2 ·N0

2π

∫ π
T

− π
T

dω∑∞
n=−∞ |H(ω + 2πn/T )|2

]−1

, (3.7)

where H(ω) is the Fourier transform of h(t) defined above. A close look reveals that

whenever the channel has a null or has really weak response in the band of interest,

the SNR will approach zero and the equalizer performance is poor. This is mainly

due to the noise amplification effect of the ZF equalizer. When the number of filter

taps in the ZF equalizer is limited to a finite number, ISI cannot be fully cancelled.

Furthermore, the design of the weights has to be done using numerical optimization

techniques [84]. The MSE equalizer minimizes the mean square error of the estimates

of the information symbols Ik:

J = E|εk|2 = E|Ik − Îk|2 , (3.8)

where Îk =
∑∞

n=−∞wn · vk−n is the estimated information symbol. When the number

of taps of the MSE equalizer is unlimited, it can be shown that the combined MSE

equalizer with the whitening filter built in has the following z-transform:

C ′(z) =
1

X(z) +N0

. (3.9)

When the SNR of the system is large enough so that N0 can be considered approxi-

mately 0, the MSE equalizer converges to the ZF equalizer. When the channel has a

null in the band of interest, the MSE equalizer’s response is limited by 1/N0, unlike

the ZF equalizer case. In this case, the MSE equalizer outperforms the ZF equalizer

by limiting noise amplification. The DFE utilizes the previously detected symbols,
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and contains a feed-forward and feedback filter. A detailed treatment of the DFE

can be found in [85, 86, 87, 88]. The marriage between adaptive filtering theory and

equalization help minimize the risk of assuming an a priori known channel. In an

adaptive equalizer, the filter’s coefficients are adaptively chosen to track the variation

of the channel. Details can be found in [84, 89, 90, 91].

3.2.2 Multi-carrier Modulation (MCM) Communications

As pointed out in Section 3.2.1, for a frequency selective fading channel, where

a non-ideal linear filter can be used to model a specific realization of the channel, a SC

modulated signal with a bandwidth larger than the coherence bandwidth of the chan-

nel will experience time domain distortion caused by ISI. An equalizer is necessary

for the compensation of the ISI effect in order to guarantee reasonable system perfor-

mance. However, an alternative approach would be to modulate a serial bit stream in

parallel using multiple subcarriers, each of which occupies a relatively smaller band-

width than the original SC system. This is called multi-carrier modulation. Since

each carrier spans a smaller bandwidth over which the channel can be assumed to be

constant, the frequency response for that subcarrier is therefore flat, inferring little

or no ISI for each one of the parallel sub-streams. This MCM technique has gained

more and more popularity in 4G mobile communication system proposals [92].

The first systems using MCM were military HF radio links in the late 1950s

and early 1960s. However for a classical MCM system, the total available channel

bandwidth is divided into a set of non-overlapped sub-channels for frequency multi-

plexing. Traditional methods used to separate different frequency bands are rooted

in the Frequency Division Multiplexing (FDM) technique, where a set of filters are

designed to completely separate the subbands. The drawback of this method is the

reduction of bandwidth efficiency due to the roll-off factor of the shaping pulse, and

the high complexity and cost to build a great number of matched filter banks when

the number of subcarriers gets large [48].

Ever since Orthogonal Frequency Division Multiplexing (OFDM) was patented

in 1970, MCM has seen more and more applications in practical communication sys-
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tems. For example, applications of OFDM are found in: Digital Audio Broadcasting

(DAB), Digital Terrestrial Television Broadcasting (DTTB), Universal Mobile Tele-

phone System (UMTS), High Performance LAN (HIPERLAN) Phase II, and WiMAX

(IEEE 802.16e), to name a few. Different from traditional technologies that force the

subcarriers to be non-overlapping, therefore causing stricter filtering requirements

and lower bandwidth efficiency, OFDM carefully selects the spacing between subcar-

riers such that orthogonality is maintained between them. OFDM uses the Discrete

Fourier Transform (DFT) to modulate and demodulate parallel data. The individual

spectra are now sinc functions and are not band limited [48]. FDM is achieved, not

by bandpass filtering, but by baseband processing, therefore relieving the burden of

designing filter banks for each subcarrier. The method of synthesizing OFDM signals

can be found in [93].

Figure 3.2: Block diagram for a typical OFDM system.

The system diagram for OFDM is shown in Fig. 3.2. The transmitter groups

the information bits into data frames, each of which contains Nf bits, and further

divides each frame into N groups. Each group has Ni uncoded bits, and
∑N

i=1Ni =

Nf . A separate Modulation and Coding Scheme (MCS) can be applied to each group

of Ni bits to generate Ñi coded bits. A signal mapper maps these N sets of coded bits

into N complex symbols, d̃0, · · · , d̃N−1. After passing through the Inverse Discrete

Fourier Transform (IDFT) module, N transmit symbols (d0, · · · , dN−1) have been

created. By adding the last L−1 symbols (dN−L+1, · · · dN−1) as a Cyclic Prefix (CP) to

the transmit symbols, the ISI is to a large extent mitigated. L is chosen to be at least
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as long as the number of filter taps used to describe the channel. The receiver removes

the CP, passes the received symbol through the Discrete Fourier Transform (DFT)

module, and performs detection and decoding on the output of the DFT module to

recover the transmitted information bits. The reason why the IDFT and DFT are

used for signal modulation can be easily seen in the following derivation [18]. The

introduction of the CP converts the linear convolution to a circular convolution, where

the DFT can be used to perform frequency analysis. To be more rigorous about the

claim, assume the wireless channel has an impulse response h = [h0, h1, · · · , hL−1]
T .

For the received signal samples with the CP removed, we have the following model:
y0

y1

...

yN−1

 =


h0 0 · · · 0 hL−1 hL−2 · · · h1

h1 h0 0 · · · 0 hL−1 · · · h2

... · · · · · · · · · · · · · · · · · · ...

0 · · · 0 hL−1 hL−2 · · · h1 h0

 ·


d0

d1

...

dN−1

 . (3.10)

It is obvious that the channel matrix in (3.10) is a circulant matrix. One of the most

important properties of a circulant matrix is that its eigen-values are the DFT of the

vector that creates the matrix, e.g. in this case, h [94]. Mathematically, if we denote

the circulant channel matrix above as H, we have:

H = U−1 · Λ ·U , (3.11)

where U is a unitary matrix whose (k, n)-th element is given by 1√
N
· e−j 2π·n·k

N , 0 ≤

k, n ≤ N − 1 and Λ is a diagonal matrix whose diagonal elements are the DFT of

the channel vector h. Equation (3.10) can be rewritten as:

Y = UH · Λ ·U · d. (3.12)
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If we recall d = UH · d̃, the received signal after passing through the DFT module

can be expressed as:

Ỹ = U ·Y = U ·UH · Λ ·U ·UH · d̃ = Λ · d̃ . (3.13)

As can be seen, the ISI is eliminated and the symbol detections in each frequency bin

can be decoupled. A more detailed discussion on OFDM can be found in [95].

There are a few technical issues that require special attention when imple-

menting an OFDM system, including carrier frequency offset estimation and Peak to

Average Power Ratio (PAPR) reduction. The Doppler effect of the channel will in-

troduce ICI, which ruins the orthogonality of the sub-carriers of the OFDM system,

because with the shift, each sub-carrier is no longer equally placed with a separa-

tion W
N

, and this will lead to interference between the sub-carriers. To eliminate this

problem, careful frequency offset estimation needs to be performed for OFDM to work

well. For a typical communication system that uses OFDM as a transmission strategy,

the number of subcarriers N is usually a large number. Under this assumption, the

central-limit theorem may be used to show the combined signal on the N subcarriers

is a zero-mean Gaussian random process, which leads to the PAPR’s proportionality

to
√
N [59]. The large signal peaks will result in the clipping of the signal voltage, will

cause the amplifier to operate in a non-linear regime, and will distort the transmit

signal. Abundant research work on reducing PAPR can be found in the literature

[96, 97, 98].

3.3 Spread Spectrum Technology

Spread spectrum communication refers to the type of communication system

where the bandwidth expansion factor, defined as the ratio of the signal bandwidth

W over the information rate Rb (bits/s), is much larger than 1 [59, 99, 100]. Large

bandwidth expansion factors, in other words, mean low spectral efficiency, and high

redundancy in the transmission scheme. However, by using this specific modulation

scheme, the receiver will benefit from a large processing gain by trading off the spectral
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efficiency. Spread spectrum communication finds its popularity in both military and

civilian communication applications. For military communications, where jamming is

a possible detrimental effect, by spreading out the spectrum of the information bearing

signal, it is possible to maintain reliable communication between the transceivers.

For secure communication links that must not be intercepted by undesired listeners,

spread spectrum communication is a good way to disguise the transmitted signal as

thermal or background noise. As for civilian communications, one of the most famous

multiple access schemes that allows users to occupy the time and frequency resources

at the same time while transmitting using different codes, i.e. Code Division Multiple

Access (CDMA), is a type of spread spectrum technology. Besides its applications

in communication fields, spread spectrum signals can also be used in the radar and

navigation fields for making the range and velocity measurements [59]. A significant

amount of literature has been devoted to spread spectrum technology; for example,

see the tutorial papers [101, 102].

Figure 3.3: Block diagram for spread spectrum technology.

A block diagram for a spread spectrum digital communication system is shown

in Fig. 3.3. As can be seen in the figure, the coded bits are modulated by a binary

sequence of pseudo-random noise (PN) before transmission to the channel. Upon re-

ception, the received signal has to be demodulated with exactly the same PN sequence

before channel decoding can be performed. This set of PN sequences is called the

“spreading code” in CDMA applications. For this communication system to work,

synchronization of the PN sequence needs to be carefully maintained. To achieve this
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goal, before each possible data bearing transmission, a fixed PN bit pattern that can

be easily recognized by the receiver needs to be transmitted.

Two principal types of spread spectrum signals can be generated: Phase Shift

Keying (PSK) or Frequency Shift Keying (FSK). For a system that can maintain

phase coherence between the transmit and receive signal for a relatively long period

of time when compared with the reciprocal of the channel bandwidth, PSK is usually

appropriate for the application. PN sequences used in conjunction with PSK mod-

ulation to generate the signals are referred to as Direct Sequence Spread Spectrum

(DSSS) signals or pseudo-noise (PN) spread spectrum signals. For those channels that

vary quickly with time, e.g. Aircraft-to-Ground (ATG) communication or Aircraft-

to-Aircraft (ATA) communication, phase coherence is hard to maintain. In these

cases, FSK with a non-coherent envelop detector at the receiver is a good structure

for the system design. The PN sequence is used to select the carrier frequency that

modulates the transmit signal, and thus generates a Frequency Hopped Spread Spec-

trum (FHSS) signal. FHSS signals can be classified into two categories: fast-hopped

signals, when the frequency hopping rate is faster than the symbol rate, and slow-

hopped signals otherwise. A fast-hopped FHSS signal is usually used in anti-jamming

applications to prevent “follower jammers” from having enough time to intercept the

signal frequency. These are the two most widely used spread spectrum signals, but

there are still other spreading technologies, e.g. the Time Hopping (TH) technique

of [59].

The importance of the PN generator is straightforward, and for spread spec-

trum communication to work properly, the spreading codes in CDMA systems need

to possess the following properties [103]:

• The number of runs of 0’s and 1’s is equal.

• The periodic autocorrelation function (ACF) has (nearly) only two values with

a peak at 0 and near zero elsewhere.

The binary sequences that satisfy these constraints are called optimal binary se-

quences or pseudo-random sequences. The most popular codes used today are maxi-
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mum length shift register sequences or m-squences for short. The signals are generated

by an m-stage shift register with linear feedback. However the linearity in the feed-

back determines the vulnerability of the codes, because a jammer may be able to

learn the feedback structure by listening to a certain number of transmissions. To

reduce the vulnerability, nonlinear feedback structures can be used and feedback con-

nections can be changed from time to time. Poor cross correlation properties between

two m-sequence codes [104, 105] hampers the application of m-sequences in CDMA.

PN sequences with better cross correlation properties can be created by combining

two m-sequences to form Gold codes [106, 107, 108]. For a thorough discussion on

code generation, refer to [109].

The spreading waveforms of the transmitter and receiver should be well syn-

chronized. Small synchronization errors will produce a received signal with low SNR

and lead to unreliable communication. The synchronization process for a spread

spectrum system is composed of two phases: 1) code acquisition, i.e., creating an

initial synchronization with the receiver’s spreading code, and 2) code tracking, i.e.,

maintaining the code synchronization after it is established. For a DSSS system, the

PN code at the receiver has to be synchronized to within a small fraction of the chip

(one bit of a direct-sequence spread spectrum code) interval Tc = 1
W

[59]. A large

channel bandwidth W usually makes this synchronization difficult. Uncertainty in

the propagation delay estimate, oscillator instabilities, and Doppler frequency shifts

are all factors that contribute to this difficulty. Furthermore, this synchronization

has to be established even for low SNR applications or in the presence of jamming

[99].

For most systems, this synchronization is obtained at the receiver by contin-

uously searching for a known PN sequence sent by the transmitter. For the syn-

chronization process to be more accurate when noise or interference is present, the

receiver should process a certain number of chips NTc before a decision can be made.

The shortest length of the transmitted synchronization sequence can be determined

by:

Tsyncseq =
Tu

∆t

·NTc , (3.14)
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where Tu is the timing uncertainty the system can handle, ∆t is the resolution of the

synchronization; e.g., for a coarse synchronization, ∆t = 1
2
Tc, and N is the number

of chips needed per synchronization decision. Theoretically, matched filters are the

optimal solution for the initial synchronization, but this technique requires filters with

extremely large time-bandwith products [99]. This implementation difficulty leads to

an easier synchronization structure, i.e., a sliding correlator, where the correlator

cycles through the time uncertainty in discrete time intervals of ∆t, and correlates

the received signal with a known synchronization sequence [59]. When the correlator

output exceeds a certain predetermined threshold, the receiver claims synchronization

is achieved, otherwise the reference sequence is advanced in time by ∆t, and the same

process is repeated. False alarms associated with a typical detection problem are also

an issue for the synchronization algorithms. To lower the rate of false alarm, the

receiver should keep tracking the output of the correlator to make sure it is always

above the predetermined threshold. Once the initial (coarse) synchronization process

is finished, finer synchronization to achieve better time resolution and code tracking to

maintain this synchronization should be started. A tracking loop for a DSSS system

is called a Delay-Locked Loop (DLL), which greatly resembles the idea of the phase-

lock loop (PLL) [59]. A pair of shifted reference sequences is generated (shifted ±δ in

time), and cross correlated with the received signal. The difference between the two

outputs is used to drive a Voltage-Controlled Clock (VCC). When the difference is

zero, the synchronizer is in an equilibrium state, and the system is in synchronization.

Other types of structures like the Tau-Dither Loop (TDL) can be found in [59, 99]

and references therein. Since the information rate in the spread spectrum system is

much lower than the channel bandwidth, the ISI is usually negligible and an equalizer

is not required. A simple receiver called a Rake receiver can be exploited to achieve

frequency diversity [18, 59].

3.4 MIMO Technology and Smart Antennas

With the development of Internet technology, multimedia services and digital

cellular services, the potential market for large bandwidth communications calls for
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higher capacity in wireless communications. Turbo and Low Density Parity Check

(LDPC) codes approach the Shannon capacity of a SISO link. To further increase the

system’s capacity, extra degrees of freedom have to be exploited. The deployment of

multiple antennas in wireless communications at the transmitter and receiver has at-

tracted great interest from the research and industrial community, for the reason that

it opens up spatial degrees of freedom and greatly increases the capacity limit of the

wireless channel [110, 111]. Even in the case when multiple antennas are only avail-

able on one side of the communication link (either receiver or the transmitter), smart

antenna technology [112] still significantly benefits system performance by providing

the possibility of diversity reception/transmission, interference cancellation and so

on. Tutorial papers about the role and architecture of MIMO in today’s commu-

nication systems can be found in [113, 114]. The benefit of the multiple antennas

does not come without cost. Besides the expenses of installing more antennas in

the system, the required signal processing is much more complicated. In [115] and

the reference papers cited therein, a good overview of space-time signal processing in

multiple antenna systems is provided. A few of the more important aspects of mul-

tiple antenna communications will be recapped in the rest of the chapter including:

diversity reception technology, space-time coding, and space-time multiplexing.

3.4.1 Diversity Reception Techniques

The idea behind the diversity reception technique is to acquire more than one

independent or highly uncorrelated sample of a signal, and then use different criteria

to either combine them or select a certain copy of the signal for further symbol

detection. Clearly a set of independent samples will be much less likely to all fade

simultaneously below a certain level when compared with a single sample:

Prob(x1 < x ∩ x2 < x ∩ · · · ∩ xK < x) =
K∏

i=1

Prob(xi < x) < Prob(xj < x) , (3.15)

for 1 ≤ j ≤ K, where K is the number of independent samples. This leads to the

concept of diversity reception. The idea of diversity reception is straightforward,
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but how to obtain uncorrelated signal samples requires some consideration of system

resources. As discussed in Chapter 2, when the signal spans a bandwidth larger

than the coherence bandwidth of the channel (Bc), frequency components more than

Bc Hz apart experience highly uncorrelated fading. This suggests the possibility of

frequency diversity. However this is typically not feasible in cellular communication

applications, due to the relatively large coherence bandwidth (a few hundred kilohertz

up to a few megahertz). Other options like polarization diversity which depends

on the depolarizing effect of the scatterers, and field diversity that uses the fact

that the electric and magnetic component of the field at any receiving point are

uncorrelated [116], have their own difficulties. Time diversity involves retransmitting

the failed signal after a certain period of time, and finds its own applications in ARQ

protocols. However, time diversity incurs a certain amount of delay overhead, and

is not suitable for delay-sensitive applications such as voice communications. With

the development of smart antenna technology and multiple antenna systems, space

diversity that exploits uncorrelated signal samples from different antennas has become

the most popular diversity reception technology in today’s mobile communication

systems.

As discussed above, uncorrelated samples can be obtained by collecting the

signals from different antennas, but how to utilize them in an optimal sense varies

differently for various applications and assumptions. A classical paper [117] and the

references therein give a thorough treatment of the performance of different linear

combining techniques. Depending on when the signal combining is performed, the

diversity reception technology can be classified into two categories: pre-detection

combining and post-detection combining. The general assumptions behind diver-

sity reception technology include: additive noise is independent of the signal in each

branch, the signal component is locally coherent, the noise component is locally inco-

herent with zero mean finite power, and the local mean square values of the signals

are statistically independent [116]. Assuming co-phase processing has been perfectly
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achieved, the combined signal can be written as:

s(t) =
K∑

i=1

ai · si(t) , (3.16)

whereK is the number of independent signal branches and si(t) is the signal impinging

on each antenna. Different combining techniques differ in the choice of the coefficients

ai. In scanning and selection combining methods, only one of the ai’s is set to one

and the rest to zero. In the scanning diversity system, the combiner sets the ai of the

first branch that has power exceeding a certain preset threshold to be unity. However,

in the selection combiner, all the branches are compared, and the coefficient for the

branch with the strongest signal is set to unity. A Equal Gain Combiner (EGC) sets all

the coefficients to be identically 1’s, while a Maximum Ratio Combiner (MRC) sets the

coefficients according to each branch’s SNR value [65]. When all the aforementioned

assumptions hold, the MRC can be shown to yield the best output SNR. But when co-

phase processing cannot be achieved, or when the noise in various branches is highly

correlated, scanning/selection may outperform the EGC or even the MRC [116]. A

detailed discussion and mathematical derivation can be found in [3, 65].

3.4.2 Space Time Coding

As pointed out above, diversity reception yields good performance by intelli-

gently combining a number of highly uncorrelated copies of signal in a system with

multiple antennas at the receiver. To be able to perform the co-phase processing,

channel state information is required. When multiple antennas are available at the

transmitter as well, a higher diversity order is possible. However, it is difficult for

the transmit side to obtain the channel information correctly. One effective way to

achieve this diversty without assuming channel state information at the transmit side

is by employing space-time (ST) coding [6, 118]. Coding is carried out both in the

space domain (between different antennas) and the time domain (between different

time slots) to introduce redundancy between transmitted signals to better exploit the

multipath fading characteristics of the channels and achieve more reliable transmis-
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sions. There are different kinds of ST codes for different application requirements,

including: Space-Time Block Codes (STBC), Space-Time Trellis Codes (STTC), and

Layered Space-Time Codes (LST). The number of degrees of freedom in a propa-

gation environment is fixed. One can choose to either exploit the transmit/receive

diversity and power gain, or to create multiple data pipes for an even faster signaling

rate per channel use. There is always a tradeoff that has to be made to balance the

diversity gain and spectral efficiency gain. In other words, high data rate and low

error probability are a pair of contradictory system goals. As a benchmark for dif-

ferent ST codes, the tradeoffs between diversity and multiplexing have been studied

in [119]. The property that the orthogonal STBC (OSTBC) codes maintain makes it

possible for the receiver to exploit the full diversity of the channel with a very simple

Maximum Likelihood (ML) detection technique. However the lack of coding gain in

STBC calls for more complicated joint error control coding, modulation, transmit

and receive diversity design, which leads to STTC codes that are able to provide

substantial coding gain, spectral efficiency and diversity improvement over flat fading

channels [6, 120]. LST codes can attain a tight lower bound on the MIMO channel

capacity and allow processing of multidimensional signals in the space domain by 1-D

processing steps [6]. A general code design criteria for slow and fast Rayleigh fading

channels based on the pairwise error probability bounds will be reviewed in the rest

of this section and due to its simplicity and popularity, STBC will be discussed as

well. A discussion of high complexity decoding design such as STTC will be omitted;

related references can be found in [6]. LST codes will be briefly addressed in Section

3.4.3.

