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ABSTRACT

ANALYSIS AND IMPLEMENTATION OF HIGH-ORDER
COMPACT FINITE DIFFERENCE SCHEMES

Jonathan Tyler

Department of Mathematics

Master of Science

The derivation of centered compact schemes at interior and boundary grid points

is performed and an analysis of stability and computational efficiency is given. Com-

pact schemes are high order implicit methods for numerical solutions of initial and/or

boundary value problems modeled by differential equations. These schemes gener-

ally require smaller stencils than the traditional explicit finite difference counter-

parts. To avoid numerical instabilities at and near boundaries and in regions of

mesh non-uniformity, a numerical filtering technique is employed. Experiments for

non-stationary linear problems (convection, heat conduction) and also for nonlinear

problems (Burgers’ and KdV equations) were performed. The compact solvers were

combined with Euler and fourth-order Runge-Kutta time differencing. In most cases,

the order of convergence of the numerical solution to the exact solution was the same

as the formal order of accuracy of the compact schemes employed.
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1 Introduction

Efficient and accurate numerical methods for generating numerical approximations of

initial and/or boundary value problems (IVBP) modeled by differential equations ap-

pearing in the sciences and engineering has been a goal of mathematicians, engineers,

physicists, and other scientists for decades. In the last fifty years, three approaches

have dominated the numerical approximations: finite difference, finite element, and

integral equation methods. From the 1950s to the 1980s, finite difference methods

were widely popular and saw much theoretical development and application. In more

recent years, the finite element methods have gained considerable popularity. How-

ever, the finite difference approach still remains as a fundamental technique in many

commercial computer-aided engineering (CAE) software in diverse physical fields such

as geophysics, electro-magnetics, and fluid mechanics.

Numerical schemes based of first and second order explicit or implicit finite differ-

ence schemes are commonly used because their implementation is relatively simple.

For example, a typical explicit finite difference scheme to approximate the first deriva-

tive is the centered scheme given by φ′

i ≈
φi+1 − φi−1

2h
, i = 0,±1,±2, . . . , where h is

the step size of a uniform partition of the domain of φ. The local truncation error,

or the measure by which the differencing formula approximates the first derivative, is

τi = −1

6
h2φ′′′

i+ξ, where ξ ∈ (i, i+ 1). Assuming that φ′′′ is bounded, the local trunca-

tion error approaches zero at the same rate that h2 approaches zero, when h→ 0. It

is simply said that the local truncation error is of order h2, which is denoted by the

symbols O(h2).

Implicit methods increase the complexity of the algorithm since they require ma-

trix inversion but are still relatively uncomplicated. Better approximations can be

obtained by increasing the order of the truncation error of the finite difference scheme.

This is commonly accomplished by including more points in the stencil of the numer-

ical schemes. As an example, consider an explicit centered finite difference formula
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with a five point stencil approximating the first derivative,

φ′

i ≈
φi−2 − 8φi−1 + 8φi+1 − φi+2

12h
, (1.1)

which has a local truncation error of O(h4) given by

τi = − 1

30
h4φ

(5)
i+ξ. (1.2)

The smaller truncation error is more advantageous, but it requires a larger stencil as

shown in Figure 1.

i i+1i-1 i+2i-2Φ

Figure 1: Stencil for (1.1)

A disadvantage of this approach is the need to include more equations for grid

points near and at the boundaries. Also, for higher order implicit schemes, the in-

version of the matrices with the increased number of non-zero diagonals may be too

costly.

An alternative is to not enlarge the stencil, but involve values of the derivative

at some nodes where the function is already evaluated. For instance, consider the

finite difference approximation of the first derivative proposed in 1966 by Collatz [6],

pp. 538, which approximates the derivative values at three grid points with known

function values over the same three grid points:

1

4
φ′

i−1 + φ′

i +
1

4
φ′

i+1 ≈
3

4h
(φi+1 − φi−1) . (1.3)

The stencil for this scheme is shown in Figure 2.

As it will be proven later, this new scheme has a local truncation error of O(h4),

2



Φ i+1i-1 i

Figure 2: Stencil for (1.3)

similar to (1.1). However, if (1.1) is used over a discretized domain, four additional

formulas are needed at the two points on both ends where the stencil protrudes the

domain. On the contrary, scheme (1.3) only requires additional formulas at each of

the endpoints. Assuming that at least one boundary condition is known, only one

additional formula may be needed. Thus the proposed implicit scheme (1.3) gives a

distinct advantage over the explicit equation (1.1).