The basic ST code design criterion relies heavily on the pairwise error proba-

bility bound of the code matrix. A code matrix is obtained by arranging the vectors
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of the transmitted signal serially in an array, as:

X = [x1, x2, · · · , xL] =


x1

1 x1
2 · · · x1

L

x2
1 x2

2 · · · x2
L

...
...

. . .
...

xnT
1 xnT

2 · · · xnT
L

 , (3.17)

where nT is the number of antennas at the transmitter, L is the number of ST symbols

in the frame under consideration, and each column of the code matrix forms a space-

time symbol at each signaling period. The probability that the receiver erroneously

selects X̂ = (x̂1, x̂2, · · · , x̂L) as the estimate of the transmitted code matrix X given

the channel condition for all L symbol periods H = (H1,H2, · · · ,HL) is:

P (X, X̂|H) = Q

(√
Es

2N0

· d2
h(X, X̂)

)
, (3.18)

where Es is the energy per symbol at each antenna, N0 is the single-sided power spec-

tral density of the noise, Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt is the complimentary error function,

and d2
h(X, X̂) =

∑L
t=1

∥∥∥Ht

(
Xt − X̂t

)∥∥∥2

is the modified Euclidean distance between

the two code matrices X and X̂. Furthermore, (3.18) can be upper bounded as:

P (X, X̂|H) ≤ 1

2
· e−d2

h(X,X̂)· Es
4N0 . (3.19)

Depending on further assumptions about the channel condition, i.e. whether it is fast

fading or slow fading and the number of transmit and receive antennas, the bound in

(3.19) can be simplified to generate the following four design criterion for Rayleigh

fading channels. Let A(X, X̂) denote the code distance matrix, and it is defined as the

outer product of the difference between two code matrices: (X−X̂) ·(X−X̂)H . For a

slow fading Rayleigh channel, when nR · nt < 4, we have the following design criteria

for ST codes: over all pairs of distinct code words, 1) maximize the minimum rank

of the code distance matrix A(X, X̂), and 2) maximize the minimum determinant of

A(X, X̂). The above design criteria is referred to as the rank and determinant criteria
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or Tarokh/Seshadri/Calderbank (TSC) criteria. When nR · nt ≥ 4, the trace criteria

described below should be used to generate the ST codes: over all pairs of distinct code

words, 1) make sure the product of the rank of A(X, X̂) and nR is no less than 4, and

2) maximize the minimum trace of A(X, X̂). For a fast fading Rayleigh channel, (3.19)

still holds, but the channel can’t be assumed to be constant for L consecutive symbol

periods. Let ρ(X, X̂) denote the set of symbols in which the codes X and X̂ differ.

The cardinality of ρ(X, X̂) is called the space-time symbol-wise Hamming distance

between the two codewords, and is denoted as δH . Similar to the above two design

criterion, when δH · nR < 4, we have the third design criteria for ST codes: over all

pairs of distinct code words, 1) maximize the minimum space-time Hamming distance

δH , and 2) maximize the minimum product distance, d2
p =

∏
t∈ρ(X,X̂) |xt − x̂t|2 along

the path δH . However, when δH · nR is no less than 4, we have the following criteria:

over all pairs of distinct code words, 1) make sure δH · nR is no less than 4, and 2)

maximize the minimum Euclidean distance d2
E =

∑
t∈ρ(X,X̂) |xt − x̂t|2. For details,

refer to [118]. However these code design criteria are developed based on a specific

channel distribution, e.g. the Rayleigh fading channel. Designing codes that perform

well for other channel distributions under the slow fading assumption can be found

in [121].

The criteria mentioned above can be used to generate different kinds of codes

that provide a certain diversity order and coding gain. Orthogonal space-time block

codes are a type of code that can extract the full diversity of the system but achieve

no coding gain. Signal processing decouples the decoding process at the receiver

and makes the ML detection much simpler. With OSTBC, transmit diversity can

be achieved without feeding back the channel condition from the receiver to the

transmitter. The Alamouti scheme is the most popular STBC code designed for

two transmit antennas system, and it can be applied to systems with an arbitrary

number of receive antennas [6]. This scheme assumes the channel stays constant for
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two consecutive symbols, and the code matrix has the following structure:

X =

 x1 −x∗2
x2 x∗1

 , (3.20)

where x1 and x2 denote the complex information symbols to be transmitted. It is

obvious that redundancy has been introduced both in the space and time domains.

For a system with nR receive antennas, it can be shown that the optimal decision

statistics for estimating x1 and x2 are given as:

x̃1 =

nR∑
j=1

h∗j,1r
j
1 + hj,2(r

j
2)
∗

and

x̃2 =

nR∑
j=1

h∗j,2r
j
1 − hj,1(r

j
2)
∗ .

The decoupling between the two decision statistics leads to the following ML decoding

rules:

x̂1 = arg min
x̂1∈S

[(
nR∑
j=1

(|hj,1|2 + |hj,2|2)− 1

)
|x̂1|2 + d2(x̃1, x̂1)

]

and

x̂2 = arg min
x̂2∈S

[(
nR∑
j=1

(|hj,1|2 + |hj,2|2)− 1

)
|x̂2|2 + d2(x̃2, x̂2)

]
,

where S denotes the set of constellation points for the modulation, and d(·, ·) repre-

sents the Euclidean distance between two elements. The orthogonality between the

transmitted sequences relieves the burden of joint symbol detection. The idea can

be generalized for systems with an arbitrary number of transmit antennas. However

for systems with more than 2 transmit antennas, the STBC code can only obtain

full rate in very special circumstances. Therefore there is a loss in spectral efficiency

as a tradeoff [6]. STBC has found applications in some commercial communication

standards, e.g. 802.16e (WiMAX) [122].
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3.4.3 Space Time Multiplexing

Layered Space Time (LST) codes are designed to approach the increased chan-

nel capacity that MIMO technology promises. Foschini proposed a structure that is

able to achieve the lower bound on channel capacity [123]. It is straightforward to

see that by multiplexing multiple data streams per channel use, the data rate of the

system will be increased. The improvement in the data rate comes at the price of

more complicated signal processing at the receiver side. However, LST codes convert

the joint-stream multidimensional detection problem into simple 1-D spatial domain

processing to reduce implementation complexity.

The most famous LST structure for an uncoded system is called the Vertical

Bell Laboratories Layered Space-Time (VBLAST) algorithm. In this scheme, the

input binary information bits are demultiplexed into nT parallel streams, and each

stream is modulated independently for transmission. The signal processing chain

related to each individual substream is named a layer. To further improve the per-

formance of a VBLAST system, one dimensional codes can be implemented on each

substream. Horizontal Layered Space Time (HLST) is one example of this type of

architectures. It has two implementation types: 1) the input bit sequence is en-

coded together before being demultiplexed into nT substreams, and each substream

is modulated and interleaved separately for each transmit antenna, and 2) the in-

put bit sequence is demultiplexed first into nT substreams, and then each substream

gets encoded, modulated, and interleaved separately for transmission. The purpose

of interleaving the coded bits is to avoid error bursts so some of the errors can be

corrected. A better structure is to distribute the modulated codeword across all the

transmit antennas, in order to extract higher diversity order. This structure is called

the Diagonal Layered Space Time (DLST) architecture. This structure resembles

the HLST structure with the difference that before the interleaver module, a Space

Interleaver (SI) module is inserted to interleave the codewords in the space domain.

By changing the design of the Space Interleaver, a Threaded Layered Space Time

(TLST) code can be obtained. For details and diagrams of these structures, please

refer to [6, 7] and the references therein.
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The benefit of the capacity increase that LST brings comes at the price of a

more complicated receiver design. Due to the simultaneous transmission of multiple

streams, cross stream interference occurs, and the optimal receiver design involves

joint estimation of all the streams, and the complexity of this optimal ML receiver is

exponential with respect to the number of transmit antennas. Simple linear receiver

structures like Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) receivers

are easier to implement but have poorer performance when compared with nonlinear

receivers that do successive interference cancellation.

For a narrowband MIMO channel, we have the following linear receive signal

model:

rt = H · xt + nt , (3.21)

where rt denotes the nR-by-1 received signal vector at time t, xt is the nT -by-1

transmitted complex symbol vector, H is the channel matrix, and nt is the nR-by-1

AWGN noise vector at the receive antennas, which has a single sided spectrum height

of N0 for each entry. For an uncoded system, a zero forcing receiver simply tries to

invert the channel matrix, and then perform separate detection for each stream:

x̂t = Qn

{
H† · rt

}
, (3.22)

where H† is the pseudo inverse of the channel matrix, equal to (HHH)−1 ·HH when

H has more rows than columns. Qn {·} is a “slicer” that performs hard decisions on

the data. The drawback of ZF receivers is the noise amplification problem when the

channel is nearly rank deficient. The MMSE receiver remedies the noise amplification

problem, and is basically a regularization method that makes the matrix inversion

better conditioned:

x̂t = Qn

{[
HHH +N0InT

]−1 ·HH · rt

}
. (3.23)

In low SNR regimes, N0InT
dominates HHH, and thus amplification of the noise is

avoided. However, the receiver’s performance can be further improved by use of Suc-
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cessive Interference Cancellation (SIC), which estimates the streams sequentially in

order of decreasing SNR. Every decoded stream will be remodulated and subtracted

from the received signal for interference reduction. MMSE-SIC is optimal from in-

formation theoretic standpoint [18]. Decoding algorithms for VBLAST systems that

use SIC technologies can be found in [124, 125, 126].
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Chapter 4

Performance Analysis for Practical Channel-Aware Schedul-
ing

Optimal utilization of the wireless spectrum requires efficient and intelligent

radio resource allocation. Recently, the idea of opportunistically allocating trans-

mission resources has gained wide-spread popularity in the context of a multi-user

cellular system. The results of [16, 17] show that scheduling the best user, in terms of

instantaneous received SNR, achieves the Shannon sum-capacity for both the uplink

and downlink of a symmetric (equal average received SNR for all users) cellular net-

work with single-antenna transceivers. In addition to employing channel codes with

long block lengths, in order to achieve capacity, the channel state information (CSI)

has to be perfect at both the User Terminals (UTs) and the BTS. However, for a

practical system operating at non-negligible error probability, where perfect CSI is

not available, the correctly delivered throughput (or spectral efficiency) is a more use-

ful figure-of-merit. In this chapter, we consider the downlink performance (in terms

of spectral efficiency) of a practical wireless system comprised of a single BTS and

multiple UTs that schedules transmission resources over a given interval to the one

UT that has the best channel conditions [19]. Our system model is different from the

existing approaches [16, 17, 19] in the following aspects:

• The system employs a finite number of MCS.

• Short block length channel codewords are considered with non-negligible block

error rate (BLER).

• A limited number of pilots are assumed for MMSE channel estimation.
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• The effect of UT mobility and Doppler spread of the channel is explicitly mod-

eled.

• A limited number of feedback bits are assumed for reporting channel quality.

While Shannon capacity is impractical to attain, by adjusting the number of bits

per symbol and the code rate for various channel conditions, Shannon capacity can

be closely approached in the vicinity of operating SNRs. To close the gap between

Shannon capacity and the achievable system throughput, a number of different MCS

schemes are usually implemented in the FEC block of a typical wireless communica-

tion system. For example, in the 802.16e standard [127], a number of MCS, ranging

from QPSK rate 1/2 to 64QAM rate 5/6, are supported in the channel coding module.

Depending on the data payload and channel allocation, the block length of the code-

words can be relatively short, e.g. it can be as few as 96 QAM symbols (2 slots, 48

bytes) for 64-QAM rate 2
3

in 802.16e [127]. Limited block lengths further hinder the

achievement of Shannon capacity and its effect should be addressed when the system

throughput is quantified. It is also reasonable to assume that practical communica-

tion systems operate at a relatively high BLER, e.g. 1% or 10% in a WiMAX system.

The aforementioned aspects suggest that a better figure of merit when evaluating sys-

tem performance would be the correctly delivered throughput, or spectral efficiency.

For a number of purposes including message decoding, user selection, etc., CSI has

to be obtained with a certain degree of accuracy at both the BTS and UTs. The

most common way to obtain channel estimates is through embedded pilot symbols,

but their use also creates overhead in the system. When a dedicated control channel

is available to feedback the UT’s channel or SNR estimate to the BTS, the finite

precision of the quantizer and scarce feedback channel bandwidth limit the number

of bits that are available for reporting the channel quality. Even without inaccuracies

due to estimation error and feedback quantization, when the network consists of high

mobility users, the channel can be largely de-correlated by the time the BTS receives

the CSI report.

64



To study the effects of the aforementioned practical issues, including channel

estimation, user mobility, finite feedback precision, etc., on reducing the system’s

spectral efficiency, in this chapter, a SISO block fading channel, where fading is con-

stant over the duration of one codeword, is assumed. Using extensive simulations for

a practical WiMAX system, we present a simple but accurate mathematical model

for the system’s BLER behavior. For each fixed MCS, the BLER model is given as a

function of instantaneous receive SNR at the mobile users. With the proposed model,

the spectral efficiency of a practical opportunistic scheduler can be analyzed in closed

form. One of the main contributions in this chapter is that closed form expressions

for system’s spectral efficiency under various practical assumptions can be derived as

a function of the number of users in the system, the number of MCS classes exploited

at the FEC module, the system operating SNR, the level of quantization accuracy,

the number of inserted pilot symbols, the SNR of the embedded pilot symbols, the

feedback delay, and the Doppler spread induced by user mobility. Although the afore-

mentioned analytical results are obtained for a symmetric network with equal average

receive SNR for all users, the way to extend the analysis framework to an asymmet-

ric network with dissimilar average SNR across the users is also briefly discussed.

Our numerical results reveal that when compared with imperfect channel estimation

(with a reasonable pilot SNR) and channel quantization, feedback delay and Doppler

spread can significantly degrade the system performance due to the resulting channel

decorrelation.

The rest of the chapter is organized as follows. Section 4.1 introduces the

system models, where the system under inspection is described, and a piecewise log-

linear model for the block error rate as a function of instantaneous received SNR is

presented. In Section 4.2, the spectral efficiency of a symmetric network with perfect

CSI at the scheduler side is studied. Section 4.3 models imperfect channel estimation

and feedback delay and extends the results of Section 4.2. The effects of channel

quantization on the throughput performance are discussed in Section 4.4. In Section

4.5, the possibility of extending the framework of the analysis for an asymmetric
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network is briefly discussed. Results and discussion are given in Section 4.6. The

chapter is summarized in Section 4.7.

4.1 System Model and Assumptions

4.1.1 Practical Opportunistic Scheduler and General System Assump-
tions

The practical opportunistic system under investigation is depicted in Fig. 4.1.

In such a system, we study a downlink scheduling problem, where based on the
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Figure 4.1: Block diagram for a practical opportunistic scheduler.

channel knowledge, BTS selects the optimal user and allocates the RF resource to it

for a number of time slots. A single antenna is assumed for both the BTS and UTs.

The BTS can acquire channel knowledge either by estimating the channel directly

through the reverse link or getting feedback from the user through the control channel.

Typically, as illustrated in Fig. 4.1, at the user side, channel estimation is performed

using the embedded pilot symbols. A quantized instantaneous SNR value per user

is then fed back to the BTS for scheduling purposes. As discussed above, in this
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system setup, the finite pilot power, limited number of pilot symbols, finite feedback

word length, Doppler spread, and feedback delay will all have the effect of limiting

the accuracy of the channel SNR information available to the scheduler. Thus, the

scheduling decision based on this information will likely cause a certain loss in system

spectral efficiency. Hereafter, we useK to denote the number of users in the downlink,

and the random variable Γj to represent the j-th user’s instantaneous SNR. An iid

Rayleigh fading scenario is assumed throughout the paper except Section 4.5. In

other words, we assume a symmetric network, where each user has the same average

SNR.

4.1.2 Piecewise Log-linear BLER Model

As is well known, the adverse nature of the wireless channel hampers reli-

able communications. To combat the unfavorable EM propagation environment, an

FEC module, which introduces redundancy for the information sequences in the time

domain, is almost a mandatory module in commercial communication systems. To

further improve the link robustness, when the receiver does not successfully decode a

code block, an ARQ technique will be implemented to transmit the block once again.

The newly received block can be combined with the old one to yield a better estimate

of the original information sequence for a higher probability of correct detection. The

application of FEC encoders and ARQ techniques in communication systems make

analytical BLER evaluation difficult. To account for the effect of the FEC module

and the possibility of retransmission, a Monte-Carlo simulation approach is used to

study BLER behavior of a coded system with or without ARQ depending on a specific

system setup. Extensive simulations for various MCS classes in an AWGN channel

reveal the feasibility of modeling the system’s BLER behavior with a log-linear model

as follows:

PERj =

 1 γ < γT,j

e−bj ·(γ−γT,j) γ ≥ γT,j ,
(4.1)
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where PER denotes Packet Error Rate (used interchangeably with BLER in the chap-

ter), subscript j indicates the j-th MCS, and bj and γT,j are model parameters for

the j-th MCS. The idea behind the model (4.1) is straightforward. Basically, it is
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Figure 4.2: Comparison of the piecewise log-linear BLER model against Monte-Carlo
simulations.

a piece-wise linear model in the log-domain. When instantaneous channel SNR is

less than a certain threshold γT,j for the j-th MCS, the system is assumed to be in

outage, and hence the block error rate is always 1. When the channel is not in a

deep fade, the BLER behavior of the system is assumed to have a linear shape in

the log-domain for the sake of mathematical tractability. To determine the model

parameters for each MCS, the parameters γT,j and bj are found by fitting simulation

results to the assumed model. In particular, the following optimization problem is

solved to obtain the required parameters:

{γT,j, bj} = arg max
γT,j ,bj

M∑
k=1

{
(γk,j − γT,j)

2 · 1(γk,j ≥ γT,j) + (1− lnPk,j)
2 · 1(γk,j < γT,j)

}
,
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where, for each modulation scheme, a set of paired data (γk,j, Pk,j) is collected by

simulating a coded AWGN channel with or without ARQ implemented depending on

the system configuration. In this chapter Convolutional Turbo Code (CTC) encoder

is used for the simulations. The symbol 1(•) denotes an indicator function, which

equals 1 when its parameter is true, or 0 otherwise. More specifically, γk,j is the k-th

SNR value simulated for the j-th modulation scheme, and Pk,j is the corresponding

block error rate. It can be shown that:

bj = −
∑M

k=1 lnPk,j(γk,j − γT,j) · 1(γk,j < γT,j)∑M
k=1(γk,j − γT,j)2 · 1(γk,j ≥ γT,j)

. (4.2)

We search for γT,j over all the simulated SNR values to find the parameters for our

model. The γT,j and bj found for the CTC encoder in a WiMAX system are listed in

Table 4.1. Curve fit results in Fig. 4.2 show that the model in (4.1) very accurately

characterizes the system BLER behavior. The term BLEN in the legend of Fig. 4.2

denotes the codeword length of the FEC block in bytes. However, more accurate

model parameters can be achieved by jointly optimizing bj and γT,j for each MCS.

Table 4.1: Parameters for the log-linear BLER model.

No. Slots QPSK 1
2

QPSK 3
4

16QAM 1
2

16QAM 3
4

64QAM 1
2

64QAM 2
3

64QAM 3
4

1 (1.12, 4.02) (2.12, 1.77) (3.99, 1.53) (9.49, 0.59) (10.64, 0.42) (22.49, 0.21) (14.23, 0.06)
2 (1.12, 5.71) (2.38, 2.76) (3.99, 1.96) (7.54, 0.46) (11.94, 0.68) (25.24, 0.35) (31.86, 0.28)

4.1.3 Adaptive Modulation and Coding Scheme

As discussed previously, adaptively switching between various MCS schemes

based on instantaneous channel SNR will improve the system spectral efficiency. For

a system to achieve reasonable performance, the thresholds that control the switching

can be chosen to guarantee that the system’s BLER operating point is strictly lower

than a pre-determined value PT . Using the model (4.1), a simple threshold for the

j-th modulation scheme can be chosen as: γj = − ln(PT )
bj

+ γT,j. When the instanta-
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neous maximum SNR of the network is determined and found to be within the range

[γj, γj+1], the corresponding user will be assigned the entire channel bandwidth and

the j-th modulation scheme. For notational simplicity, we use γ0 ≡ 0 and γN+1 ≡ ∞.

BLER T

SNR  (dB)

B
LE

R

Outage

1Γ 2Γ 3Γ

MCS 1 MCS 2 MCS 3

Figure 4.3: Adaptive modulation and coding scheme with a target BLER.

In general, the spectral efficiency of interest can be written as:

T̄ = E (Cj(1− PER(j)) · 1 (γj ≤ γmax < γj+1)) , (4.3)

where Cj = log2Mj, Mj is the number of constellation points for the j-th MCS

scheme, PER(j) is the BLER model for the j-th MCS class, E(•) is the expectation

operator which calculates the statistical average of its parameter, 1(•) is the same

indicator function defined above, and γmax denotes the maximum SNR among the

users. As can be observed from (4.3), T̄ depends on the MCS switching thresholds

(corresponding to the BLER operating point PT ), BLER model parameters (bj and

γT,j), the accuracy of the CSI (how γmax is determined), and so on. Depending on
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the degree of CSI accuracy available at the scheduler, there are various expressions

for γmax above. Therefore, the rest of the chapter will be dealing with evaluating T̄

for various assumptions about the CSI at scheduler.