The development and application of the above implicit finite difference formula

(1.3) to solve IVBP modeled by partial differential equations is of more recent ap-

pearance. In [6], they are called Hermitian finite difference schemes. This name is

due to the analogy with Hermite’s interpolation formula which, in addition to the

values of the function, also uses the value of the derivatives at several points. In view

of their smaller stencils, the Hermitian finite difference equations are mainly known

as compact finite difference schemes.

Compact finite differencing expressions have been known for almost fifty years.

As mentioned above, some particular formulas are reported by Collatz, [6] pp. 538.

However, their implementation as difference schemes approximating partial differen-

tial equations began in the early 1970s for some fluid mechanics problems [2, 11, 22].

Since that time, several distinct classes of compact schemes have been developed.

The two most common are the upwind and the centered schemes. In 1992, Lele [15]

published a seminal paper with an in-depth analysis of centered compact schemes.

In recent years, due to the appearance of faster and more powerful computing pos-

sibilities as well as the development of algorithms for fast matrix inversion, compact

schemes are proving more advantageous. The current emphasis of these higher-order
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methods has been to the field of fluid mechanics as well as other areas of aero-acoustics

and electro-magnetics.

In the last ten years, much work has been done with compact schemes by many

authors. For instance, Visbal [9, 26, 27, 28] and Sherer [19, 20] have used compact

schemes on several problems dealing with wall-bounded flows described by the Navier-

Stokes equations, in large-eddy simulation of supersonic boundary-layer flow, and also

in the scattering of electromagnetic waves.

This work discusses the formulation of two different approaches for compact fi-

nite difference schemes, the order-optimized or Padé scheme and the spectral scheme.

Fourier analysis is used to characterize the errors of the difference approximations

based on compact finite differencing. For this, the procedure follows as described in

[24]. The resolving efficiency introduced by [15] is also studied. Compact schemes of

various orders are compared and analyzed. These compact schemes are then applied

to the one-dimensional wave equation which is perhaps the most basic means for ex-

amining the qualities of a numerical scheme. They are also applied to the nonlinear

Burgers’ equation and the standard Korteweg-de Vries equation which serve to test

how the numerical method manages nonlinearities. Finally, the compact schemes are

analyzed with the heat equation and a two-dimensional initial value problem consist-

ing of a sharp Gaussian pulse convected in a circular pattern around the origin as

performed in [7]. The proposed schemes may also be applied to many other important

physical problems such as the acoustic scattering problem studied in [25].

1.1 Consistency, Stability, and Convergence

The discussion to this point has been centered on increasing the order of the trun-

cation error by which a finite difference formula approximates the first derivative

or by which a finite difference scheme approximates a continuous partial differential

equation. Since the ultimate goal of using finite difference schemes is the accurate
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approximation of the analytic solution of a given boundary value problem (BVP)

or initial value boundary value problem, it is expedient to discuss the relationship

between the finite difference numerical schemes with higher order truncation errors

(higher order schemes) and high accurate approximations of the exact solution.

Finite difference schemes approximating partial differential equations are analyzed

according to three important properties: consistency, stability, and convergence. To

introduce these important concepts, consider the following initial value problem for

the one-dimensional wave equation,

ut − ux = ϕ(x, t), −∞ < x <∞, 0 ≤ t ≤ T, (1.4)

u(x, 0) = ψ(x), −∞ < x <∞. (1.5)

It is supposed that ϕ and ψ are continuous and bounded in their respective domains.

The remainder of this section follows the discussion of Godunov [10]. Let the

differential operator L and the vector function f be such that the initial value problem

(IVP) (1.4) - (1.5) can be written as Lu = f , where

Lu =















ut − ux, −∞ < x <∞, 0 ≤ t ≤ T,

u(x, 0), −∞ < x <∞,

(1.6)

f =















ϕ(x, t), −∞ < x <∞, 0 ≤ t ≤ T,

ψ(x), −∞ < x <∞.