4.2 Scheduler with Perfect Channel State Information

The analysis in this section is concerned with the spectral efficiency of a sched-

uler with Perfect Channel State Information (PCSI) of all users’ SNR. In other words,

in this case, perfect CSI can be assumed, and no feedback delay or quantization ef-

fects are taken into account. This will serve as the benchmark for the throughput of

an opportunistic scheduling system. Based on the instantaneous feedback SNR for

each user, the scheduler selects the user with the strongest SNR for transmission. Let

γmax = max (Γ1,Γ2, · · · ,ΓK). The Cumulative Distribution Function (CDF) of γmax

is given as [128]:

Fγmax(µ) = Prob(Γ1 ≤ µ,Γ2 ≤ µ, · · ·ΓK ≤ µ)

= (1− e−
µ
γ̄ )K , (4.4)

where γ̄ is the average SNR for each user, i.e. the SNR operating point of the system.

Carrying out the expansion of (4.4), the CDF can be written as:

Fγmax(µ) =
K∑

l=0

(−1)l ·

 K

l

 · e
−lµ

γ̄ . (4.5)

After taking the derivative of (4.5) with respect to µ, the Probability Density Function

(PDF) of the random variable γmax is expressed as:

fγmax(µ) =
K∑

l=0

(−1)l+1 ·

 K

l

 · l
γ̄
· e−

lµ
γ̄ . (4.6)
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Using the PDF expression of γmax, the probability of each MCS class actually being

chosen can be easily evaluated:

Prob (MCS j) =

 Prob(γj ≤ γ < γj+1) = Fγmax(γj+1)− Fγmax(γj) j 6= N

Prob(γN ≤ γ <∞) = 1− Fγmax(γN) j = N
.(4.7)

This is different from a Shannon capacity analysis of this scheduling approach, which

enjoys a simple expression as in (4.8):

C ≡
∫ ∞

0

log2 (1 + γ) · fγmax(γ)dγ , (4.8)

the closed form expression for T̄ in the PCSI case is derived in Appendix A.1. The

comparison between the Shannon capacity and system spectral efficiency is shown in

Section 4.6.

4.3 Effects of Pilot Estimation and Feedback Delay

The spectral efficiency derived in the above section assumes that the scheduler

has perfect knowledge of the users’ SNR. However when there is error associated with

the channel estimates at each user before they are fed back to the scheduler, the

inaccurate estimates may cause the BTS to schedule a sub-optimal user, leading to

a spectrum waste. The effect of Imperfect Channel State Information (ICSI) will be

discussed in this section.

In a typical communication system, receivers usually will extract the pilots

embedded in the data to perform the channel estimation. The insertion of the pilots

has two effects: 1) finite pilot power induces inaccurate channel estimates, and 2)

transmission of the pilots consumes bandwidth and deceases the spectral efficiency.

Based on the estimated channel, the receivers calculate their SNR, and send this

information to the scheduler. The time-varying nature of the wireless channel renders

the feedback outdated due to the channel’s Doppler spread. The first subsection will

be dedicated to the effects of Pilot-aided channel Estimation and the Feedback Delay
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(PEFD). The second subsection will address the system throughput in the PEFD

setup.

4.3.1 Pilot-Aided Channel Estimation and Feedback Delay

Channel state information at the receiver (CSIR) is mostly achieved through

pilot-aided estimation. Due to the limitation on the pilot power, channel estimates

can be inaccurate. A very general model valid for Minimum Mean Square Error

(MMSE), pilot-symbol-assisted, and additive-channel estimation error model is:

g(t) = ρe

√
Ωg

Ωh

h(t) +
√

(1− |ρe|2)Ωgω(t) , (4.9)

where ρe = E[g(t)h∗(t)]/
√
E[|g(t)|2]E[|h(t)|2] is the normalized correlation between

the true and the estimated channel gains, ω(t) ∼ CN(0, 1), Ωg = E|g|2 and Ωh =

E|h|2. If following assumptions about the channel estimation can be made:

1. Np pilot symbols available for channel estimation,

2. channel remains constant over the duration of the pilots, and

3. receiver performs MMSE channel estimation,

then the pilots affect the estimation through the cross correlation ρe in the form of:

ρe =

√
Ωg

Ωg + σ2

NpEp

=

√
γp

1 + γp

,

where σ2 is the noise variance of the received signal, Ep is the power per pilot, and

γp = EpNpΩg/σ
2 is the average post-processing pilot SNR. Besides the fact that pilot

power affects the channel estimates, another effect of the inserted pilots is the decrease

in spectral efficiency. The system throughput should be scaled down by a factor of

Nd

Np+Nd
to account for the loss, where Nd is the number of data symbols transmitted

in between pilots.

The time-varying nature of the wireless channel outdates the channel esti-

mates. To what extent the feedback SNR values or channel estimates describe the
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current channel state information highly depends on the Doppler spread of the channel

(or equivalently the coherence time of the channel). The feedback delay determines

the correlation between the estimates and the current channel state as indicated in

equation (4.10):

g(t− τ) = ρd(τ)g(t) +
√

(1− |ρd(τ)|2)Ωgλ(t) , (4.10)

where λ(t) ∼ CN (0, 1) and is independent of g(t). Assuming isotropic scattering,

ρd(τ) = J0(2πfdτ), where fd is the Doppler spread of the channel, and J (•) denotes

the zero-th order Bessel function of the first kind. Equations (4.9) and (4.10) can be

combined together to account for the channel estimation and feedback delay in one

equation:

g(t− τ) = ρd(τ)ρe

√
Ωg

Ωh

h(t) + ς(t), (4.11)

where ς(t) ∼ CN (0, (1− |ρd(τ)|2|ρe|2)Ωg) and is independent of h(t).

4.3.2 System Throughput for PEFD

After each user estimates its own channel, the scheduler obtains each user’s

SNR estimate through the feedback channel. The scheduler’s knowledge of the i-th

user’s SNR can be written as Γh,i = |hi|2
Ωh

· γ̄h, where hi is assumed to be the user

channel estimate, γ̄h is the mean value of the estimated user SNR, and Ωh is the

variance of the channel estimate. γ̄h and Ωh are assumed to be identical for all the

users. The BTS selects j∗ = arg max
j

Γh,j, and assigns the whole channel to the j∗-th

user. The transmit power at the BTS is assumed to be P . If we use γ̂h,max to denote

the largest estimated SNR in the network, by taking into account the estimation error

and overhead incurred by the pilots, we can write the system throughput as follows:

T̄ =
Nd

Np + Nd
E (Cj(1− PER(j)) · 1 (γj ≤ γ̂h,max < γj+1)) (4.12)

=
Nd

Np + Nd


N−1∑
j=0

Cj

∫ γj+1

γj

fγ̂max(γh) · P̃SR(j) · dγh + CN

∫ ∞

γN

fγ̂max(γh) · P̃SR(j) · dγh

 ,

where P̃SR(j) ≡
∫∞

0
(1− PER(j, γg))fΓg |h(γg)dγg.
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As we can see from the above, P̃SR(j) is actually the average packet suc-

cess rate for each MCS class given the imperfect channel estimate. Since each user’s

SNR estimate is identically distributed, the subscript i of hi is dropped for conve-

nience. If we define Γg as each user’s true instantaneous SNR, according to (4.9), Γg

is distributed as non-central χ2 distribution with two degree of freedom. After some

mathematical manipulations, fΓg |h(γg) can be written as:

fΓg |h(γg) =
1

2σ2
· e−

s2+γg

2σ2 · I0(
√
γg

s

σ2
) , (4.13)

where s2 = |ρeq|2 |h|
2

Ωh
· γ̄g, 2σ2 = (1− |ρeq|2) · γ̄g are the non-centrality parameters and

variance respectively, γ̄g = Ωg · Es

N0
is the mean of the true channel SNR, Es

N0
is the

SNR at the transmitter, and ρeq = ρd(τ) · ρe. Plugging (4.13) into the definition of

P̃SR(j) in (4.12), recalling (4.1), we can rewrite P̃SR(j) as follows:

P̃SR(j) =

∫ ∞

γT,j

e−bj ·(γg−γT,j) · fΓg |h(γg) · dγg . (4.14)

After some mathematical manipulations, we have:

P̃SR(j) = Q1

(√
p1,jβ, q1,j

)
− tj ·Q1

(√
p2,jβ, q2,j

)
, β =

|h|2

Ωh
(4.15)

p1,j =
2|ρeq|2

(1− |ρeq|2)
, q1,j =

√
2γT,j

(1− |ρeq|2)γ̄g
, tj = ebjγT,j · e

− |ρeq |2·|h|2

(1−|ρe|2)Ωh
·

bj(1−|ρeq |2)γ̄g

1+bj(1−|ρeq |2)γ̄g

1 + bj(1− |ρeq|2)γ̄g

p2,j =
2|ρeq|2|h|2

(1− |ρeq|2)Ωh(1 + bj(1− |ρeq|2)γ̄g)
, and q2,j =

√
2γT,j(1 + bj(1− |ρeq|2)γ̄g)

(1− |ρeq|2)γ̄g
.

With P̃SR(j) calculated, the closed form expression for the spectral efficiency in the

PEFD scenario is given in the Appendix A.2.

4.4 Effects of Quantized Feedback SNR

In order for the receiver to be able to feedback the estimated channel state

information, the channel quality measure (either SNR or the channel estimate itself)

has to be quantized due to the limited bandwidth of the feedback channel. The
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SNR quantization will cause a loss of accuracy in representing each user’s channel

knowledge, which could induce scheduling errors and a loss of spectral efficiency.

Besides the scheduling error, the loss in the resolution can also cause an MCS selection

error. This section will discuss the Effect of Quantized Feedback SNR (EQFS) on

multiuser scheduling.

4.4.1 Lloyd-Max Quantization

Assume that without feedback, the estimated SNR at the mobile can be ex-

pressed as γh(t) = Es|h(t)|2/N0. After quantization, the SNR that the BTS receives is

γ̂h(t) = Q[γh(t)], where Q[·] represents the specific quantizer that is employed. Since

the decision making at the BTS relies on γ̂h(t), different choices for the quantization

thresholds will affect the performance of the system. One of the optimal ways to

determine the quantization thresholds is to use the Lloyd-Max quantizer [129], which

minimizes the Mean Square Error (MSE) of the quantization error. Let us assume

that the quantizer has a wordlength of log2NB bits. In other words, the receiver

has the ability to quantize a non-negative r.v X into a r.v X̂ with NB levels. Let

y1, . . . , yNB
be the reconstructed values, and x0 = 0, x1, . . . , xNB

= ∞ be the quan-

tization thresholds. That is, X̂ = yj if X ∈ [xj−1, xj), j = 1, . . . , NB. Then, for

k = 1, . . . , NB,

xk =
yk + yk+1

2
and yk =

xk∫
xk−1

xfX(x)dx

xk∫
xk−1

fX(x)dx

. (4.16)

Note that the Lloyd-Max quantizer typically has non-uniform decision regions.

4.4.2 System Throughput for EQFS

Assume a B-bit quantizer is used at each user, therefore we have NB = 2B

quantization levels. Let γ̂s denote the s-th quantized value, i.e. when the estimated

channel SNR satisfies as ≤ γh < as+1, γ̂s will be assigned to represent its value,

where as’s are the end points of the quantization intervals. Basically, the set of γ̂s,

1 ≤ s ≤ NB is the reconstruction values, and the set of as, 1 ≤ s ≤ N + 1 defines
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the quantization thresholds, or decision regions. The spectral efficiency of the system

can be expressed as:

T̄ =
N∑

j=1

Cj ·
Nd

Np +Nd

· E {(1− PER(j, γg, γh, γ̂h)) · 1(γj ≤ γ̂h < γj+1)} ,

where γg is used to represent the true SNR for the strongest user, γh is the estimated

maximum SNR, and γ̂h is the quantized maximum estimated SNR. A quantized SNR

value γ̂h is a discrete random variable, and given its continuous measurement γh, it

has following PDF:

f(γ̂h|γh) =

Nq∑
l=1

1(al ≤ γh < al+1) · δ(γ̂h − r̂l) . (4.17)

We can easily derive the joint PDF of γh and γ̂h as follows:

fγh,γ̂h
(γh, γ̂h) =

Nq∑
s=1

K∑
l=0

(−1)l+1 l

γ̄h

 K

l

 e
− lγh

γ̄h · 1(as ≤ γh < as+1) · δ(γ̂h − γ̂s) .(4.18)

The closed form expression for the spectral efficiency of the system can be obtained

using (A.11) and (A.12) derived in Appendix A.3.

4.5 Extension of the Analysis Framework to an Asymmetric Network

The above derivation assumes a symmetric network setup. For an asymmetric

network, where users have dramatically different average SNR, the Max-SNR sched-

uler will schedule the user with the largest average SNR most often, causing unfairness

in user scheduling. The Proportional Fair (PF) scheduler trades the system’s through-

put for fairness by scheduling the user with the largest ratio of instantaneous data

rate to average transmission rate [130]. Another scheduler that resembles the be-

havior of the PF scheduler selects the user with the largest normalized instantaneous

SNR for transmission. The analysis discussed in above sections can be extended for an

asymmetric network with this PF-like scheduler (Quasi-PF scheduler), although more
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complex mathematics are involved. This following paragraphs give some insights on

how to extend the above analysis to this more general case.

By normalizing each user’s instantaneous SNR with respect to its own average

SNR, a new set of random variables z1, z2, · · · , zK can be generated, where zi =

γi

γ̄i
, 1 ≤ i ≤ K, γi is the instantaneous SNR and γ̄i is the average SNR for the i-th user,

respectively. The scheduler therefore selects the user that has the largest normalized

SNR value zi, and schedules that user for a number of time slots. Since each user’s

instantaneous SNR is independently distributed with an exponential distribution,

the normalized zi’s are therefore identically distributed with the same exponential

distribution. Hence, in a system with a Quasi-PF scheduler, each user is allocated on

average with an equal amount of time slots. The PDF of the j-th user’s normalized

SNR with a value z being the maximum can be shown to be p(j, z) = e−z ·(1−e−z)K−1.

With the above PDF, one can easily calculate the system’s spectral efficiency by

considering each user separately and summing the results as follows:

C =
K∑

j=1

∫ ∞

0

log2 (1 + γ̄j · z) · e−z · (1− e−z)K−1 · dz . (4.19)

Similar manipulations can be used to modify all the derivations in the above sections

by treating each user separately and averaging their performance to obtain the overall

system throughput.

4.6 Results and Discussion

In this section, some results obtained by evaluating the expressions derived

above will be shown to give some insights about the multi-user diversity gain in a

system equipped with an opportunistic scheduler. The parameters used to generate

these plots are given in the figures. Throughout the section, seven MCS schemes are

assumed to be adaptively selected at the scheduler, and a WiMAX system with 2-slot

allocation size for the FEC block is considered. In other words, the parameters bj and

γT,j assume the values in the second row of Table 4.1. Fig. 4.4 shows the performance

gap between the ideal Shannon capacity and the supported spectral efficiency, under
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Figure 4.4: Shannon sum capacity versus the spectral efficiency achieved by a practical
system constrained by a finite number of modulation and coding schemes (performance
gap due to finite constellation size).

the assumption that the CSI at the BTS is perfect. It can be clearly observed that,

as the number of users in the network increases, the Shannon capacity increases, but

the practical supported spectral efficiency saturates at high SNR. This saturation is

mainly due to the finite constellation size and can only be improved by packing more

bits into each symbol.

As discussed in the above sections, the system’s spectral efficiency is a function

of the system’s BLER operating point, because different BLER operating points will

affect the switching thresholds of different MCS classes. A higher BLER operating

point means larger error tolerance, which might cause the system’s spectral efficiency

to go down due to more frequent retransmission. However, on the other hand, it

will push the FEC module to use MCS classes with larger constellation sizes and
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Figure 4.5: The spectral efficiency achieved by a practical system constrained by a
finite number of modulation and coding schemes (effect of BLER operating point).

higher code rates more aggressively by lowering the MCS switching thresholds. This

will lead to an improvement in the spectral efficiency. Therefore, the effect of the

BLER operating point is two-fold and it is not obvious which BLER operating point

is optimal. Fig. 4.5 reveals that for a few specific BLER operating points (i.e. 10%,

1% and 0.1%), the benefit of lowering switching thresholds beats the loss due to

retransmission, and 10% target BLER operating point offers the highest spectral

efficiency. Besides, it is obvious to see that the more users in the network, the better

the system’s spectral efficiency is.

Fig. 4.6 shows the spectral efficiency of a scheduler with imperfect SNR knowl-

edge solely due to limited pilot power. And the loss due to feedback delay and quan-

tization error is not shown. As expected, the higher the pilot power, the larger the

spectral efficiency. Higher pilot power implies better channel estimates, which in
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Figure 4.6: The spectral efficiency achieved by a practical system constrained by a
finite number of modulation and coding schemes (effect of finite pilot power).

turn gives better SNR estimates, and thus a lower probability of mis-scheduling. A

BLER operating point of 10% is still the best among the three candidates. Fig. 4.7

considers the imperfect SNR knowledge induced by the feedback delay and Doppler

spread. Two BLER operating points are studied. For a fixed feedback delay of 5ms,

the larger the Doppler spread, the bigger the spectral efficiency loss due to faster

channel decorrelation. By the time the scheduler receives the SNR feedback, it is

outdated. Decisions based on these SNR values will likely be suboptimal in the sense

that either a non-optimal user will be selected for transmission or a “wrong” MCS

class will be exploited at the FEC module. The gaps between the corresponding PCSI

and ICSI curves when the Doppler equals 0 are due to the loss of spectral efficiency

caused by the insertion of the pilots. Fig. 4.8 compares the spectral efficiency of a

scheduler with perfect CSI versus one without. Within a wide range of average SNRs,
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Figure 4.7: The spectral efficiency achieved by a practical system constrained by a
finite number of modulation and coding schemes (effect of feedback delay and Doppler
spread).

the multi-user diversity gain is observed as the gap between the set of curves denoting

different numbers of users. As the average SNR increases, both curves saturate, and

the multi-user diversity gain is no longer obvious.

4.7 Summary

In this chapter, we presented an analytical framework for the realistic perfor-

mance analysis of a practical channel-aware scheduler. We have proposed a simple

log-linear model for the BLER of a CTC operating at non-negligible BLER with a

finite number of MCS classes. By taking into account the impact of channel estima-

tion errors, Doppler spread due to user mobility, and the finite number of feedback

bits available for channel quality reporting, we have derived closed-form expressions
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Figure 4.8: The spectral efficiency achieved by a practical system constrained by a
finite number of modulation and coding schemes (all the practicalities accounted for).

for the average spectral efficiency of a multi-user downlink scheduler on symmetric

Rayleigh fading channels. Our results showed that coarse granularity of the num-

ber of MCS levels limits the achievable spectral efficiency, whereas imperfect channel

estimation, coupled with Doppler and limited feedback, might lead to scheduling a

user who does not have the best instantaneous channel quality, thereby causing an

additional loss in spectral efficiency. Extensions to an asymmetric network are also

discussed for the completeness of the framework.
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Chapter 5

Impact of User Mobility and Asymmetry on Multiuser
Scheduler Performance

In this chapter, we are concerned with the performance of multiuser sched-

ulers over an asymmetric network, where different users in the network have different

average received SNRs and Doppler spreads. The throughput, in terms of the er-

godic capacity of the channel, of a maximum-SNR scheduler (i.e., the scheduler that

schedules the user with the largest instantaneous SNR) is investigated over Rayleigh

fading channels with a single-antenna base station and user terminals. Closed-form

expressions are presented to quantify the degradation in maximum-SNR scheduler

performance due to lack of the knowledge of the CSI. For a comparative study, the

performance of a Proportional Fair (PF)-like scheduler is also derived in closed-form.

For an asymmetric network with a small number of users, a new simple scheduler is

proposed which does not require instantaneous CSI, and its optimality is discussed.

In a single cell, with a single-antenna BTS and UTs, scheduling the strongest

user at every transmission time, for either the uplink (UL) or the downlink (DL), is

known to be optimal in the Shannon capacity sense [16, 17]. By allowing only the

UT with the strongest instantaneous received SNR to transmit (i.e., the so-called

maximum-SNR scheduler or, simply, Max-SNR scheduler), the shared channel re-

source is used most efficiently, and maximum system throughput results [19]. The

resulting gain due to riding the peaks of the multiuser fading channel is termed

multiuser diversity (MUD) gain [18], which, in a symmetric Rayleigh faded network

(with equal average received SNRs for the UTs), grows doubly logarithmically with

the number of UTs. However, when the network contains UTs with different average

SNRs, the Max-SNR scheduler incurs unfairness, in the sense that the UT with the
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largest average SNR gets scheduled more often. The simplest scheduler that guar-

antees fairness among the UTs is a Round-Robin (RR) scheduler, which schedules

the UTs in equal proportion, regardless of the instantaneous UT channel quality. A

Proportional-Fair (PF) scheduler trades off the system throughput for fairness across

UTs by scheduling the UTs based on the instantaneous channel quality relative to

the average channel quality over the time window of interest [18].

In this chapter, our first goal is to understand the impact of dissimilar average

SNRs and Doppler spreads on the Max-SNR scheduler performance. Assuming DL

transmission, accurate knowledge of channel state information (CSI) at the BTS is

crucial to exploit the benefits of MUD. The UT also should have access to good quality

CSI to obtain sufficient decoder performance. Lack or inaccuracy of the CSI leads to

a significant performance degradation [22, 131], whereas the overhead in maintaining

CSI penalizes the system throughput. Typically, a Max-SNR scheduler selects the

UT with the strongest SNR based on the initial channel quality measurements (say,

at time t = 0), and allocates radio resources to the scheduled UT1 over a duration

T that is less than the coherence time Tc of that user. Depending on the ability of

the system to track the channel quality of the UTs, we study two scenarios in this

chapter. These are: (i) Perfect CSI, and (ii) Outdated CSI. For the first case, we

assume the system has perfect CSI only for the active UT during the whole allocated

time duration T (i.e., tracking the channel quality of the UT that is scheduled at

t = 0). In this case, there is a performance degradation due to the fact that the SNR

of another user may increase to a value that is better than the scheduled user during

the allocation window T . For the second case, after making a scheduling decision

based on the channel quality at t = 0, the BTS makes no attempt to monitor the

channel quality over the duration T . In this case, there is an additional loss due

to decorrelated CSI. The practical significance of both cases i) and ii) is that they

quantify the performance loss due to the lack of periodic channel quality feedback.

Our results for an asymmetric network with a small number of UTs with dif-

ferent mobile speeds show that the Max-SNR scheduler may not necessarily perform

1The ‘scheduled UT’ is also termed the ‘active UT’.
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better than a scheduler that does not have access to instantaneous CSI. In particular,

we propose a SCA scheduler that requires only knowledge of the average received

SNRs and the Doppler spreads of the UTs. We formulate a simple constrained opti-

mization problem that maximizes the average capacity of the proposed SCA scheduler

in order to allocate the time interval assigned to the UTs. An algorithmic description

of the SCA scheduler is also presented.

The rest of this chapter is organized as follows. In Section 5.1, we present

the system model. A thorough study of the performance of the Max-SNR scheduler

under different CSI assumptions is carried out in Section 5.2. Section 5.3 parallels

the derivations in Section 5.2 for its PF-like counterpart, which achieves a sense of

scheduling fairness. In Section 5.4, we expose the drawbacks of the Max-SNR sched-

uler for a small network with high mobility users, and propose our SCA scheduler.

We conclude our work in Section 5.5.

5.1 System Model

We consider a single cell with a small group of K independently faded asym-

metric users. Assuming a single-antenna BTS and UTs, we focus on DL (i.e., BTS to

UT) transmission. At time t, for UT j, 1 ≤ j ≤ K, the instantaneous received SNR

is denoted by γj(t), whereas the corresponding statistical average is denoted by γj(t).

We also assume that the users move at different speeds, and the resulting Doppler

spread for the jth UT is given by f j
d = (vj/c)fc, where fc is the carrier frequency, c

is the speed of light, and vj is the speed of UT j. The complex-valued time-varying

channel gain from BTS to UT j at time t is denoted by hj(t), which is assumed to be

a zero-mean complex-Gaussian (ZMCG) random variable (r.v.)2 with second moment

E[|hj(t)|2] = Ωhj
(t). With this definition, the received signal at UT j is:

yj(t) = hj(t)x(t) + nj(t) , (5.1)

2For simplicity, we denote X ∼ CN (m,σ2) to indicate that X is a CG r.v. with mean m and
variance σ2.
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where x(t) is the transmitted signal with E(|x(t)|2) = Es(t) denoting the average

transmit power, and nj(t) ∼ CN (0, ζ2
j ). With this, we have γj(t) = |hj(t)|2Es(t)/ζ

2
j

and γj(t) = Ωhj
(t)Es(t)/ζ

2
j .

Due to the users’ mobility, the channel for UT j changes for values of t greater

than the coherence time T j
c . Since hj(t) is ZMCG, hj(t) and h0(t) are related as [132]:

hj(t) = ρj(t)

√
Ωhj

(t)

Ωhj
(0)

hj(0) +
√

(1− |ρj(t)|2)Ωhj
(t)νj(t) , (5.2)

where νj(t) ∼ CN (0, 1). Assuming the Jakes fading correlation model [3] for each

user, we write ρj(t) = J0(2πf
j
d t), where J0(·) is the zero-th order Bessel function of

the first kind [133]. We denote by T the time slot duration for this group of users

(a BTS can serve different groups of users), within which the scheduler can make the

decisions about which user to schedule, how much time to schedule it for and so on.

We further assume that T ≤ min1≤j≤K(T j
c ).

5.2 Max-SNR Scheduler

As mentioned before, the system performance is a function of the quality of

the CSI at both the BTS and UTs. The UTs usually estimate the CSI by extracting

the pilots inserted in the transmitted data. The BTS can obtain the CSI either by

estimating the channel through the reverse link (assuming channel reciprocity), or

via feedback from the UTs through a control channel. Keeping track of the CSI will

incur a penalty in system throughput. This section addresses the Max-SNR scheduler

performance under different scenarios, depending on the ability of both the BTS and

the UTs to track the CSI.

5.2.1 Ideal Performance

Under this assumption that the BTS has perfect CSI for all the UTs during

0 ≤ t ≤ T , the CDF of the maximum of the instantaneous SNR can be easily written
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as:

Pγmax,t(x) =
K∏

j=1

(
1− e

− x

γj(t)

)
=

K∑
j=1

1∑
lj=0

(−1)
PK

j=1 lje
−x·

„PK
j=1

lj

γj(t)

«
. (5.3)

By taking the derivative of (5.3) with respect to x, the pdf of the maximum of the

instantaneous SNR at any t ∈ [0, T ] can be written as:

pγmax,t(x) =
K∑

j=1

1∑
lj=0

(−1)1+
PK

j=1 lj

(
K∑

j=1

lj

γj(t)

)
e
−x·

„PK
j=1

lj

γj(t)

«
. (5.4)

The Shannon capacity of this scheduler is given by:

C(t) =

∫ ∞

0

log2 (1 + x)pγmax,t(x)dx

= log2(e)
K∑

j=1

1∑
lj=0

(−1)1+
PK

j=1 lje

„PK
j=1

lj

γj(t)

«
E1

(
K∑

j=1

lj

γj(t)

)
, (5.5)

where E1(x) =
∫∞

x
e−t/t dt is the exponential integral function [133]. When the trans-

mission power and the average channel gains are time-invariant (i.e., no Doppler),

γj(t) will remain time-invariant. In this scenario, the Shannon capacity in (5.5) re-

mains constant over the period [0, T ], thanks to the scheduler’s knowledge of all users’

CSI for the whole time interval.

5.2.2 Channel Tracking of the Scheduled User

Due to high CSI requirements, the scheduler described in Section 5.2.1 is

impractical. Here, we investigate the case when the scheduler has CSI for all the

users only at time t = 0, based on which the initial scheduling decision is made for

the duration [0, T ]. In this period, only the active UT’s channel is tracked at the

UT side for the purpose of decoding the message, and is assumed to be perfectly

known. Compared to the ideal scheduler, this system takes a performance hit due to

not monitoring the channel quality of other UTs beyond t = 0. In this subsection,

we quantify this loss.
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From (5.2), conditioned on hj(0), it is easy to see that γj(t) = |hj(t)|2Es(t)/ζ
2
j

is a non-central Chi-square r.v. with the parameters [59]:

s2
j(t) = |ρj(t)|2|hj(0)|2

Ωhj
(t)

Ωhj
(0)

Es(t)

ζ2
j

=
|ρj(t)|2γj(t)

Ωhj
(0)

|hj(0)|2 (5.6)

and

2σ2
j (t) = (1− |ρj(t)|2)Ωhj

(t)
Es(t)

ζ2
j

= (1− |ρj(t)|2)γj(t) . (5.7)

Therefore, the CDF of γj(t) conditioned on hj(0) is [59, 134]:

P (γj(t) ≤ x|hj(0)) = 1−Q1

(
sj(t)

σj(t)
,

√
x

σj(t)

)
,

where Q1(a, b) is the first-order Marcum-Q function [59]. It can be easily shown that

the PDF of the maximum SNR, with UT j being the strongest user at time t = 0 is:

pγ,j(x, j, t = 0) =
e
− x

γj(0)

γj(0)

K∏
i=1,i6=j

(
1− e

− x

γi(0)

)

=
K∑

i=1,i6=j

1∑
li=0

(−1)(
PK

i=1,i6=j li)
e
−

„PK
i=1,i6=j

li
γi(0)

+ 1

γj(0)

«
x

γj(0)
. (5.8)

Upon defining

F (α, k) ,
eα

k!

K∑
j=0

(−1)j

 k

j

αj

∫ ∞

α

e−ttk−j−1dt

= eα

K∑
j=0

(−1)j

 k

j

αj G(α, k − j)

k(k − 1) · · · (k − j)
, (5.9)

where G(α, k) = 1
(k−1)!

∫∞
α
e−ttk−1dt is the incomplete gamma function [133], the

Shannon capacity of a Max-SNR scheduler that tracks the channel of the active UT
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for the whole time slot T can be derived as:

C(t) =
K∑

j=1

∫ ∞

0

Cj|hj(0)(t)pηj(0),j(x, j, t = 0)dx

=
K∑

j=1

K∑
i=1,i6=j

1∑
li=0

∞∑
n=0

n∑
k=0

log2(e)

γj(0)
× (bj(t))

n(−1)
PK

i=1,i6=j liF (αj(t), k)

(
∑K

i=1,i6=j
li

γi(0)
+ 1

γj(0)
+ bj(t))n+1

, (5.10)

where αj(t) = 1

(1−|ρj(t)|2)γj(t)
, bj(t) =

|ρj(t)|2

(1−|ρj(t)|2)γj(0)
and Cj|hj(0)(t) is the Shannon

capacity of the j-th user being scheduled given its channel knowledge hj(0). Details

of (5.10) can be found in Appendix B.1.

A Monte-Carlo simulation is carried out to simulate the Shannon capacity of

the Max-SNR scheduler over a network with 3 asymmetric users. At time t = 0, each

user’s channel is generated randomly, and the strongest user is selected according to

the users’ instantaneous SNR at this time. After the user is selected, random samples

are generated to evolve the channel according to (5.2). The Shannon capacity is

measured by averaging over a large number of channel realizations. For simplicity,

the second order statistics of each user’s channel is assumed to be constant (i.e.,

Ωhj
(t) = C, t ∈ [0, T ]), and each user’s transmit power and noise variance are also

set to be constant during the scheduled time slot. The carrier frequency is set to

fc = 10 GHz, the average SNRs of the users are set to [15, 25, 20] dB, the Doppler

speed is set to [40, 100, 50] m/s, and the time slot duration T is set to be 120 µs.

The same set of parameters will be used throughput this chapter. As can be seen

in Fig. 5.1, the simulated results agree very well with the analysis in (5.10). The

performance loss can be quantified as the difference between (5.5) and (5.10).

5.2.3 Impact of Channel Tracking Inability

When the channel feedback frequency is severely constrained, the UTs provide

only the initial CSI to the BTS scheduler. Once a scheduling decision is made, during

the scheduling period the BTS will make no further attempts to track the channel of

any of the UTs. More importantly, at the UT side, the receiver does not track its own

channel. The initially obtained CSI is used throughout its scheduled time to decode
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Figure 5.1: Shannon capacity of a Max-SNR scheduler. Only the scheduled user at
t = 0 has access to perfect CSI over t ∈ [0, T ], where T is the scheduling interval.

the message. Clearly, the required CSI load in this case is significantly less than for

the approaches in Sections 5.2.1 and 5.2.2. However, not tracking the channel at

all after t = 0 leads to further performance degradation over the one described in

Section 5.2.2.

Using (5.2) in (5.1), the instantaneous SNR of UT j given hj(0) is:

ηj(t) ,
|ρj(t)|2|hj(0)|2

Ωhj
(t)

Ωhj
(0)
Es(t)

(1− |ρj(t)|2)Ωhj
(t)Es(t) + ζ2

j

=
|ρj(t)|2|hj(0)|2Es(t)

Ωhj
(0)
[
(1− |ρj(t)|2)Es(t) +

ζ2
j

Ωhj
(t)

]
= φj(t)ηj(0) , (5.11)
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where

φj(t) ,
|ρj(t)|2Es(t)

Es(0)/ζ2
j Ωhj

(0)
[
(1− |ρj(t)|2)Es(t) +

ζ2
j

Ωhj
(t)

]
=

|ρj(t)|2γj(t)

γj(0)
[
(1− |ρj(t)|2)γj(t) + 1

] . (5.12)

Averaging over ηj(t) and the users, we obtain the Shannon capacity in the absence

of channel tracking as (see Appendix B.2):

C(t) = Ej

(
Eηj(t) (log2(1 + ηj(t)))

)
(5.13)

=
K∑

j=1

log2 e

γj(0)

K∑
i=1,i6=j

1∑
li=0

(−1)
PK

i=1,i6=j li∑K
i=1,i6=j

li
γi(0)

+ 1

γj(0)

· e

PK
i=1,i6=j

li
γi(0)

+ 1
γj(0)

φj(t) E1(

∑K
i=1,i6=j

li
γi(0)

+ 1

γj(0)

φj(t)
) .

We perform a Monte-Carlo simulation for this scheduler, and the result shown in

Fig. 5.2 verifies the accuracy of the analysis. We also observe from Fig. 5.2 that the

loss in capacity is significant when the scheduler does not keep track of the user’s

channel (6 bits/s/Hz loss in Fig. 5.2 as compared to 0.95 bits/s/Hz loss in Fig. 5.1

at the end of the scheduling time T ). The difference between (5.10) and (5.13)

characterizes additional loss due to the UT not tracking its own channel.

5.3 Quasi-Proportional Fair (PF) Scheduler

A Max-SNR scheduler maximizes the network throughput by greedily schedul-

ing the strongest user in the network. However, the benefit of riding the peak sacri-

fices fairness among the users in the sense that a user with a stronger average SNR

gets scheduled more often. To mitigate this issue, various algorithms have been pro-

posed, including: Max Fairness algorithm, Proportional Rate Constraint algorithm

and so on [130]. One simple and effective approach to balance the throughput of

the network and the scheduling fairness is Proportional Fair (PF) scheduling. The

PF scheduler selects the user with the largest instantaneous data rate relative to its
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Figure 5.2: Shannon capacity of the Max-SNR scheduler. Channel knowledge is
assumed for the selected user only at the scheduling time.

average throughput to avoid selecting users with “bad” channel. Details about the

PF scheduler can be found in [130] and the references therein. However, due to the

logarithm relationship between rate and average SNR, a theoretical analysis for the

performance of a PF scheduler is complicated. Herein, we investigate a Quasi-PF

scheduler, which selects the strongest user with respect to his own average SNR to

achieve fair scheduling. Simply put, a Quasi-PF scheduler normalizes each user’s in-

stantaneous SNR γj(t) with regard to his average channel SNR γj(t), and schedules

the user with the maximum normalized value. After normalization, all the users’ rela-

tive SNR values are i.i.d distributed, and therefore each user gets scheduled with equal

probability, which achieves the fairness of the scheduler. Similar to Section 5.2, based

on various assumptions at both the scheduler and receiver sides, different system per-

formance can be achieved. The following subsections will be dedicated to deriving

closed-form expressions to quantify system throughput under various assumptions.
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5.3.1 Ideal Performance

When the base station has the luxury of possessing the instantaneous channel

information for all users and the entire allocated time duration [0, T ], it is capable

of switching users at every time instant. Since the users’ SNR is i.i.d, the Shan-

non capacity of the network remains as a constant. The key factor in deriving the

throughput is to realize that where the j-th user has a maximum SNR of x · γj, its

PDF can be expressed as:

p(zj is max, zj = x) =

∫ x

0

· · ·
∫ x

0

pz1,z2,···zK
(x1, x2, · · · , xK)dx1 · dxj−1 · dxj+1 · · · dxK

= e−x ·
(
1− e−x

)K−1
, (5.14)

where zj = γj(t)/γj(t) is the normalized instantaneous SNR for user j. The Shannon

capacity of the network can thus be expressed as:

C(t) =
K∑

j=1

E {1 + γj(t)}

=
K∑

j=1

∫ ∞

0

log2 (1 + x · γj)e
−x
(
1− e−x

)K−1
dx

=
log2 e

K

K∑
j=1

∫ ∞

0

γj

1 + x · γj

[
1−

(
1− e−x

)K]
dx . (5.15)

Using the Binomial Theorem to expand (1− e−x)
K

, after some mathematical manip-

ulations we have:

C(t) =
log2 e

K

K∑
j=1

K∑
i=1

(−1)i+1

 K

i

 e
i

γj(t)E1(
i

γj(t)
) . (5.16)

5.3.2 Channel Tracking of the Scheduled User

Obviously, in order for the BTS to have channel state information for all users

and for all time, a large amount of feedback information has to be passed through the

feedback link, which results in extra bandwidth consumption and causes extra power
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Figure 5.3: Shannon capacity of the Quasi-PF scheduler. Only the scheduled user at
t = 0 has access to perfect CSI over t ∈ [0, T ], where T is the scheduling period.

expenditure at the mobile UT side. A more practical scenario as discussed before

is to have the BTS make scheduling decisions according to a one-shot collection of

user SNRs, and give the scheduled user access for a certain fixed amount of time.

In this case, we assume each UT keeps track of its own channel variation for the

purpose of decoding the information message. As pointed out in Section 5.2.2, the

post-processing SNR at each scheduled UT is distributed as a non-central chi-square

with the parameters given in (5.6) and (5.7). For simplicity of notation, we assume

the second order statistics of the channel do not vary with time, and the transmit

power remains constant. Therefore (5.6) can be simplified as:

s2
j(t) = |ρj(t)|2 · ηj(0) , (5.17)

where ηj(0) is the instantaneous SNR value for the scheduled user at the initial

time. Using the same method presented in Section 5.2.2, and the Marcum Q function
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expansion in [134], after some mathematical manipulations (see Appendix B.5), the

Shannon capacity of this system setup can be found as:

C(t) = log2 e

K∑
j=1

K−1∑
l=0

(−1)l

 K − 1

l

×

∞∑
n=0

(
|ρj |2(t)

1−|ρj |2(t)

)n

(
|ρj |2(t)

1−|ρj |2(t)
+ l + 1

)n+1

n∑
m=0

F (
1

(1− |ρj|2(t)) · γj(0)
,m) , (5.18)

where the function F (·, ·) is defined in Section 5.2.2. A simulation with exactly the

same setup as Section 5.2.2 is shown in Fig. 5.3. The perfect agreement between the

two different curves supports the validity of the derivation. However, the implementa-

tion of the analysis involves the evaluation of the incomplete gamma function. When

the channel correlation is very high, e.g. ρj(t) = 0.999, numerical implementation of

(5.18) will require a large number of terms in the summation before convergence is

reached, and numerical issues with incomplete gamma function will lead to inaccurate

results. More research can be done to pursue more robust numerical implementation

methods to evaluate system capacity accurately even for high channel correlation.

5.3.3 Performance without Channel Tracking

When the UT does not track its time varying channel and just assumes the

initially estimated channel for purpose of decoding, an analysis similar to that in

Section 5.2.3 shows this lack of channel knowledge at the receiver side will lead to an

SNR loss as described in (5.11). By plugging equation (5.14) in, the capacity of the

scheduler can be easily derived as (see Appendix B.6):

C(t) =
log2 e

K

K∑
i=1

K∑
j=1

(−1)j+1 ·

 K

j

 · e
j

αi·γi(t) · E1

(
j

αi · γi(t)

)
, (5.19)

where αi ≡ |ρi(t)|2

(1−|ρi(t)|2)·γi(t)+1
. A simulation with the same setup is shown in Fig. 5.4.

As expected, the system performance degrades largely due to the lack of accurate

channel information for decoding.
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Figure 5.4: Shannon capacity of the Quasi-PF scheduler. Channel knowledge is
assumed for the selected user only at the scheduling time.

5.3.4 Performance Comparison Between Quasi-PF Scheduler and Max-
SNR Scheduler

A comparison between the Max-SNR and the Quasi-PF schedulers in terms

of capacity and fairness is shown in Fig. 5.5 and Fig. 5.6. Perfect channel tracking is

assumed at the UT side and the BTS only has CSI for all users at the initial time.

As can be clearly seen in Fig. 5.5, the Max-SNR scheduler outperforms the Quasi-

PF scheduler in the sense of maximizing capacity. However more work is needed to

determine which scheduler’s capacity performance has a faster degradation effect with

respect to time, as the Quasi-PF tends to schedule all users equally. The distribution

of the Doppler frequency throughout the whole network needs to be taken into account

to analyze the aforementioned performance degradation problem. Fig. 5.6 shows that

the Quasi-PF scheduler schedules users with equal probability, while the Max-SNR
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Figure 5.5: Shannon capacity of Quasi-PF and Max-SNR scheduler. Only the sched-
uled user at t = 0 has access to perfect CSI over t ∈ [0, T ].

scheduler is highly biased toward the user with highest average SNR. The probability

of each user being scheduled in a Max-SNR scheduler setup is given in (7.2).

5.4 SCA Scheduler

As seen from Fig. 5.2, when the strongest user (in terms of average SNR) in the

network has a large Doppler spread, the Shannon capacity of the Max-SNR scheduler

decays quickly with time. We conjecture that for a small network, where the number

of asymmetric users is not large, scheduling the strongest user without tracking its

channel for a period of time may not provide better throughput than simply selecting

a user with a similar average SNR, but with a smaller Doppler spread. This is

attributed to the observation that high mobility will outdate the channel knowledge

very quickly. Under these conditions, Doppler spread as well as average SNR should

be key factors to be considered for making scheduling decisions. Here, we consider a
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Figure 5.6: Probability of each user being scheduled for Quasi-PF and Max-SNR
scheduler. Only the scheduled user at t = 0 has access to perfect CSI over t ∈ [0, T ].

simple SCA scheduler that requires only the average SNRs and the Doppler spreads

as inputs. By taking into account both users instantaneous CSI and long term rate

of channel de-correlation, the SCA scheduler can select user according to a more

practical criterion which is based on each user’s Shannon capacity averaged over the

scheduled time interval. As motivation, consider a scheduler that selects a user, say

j, and allocates time slot T to it regardless of how good its channel is when compared

to the other users. The selected user’s Shannon capacity is given by (see B.4):

Cj(t) = E (log2 (1 + φj(t)ηj(0))) (5.20)

= log2 e× e
(1−|ρj(t)|2)γj(t)+1

|ρj(t)|2γj(t) · E1

(
(1− |ρj(t)|2)γj(t) + 1

|ρj(t)|2γj(t)

)
.