(1.7)

To obtain a numerical approximation of this IVP, a grid formed by points in the

domain of the function u must be defined. By selecting h and τ as uniform step sizes

along the x-axis and t-axis respectively, the grid points

x = ih, i = 0,±1,±2, . . . , and t = nτ, n = 0, 1, . . . , N (1.8)
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are defined where N =
T

τ
. It is also assumed that τ = rh for a constant r. Hence,

the parameter h is enough to define the set of grid points (1.8). This set of points

will be denoted by Dh. The values of the function u at grid points (ih, nτ) will be

represented by un
i . Likewise, ϕn

i and ψi are used for values of ϕ and ψ at each grid

point respectively. Employing forward difference approximations for ut and ux on

the grid points, equation (1.4) is approximated by a finite difference equation. As a

consequence, the continuous IVP (1.4) - (1.5) is replaced by a new discrete problem

given by

Un+1
i − Un

i

τ
− Un

i+1 − Un
i

h
= ϕn

i (1.9)

U0
i = ψi, (1.10)

for i = 0,±1,±2, . . . , and n = 0, 1, . . . , N − 1. This discrete problem is also called a

finite difference scheme corresponding to the continuous IVP (1.4) - (1.5). The goal

is to find a discrete solution Un
i for the problem (1.9) - (1.10) that approximates in

some sense the solution u of the continuous problem (1.4) - (1.5).

To arrive to a precise mathematical definition of approximation between Un
i and u,

two linear normed spaces are defined. The first, Uh, is formed by all bounded discrete

functions Uh = Un
i defined on the grid points in Dh with norm ‖Uh‖ = max

n
sup

i
|Un

i |.

The other is the normed linear space Fh consisting of all pairs of bounded discrete

functions fh = (ϕn
i , ψi)

T with norm ‖fh‖ = max
n

sup
i

|ϕn
i | + sup

i
|ψi|. The discrete

problem (1.9) - (1.10) can also be written using a discrete differential operator Lh

acting on the discrete functions Uh ∈ Uh as LhUh = fh, where fh ∈ Fh. In fact,

LhUh =















Un+1
i − Un

i

τ
− Un

i+1 − Un
i

h

u0
i

(1.11)
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with

fh =















ϕn
i ,

ψi

(1.12)

for i = 0,±1,±2, . . . , and n = 0, 1, . . . , N − 1.

The above formulation (in terms of the continuous and discrete operators L and Lh

respectively) can be extended to any initial and/or boundary value problem governed

by a partial differential equation. Thus in what follows, Lu = f will represent any

continuous problem and LhUh = fh will denote the corresponding discrete problem.

The effectiveness of a finite difference scheme is measured on how well the discrete

solution approximates the exact solution of the corresponding continuous problem.

Establishing this fact requires definitions of basic concepts such as consistency, sta-

bility, and convergence of a discrete solution to the exact or continuous solution.

If the exact solution u is evaluated at the grid points in Dh, a discrete function

uh ∈ Uh is obtained. The concept of convergence from [10] is now presented.

Definition 1. The solution Uh of the difference scheme

LhUh = fh (1.13)

converges (as the grid Dh is refined or h is made smaller) to the solution u of the

continuous problem

Lu = f (1.14)

if

‖uh − Uh‖ → 0 (1.15)

as h→ 0. Moreover, if there exists a constant k > 0 and a constant C0 > 0 that does

not depend on k such that

‖uh − Uh‖ ≤ C0h
k, (1.16)
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then it is said that the convergence is of order hk and the difference scheme has k-th

order accuracy.

In general, the restriction uh of the exact solution u to the grid Dh does not

satisfy the discrete problem (1.13). Therefore, by substituting uh into (1.11) - (1.12),

a residual term δfh results. In fact, uh satisfies

Lhuh = fh + δfh. (1.17)

Definition 2. The residual δfh is a vector in Fh obtained when the discrete differ-

ential operator Lh acts on the restriction of the exact solution u to the grid Dh of the

continuous problem (1.9) - (1.10).

The consistency of a finite difference scheme roughly means that the difference

scheme is a good approximation of the continuous problem modeled by the corre-

sponding partial differential equation. The following definition is similarly attributed

to Godunov [10].

Definition 3. The difference scheme (1.13) is consistent with the continuous problem

(1.14) if the residual term in (1.17) is such that ‖δfh‖ → 0 when h→ 0. Moreover,

if the inequality

‖δfh‖ ≤ C1h
k (1.18)

is satisfied for positive constants C1 and k, then it is said that the difference scheme

(1.13) is of order hk consistent with the continuous problem (1.14).