In Fig. 5.7, we plot the Shannon capacity of the Max-SNR scheduler and

this simple scheduler according to (5.13) and (5.20), respectively. From Fig. 5.7, we
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Figure 5.7: Shannon capacity of multiuser schedulers. Channel knowledge is known
for the selected user only at the scheduling time.

conclude that: a) selecting the strongest at user t = 0, and scheduling it for T = 120µs

without tracking its channel is not as good as simply selecting user ‘3’ for the whole

time duration, and b) the gain of MUD over selecting the user with the largest average

SNR (user ‘2’) is marginal. We attribute these observations to two reasons: 1) the

number of users in the network is not large, hence the possible MUD gain is not large

to begin with, and 2) due to the asymmetric network setup, with high probability, the

Max-SNR scheduler selects user ‘2’ who has the strongest average SNR. However, due

to high Doppler spread, the channel for user ‘2’ de-correlates much quicker than the

rest of the users. Therefore, in a small network with some high mobility users, MUD

without CSI for the whole scheduling time may lead to suboptimal performance.

To illustrate that a Max-SNR scheduler with insufficient CSI is not always

optimal, Shannon capacity for a Max-SNR scheduler in (5.13) and that for each

individual user without a scheduler in (5.20) are both averaged over [0, T ], and
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Figure 5.8: Average Shannon capacity of Max-SNR scheduler, and the capacity of a
given user link.

used as the metrics for user selection. Fig. 5.8 plots such metrics mentioned above

as a function of scheduled time slot duration. It is clear from Fig. 5.8 that there

are crossover points for different curves in the figure. Therefore, besides the users’

average SNRs and Doppler spreads, the slot duration is also an important parameter

to determine the optimal scheduler type (Max-SNR versus SCA), and user selection.

When T = 120µs, user 3 is the optimal user to be scheduled. However, it neither

corresponds to the user with the largest average SNR nor corresponds to the user with

the smallest Doppler spread. When T . 40µs, the Max-SNR scheduler that extracts

the MUD gain would be the right choice. For the rest of this paper, we dedicate our

attention to proposing a SCA scheduler where the MUD gain is only marginal to the

system. However, which user to schedule, and for how much time, will be the focus

of the rest of this section.
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5.4.1 Scheduling a Single User

In this section, we study the type of SCA which schedules only one user for

the whole period T . We assume the selected user only estimates its own channel

at time t = 0 at the receiver side for the purpose of decoding the message. At the

scheduler side, no CSI is required to determine the prospective user. Only average

SNR and Doppler spread information is needed to make the scheduling decision. As

explained in the last paragraph, the optimal scheduling strategy is a function of T .

To determine which user is the optimal user to be scheduled, integration over [0, T ] is

involved. When the scheduled time duration T is smaller than the minimum of all the

intersecting points at which the capacity curve (averaged over [0, T ], i.e. Fig.5.8) of

the user with the largest average SNR crosses the remaining curves, the user with the

largest average SNR is the optimal user to schedule. In this case, an SCA scheduler

bases its decision only on the users’ average SNR. For example, in Fig. 5.8, if T is

less than the intersecting point of the blue curve and the black curve, scheduling user

‘2’ for the whole period T is optimal.

Determining the intersecting points in Fig. 5.8 is difficult since integration is

involved. As can be proved, the intersecting point in Fig. 5.7 always lower bounds the

desired one. Therefore, we propose to determine the intersecting point in Fig. 5.7.

When T < T j
c , we can write 2πf j

dT < 4, and, from [135], we use the polynomial

approximation of Bessel functions: J0(x) ≈
∑n

m=0Cnmx
2m, with n = 2 and Cnm =

(−1)mn1−2m(n+m−1)!
22m(n−m)!(m!)2

. Since each term in (5.20) has the form exE1(x), we can prove

that the latter is monotonically decreasing in x (see B.3). It can be shown that the

following holds true when the capacity curves of users i and j intersect:

|ρj(t)|2

|ρi(t)|2
=
γi(t)(γj(t) + 1)

γj(t)(γi(t) + 1)
, εji. (5.21)

Using polynomial approximation for ρj(t) = J0(2πf
j
dT ), we have

(∑n
m=0Cnmx

2m
j∑n

m=0Cnmx2m
i

)2

= εji, (5.22)
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where xi = 2πf i
dT . Upon setting xj/xi = f j

d/f
i
d , kji, an approximation to (5.22)

with n = 2 is given by

2∑
m=1

C2m(k2m
ji −√εji)x2m

i + C20(1−
√
εji) = 0. (5.23)

In (5.23), we determine the smaller positive root xi, which can be divided by 2πf i
d

to obtain Ti,j, i 6= j. If user v is the one with the largest average SNR, we set TB =

min (Tv,1, · · · , Tv,v−1, Tv,v+1, · · ·Tv,K). If T ≤ TB, it is guaranteed that scheduling user

v for the whole period T will be optimal.

5.4.2 Scheduling More Than One User

When the SCA scheduler has the luxury to schedule more than one user during

T , switching between the users can provide better throughput when compared to the

case where only one user is allowed to be scheduled. For simplicity, we assume that

the overhead in switching the users is neglected. With all pairs of intersecting points

Ti,j, i 6= j available, one sub-optimal SCA scheduler is described as follows:

1. Sort the users according to their average SNR in descending order. The indices

in the sorted set I = {I1, . . . , IK} are such that γI1 ≥ · · · ≥ γIK

2. Schedule user I1 for T1 = arg min
j

TI1,j. If T1 ≥ T , schedule user I1 for the entire

period T

3. For m-th scheduled user, when m < K, if
∑m−1

j=1 Tj ≥ T , the scheduler has

finished its job of selecting users. Otherwise, we schedule user Im for Tm =

min

(
arg min

j,j 6=∪m−1
l=1 Il

TIm,j, T −
∑m−1

j=1 Tj

)

4. For theK-th scheduled user, if
∑K−1

j=1 Tj < T , schedule it for TK = T−
∑K−1

j=1 Tj.

Otherwise, the scheduling is done

The capacity achieved by the SCA scheduler is shown in Fig.5.9. This plot

consists of piecewise continuous curves that are from different users’ capacity curves

(shown in Fig. 5.7). Since each user’s signal fades independently, when the j-th user
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Figure 5.9: Shannon capacity of the SCA scheduler. Channel knowledge is known for
the selected user only at the scheduling time.

is scheduled, the system’s behavior can be captured by the portion of j-th user’s

curve in Fig. 5.7 from [0, Tj]. The discontinuity is due to switching the users. It is

obvious that the SCA scheduler offers better throughput than scheduling only one of

the users during T . The portion of time allocated to each user may not be optimal

in maximizing the total throughput of the network over [0, T ], because the crossover

point by itself is not a sufficient condition for achieving maximum capacity, as will

be clarified in the following paragraphs.

When multiple users need to be scheduled (i.e., T ≥ TB), to optimize the total

network throughput for the whole period of time, the following optimization problem

105



0 20 40 60 80 100 120
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Time (µs)

Sh
an

no
n 

Ca
pa

cit
y 

(b
its

/s
/h

z)

3 Users with speeds [40; 100; 50] (m/s), SNR [10 25 20] (dB), fc = 10 GHz

 

 
Link 1
Link 2
Link 3

Figure 5.10: Shannon capacity of the optimal scheduler. Channel knowledge is known
for the selected user only at the scheduling time.

is formulated:

[T1, · · · , TK ] = arg max
[x1,··· ,xK ]

f([x1, · · · , xK ])

s.t.
K∑

j=1

xj = T, andxj ≥ 0, for 1 ≤ j ≤ K , (5.24)

where

f([x1, · · · , xK ]) =
K∑

j=1

∫ xj

0

log2 e e
(1−|ρj(t)|2)γj(t)+1

|ρj(t)|2γj(t) E1

(
(1− |ρj(t)|2)γj(t) + 1

|ρj(t)|2γj(t)

)
dt .(5.25)

The gradient of the above cost function can be evaluated by plugging xj into (5.20):

∂f

∂xj

= log2 e e
(1−|ρj(xj)|2)γj(xj)+1

|ρj(xj)|2γj(xj) E1

(
(1− |ρj(xj)|2)γj(xj) + 1

|ρj(xj)|2γj(xj)

)
. (5.26)
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Any gradient based numerical optimization technique can be used to find the optimal

time allocation for each user (i.e., [T1, · · · , TK ]). The Shannon capacity of this opti-

mal scheduler is plotted in Fig. 5.10. A comparison between Fig. 5.10 and Fig. 5.9

shows the improved performance of this optimal scheduler. The averaged Shannon

capacity over [0, 120] µs is 3.3592 bits/s/Hz for the scheduler in Fig. 5.9, whereas it

is 3.6023 bits/s/Hz for the one in Fig. 5.10. The 0.2431 bits/s/Hz spectral efficiency

improvement (7.24%) in this case can be a great performance improvement when

the bandwidth of system under consideration is large. Under that assumption, the

complexity induced by the SCA scheduler can be justified.

5.5 Summary

In this chapter, we investigated the impact of user mobility and asymmetry

on multiuser scheduler performance. Closed-form expressions were derived for the

Max-SNR scheduler performance under various assumptions on the level of CSI. A

scheduler that selects the strongest normalized instantaneous SNR among the users

to fulfill the fairness of the scheduling is also analyzed. Our simulations showed that

channel-aware multiuser scheduling is not always optimal for a small network with a

large Doppler spread. Over such networks, we proposed a simple SCA scheduler that

achieves significant improvements to the system throughput.
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Chapter 6

Relay Communications with Unmanned Aerial Vehicles:
Performance and Optimization

6.1 Introduction

Recently, UAVs have attracted considerable attention in many military as well

as civilian applications [31, 34, 39, 40, 44]. An attractive feature of using UAVs for

networked communications is that they can be quickly deployed as relays to extend

coverage and improve network connectivity [43, 45, 47, 136, 137]. Employing UAVs

in this manner is especially helpful in situations where nodes are widely scattered or

obstacles such as hills or large buildings deteriorate the quality of the link between

a BTS and an Access Point (AP). The advantages of using relays in more generic

wireless network scenarios have been the subject of considerable interest recently

(e.g., see [138, 139]).

Ayyagari in [39] presented a network architecture that deployed airborne un-

manned relay platforms to form equivalent “cellular towers” in the sky for imple-

menting rapidly deployable, broadband wireless networks. In [34, 40], the authors are

concerned with the routing issues of a hierarchical network with UAV nodes relaying

messages at higher levels. Hierarchical State Routing (HSR) algorithms are modified

to reduce routing overhead and improve the throughput. Rubin proposed a Mobile

Backbone Network Protocol (MBNP) that synthesized the topology of the backbone

network, which made use of unmanned vehicles including UAVs [44] and dealt with the

routing and resource allocation problems for a mobile backbone network. [45] studied

the UAV placement and navigation problem with the end goal of improving network

connectivity by mimicking the flocking rules that aerial living beings follow. Using

graph theory, [136] approached a similar problem by optimizing various connectivity

109



criteria. [46] investigated the feasibility of using OFDM transmission techniques for

UAV wireless communication. Like [46], Palat in [47] focused on the physical layer

aspects of UAV relay communications, and studied the performance of distributed

transmit beamforming and distributed Orthogonal Space Time Block Coding (OS-

TBC) schemes under the ideal and non-ideal UAV flight conditions. [43] considered

a special scenario of relay communications for delay-tolerant applications, where the

UAV relays carry data and deliver them upon approaching the user terminals.

Inspired by the previous work on UAV communications, this chapter inves-

tigates a network with multiple UAVs relaying messages from the ground AP to

a remote BTS. Unlike [34, 40, 44], we are not concerned with routing algorithms.

Instead, various aspects of the network are studied, including: the physical layer

communication link properties, i.e. Ergodic Normalized Transmission Rate (ENTR,

or spectral efficiency of the transmission scheme) and Symbol Error Rate (SER) anal-

ysis for each AP-to-UAV link, the MAC layer handoff algorithm that the APs use to

switch between different UAV relays for better performance as the network evolves

over time, and the network layer UAV relay deployment problems (placement and

optimal motion control). This chapter differs from the previously cited literature in

the assumptions made about the network and the criterion used for optimization. In

this chapter, we consider a tactical communication scenario, where a set of obstructed

APs in a remote area are trying to communicate with a BTS, and teams of UAVs

are deployed to help setup the communication links. Relatively abundant bandwidth

resources on the UAVs are assumed. Due to the LOS propagation environment be-

tween UAVs and between the UAV and the BTS, an error-free link is assumed between

them. We focus our investigation on the sum uplink data rate from all the APs to the

UAVs, which is more likely to be sensitive to UAV positioning than the downlink from

the UAV to the BTS. In particular, we investigate how to find the headings for the

UAV relays so that the overall transmission rate is maximized under the constraint

that the data rate for each AP is above a certain threshold. The mobility of the APs

and relays changes the topology of the network. The varying link strength suggests

that the APs may need to be switched to other relays for better transmission. As
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will be explained later, this requires a handoff algorithm for APs due to the special

motion constraints of the relay. When the current UAV configuration is insufficient

to accommodate all the APs on the ground, one must determine where to deploy a

new UAV relay and how to command its motion pattern to achieve some desired goal.

This problem will also be addressed in this chapter.

The chapter is organized as follows. Section 6.2 describes the mathematical

models assumed in this work, including the channel model, and the modulation and

coding schemes employed. In Section 6.3, we derive a closed-form expression for

the average uplink data rate, and analyze the symbol error rate for each AP-UAV

link. We also formulate the optimization problem to find the optimal heading of

the UAV for the network. Section 6.4 improves the network throughput by allowing

APs to switch relays when necessary. A handoff algorithm is studied for this specific

network. In Section 6.5, we study the case where new UAVs need to be added to the

network, and develop an approach for determining their positions, headings, and AP

assignments. Section 6.6 presents some simulation results for the network protocol

we briefly propose. Section 6.7 concludes the chapter and gives some insights into

possible future work. Some of the critical derivations can be found in Appendix C.

6.2 System Description

6.2.1 System Model

We assume a multi-user uplink scenario, with a UAV deployed to relay mes-

sages from a collection of APs to a given BTS. We further assume that the APs

employ orthogonal transmissions, so that inter-user interference can be ignored. We

consider a general multi-antenna setting, where each AP has M transmit antennas,

and the UAV relay has N receive antennas. With these assumptions, the signal from

the kth AP to the UAV can be written as

yk =

√
Ek

M
Hksk + nk, (6.1)
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where yk is the received signal at the UAV from AP k, Hk is the N ×M channel

matrix between AP k and the UAV, sk is the transmitted signal from AP k, Ek

represents the transmit power for AP k, and nk is additive temporally and spatially

white noise.

6.2.2 Channel Model

We assume Rayleigh fading channels Hk with large scale path loss related to

the distance between each AP and the UAV, i.e.,

Hk =
Hk

norm

dαk
k

, (6.2)

where dk is the distance between the kth AP and the UAV, and Hk
norm is a normalized

complex Gaussian matrix which when stacked in an NM × 1 vector has the distri-

bution CN (0,Rk
H). For free space transmission, the path-loss exponent αk is unity.

[2]. Values of αk > 1 occur in obstructed environments, while αk < 1 is common in

wave-guided environments. Note that log-normal shadow fading can easily be incor-

porated into the channel model and the analysis below. Assume the coordinates of

the kth AP and UAV are given as [xk yk hk]
T and [xu yu hu]

T respectively, so that dk

can be calculated as

dk =
√

(xu − xk)2 + (yu − yk)2 + (hu − hk)2. (6.3)

We use the well-known Kronecker model [140, 141] to describe the correlation

matrix Rk
H of the MIMO wireless channel, i.e., Rk

H = Rk
Tx ⊗ Rk

Rx, where Rk
Tx are

Rk
Rx are the normalized transmit and receive channel correlation matrices for the

link between the kth AP and the UAV, respectively. When the APs are located in

multipath scattering environments, we would expect low spatial correlation at the

AP side. At the UAV side, however, high spatial correlation is expected since there

are few if any scatterers close to the airborne UAV. The normalized channel matrix

can be expressed as

Hk
norm = (Rk

Rx)
1/2G[(Rk

Tx)
1/2]T , (6.4)
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where the N ×M matrix G contains independent and identically distributed (IID)

CN (0, 1) elements, (·)T denotes transpose, (·)1/2 is defined such that R1/2(R1/2)H =

R, and (·)H is the Hermitian transpose.

6.2.3 Adaptive Modulation

We assume that the system employs adaptive modulation based on the current

channel SNR for each link, denoted by γk. For a given desired SER, the required SNR

thresholds are predetermined using the SER expression given in [59, 7]:

Pe ≈ N eQ

(√
γkd2

min

2

)
, (6.5)

where Pe is the symbol error probability, N e is the number of nearest neighbor con-

stellation points, and dmin is the minimum separation distance between points in the

underlying constellation. Assume that γi and γi+1 are the predetermined SNR thresh-

olds for the ith and (i+ 1)th modulation schemes respectively. If γi+1 > γk ≥ γi, the

ith modulation scheme will be used to transmit the message. If γk < γ1, no transmit

scheme will be chosen, which indicates there will be no transmission between the

transmitter and the receiver.

6.2.4 Orthogonal Space-time Block Coding

We assume that only the receiver knows the channel matrix. Hence, orthogonal

space-time block codes (OSTBC) [118] are used to transmit the data. For example,

in the 2 × 2 case, the well-known Alamouti code [5] is employed. Since adaptive

modulation is used, the receiver needs to determine/predict a suitable modulation

scheme and feed this information back to the transmitter. In this chapter, we assume

that this feedback is perfect, i.e., the transmitter knows which modulation scheme to

use.
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6.3 System Analysis

Below, we first investigate the single link SNR and data rate. We then extend

the results to the multi-link scenario. Note that we drop the subscript k for separate

APs in the single link analysis. The subscript will be reintroduced when multiple

links are taken into account.

6.3.1 Single Link SNR

It is well known that OSTBC exploits the diversity of the MIMO channels,

and the instantaneous uplink SNR at the UAV can be expressed as

γ = ‖H‖2
F

E

Mσ2
N

= ‖H‖2
Fρ , (6.6)

where ρ is defined as ρ = E
Mσ2

N
, σ2

N is the noise power, and ‖·‖F denotes the Frobenius

norm. Plugging (6.2) into (6.6), we obtain

γ =
‖Hnorm‖2

F

d2α
ρ. (6.7)

In [142], using the inverse Laplace transform, the PDF of ‖Hnorm‖2
F is derived as

f(x) =
P∑

j=1

mj∑
k=1

Ajk
xk−1

(k − 1)!σk
j

e
− x

σj u(x), (6.8)

where σj (j = 1, 2, · · · , P ) are the distinct non-zero eigenvalues of RH , mj denotes the

multiplicity of σj, and Ajk can be determined by solving a system of linear equations

[142]. Defining

g(n, α, x) =

∫
xn

n!
eαxdx

=
1

n!

eαx

αn+1

n∑
i=0

(−1)n−in!

i!
(αx)i , (6.9)
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the CDF of ‖Hnorm‖2
F can be expressed as:

F (x) =

∫ x

−∞
f(t)dt =

L∑
j=1

mj∑
k=1

Ajk

σk
j

[g(k − 1,− 1

σj

, x)− g(k − 1,− 1

σj

, 0)] . (6.10)

6.3.2 Single Link ENTR and SER

Due to the random nature of the channel matrices, the instantaneous trans-

mission rate is different for different channel realizations. Therefore, we define the

ENTR and use it as the criteria to quantify the performance of the link. The ENTR

R(t) is defined as

R(t) = β · E(log2K(t)) , (6.11)

where

K(t) = K1u(γ(t)− γ1) +
L−1∑
i=1

(Ki+1 −Ki)u(γ(t)− γi+1) , (6.12)

and where β is a scalar that takes into account the rate loss when OSTBC is used, and

u(·) is the unit step funtion. Note that for 2× 2 Alamouti coding, β = 1. In (6.12),

Ki is the number of constellation points for the ith modulation scheme, and L is the

total number of modulation schemes used in the system. Defining Ci(t) = γi

ρ
d2α(t),

it is straightforward to show that the expression for the ETNR of the AP-UAV link

(i.e. the uplink between an AP and UAV relay) can be written as

R(t) = β · {
L−1∑
i=1

log2K
i

∫ Ci+1(t)

Ci(t)

f(x)dx+ log2K
L

∫ ∞

CL(t)

f(x)dx}

= β · {
L−1∑
i=1

log2K
i[F (Ci+1(t))− F (Ci(t))] + log2K

L[1− F (CL(t))]}.(6.13)

To verify the above analysis, we simulate a case where the AP and UAV are

separated by a distance of 3640m, and both have two antennas. The AP transmit

power is 2 W, and the noise power spectral density at the UAV relay is 10−16 W/Hz.

The path-loss exponent α is assumed to be 1.5, the carrier frequency is 1 GHz, and

the system bandwidth is 20 kHz. Seven different MPSK modulation schemes are

used in the simulations, i.e. from BPSK to 128-PSK. We assume a rich scattering
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Figure 6.1: Link rate simulation results.

environment at the AP side, so that the correlation matrix at the AP side is given by

RTx =

 1 0

0 1

 .

At the UAV side, high spatial correlation is assumed:

RRx =

 1 0.8

0.8 1

 .
105 channel realizations were run to generate the plot in Fig. 6.1. The upper plot

shows the ENTR and the Calculated Averaged Transmission Rate (CATR) defined asPN
i=1 Si

N
, where N is the number of the channel realizations, and Si is the instantaneous

spectral efficiency of the i-th channel realization. Clearly, the CATR quickly converges
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to the ENTR expression, which verifies our derivation. The lower plot shows the

instantaneous transmission rate of the link.

Figure 6.2: Upper bound on the symbol error rate for each AP-UAV communication
link.