It is important to note that the residual vector’s first component is the local

truncation error defined in the previous section. Another important property for

difference schemes is their sensitivity to small perturbations in the forcing terms,

boundary conditions, and/or initial conditions. This property known as stability is

now defined.
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Definition 4. The difference scheme (1.13) is stable if there exists h0 > 0 and δ > 0

such that for any h < h0 and any ǫh ∈ Fh satisfying ‖ǫh‖ < δ, the perturbed difference

problem Lhwh = fh + δǫh has one and only one solution, wh, satisfying

‖wh − Uh‖ ≤ C‖ǫh‖ (1.19)

where Uh is the solution of the unperturbed difference problem (1.13) and C > 0 does

not depend on h.

The following theorem of Godunov [10] expresses a very important relationship

between the three properties: consistency, stability, and convergence defined above.

Theorem 1. If the difference scheme (1.13) is stable and is also consistent (with

order hk) with the continuous problem (1.14), then, the discrete solution Uh of (1.13)

converges to the solution u of (1.14) and satisfies

‖uh − Uh‖ ≤ CC1h
k, (1.20)

where C and C1 are the positive constants used in the inequalities (1.19) and (1.18)

respectively. In other words, the order of accuracy of the difference scheme coincides

with the order by which the difference scheme approximates the continuous problem.

Proof. Since the difference scheme is consistent, it is verified that ‖δfh‖ ≤ C1h
k → 0

as h→ 0. Therefore, it is possible to have a grid Dh such that

h < h0, (1.21)

δfh < δ (1.22)

(1.23)
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as in Definition 4, and

Lhuh = fh + δfh. (1.24)

Therefore, uh satisfies the conditions for stability. As a consequence,

‖uh − Uh‖ ≤ C‖δfh‖ ≤ C(C1h
k). (1.25)

Hence, the discrete solution Uh of (1.13) converges to the continuous solution u of

(1.14) with order hk.

It shall therefore be an important consideration for this work to determine the

consistency and stability of the compact schemes considered. High-order accuracy of

the numerical scheme is sought in general to obtain improved approximate solutions

and to obtain those solutions at less computational expense.

2 The Compact Scheme

In view of the previous section, a stable and consistent numerical scheme of order

O(hk) will have a discrete solution that converges to the exact continuous solution

with the same order of accuracy O(hk). This fact motivates the development of

consistent schemes of high order, or simply, “higher order schemes.” However, verifi-

cation of the stability condition usually is not easy due to the boundary and initial

conditions of the problem. That is why some authors [9, 15] refer to the order of

the local truncation error for a discrete equation approximating a continuous one as

the “formal order of accuracy.” An obvious disadvantage of increasing the order of

the schemes too much is the larger stencils which may make them computationally

inefficient as explained earlier.

This study of high order schemes begins by considering high order approximations

for the first derivative of a function φ. Among the class of high order approximations
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of the derivatives of a function φ are the implicit compact schemes as defined in [6],

pp. 538-539. It will be shown below that these schemes have smaller stencils than

their explicit centered counterparts with the same formal order of accuracy.

Consider a function φ of one variable defined on the real line R. A uniform

partition formed by discrete points xi, i = 0,±1,±2, . . . , is defined in R. An implicit

numerical approximation of the first derivative φ′ at the grid points can be given by

αφ′

i−1 + φ′

i + αφ′

i+1 ≈ a
φi+1 − φi−1

2h
, (2.1)

where α and a are arbitrary constants. In fact, equation (2.1) represents a family of

numerical approximations for φ′.

Theorem 2. If φ is an n + 1 times differentiable function on R (n ≥ 4) and xi,

i = 0,±1,±2, . . . , is a uniform partition of R with step size h, then the implicit finite

difference equation (2.1) defines a one parameter family of numerical approximations

for φ′ with second order formal accuracy. Fourth order maximum formal accuracy is

obtained for a = 3
2

and α = 1
4

with local truncation error

τi =
1

120
h4φ

(5)
i+ξ, −1 < ξ < 1. (2.2)

Proof. Grouping all terms of equation (2.1) on the left-hand side, expanding the

functions φ and its first derivative φ′ at each node according to their Taylor expansions

(as demonstrated in Appendix C), and substituting them into (2.1) leads to

αφ′

i−1 + φ′

i + αφ′

i+1 − a
φi+1 − φi−1

2h

=2α

(

φ′

i +
h2

2!
φ′′′

i +
h4

4!
φ

(5)
i + · · ·

)

+ φ′

i

− a

2h

[

(φi + hφ′

i +
h2

2!
φ′′

i +
h3

3!
φ′′′

i +
h4

4!
φ

(4)
i +

h5

5!
φ

(5)
i + · · · )

− (φi − hφ′

i +
h2

2!
φ′′

i −
h3

3!
φ′′′

i +
h4

4!
φ

(4)
i − h5

5!
φ

(5)
i + · · · )

]

.

11



Combining like terms gives

αφ′

i−1 + φ′

i + αφ′

i+1 − a
φi+1 − φi−1

2h
= (2α + 1 − a)φ′

i +
(

2
α

2!
− a

3!

)

h2φ′′′

i

+
(

2
α

4!
− a

5!

)

h4φ
(5)
i + . . . .

(2.3)

By setting 2α+1−a = 0, the first term is eliminated and equation (2.1) becomes

a one parameter family of second order schemes, that is, the constant a is uniquely

determined by the parameter α as a = 2α + 1. The truncation error is given by

τi =
(

2
α

2!
− a

3!

)

h2φ′′′

i+ξ =
4α− 1

6
h2φ′′′

i+ξ.

In addition, if the second coefficient term in (2.3) is forced to zero, that is, 2α
2!
− a

3!
= 0,

then both constants α and a are uniquely determined. These values are α = 1
4

and

a = 3
2

which are the constants defining (1.3). The local truncation error is

τi =
(

2
α

4!
− a

5!

)

h4φ
(5)
i+ξ =

1

120
h4φ

(5)
i+ξ

which proves that the implicit compact scheme

1

4
φ′

i−1 + φ′

i +
1

4
φ′

i+1 ≈
3

4h
(φi+1 − φi−1)

has the same formal fourth order of accuracy as the five point explicit centered finite

difference scheme (1.1).

An important advantage of the scheme (2.1) is that its stencil only consists of

three points instead of five as in the explicit centered counterpart. The extra work

to obtain the approximations of the derivative values at the nodes xi is not a major

computational load since the matrix to be inverted is tridiagonal.

The formal order of accuracy for the implicit scheme (2.1) can be easily increased
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by enlarging its stencil, maintaining a tridiagonal matrix for the unknown derivative

values. More precisely, consider the scheme

αφ′

i−1 + φ′

i + αφ′

i+1 ≈ a
φi+1 − φi−1

2h
+ b

φi+2 − φi−2

4h
, i = 0,±1,±2, . . . . (2.4)

The analog of Theorem 2 for this new scheme can be formulated as follows here.

Theorem 3. If φ is an n + 1 times differentiable function on R (n ≥ 6) and xi,

i = 0,±1,±2, . . . , is a uniform partition of R with step size h, then the implicit finite

difference equation (2.4) defines a one parameter family of numerical approximations

for φ′ with fourth order formal accuracy. A sixth order maximum formal accuracy is

obtained for a = 14
9
, α = 1

3
, and b = 1

9
with local truncation error

τi = − 1

1260
h6φ

(7)
i+ξ, −2 < ξ < 2. (2.5)

Proof. Grouping all terms of equation (2.4) on the left-hand side, expanding the func-

tions φ and its first derivative φ′ at each node according to their Taylor expansions,

substituting them into (2.4), and combining like terms leads to

αφ′

i−1 + φ′

i + αφ′

i+1 − a
φi+1 − φi−1

2h
− b

φi+2 − φi−2

4h

=(2α+ 1 − a− b)φ′

i +

(

2
α

2!
− a

3!
− 22b

3!

)

h2φ′′′

i

+

(

2
α

4!
− a

5!
− 24b

5!

)

h4φ
(5)
i +

(

2
α

6!
− a

7!
− 26b

7!

)

h6φ
(7)
i . . . .

By setting 2α+ 1 − a− b = 0, and 2
α

2!
− a

3!
− 22b

3!
= 0, the first two terms in the

right hand side are eliminated and the equation (2.4) becomes a one parameter family

of fourth order schemes. That is, the constants a and b are uniquely determined by

the parameter α. The truncation error is given by the O(h4) term in the right hand

side. If this third term is also forced to zero, then all constants α, a, and b are
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uniquely determined. These values are α = 1
3
, a = 14

9
, and b = 1

9
. As a consequence,

the following sixth order compact scheme approximation for the first derivative is

obtained:

1

3
φ′

i−1 + φ′

i +
1

3
φ′

i+1 ≈
7

9h
(φi+1 − φi−1) +

1

36h
(φi+2 − φi−2) . (2.6)

The local truncation error for this particular scheme is

τi = − 1

1260
h6φ

(7)
i+ξ, −2 < ξ < 2.