A closed-form expression for the single link SER has also been derived in [137]:

Ps =
1

π
{

N−1∑
i=1

∫ π
2

0

p∑
j=1

mj∑
k=1

N e(i)Ajk

σk
j

[g(k − 1,−(
ρd2

min(i)

4sin2θ
+

1

σj

), Ci+1(t))

−g(k − 1,−(
ρd2

min(i)

4sin2θ
+

1

σj

), Ci(t))]dθ

−
∫ π

2

0

p∑
j=1

mj∑
k=1

N e(N)Ajk

σk
j

g(k − 1,−(
ρd2

min(N)

4sin2θ
+

1

σj

), CN(t))dθ} . (6.14)

The complexity in integrating the SER expression (6.14) can be reduced by resorting

to the evaluation of SER bounds given in (C.7). Fig. 6.2 shows that the analytical
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expression derived in (6.14) agrees very well with our simulation results and illustrates

the upper bound obtained above tightly bounds the SER expression. The derivation

of these equations can be found in Appendix C.1.

6.3.3 Heading Optimization in the Multi-link Scenario

Using a constant speed model, the UAV dynamics are governed by

xt
u = xt−1

u + V cos(δt−1)∆

yt
u = yt−1

u + V sin(δt−1)∆ , (6.15)

where V is the UAV speed, δt−1 is the UAV heading at time step t−1, ∆ is the length

of the time step, and where we have added superscripts to xu and yu to indicate that

the UAV position varies with time. Note that in general the APs are also mobile. We

will assume that the UAV can track the AP positions and predict their locations from

time step t− 1 to t. The change in distance between the APs and the UAV over one

time step can be expressed as a function of the UAV heading δt−1 by plugging (6.15)

into the equation for dk in (6.3).

The average data rates Rk(t) for each UAV k are a function of dk, and hence a

function of the UAV heading as well, and it makes sense to choose the UAV heading

that maximizes the overall system date rate, i.e.,

arg max
δt

RT (t) =
K∑

k=1

Rk(t) s.t.

Rk ≥ Rmin

|δt − δt−1| ≤ ∆δ , (6.16)

where Rmin is the minimum data rate requirement for each UAV-AP link, ∆δ and

defines the maximum turning radius of the UAV in one time step. The first constraint

guarantees a minimum level of performance for each AP, assuming that each AP-UAV

link uses the same bandwidth. If the bandwidth can be allocated dynamically for

different APs, then the total rate would be the weighted sum of each AP-UAV link
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data rate. For some scenarios, there is no solution to the above problem. This means

one UAV is not enough to provide coverage for the whole system, and additional

UAVs are needed in order to achieve the minimum requirements.

The above optimization problem is very complicated, and does not admit a

simple solution. A key result of this chapter is derived in the Appendix, where it

is shown that under some mild conditions, Rk(t) can be approximated as a sinusoid

plus a constant offset:

Rk(t) = βk(Akcos(δt − θ0
k) + Ck) . (6.17)

Expressions for the constants Ak and Ck can be found in the Appendix. Using this

approximation, the complexity of the optimization problem is significantly reduced.

The total network throughput RT (t) is thus also approximated as a sinusoid plus a

constant offset, and if no constraints were imposed on the UAV turning radius, the

optimal UAV heading would be given by

δt = arctan

∑K
k=1 βkAk sin θ0

k∑K
k=1 βkAk cos θ0

k

,

as derived in (C.18). To solve the optimization with the heading constraint, we simply

compute δt as above, and determine if it falls within the turning radius. If yes, this

solution is used as the UAV’s heading for the next time interval. If not, the two

boundary points are checked, and the one that results in the largest rate is chosen.

To validate our derivation, we simulated a scenario with two APs randomly

positioned on the ground within a 2000m-by-2000m square and one UAV located at

[0 0 3600]T in the air. Most of the simulation parameters are the same as in the

previous example, except that the bandwidth of each AP is assumed to be 200 kHz

and the update time interval is set to 15s for the purpose of clearly illustrating the idea

that smart heading control does affect the system throughput in a significant sense.

In order to make the simulation more realistic, we use Lee’s channel model described

in [143] to generate RTx and RRx. Besides the parameters mentioned above, we set
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Figure 6.3: Sinusoid approximation for the uplink total communication rate of a
subnetwork.

the antenna separation at the UAV to be 2λ and the antenna separation at the APs

as 1
2
λ, where λ is the wavelength of the transmitted EM wave. We also assume that

40 scatterers are uniformly placed on a circle with radius 100λ around each AP. The

simulation results are plotted in Fig. 6.3. It is clear that the total uplink transmission

rate is well approximated by the sinusoidal expression derived in the Appendix. The

importance of optimizing the UAV’s motion can be seen from the 20k bps date rate

difference yielded by simply assuming a better heading. This difference by itself is

capable of supporting an additional user for voice communication in most commercial

standards. The accuracy of the approximation can be further improved when the

update time interval is smaller and the conditions stated in the Appendix are better

satisfied.
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6.4 Handoff Algorithm and Optimal Motion Control in the Mobile Relay
Assisted Network

Mobility of both the APs and the relays causes the average link SNR strength

for each AP-UAV link to vary for every update time interval. As time goes by,

the original association of the APs and UAVs may not be optimal any more, and the

switching of the APs to a better hosting relay would improve the network throughput.

In this section, we will study the AP handoff problem in the context of a mobile-relay-

assisted network. N airborne relays are assumed to be in service, each hosting a set

of APs with an index set Ii, 1 ≤ i ≤ N , whose elements are the indices to the APs

that the i-th UAV is offering service to. We suppose there are L total APs requesting

service, so that ∪N
i=1Ii = Q ≡ {z|z = 1, 2, · · · , L} and ∩N

i=1Ii = ∅. In other words,

the current N UAVs can host all the L APs for the time interval of interest. If not,

new UAVs need to be deployed, and this will be addressed in the following sections.

This section will be dedicated to the AP handoff problem in this mobile relay network

setup. In addition, more discussion about optimal motion control for the mobile relay

will be treated as well.

Various handoff algorithms based on Received Signal Strength (RSS) are dis-

cussed in [1]. The basic idea behind the handoff algorithms in a cellular network is

that the mobile terminal, the AP in this case, measures the received signal strength

from various BTS over a time window, and associates itself with the BTS that pro-

vides the strongest link. A similar idea can be used in the handoff algorithm for this

mobile UAV assisted network with some modifications. The motion constraint for

the UAV relay and minimum rate constraint for each AP in (6.16) complicates the

handoff procedure as will be discussed in the rest of the section.

Let us define a subnet as the part of the network, with a UAV as the center

node, serving a set of APs in a star topology. In other words, the network under

consideration consists of N subnets, and each subnet hosts a set of APs indicated by

index set Ii, 1 ≤ i ≤ N . In the above two sections, we have approximated the link

communication rate as a sinusoid with some specific offset. A close look at (C.10)

reveals that in a single UAV, single AP scenario, the optimal heading for the UAV
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Figure 6.4: Optimal UAV heading for single AP-UAV communication link.

is the direction pointing to the position of the AP at the next time step. This is

no surprise since it is obvious that in this case, the optimal position of the UAV is

directly above the AP. Section 6.3.3 gives an approximate closed-form solution for

optimal heading command for each subnet configuration when a certain constraint

requirement is met, i.e. when it falls in the area reachable by the UAV and it satisfies

the minimum rate constraint. If not, boundary points need to be checked to yield the

optimal heading solution. To have a better understanding of the requirements and

the so called “boundary”, we will introduce a few new concepts as follows. The scope

of the following definitions is each subnet. The link allowable region for the i-th AP

in the j-th subnet is defined as the heading range Ωi
j, s.t. ∀ δ ∈ Ωi

j, R
i
j ≥ Rmin is

satisfied, where Ri
j is the data rate that the j-th subnet can provide for the i-th AP.

According to the sinusoidal approximation in (6.17), we find the link allowable region

for the i-th AP to be:

Ωi
j ≡



[0 2π] βiCi − βi|Ai| ≥ Rmin

∅ βiCi + βi|Ai| ≤ Rmin

[t1 t2] (t1 − θ0,i
j ) · (t2 − θ0,i

j ) < 0

[0 t1] ∪ [t2 2π] (t1 − θ0,i
j ) · (t2 − θ0,i

j ) > 0

, (6.18)
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where

θ0,i
j =

 barctan
(

yk−1
u −yk

i

xk−1
u −xk

i

)
c2π Ai > 0

bπ + arctan
(

yk−1
u −yk

i

xk−1
u −xk

i

)
c2π Ai < 0

, (6.19)

and t1 and t2 are defined as:

t1 = min {ψi
j, 2π − ψi

j},

t2 = max {ψi
j, 2π − ψi

j},

and ψi
j ≡ barccos

Rmin − βi · Ci

|Ai|
+ θ0,i

j c2π , (6.20)

where we use b·c2π to denote the mod-2π operation, i.e. bxc2π ≡ mod(x, 2π). There-

fore solution to the optimization problem is a subset of the intersection of all Ωi’s

for each subnet. The reachable region is defined as the set of heading angles that are

within the turning radius of the UAV, i.e. the command set that doesn’t violate the

heading constraint in (6.16). Mathematically, the reachable region is written as the

heading constraint set:

Cj ≡
{
δ|
∣∣δ − δj

k−1

∣∣ ≤ ∆δj
}
, (6.21)

where δj
k−1 is the previous heading for the j-th relay and ∆δj is determined by the

turning radius of the j-th relay. The intersection between Ωi
j and Cj defines the

admissible region for the i-th AP with respect to the j-th relay:

Ξi
j ≡ Ωi

j ∩ Cj . (6.22)

A non-empty admissible region is a necessary but insufficient condition for the j-th

relay to host the i-th AP. For the j-th relay to simultaneously support the set Ij, to

satisfy both the minimum rate constraint and turning radius constraint, its feasible

region, defined as the intersections of all the hosted APs’ admissible regions:

Sj ≡ ∩|Ij |
i=1Ξ

Ij(i)
j , (6.23)
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has to be non-empty, where |Ij| is the cardinality of the set Ij. For a potential entry

of AP p into the q-th subnet, not only the admissible region Ξp
q has to be nonempty,

but also it should be compatible with the set of APs that the q-th relay is currently

hosting, i.e. Ξp
q ∩ Sq 6= ∅. This is a sufficient condition for an AP to register with a

potential relay. If we recall the approximate optimal solution given in (C.18), we can

conclude that for each subnet j hosting Ij APs, when the relay’s feasible region Sj

is nonempty, and optimal solution falls within the range defined by Sj, the optimal

solution is achieved by commanding the j-th relay to fly at the angle determined by

(C.18). If Sj is nonempty but the angle given by the aforementioned equation does

not fall in the range, the boundary point of Sj is checked to yield the optimal solution.

If Sj itself is empty, it means the APs in Ij are not compatible with each other in

the j-th subnet, either some of the APs have to handoff to other relays currently

in service, or new relays have to be deployed to accommodate their communication

requirements.

Here we consider the problem introduced at the beginning of the section,

the AP handoff problem, under the assumption that the current number of UAVs

is sufficient to cover the service requirement. As discussed before, an AP cannot

just handoff to any UAV that provides a stronger link, its admissible region with

respect to the potential host relay has to be nonempty for it to carry out the handoff

procedure. The registration of the AP to a new subnet will change the feasible region

of that relay node, thereby affecting the other possible APs’ switching over to this

specific subnet in the future. Hence, the order in which APs switch themselves in the

handoff process will affect network performance. An optimal algorithm that solves

this handoff problem, involving a joint optimization over all the subnets, can be
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formulated as follows:

arg max
I1,··· ,IN

N∑
j=1

|Ij |∑
i=1

R
Ij(i)
j s.t.

∪N
j=1Ij = Q,

∩N
j=1Ij = ∅,

Sj 6= ∅, ∀j ∈ [1, · · · , N ] . (6.24)

Once the AP-relay associations I1, · · · , IN are determined, the optimal headings for

the relays can be obtained using the method presented above. Obviously, this op-

timization problem is hard to solve, and an exhaustive search through all the com-

binations would involve a prohibitive amount of computation, in the worst case NL

possibilities, for each AP has N possible relays as its potential BTS. Some knowledge

about the positions of the relays and APs can be used to significantly narrow the

search space, but the complexity is still exponential.

Figure 6.5: Flowchart of handoff algorithm for AP “j” to hand over to relay “i” in
the UAV assisted network.
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An ad-hoc handoff algorithm with less complexity is presented below and an

example will be given to clarify the procedure. Each AP in the network is assumed to

continuously monitor the RSS from all the relays. When better link than the current

one is detected, a handoff can be initialized either by the AP or the relay that is

currently hosting the AP. A list of candidate APs that have the potential to gain

better link quality by switching to another relay is created. All pairs of candidate

APs and their potential new hosting relays are sorted in order of decreasing RSS,

and this list of pairs is denoted as H. Entries of H are examined one by one to see

if the admissible region of the candidate AP intersects its corresponding potential

relay’s feasible region. If so, the AP can be handed off to the new relay, the new

relay’s feasible region gets replaced by the aforementioned intersection, the feasible

region of the old relay that hosted the AP is updated, and the rest of the entries in

H that are associated with this specific AP are deleted. Otherwise, we delete the

entry under inspection, and proceed to the next entry in H. This process repeats

itself until the list H is empty. The flowchart for the handoff algorithm is shown in

Fig. 6.5. An example is given here to better explain the proposed handoff procedure.

Here we assume there are 5 airborne relays, and 10 APs requesting service on the

ground. At a certain time instant, AP3, AP5 and AP7 are found to benefit from a

possible handoff, with candidate relays (R1, R3, R5) for AP3, (R2, R4) for AP5 and

(R1, R2, R5) for AP7 respectively. The list H is generated by sorting the RSS of all

the possible pairs, and we have, for example:

H = {(R2, AP5), (R1, AP3), (R5, AP3), (R3, AP3), (6.25)

(R2, AP7), (R4, AP5), (R1, AP7), (R5, AP7)} .

When H(1) is under inspection, the admissible region Ξ5
2 is tested to see if it intersects

with the feasible region of Relay 2, i.e. S2. A positive answer to the above test leads

to a smaller H:

H = {(R1, AP3), (R5, AP3), (R3, AP3), (R2, AP7), (R1, AP7), (R5, AP7)} .
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Now the pair (R1, AP3) is under consideration, if AP3 is not allowed to hand off to

Relay 1 due to an empty intersection between Ξ3
1 and S1, this entry is deleted and

(R5, AP3) is the next pair of interest. This process keeps repeating itself until H

becomes empty. This ad-hoc algorithm is not optimal in the sense that the order in

which the handoff is carried out would possibly preclude other possible handoffs in the

waiting list, and therefore affect the total throughput optimization of the network.

While other orders of operation are also possible, the above presented order which

always values better link quality first is a reasonable solution.

6.5 The Deployment of New UAV Relays

The discussion in the above section is based on the assumption that each UAV

in the air has a list of its served APs. The problem of how to partition the APs

into various subnets (clusters), remains unaddressed. Due to both the mobility of the

APs and relays, the signal strength of each link is always changing. At some point

of time, it is possible that there are APs that cannot be served by any of the relays

currently in the air for the desired link quality. Under this circumstance, additional

UAVs need to be put in the air to maintain the communications. However, it remains

an open problem regarding where to place the UAV and how many UAVs need to be

deployed. This problem will be discussed below.

There are various approaches to solve this problem. A straightforward method

can be obtained by posing the UAV deployment and AP assignment problems as an

adaptive clustering problem. As [144] pointed out, a pure flat architecture for an

ad hoc network suffers from scalability problem, and to guarantee a basic level of

performance in terms of a reasonable throughput and delay, a hierarchical architecture

is more attractive. The relays in this chapter act as backbones, and the scenario we

study assumes a natural hierarchical architecture. Assigning APs to each relay forms

a set of subnets (equivalently, clusters) and therefore assigning the APs has a good

analogy to the adaptive clustering problem. As is obvious, the hierarchical cluster

structure can benefit the system design in the sense that 1) system resources can be

spatially reused, e.g. frequency reuse and code reuse for non-overlapping clusters, 2)
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routing information can be restricted to a relatively small set of nodes, and 3) it makes

the ad hoc network seem smaller and more stable from the AP’s point of view [35]. Of

course, there are difficulties as well, e.g. explicit control message exchange between

APs, ripple effects of re-clustering, possibly unbounded computational rounds, etc.

Abundant studies have been conducted on this clustering problem. Most of them take

a routing algorithm’s perspective, and focus on distributed algorithms. [35] gives a

good overview of different clustering methods. It categorizes the algorithms according

to the objectives of the clustering algorithms into six groups: 1) Dominant Set (DS)

based, 2) low-maintainence, 3) mobility-aware, 4) energy efficient, 5) load-balancing,

and 6) combined-metric based clustering methods. More references about these types

of clustering algorithms can be found therein.

In our application, we assume centralized control; i.e. a central point where all

information is collected and handoff/deployment decision are made is assumed. For

most of the clustering algorithms mentioned in [35], cluster heads are elected among

all the nodes, but however our problem setup doesn’t require UAV relays to be right

on top of one of the APs. In addition, since there is a limit to the communication

range, there is an extra constraint on the maximum radius of each cluster that needs

to be accounted for. Therefore, adaptive clustering methodologies from a routing

perspective are not directly applicable to our UAV relay deployment problem. Since

global information for the whole network is available, one possibility would be to

use “K-means” algorithms to adaptively group APs and place the mobile relays at

the center of each cluster for every update instant [145]. Even though this approach

relieves the constraint on relays’ positions, i.e. the positions of the relays are no longer

constrained to be on top of the nodes, they still suffer from two major drawbacks:

1) no global optimality is guaranteed 2) the number of clusters have to be decided

before the application of the algorithms [146, 147]. The maximum radius of the

cluster constraint is once again another issue that hampers the direct applications of

“K-means” algorithms to this specific deployment problem. Other methods involving

the ideas of cell planning can easily take into account the size constraint of the
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cluster, but running an optimization involving all the nodes for every update instant

is computationally intensive.

Here we pose the UAV deployment and clustering problem differently for the

sake of avoiding the above predicaments and maintaining simplicity. For bonding

various APs into subnets, we first suppose that only one relay is present to start

with. At the first update interval, the base generates a list of APs that aren’t served

by this UAV. For the “non-service” list, the deployment method presented below will

give the number of relays necessary and the “optimal” positions for them. As for

other update intervals, handoff techniques will allow APs to switch between relays

for better link quality. The introduction of the handoff technique makes it possible

to relieve the controller from optimizing over all APs for every update interval, and

is therefore cheaper to implement. Even though an ideal global optimization would

yield the best possible clustering topology and keep a minimum number of required

relays, besides the high computational cost required to accomplish this solution, the

dynamic constraint on UAV movement may prohibit the realization of this topology.

Later, if there are unaccommodated APs, the deployment process will be conducted

only for them to narrow down the potential search space. When relays are no longer

serving any AP, they will be removed from the network. The handoff algorithm

discussed in the previous section automatically changes the topology of the network

as necessary, and this, by its own nature, is also a special type of adaptive clustering

method.

The reasoning in the above paragraph leaves only the optimal UAV relay de-

ployment problem to be solved. To simplify this problem in our scenario, recall that

we assume no interference between different APs. Furthermore, we assume perfect

communication between the UAVs and the BTS. The QoS requirement is that a min-

imum rate Rmin is guaranteed for every AP, but if Rmin > B · log2K
L, where B is the

bandwidth allocated to each user and KL is the largest possible number of constel-

lation points used for transmission, then by using the adaptive modulation scheme

described before, it is impossible to fulfill the link quality requirement. In other

words, this specific communication system can not support a data rate that is greater
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than B · log2K
L. Otherwise, the minimum rate constraint of each user can always

be satisfied by deploying more relays or increasing transmit power (however, this is

not the circumstance under consideration). Here we assume Rmin is predetermined

to be a value that allows a meaningful solution for the relay assignment and rate

optimization problems, and we will discuss the relay deployment problem including

the number of new relays and the position for each of them.

As assumed above, only one relay (call it U1) is present to begin with during

the formation of the network. Section 6.4 gives a sufficient condition for it to simulta-

neously host a set of APs, i.e. ∩|I1|
j=1Ξ

I1(j)
1 6= ∅. Determining which APs to serve with

this initial relay, or equivalently determining I1, is an interesting problem, because

some of the AP admissible regions are conflicting, making them incompatible in the

same subnet. There are numerous methods to solve this problem. However, it is

desirable to have the UAV support as many APs as possible. How many APs and

which APs should the current UAV support? To solve this question, an optimization

problem is posed, i.e.

arg max
I1

|I1|, s.t. I1 ⊆ Q & S1 6= ∅. (6.26)

Exhaustive search can be used to fulfill this task for the small network considered

in our simulation. Note that when the number of APs increases, a more efficient

optimization technique is required to save the computational cost. We define the

non-service list M≡ Q−∪N
j=1Ij as the set of APs that cannot be supported by the

current number of relays (here N = 1), and therefore a non-empty M requires more

UAV(s) to be added to the network.

To accommodate the APs in list M, the number of new relays that will be

deployed and their respective positions need to be decided at the base. To answer

these two questions, first of all, the coverage area of each relay should be examined.

For simplicity, the channel model we assume implies a circular coverage shape for

the relay. At the fringe of the j-th relay’s coverage, according to (6.7), the average

130



received SNR can be expressed as

γ̄j =
E (‖Hnorm‖2

F )(
d0

j,u

)2α ρ, (6.27)

where

E
(
‖Hnorm‖2

F

)
=

∫ ∞

0

xf(x)dx , (6.28)

and d0
j,u is the distance from the AP at the fringe of the coverage area to the j-th relay.

For all the APs in the coverage area to be able to communicate at a minimum rate

Rmin, d
0
j,u has to be chosen carefully such that γ̄j will ensure that R(t) in (6.13) for all

APs hosted by the j-th relay is greater than Rmin, and meanwhile maximum SER is

kept under a predetermined threshold (to satisfy an extra initial SER QoS constraint).

The complicated expression in (6.13) does not provide any insight for determining d0
j,u

analytically, however numerical results can easily be obtained. To design the system

with some margin and also for the sake of a closed-form solution, we simply require

that at the fringe of each UAV’s coverage, the APs can communicate at the highest

constellation level that it is capable of transmitting at within a predetermined SER

level. That is

γ̄j =
2
[
Q−1

(
Pe
¯Ne(KL)

)]2
d2

min(K
L)

, (6.29)

according to (6.5), where N e(·) and dmin(·) are a function of the constellation numbers

respectively, and Pe is the maximum tolerable SER. The radius of coverage for j-th

relay is further determined as d0
j,u =

(
E(‖Hnorm‖2F )·ρ

γ̄j

) 1
2α

. We can futher evaluate

E (‖Hnorm‖2
F ) by using the PDF derived in (6.8). Note that in a fixed communication

environment, the expectation in (6.28) is a constant for each update interval.

Since the shape of the relay coverage area is assumed to be circular, for AP

to be served by a given relay, a necessary and sufficient condition is that the relay

is in the circular area with center at the position of the AP, and radius equal to

r0
j,u =

√(
d0

j,u

)2 − h2, where h is the altitude difference between the relay and the

AP under consideration. If a set of such circles is drawn for all the APs in the set

M, the ones that overlap can share one common UAV relay as shown in Fig. 6.6.
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Figure 6.6: Optimal UAV deployment for multiple unaccommodated APs.

The problem of determining the required number of UAVs to setup a network can

be converted to finding a grouping method such that the circles in each group jointly

intersect. It is simple to decide if two circles intersect, i.e. if the distance between the

two centers is smaller than the sum of the two radii, they have to intersect. However a

crude algorithm that determines the maximum number of circles that jointly intersect

involves an exhaustive search and is prohibitive when the number of circles is moder-

ately large. But some preprocessing can be done in this deployment to narrow down

the search space; e.g. APs that are too far from each other can be predetermined to

not be able to share a common relay. The possibly prohibitive search usually only

happen once at the beginning of the formation of the network, when only one UAV

is assumed in the air and there are possibly many APs that have not been accommo-

dated. After that, the dimension of a typical non-service list M is relatively small.

A smarter algorithm implemented in matlab code can be found in [148]. With the
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number of new relays and the lists of APs that can share relays decided, the positions

for each potential UAV relay need to be decided. Different optimization problems can

be used for this problem, such as the placement of relays can be targeting at max-

imizing the sum capacity of the APs they will host, or maximizing the sum rate of

the APs. Noting
∑n

j=1 log (1 + γ̄j) = log
(∏n

j=1 (1 + γ̄j)
)
≤ n · (log (1 +

∑n
j=1 γj/n)),

an ad hoc approach to maximize the sum capacity is to maximize the sum of av-

erage SNRs for each AP. Again, as illustrated in Fig. 6.6, the UAV should be put

in the shadowed area, and the exact position is calculated by solving the following

optimization problem:

arg max
xu,yu

l∑
j=1

E (‖Hj
norm‖2

F )

d
2αj

j,u (xu, yu, hj))

s.t. dj,u(xu, yu, hj) ≤ d0
j,u , (6.30)

where hj is the altitude difference between the relay and the j-th AP, and l is the

number of APs that can share one common relay. This optimization problem can

be efficiently solved by any gradient based technique. After the positions of newly

deployed relays are obtained, the handoff algorithm is run again to see if better links

can be created by switching the APs from their previous service provider to the new

relays.

One thing worth pointing out is that the QoS that is under consideration so far

is the ENTR. In other words, every AP’s minimum communication rate is guaranteed.

However the quality of this communication in terms of SER is not accounted for except

when a new UAV is deployed, only its coverage area considers the SER QoS. The

extension of all the algorithms presented above to handle SER QoS is straightforward.

By using the SER expression derived in (6.14), a one-to-one mapping between the link

SER and the average link SNR γ̄ can be created, at least numerically. A maximum

SER will give a minimum average SNR value (call it γ̄min) that allows the QoS to be

satisfied. With γ̄min generated, at every time update interval, the average received

SNR needs to be compared to this value for every AP. If an AP’s received SNR is

less than γ̄min, it will be put in the list M. In other words, the trigger for expanding
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the “non-service” list M are both the empty admissible region and a small average

received SNR. Other than this, every algorithm remains as described above.

Figure 6.7: Flowchart of the network protocol.

The above two sections discuss methods for acquiring optimal heading com-

mands for rate maximization and pose a few optimization problems for deploying

relays in the network. As shown in Fig. 6.7, the proposed protocol includes the

assignment of heading commands for each UAV in the current network, new UAV de-

ployment, and the handoff of the APs between different UAVs. In summary, first, for

each update time interval, a subnet creation is required (either through a clustering

algorithm at the initial time or using the handoff algorithm for the subsequent update

interval). As mentioned before, a subnet is defined as a star topology with one relay

(UAV) as the center node. The whole network is thus divided into several different

subnets. Each subnet then checks to see whether the APs within the subnet can be

hosted by their associated relay. If not, new UAV(s) needs to be deployed. With the

new UAV(s) added in, a handoff check is performed for every AP. The last step of
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each iteration is to re-generate a list of new subnets, and give the optimal heading

for each UAV. The base can follow this protocol to deploy and control mobile relays

to achieve a certain level of “optimal” network communication.

6.6 Simulation Results

Figure 6.8: Heading of UAV-1 in the network.

Simulation results for the proposed network protocol are shown in Fig. 6.8 ∼

Fig. 6.13. In the simulations, 10 APs are assumed to be moving on the ground with

random initial directions, and all APs move in a straight line. Each of the APs has 3

antennas and 2W transmit power, and they are all assumed to be moving at 10m/s.

To simplify the simulation, all the APs are assumed to have the same propagation

environment, i.e. α = 1.5, the number of scatterers in the environment is 40, and the
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Figure 6.9: Sum uplink transmission rate.

equivalent scattering radius is 100 λ. We consider a narrowband scenario where each

AP has a bandwidth of 20kHz. All the UAVs are assumed to have 2 antennas with

2λ separation and fly at a height of 3600m. UAVs fly at a speed of 50m/s with the

heading constraint ∆δ ≤ π
9
. The minimum transmission rate constraint is set to be

Ri,u ≥ 6.61× 104 bits/s. The update time interval is 0.5s, and the simulation is run

for 150s. The APs are randomly initialized to be positioned on the ground within a

2500m × 2500m square, and only one UAV is put into the system at [0 0 3600]T to

begin with. From the derivations above, it is clear that controlling the heading of the

UAVs will maximize the possible throughput. Therefore, the simulation results here

compare scenarios where no AP handoff is allowed to the scenarios where AP handoff

is implemented. Fig. 6.8 plots the instantaneous heading for UAV-1. As we can

see there is no sharp changes in the UAV’s heading between consecutive time slots,

thanks to the second constraint in (6.16) we apply in our optimization. As shown
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in Fig. 6.9, the total network throughput has similar behavior. The small wiggles

are due to the changes in the heading of the UAVs. During most of the simulation

time, the network with handoff capability gives higher throughput, however after

t ≈ 135s, the non-handoff network gives better results. This is due to the fact

that more UAVs are put into the network to boost the system performance. This

effect can be clearly seen in Fig. 6.10. Since no handoff is assumed, the red curve

Figure 6.10: Link 7 transmission rate.

representing the 7th AP’s transmission rate keeps going down, until it reaches the

lowest supportable transmission rate. To guarantee the QoS (the first constraint in

(6.16)), one more UAV needs to be added into the network, which happens to be

right on top of the 7th AP, which causes the sharp rate increase. However generally

speaking, the network with handoff will provide a better communication link for
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each AP as indicated in Fig. 6.11. The topologies of the non-handoff network and

the handoff-enabled network at a few stages of the network evolution are shown in

Fig. 6.12 and Fig. 6.13 respectively. The dots in the figures represent the positions

of the APs, and the stars stand for the positions of the UAVs.

Figure 6.11: Link 4 transmission rate.

As shown in Fig. 6.12(a) and Fig. 6.13(a), all the APs attempt to communicate

with the single UAV relay at the beginning. However, as we can see in Fig. 6.12(b)

and Fig. 6.13(b), due to the rate constraints, not all the APs can be hosted in this

case. Therefore one UAV is added to change the network topology. As one of the APs

moves farther and farther, the rate constraints can not be achieved, and this causes

one UAV to be added in right above it as shown in Fig. 6.12(b) and Fig. 6.12(c).

Another handoff happens in the network as the APs and UAVs move (Fig. 6.13(c)).
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(a) Initial network configuration (b) New UAV deployment

(c) Handoff during evolution (d) Final network topology

Figure 6.12: UAV network simulation without handoff algorithm.

The final network topology is plotted in Fig. 6.12(d) and Fig. 6.13(d). As we can

see, if handoffs are not allowed in the network, more UAVs need to be added in the

network in order to maintain a minimum communication rate for each link. Even

though the total network throughput can be increased due to the deployment of

more UAVs, precious UAV resources are wasted. The advantages of the proposed

protocol are two-fold. It considers the best position of the UAV deployment, so that

new UAVs are only added when necessary, as compared to the non-handoff network

scenario where UAVs are usually added just to support one AP. Moreover, by using

the sinusoidal approximation shown in the Appendix, the heading command given to

the UAV for each subnet is close to optimal.
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(a) Initial network configuration (b) New UAV deployment

(c) Handoff during evolution (d) Final network topology

Figure 6.13: UAV network simulation with handoff algorithm implemented.

6.7 Summary

In this chapter, we have derived expressions for the SNR and the ENTR for

each AP-UAV link with adaptive modulation. A sinusoidal approximation has been

derived to approximate the single link data rate. We have examined a network with

a star topology, and proposed a method that finds the optimal heading of a UAV to

achieve the highest overall data rate in an uplink multi-user system. Furthermore, a

more complicated scenario has been considered where new UAVs need to be added

into the network to achieve the system requirement. A handoff algorithm has been

proposed to deal with subnet switching with the heading constraint imposed. A few

optimization problems have been posed to solve UAV deployment problems.
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Further work can be done to make the presented protocol more practical,

including modifying the assumptions, solving the optimization problems more effi-

ciently, and imposing more constraints, etc. The chapter assumes unlimited band-

width resources are available at the relays. This is justifiable when the number of

APs is not too large and each of them does not individually require too much band-

width. If limited bandwidth has to be considered, it is possible that when assigning

APs, some kind of load balancing measure needs to be part of the cost metric in the

optimization formulation. When polarized antennas are installed on the relays, larger

capacity can be achieved and a different channel model might be more accurate in

characterizing the correlation between the UAV’s antennas. For some of the posed

optimization problems, more elegant solutions need to be formed to reduce the com-

putational cost. An additional issue worth considering is how the UAVs reach their

deployment locations. We propose a method to obtain a set of coordinates for the

relays, but how they reach those positions remains unexplored. A possible constraint

that requires the initial deployment location to be within a certain distance from air

base is feasible in controlling the network setup time. In addition, there are other

aspects to improve the quality of the communication that are worth considering, e.g.

trajectory design for the relays, battery consumptions of the relays, AP movement

prediction, etc., to name a few.
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Chapter 7

Conclusions and Future work

7.1 Summary of the Dissertation

The past century has seen tremendous advances in wireless technologies. The

penetration of these technologies into human society has brought significant conve-

nience into our life, including: cellular telephony, broadband access, bluetooth, etc.

They have changed and continue changing the way we perceive and process infor-

mation from the world. These smart point-to-point link-level signaling strategies

create communication networks, which bring together people that are far apart. As

the demand for higher data rate applications (e.g. multimedia services, wireless in-

ternet access, etc.) increase and the number of data service subscribers burgeons,

the throughput of wireless networks needs to be expanded. Radio resources such as

transmit power, bandwidth, etc., are scarce. But fortunately, by carefully manipulat-

ing these limited resources, network throughput can be further improved to support

higher quality of service and larger number of users. This dissertation focuses on

different ways to optimize the performance of the network, be it cellular networks or

relay networks.

Inspired by the ability of an opportunistic scheduler to provide higher data

rates, the first part of the dissertation is concerned with the performance of the

Max-SNR scheduler. Different from most of the work in the literature where ideal

assumptions on the communication systems are made to evaluate throughput, some

practical issues that may be encountered when implementing a real system are mod-

eled and addressed to derive a reasonably realistic metric for network performance.

A simple exponential BER model is developed for the system with a turbo encoding

block. With the help of this model, multiuser diversity gain is studied in a more
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thorough way. Simulations are shown to quantify the loss due to the impossibility of

achieving the ideal system assumptions.

Still concerned with the performance of a Max-SNR scheduler, the second part

of the dissertation is dedicated to the analysis of an asymmetric network, where users

have large disparities in their velocities and average SNR. Distinct from most papers

that address the performance of a proportional fair scheduler, analytical results that

characterize the multiuser diversity gain of the Max-SNR scheduler in this setup are

presented in the dissertation. When a mobile base station is deployed, or the users

have great mobility, Doppler effects are predominant. If the luxury of keeping track

of the channel cannot be afforded, channel knowledge will be outdated and decoding

with inaccurate channel information will lead to an error floor in system performance.

In these scenarios, the slot duration should be designed with the Doppler effect taken

into account. In other words, if channel tracking is not frequent, the slot duration

allocated to each user should not be too long. Given a certain fixed slot duration,

and when channel knowledge is only assumed at the scheduling time, the Max-SNR

scheduler may not be the optimal solution. A statistical channel-aware scheduler is

proposed to select users based on relatively long term channel statistics, i.e. average

SNR and Doppler spreads.

The last part of the dissertation studies a tactical communication scenario in-

volving UAV-aided communication networks. For difficult environments where fixed

infrastructure is not available or direct links are obstructed, relays can be deployed

to help support cooperative communications. Due to their relatively low cost, simple

operability, etc., UAVs are usually good candidates to act as mobile relays. Tra-

jectory design has to be considered for these UAVs, specifically how to determine

heading commands for each UAV to accomplish their relay mission. The UAV dy-

namics impose certain constraints on their mobility, which further defines the range

within which UAVs can move within a given amount of time. For reliable communi-

cation to be possible, a certain grade of QoS needs to be guaranteed, e.g. minimum

communication rate, probability of symbol error rate, etc. The optimal UAV motion

control problem is solved in the dissertation by maximizing the network transmission
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rate under the dynamics constraint and the minimum QoS constraints. A hierarchical

star topology with each UAV as the center node serving a group of access points is

assumed. Different sub-networks are defined and as the ground nodes and UAV relays

move, the topology of the sub-network will change. As the network evolves, ground

nodes may need to switch to other sub-network for better reception and transmis-

sion. Hence, the handoff problem is discussed under the same set of constraints as

above. When the current set of UAV relays is not enough to support all the users

on the ground, more relays need to be deployed. The optimal deployment problem is

addressed in the dissertation by posing another optimization problem.

7.2 Possible Future Work

Wireless communication network is an area with abundant possibilities for

research ideas. Extensions can be easily made to the results achieved in this dis-

sertation. The most straightforward extension of the realistic multiuser scheduler

performance study is to drop the SISO assumption. The use of multiple transmit

antennas in wireless networks has gained considerable attention, so consideration of

the effect of multiple antennas on multiuser diversity gain under the realistic assump-

tions is certainly of interest. When a MIMO system is under consideration, various

transmission schemes are possible, including beamforming, spatial multiplexing, etc.

The specific transmission technique that is chosen will affect the performance of the

network and the multiuser diversity gain. It will be interesting to find an unifying

approach independent of the transmission strategy to study the multiuser diversity

gain for multiple MIMO users with practical impairments accounted for. Besides,

as mentioned in Chapter 4, the extension of the analysis to handle the proportional

fair scheduler in an asymmetric network is also a promising research topic for future

work.

In addition to the aforementioned extensions, there are other aspects of the

system that need more inspection, such as nonlinearity of the power amplifier, IQ

imbalance and Local Oscillator (LO) phase noise, to name a few. One of the RF

system specifications to measure the overall quality of transmission is called Error
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Vector Magnitude (EVM) and its relationship with IQ imbalance and LO phase noise

have been derived in [149]. Further investigations can be found in [150, 151, 152,

153, 154, 155]. According to the literature above, the gain/phase imbalance and

phase noise effects can be modeled as the transmitted signals being multiplied by a

matrix and then offset by a dc vector before being broadcast into wireless channels.

The estimates of this matrix and vector will further increase the uncertainty of the

composite transfer function of the system, which would first of all impact the link

performance for a single user system and then affect the throughput of a network

with a scheduler making decisions based on the estimated channel knowledge. The

extension of the EVM calculation methods to MIMO system itself is an interesting

research topic. In addition to that, any multiuser system analysis addressing these

EVM causing effects would push the results closer to reality.

The Doppler effect is always of considerable importance when users with

high mobility are present in the network. The large velocities will complicate the

transceiver design in the sense that 1) carrier offset has to be compensated for, 2)

inter-carrier Interference will be present in multicarrier communication, and 3) train-

ing and channel tracking need to be performed more frequently. A faster channel

varying rate outdates the channel knowledge more quickly, and reduces the realizable

channel capacity. Besides its degradation in point-to-point link throughput, it will

also cause the scheduler to make decisions based on information that does not truly

reflect the user’s channel behavior for the scheduled time slot. Thus there is addi-

tional network capacity loss due to mis-scheduling. This dissertation only considers

a network with SISO users. A similar analysis can be carried out for the MIMO case.

In my research work, the evolution of the channel is assumed to follow a Markov pro-

cess, and the channel decorrelation with regard to time is captured by Jakes model.

More realistic channel measurements or other models can be considered to obtain

more practical results. The performance of SCA scheduler should be studied more,

due to its convenience of not requiring the users’ instantaneous channel knowledge.

Better yet, when the users’ channel knowledge is available, long term channel statis-

tics should also be taken into account when deciding the user to serve. Typically,
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when the number of the users is large enough, the study of asymptotic behavior of

the scheduler can be justified. Asymptotic analysis on the multiuser diversity can be

found in the literature, but extending that analysis to account for the design of the

scheduler in systems with large Doppler effects can still be explored.

The work presented on UAV-assisted networks gives a way to optimally de-

termine the trajectory of the mobile relays. However, the heading command is based

on knowledge of the instantaneous positions of both UAVs and ground nodes, as well

as the ability to constantly change UAVs’ heading. If these assumptions cannot be

justified, and the UAVs can only be constrained to fly in simple patterns like circles or

ellipses, the design of optimal trajectories for mobile relay deployment must be modi-

fied. To be more specific, it would be necessary to find optimal design parameters for

the motion pattern of the mobile relays, such as the center, radius, and orientation

of the trajectory. The expressions for the Shannon capacity and probability of a user

being selected when relays are at at each point on the trajectory would need to be

derived and verified. Possible objective functions and constraint functions based on

these expressions should be created. By optimizing the objective functions subject to

the constraints, optimal deployment can be accomplished. Some preliminary studies

have been started on this idea and results obtained are shown in the following few

paragraphs.

We are interested in the applications where a Max-SNR scheduler is imple-

mented on the UAVs, and optimal trajectory design of the UAVs to maximize net-

work throughput is the focus. To simplify the problem, we first start with a Rayleigh

fading assumption, although each user can have a different average receive SNR. In

other words, an asymmetric network is considered in this problem. When the relay

is moving in its constrained circular flying pattern, each user’s receive SNR changes

accordingly. When the max-SNR scheduler is used, the system’s Shannon capacity

can be shown to be:

CK = log2 e ·
K∑

j=1

1∑
lj=0

e
PK

j=1

lj
γ̄j · E1

{
K∑

j=1

lj
γ̄j

}
, (7.1)
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Figure 7.1: System Shannon capacity when BTS is flying in a circle pattern.

where K is the number of the users in the network, and γ̄j is the average receive SNR

per user. The probability of the j-th user being scheduled is:

Prob(user j) =
∑
i6=j

1∑
li=0

(−1)
P

i6=j li

1 +
∑

i6=j lj ·
γj

γi

. (7.2)

Simulation plots in Fig. 7.1 and Fig. 7.2 validate the above claims. In this

simulation, 5 users locations are randomly generated and assumed fixed after cre-

ation. The mobile relay is flying in a circle centered at position [0 0 10000]T m, with

a turning radius of 2000m. At each point of the trajectory, a Monte-Carlo simulation

is performed to measure average Shannon capacity and user selection probability. As

can be clearly seen in 7.1, there is a point on the trajectory that achieves maximum

Shannon capacity, and due to the time-varying average receive SNR, the probability

of a specific user being scheduled varies considerably. Hence, if the BTS is not con-

strained to fly in a certain pattern, it is obvious that an optimal heading command
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Figure 7.2: Probability of a specific user being scheduled when base station is flying
in a circle pattern.

can be obtained for each time instant. However, if the BTS has to fly in a pattern, the

average Shannon capacity over the trajectory can be evaluated by integrating (7.1)

over the trajectory. By the same reasoning, the probability of a specific user being

scheduled can also be obtained by integrating (7.2). The difference between different

patterns lies only in the integration path. Since the control parameters (radius, center

location for the circle case; axis lengths, center location and orientation angle for the

elliptical case) affect the trajectory integration path, the optimization problem can

be solved to obtain them. Different cost functions can be used depending on the goal

of the deployment. For example if the idea is simply to maximize capacity, average

Shannon capacity can be used as the objective function; however, to guarantee a

certain fairness in the system, we can maximize the same average Shannon capacity

objective function subject to the constraint that the variance of the probability of
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each user being scheduled is less than a threshold. Of course, if a Rician channel is

assumed, the whole problem presented above has a different set of solutions.

In addition, antenna designs for multiple element arrays on UAVs is an area

worth of pursuing, since due to the small angular spread observed at the UAV side,

high spatial correlation is usually present. Polarized antennas can be deployed for

the MIMO setup to achieve more capacity and reliability. Clustering algorithms

that automatically group nodes together to form smaller network entities and routing

algorithms that propagate messages without generating too much delay and overhead

can also be investigated in UAV-assisted mobile networks.
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Appendix A

Derivation for Correctly Supported Spectral Efficiency

A.1 Derivation of PCSI Spectral Efficiency

The spectral efficiency for the PCSI case can be derived as follows:

T̄ = E (Cj(1− PER(j)) · 1 (γj ≤ γ < γj+1))

=
N∑

j=0

Cj

∫ γj+1

γj

(1− PER(j)) · fγmax(γ)dγ

=
N−1∑
j=0

Cj (Fγmax(Uj)− Fγmax(Lj)) + CN · (1− Fγmax(LN))

−
N−1∑
j=0

Cj

K∑
l=0

Jl · ebj ·γT,j ·Wj,l

(
e
−

Uj
Wj,l − e

−
Lj

Wj,l

)

+ CN

K∑
l=0

Jl · ebj ·γT,j ·WN,le
− LN

WN,l , (A.1)

where

Jl ≡ (−1)l+1 l

γ̄

 K

l


and

Wj,l ≡
1

bj + l
γ̄

.

A.2 Derivation of ICSI-PEFD Spectral Efficiency

If we recall (4.12), two integrals need to be calculated to evaluate the spectral

efficiency, i.e.
∫ γj+1

γj
fγ̂max(γh)·P̃SR(j)·dγh when 0 ≤ j ≤ N−1, and

∫∞
γN
fγ̂max(γh)P̃SR(N)·
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dγh otherwise. Let’s define:

F (a, b, c) ≡
∫ a

0

e−xQ1

(√
bx, c

)
dx . (A.2)

According to [134], the Marcum Q function can be expanded as:

Q1

(√
bx, c

)
=

∞∑
n=0

e−
bx
2

1

n!

(
bx

2

)n n−1∑
k=0

e−
c2

2
1

k!

(
c2

2

)k

. (A.3)

We have:

F (a, b, c) =
∞∑

n=0

mn(
1 + b

2

)n+1 ΓInc

(
a

(
1 +

b

2

)
, n+ 1

)
, (A.4)

where

mn =

(
b

2

)n
{

n∑
k=0

e−
c2

2 · 1

k!
·
(
c2

2

)k
}
,

ΓInc(a, n) =

∫ a

0

e−t · tn−1

Γ(n)
dt

is the incomplete Gamma function, and

Γ(n) =

∫ ∞

0

e−t · tn−1dt .

Using (A.4), the first integral is expressed in closed form as follows:

∫ γj+1

γj

fγ̂max(γh) · P̃SR(j) · dγh =
K∑

l=0

(−1)l+1

 K

l

{[F ( l · γj+1

γ̄h

,
p1,j

l
, q1,j

)

− F

(
l · γj

γ̄h

,
p1,j

l
, q1,j

)]
− tj

[
F

(
l · γj+1

γ̄h

,
p2,j

l
, q2,j

)
− F

(
l · γj

γ̄h

,
p2,j

l
, q2,j

)]}
.(A.5)

Now we define:

G(a, b, c) ≡
∫ ∞

a

e−x ·Q
(√

bx, c
)
· dx . (A.6)
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Using similar reasoning, and the same definition for mn, we have:

G(a, b, c) =
∞∑

n=0

mn(
1 + b

2

)n+1 ΓC
Inc

(
a

(
1 +

b

2

)
, n+ 1

)
, (A.7)

where

ΓC
Inc(a, n) =

∫ ∞

a

e−t · tn−1

Γ(n)
dt

is the tail of the incomplete Gamma function. With the above definitions, after some

mathematical simplification, the second integral can be expressed as:

∫ ∞

γN

fγ̂max(γh)P̃SR(N)dγh =
K∑

l=0

(−1)l+1

 K

l

 ·
[
G

(
lγN

γ̄h

,
p1,N

l
, q1,N

)
(A.8)

− tN ·G
(
lγN

γ̄h

,
p2,N

l
, q2,N

)]
.

A.3 Derivation of ICSI-EQFS Spectral Efficiency

Recalling (4.17), we can write:

E {(1− PER(j, γg, γh, γ̂h)) · 1(γj ≤ γ̂h < γj+1)}

=

∫ ∞

0

∫ ∞

0

P̃SR(j, γh) · 1(γj ≤ γ̂h < γj+1)fγh,γ̂h
(γh, γ̂h)dγhdγ̂h . (A.9)

After some tedious mathematical simplifications, we have:

E {(1− PER(j, γg, γh, γ̂h)) · 1(γj ≤ γ̂h < γj+1)}

=
K∑

l=0

(−1)l+1 l

γ̄h

 K

l

∫ γ′j+1

γ′j

P̃SR(j, γh) · e
− lγh

γ̂h dγh

=
K∑

l=0

(−1)l+1l

 K

l

∫ γ′j+1
γ̄h

γ′
j

γ̄h

P̃SR(j, β) · e−lβdβ , (A.10)
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where β = |h|2
Ωh

, γ′j and γ′j+1 are defined as follows. Let γ̂j denote the smallest quantized

value that is greater than or equal to γj, and γ̂j+1 denote the largest quantized value

that is smaller than or equal to γj+1. Then γ′j is defined as the lower bound of the

quantization range for γ̂j, and γ′j+1 is defined as the upper bound of the quantization

range for γ̂j+1. If we recall (A.5), when j 6= N , we have:

E {(1− PER(j, γg, γh, γ̂h)) · 1(γj ≤ γ̂h < γj+1)} (A.11)

=
K∑

l=0

(−1)l+1

 K

l

 ·
{[

F

(
l · γ′j+1

γ̄h

,
p1,j

l
, q1,j

)
− F

(
l · γ′j
γ̄h

,
p1,j

l
, q1,j

)]

− tj

[
F

(
l · γ′j+1

γ̄h

,
p2,j

l
, q2,j

)
− F

(
l · γ′j
γ̄h

,
p2,j

l
, q2,j

)]}
.

Recall (A.8), when j = N , we have:

E {(1− PER(N, γg, γh, γ̂h)) · 1(γN ≤ γ̂h <∞)} (A.12)

=
K∑

l=0

(−1)l+1

 K

l

 ·
[
G

(
lγ′N
γ̄h

,
p1,N

l
, q1,N

)
− tN ·G

(
lγ′N
γ̄h

,
p2,N

l
, q2,N

)]
.
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Appendix B

Derivations for the Shannon Capacity of a MUD System

B.1 Shannon Capacity for the Max-SNR Scheduler with Channel Track-
ing for the Scheduled User

In order to calculate (5.10), Cj|hj(0)(t) needs to be evaluated:

Cj|hj(0)(t) =

∫ ∞

0

log2 (1 + x) · fγj(t)|hj(0)(x) · dx

= log2(e) ·
∫ ∞

0

1

1 + x
· Q1(

sj(t)

σj(t)
,

√
x

σj(t)
) · dx . (B.1)

According to [134], we have:

Q1(
s

σ
,

√
x

σ
) =

∞∑
n=0

e−
s2

2σ2 ·
( s2

2σ2 )
n

n!
·

n∑
k=0

e−
x

2σ2 ·
( x

2σ2 )
k

k!
. (B.2)

Plugging (B.2) in (B.1), Cj|hj(0)(t) can be written out explicitly as:

Cj|hj(0)(t) = log2 e ·
∞∑

n=0

e
−

s2j (t)

2σ2
j
(t) ·

(
s2
j (t)

2σ2
j (t)

)n

n!
·

n∑
k=0

F (αj(t), k) . (B.3)

Let us define:

Cj(t) =

∫ ∞

0

Cj|hj(0)(t)pηj(0),j(x, j, t = 0)dx . (B.4)
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By substituting (B.3) in the integral of (B.4), we have:

Cj(t) =
log2(e)

γj(0)

K∑
i=1,i6=j

1∑
li=0

(−1)
PK

i=1,i6=j li × (B.5)

∞∑
n=0

(btj(0))n

(
∑K

i=1,i6=j
li

γi(0)
+ 1

γj(0)
+ btj(0))n+1

n∑
k=0

F (αj(t), k) .

With (B.5) obtained above, some algebraic simplifications will lead to (5.10).

B.2 Shannon Capacity for the Max-SNR Scheduler without Channel
Tracking for the Scheduled User

If we recall (5.8), and the Shannon capacity of the system can be expressed

as:

C(t) =
K∑

j=1

∫ ∞

0

log2 (1 + φj(t)x)pγ,j(x, j, t = 0)dx

=
K∑

j=1

∫ ∞

0

∂log2 (1 + φj(t)x)

∂x
· CCDF(x, j)dx

= log2 e
K∑

j=1

∫ ∞

0

φj(t)

1 + φj(t)x
· CCDF(x, j)dx , (B.6)

where CCDF(x, j) is the Complementary Cumulative Distribution Function, and is

defined as:

CCDF(x, j) =

∫ ∞

x

pγ,j(y, j, t = 0)dy . (B.7)

After some mathematical manipulations, we have:

CCDF(x, j) =
1

γj(0)

K∑
i6=j,i=1

1∑
li=0

(−1)
PK

i=0 li
1

1

γj(0)
+
∑K

i6=j,i=1
li

γi(0)

e
−

»
1

γj(0)
+

PK
i6=j,i=1

li
γi(0)

–
x
.

(B.8)

Plugging (B.8) in (B.6), by changing the integration variable, (5.13) is obtained.
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B.3 Monotonicity of exE1(x)

The monotonicity of exE1(x) can be shown by taking the derivative of it with

respect to x as follows:

∂[exE1(x)]

∂x
= exE1(x) + ex∂E1(x)

∂x
. (B.9)

If we recall the definition of E1(x) in Section 5.2.1, by changing the integration vari-

able, E1(x) can be rewritten as:

E1(x) =

∫ ∞

1

e−tx

t
dt . (B.10)

Plugging (B.10) in (B.9), we have:

∂[exE1(x)]

∂x
= exE1(x) + ex

∫ ∞

1

1

t
(−t)e−xtdt

= ex

∫ ∞

1

1

t
(1− t)e−xtdt < 0 . (B.11)

The inequality in (B.9) is due to the fact that the limit of the integration variable

suggests t ≥ 1. Hence in the range over which integration is performed, the integrand

is always less than or equal to 0.

B.4 Shannon Capacity for SCA Schedulers

SCA schedulers select users according to their long term channel statistics

regardless how good their instantaneous channel conditions are. Hence, if user j is

selected, the Shannon capacity of the system can be written as:

Cj(t) = E (log2 (1 + φj(t)ηj(0)))

=

∫ ∞

0

log2 (1 + φj(t)x)
1

γj(0)
e
− x

γj(0)dx . (B.12)
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The Rayleigh assumption on each user’s channel magnitude infers that each user’s

SNR has an exponential distribution, therefore leads to the above equality. The

CCDF of j-th user’s SNR can be easily shown as CCDF(x, j) = e
− x

γj(0) . (B.12) can

be reorganized as follows:

Cj(t) = E (log2 (1 + φj(t)ηj(0)))

=

∫ ∞

0

∂log2 (1 + φj(t)x)

∂x
e
− x

γj(0)dx

= log2 e

∫ ∞

0

φj(t)

1 + φj(t)x
e
− x

γj(0)dx . (B.13)

By letting y = 1 + φj(t)x, the above integral is equivalent to:

Cj(t) = log2 e

∫ ∞

1

φj(t)

y
e
− y−1

φj(t)γj(0)
dy

φj(t)
. (B.14)

Let z = y

φj(t)γj(0)
, Cj(t) can be further simplified as:

Cj(t) = log2 e× e
1

φj(t)γj(0)

∫ ∞

1

φj(t)γj(0)

1

z
e−zdz

= log2 e× e
1

φj(t)γj(0)E1

(
1

φj(t)γj(0)

)
. (B.15)

Plugging (5.12) in (B.15), (5.20) can be derived.

B.5 Shannon Capacity for the Quasi PF Scheduler with Channel Tracking
for the Scheduled User

The Shannon capacity under this assumption can be obtained in a similar

manner as Section B.1

C(t) =
K∑

j=1

∫ ∞

0

Cj|hj(0)(t)p(zj is max, zj = x)dx , (B.16)
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where zj = γj(0)/γj(0) is the normalized instantaneous SNR of the j-th user, and

therefore is a function of hj(0). Cj|hj(0)(t) under this assumption has already been

evaluated in (B.3). Plugging (B.3) and (5.14) in (B.16), we have:

C(t) = log2 e×
K∑

j=1

{
∞∑

n=0

1

n!

(∫ ∞

0

(
bjγj(0)

)n

xne−bjγj(0)xe−x
(
1− e−x

)K−1
dx

)
·

n∑
m=0

F (αj,m)

}

= log2 e

K∑
j=1

∞∑
n=0

1

n!

K−1∑
l=0

 K − 1

l

 (−1)l
n!βn

j

(βj + l + 1)n+1

n∑
m=0

F (αj,m) , (B.17)

where βj = bjγj(0) and the integration in the bracket is evaluated using binomial

expansion. Reorganizing the terms in the above equation yields (5.18).

B.6 Shannon Capacity for the Quasi PF Scheduler without Channel Track-
ing for the Scheduled User

If we recall (5.11), we know when the scheduled user is not tracking its own

channel for decoding purpose, its SNR at any time t within coherence time is in

proportion to its SNR at time t = 0. A revisit of (5.15) gives us:

C(t) =
K∑

j=1

E {1 + γj(t)}

=
K∑

j=1

∫ ∞

0

log2

(
1 + φj(t)γj(0)x

)
e−x

(
1− e−x

)K−1
dx . (B.18)

A close observation reveals that (B.18) resembles (5.15) with the only difference that

γj is replaced with φj(t)γj(0). Therefore (5.19) can be readily obtained from (5.16)

by replacing γj with φj(t)γj(0).
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Appendix C

Derivation for Link Performance and Channel Norm CDF

C.1 Link Level SER Analysis

This section is dedicated to the derivation of the SER analysis at the link

level. Once the error analysis for each link has been performed, the SER of the whole

system can be calculated.

C.1.1 Closed Form SER Expression

The SER can be expressed as in (C.1):

Ps =
N−1∑
i=1

∫ Ci+1(t)

Ci(t)

N e(i) ·Q(

√
xρd2

min(i)

2
)f(x)dx

+

∫ ∞

CN (t)

N e(N) ·Q(

√
xρd2

min(i)

2
)f(x)dx . (C.1)

In [156], an alternative definite integral form for the Gaussian Q-function is given as

Q(x) =
1

π

∫ π
2

0

exp

(
− x2

2sin2θ

)
dθ, x ≥ 0. (C.2)

Using this alternative form and interchanging the order of the integrations, the SER

can be rewritten as in (C.3). Recalling the definition in (6.9), it is straightforward to

173



derive the SER expression given in (6.14):

Ps =
1

π
(
N−1∑
i=1

∫ π
2

0

∫ Ci+1(t)

Ci(t)

N e(i) · exp(−xρd
2
min(i)

4sin2θ
)f(x)dx · dθ

+

∫ π
2

0

∫ ∞

CN (t)

N e(N) · exp(−xρd
2
min(i)

4sin2θ
)f(x)dx · dθ) . (C.3)

C.1.2 SER Upper Bound

In order to relieve the computational burden when evaluating (6.14), an upper

bound for the SER is derived by resorting to the results of [157]. In Chiani’s work,

an improved exponential bound for the Q function is given as:

Q(x) ≤ 1

2

N∑
i=1

aiexp(−bix
2

2
), (C.4)

where

ai =
2(θi − θi−1)

π
(C.5)

and

bi =
1

sin2θi

. (C.6)

Note that this bound is much better than the popular Chernoff bound. After some

manipulation, the upper bound for the SER is found to be given by:

Ps ≤
N−1∑
i=1

N e(i)

2

p∑
j=1

mj∑
k=1

Q∑
n=1

anAjk

σk
j

[g(k − 1,−(
bnρd

2
min(N)

4
+

1

σj

), Ci+1(t))

−g(k − 1,−(
bnρd

2
min(N)

4
+

1

σj

), Ci(t))]

−N e(N)

2

p∑
j=1

mj∑
k=1

Q∑
n=1

anAjk

σk
j

g(k − 1,−(
bnρd

2
min(N)

4
+

1

σj

), CN(t)) . (C.7)

As we can see in Fig. 6.2, when N increases, the SER bound closely approaches the

theoretical value.
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C.2 Approximation of F (y) and the Rate R(t)

In this section, we show that the CDF of the Frobenius norm of the channel,

F (y), can be approximated by a sinusoid under certain assumptions. Let us assume a

one ring model scenario [140] (i.e., the APs are surrounded by the effective scatterers

on a ring, and the UAV has no scatterers around it), and a Kronecker structure

for the channel correlation matrix (6.4). Under such assumptions, the channel is

ill-conditioned with only one dominant eigen-mode. Assuming there is no spatial

correlation at the APs, the channel correlation matrix Rk
H between the UAV and the

kth AP has only one distinct non-zero eigenvalue σ with multiplicity m, where m is

the number of antennas at the AP side. Therefore, the Laplace transform of the pdf

of ‖Hnorm‖2
F can be expressed as

ψ(s) =
1

(1 + σ)m
, (C.8)

and the CDF can be written as

F (y) =

(
1−

m−1∑
i=0

( y
σ
)i

i!
e−

y
σ

)
u(y). (C.9)

Now assume that at time t − 1 the UAV is at position (xt−1
u , yt−1

u , hu), and

at the next time t, the kth AP is at (xt
k, y

t
k, 0). Recall Ci = γi

ρk
d2αk

k , and d2
k =

(xt
u − xt

k)
2 + (yt

u − yt
k)

2 + h2
u as described in Section 6.2 and Section 6.3 respectively.

By plugging the constant speed model (6.15) into these expressions, we obtain

Ci = Ki

(
1 +

2rk

Lk

cos(δ − θ0
k)

)α

,
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where

Ki =
γi

ρk

Lαk
k ,

Lk = (xt−1
u − xt

k)
2 + (yt−1

u − yt
k)

2 + h2
u + V 2∆2 ,

rk =
√

(xt−1
u − xt

k)
2 + (yt−1

u − yt
k)

2 V∆ ,

and

θ0
k = arctan

yt−1
u − yt

k

xt−1
u − xt

k

. (C.10)

Consider a function f(x) = ek(1+x)α
, where k and α are both constants. When

x is small, linearizing f(x) around x = 0 using the Taylor expansion, we have f(x) ≈

ek + αkekx. Therefore

e−
y
σ = e−

Ci

σ ≈ e−
Ki

σ − αk
Ki

σ
e−

Ki

σ
2rk

Lk

cos(δ − θ0
k), (C.11)

and

y

σ
=
Ci

σ
≈ Ki

σ
+
αKi

σ

2rk

Lk

cos(δ − θ0
k). (C.12)

Let us define a = Ki

σ
, b = αk

Ki

σ
cos(δ − θ0

k), q = 2rk

Lk
, c = e−

Ki

σ , d =

αKi

σ
e−

Ki

σ cos(δ − θ0
k). If we recall the binomial expansion theorem, we have:

(a+ b)n =
n∑

j=0

 n

j

 ajbn−j . (C.13)

Note that in most of the scenarios we consider, L >> 2rk and therefore q is close to

0. In such scenarios, each term in (C.9) can be written as

1

i!

(y
σ

)i

e−
y
σ ≈ 1

i!
(a+ bq)i(c− dq)

=
1

i!

(
i∑

j=0

Cj
i a

kbi−jqi−j

)
(c− dq) . (C.14)
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Since q is a number close to zero, any terms involving q with higher than second order

can be neglected. Hence

1

i!

(y
σ

)i

e−
y
σ ≈ 1

i!

(
ai + iai−1bq

)
(c− dq)

≈ 1

i!

[
aic+ ai−1(ibc− ad)q

]
≈ p1 + p2 cos(δ − θ0

i ), (C.15)

where p1 = 1
i!

(aic) and p2 = 1
i!
αaicq(i− a).

The above derivation shows that each term in (C.9) is a sinusoid of the same

frequency with some DC offset. Therefore, the sum of these terms is also a sinusoid

with the same frequency but a different DC offset and phase. Note that the above

analysis can be easily extended to the case where the channel has more than one

dominant eigen-mode.

For the kth AP, the CDF of the channel’s Frobenius norm using the ith mod-

ulation scheme can be written as

Fk(i) = Qk,i
1 +Qk,i

2 cos(δ − θ0
k) , (C.16)

where Qk,i
1 = 1−

∑L
j=1

∑mj

k=1Ajk

∑k−1
i=0 P

i
1 and Qk,i

2 = −
∑L

j=1

∑mj

k=1Ajk

∑k−1
i=0 P

i
2. The

overall rate of AP k can be obtained using (6.13):

Rk = βk(Akcos(δ − θ0
k) + Ck) , (C.17)

where Ck =
∑L−1

i=1 log2K
i · (Qk,i+1

1 − Qk,i
1 ) + log2K

L − log2K
L · Qk,L

1 and Ak =∑L−1
i=1 log2K

i · (Qk,i+1
2 −Qk,i

2 )− log2K
L ·Qk,L

2 . If no extra constraint is superimposed
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on UAV’s heading change, the sum rate of the system can be written as

RT =
K∑

k=1

Rk = r cos (δ − θ) + C ,

r =

√√√√(
K∑

k=1

βkAk cos θ0
k)

2 + (
K∑

k=1

βkAk sin θ0
k)

2 ,

θ = arctan

∑K
k=1 βkAk sin θ0

k∑K
k=1 βkAk cos θ0

k

,

and

C =
K∑

k=1

βkCk . (C.18)
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