Note that the presence of factorial terms yields a coefficient of the truncation error

that is very small. This may in fact result in an even higher order of formal accuracy

for the given scheme than is suggested by O(h6).

In the literature dealing with compact schemes, it is common to use the equality

symbol “=” instead of the approximation symbol “≈”. It is implicitly understood

that there is a truncation error associated with the given differencing formula. For

instance, the previous sixth order scheme (2.6) is usually written as

1

3
φ′

i−1 + φ′

i +
1

3
φ′

i+1 =
7

9h
(φi+1 − φi−1) +

1

36h
(φi+2 − φi−2) . (2.7)

The following will also adopt the same convention.

Similar procedures as those used in proving the above theorems can be followed

to derive other compact schemes. When dealing with boundary value problems, the

complete compact differencing scheme consists of two different types of formulas. The

interior formula, which is the heart of the compact scheme, approximates derivative

values at all but the boundary and near boundary points. To approximate derivative

values at these points, one-sided difference schemes that mimic the implicit nature

and the formal order of accuracy of the interior scheme may be used. The number of

14



points excluded by the interior scheme depends on the stencil.

2.1 Interior Scheme

The compact scheme for the first derivative at interior points (2.1) and (2.4) are

particular cases of the more general schemes defined by De and Eswaran [7]:

L
∑

k=−L

βkφ
′

i+k =
1

h

M
∑

l=−M

alφi+l, β0 = 1, βk = β−k. (2.8)

By expanding the summations, the schemes are shown as

βLφ
′

i−L + · · ·+ β1φ
′

i−1 + φ′

i + β1φ
′

i+1 + · · ·+ βLφi+L

=
1

h
(a−Mφi−M + · · ·+ a−1φi−1 + a0φi + a1φi+1 + · · · + aMφi+M) .

The left-hand side involves 2L + 1 derivative values and the right-hand side has

a 2M + 1 node stencil. Due to the computational complexity in the use of implicit

schemes, the implicit stencil is generally restricted to L ≤ 2. The derivation of

the coefficients of the compact schemes presented here will be mostly limited to the

tridiagonal and pentadiagonal cases, although coefficients of septadiagonal schemes

will also be given in an attempt to determine any advantages of choosing larger

implicit stencils than the explicit right-hand side stencil. The right-hand stencil will

be restricted to M ≤ 4. The maximum attainable formal order of accuracy of any

scheme can be increased by increasing either of the values of L or M .

Only centered compact schemes are considered in the present work. (For a discus-

sion on non-centered schemes, see [22].) The right-hand terms of the centered scheme

are arranged as second order accurate centered finite differences. Centered schemes

generally have smaller stencils in comparison to the upwind schemes.

In particular, for L = 3 and M = 4, the formula (2.8) for the first derivative
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reduces to

γφ′

i−3 + βφ′

i−2 + αφ′

i−1 + φ′

i + αφ′

i+1 + βφ′

i+2 + γφ′

i+3 = a
φi+1 − φi−1

2h
+ b

φi+2 − φi−2

4h

+c
φi+3 − φi−3

6h
+ d

φi+4 − φi−4

8h
.

(2.9)

Further study of compact schemes will be reduced to the L = 2 case where γ = 0.

For higher order derivatives, similar compact centered schemes can be defined

replacing φ′

i by φ′′

i , φ
′′′

i , . . . on the left-hand side and using centered finite difference

approximations for the derivative on the right-hand side. While compact schemes

for higher derivatives could be made to depend on lower derivatives, the schemes

considered here do not. The second derivative scheme is

βφ′′

i−2 + αφ′′

i−1 + φ′′

i + αφ′′

i+1 + βφ′′

i+2

=a
φi+1 − 2φi + φi−1

h2
+ b

φi+2 − 2φi + φi−2

4h2
+ c

φi+3 − 2φi + φi−3

9h2
.

(2.10)

Similarly, a third derivative centered compact scheme is given by

βφ′′′

i−2 + αφ′′′

i−1 + φ′′′

i + αφ′′′

i+1 + βφ′′′

i+2 = a
φi+2 − 2φi+1 + 2φi−1 − φi−2

2h3

+ b
φi+3 − 3φi+1 + 3φi−1 − φi−3

8h3
.

(2.11)

Finally, a fourth derivative centered compact scheme can be written as

βφ
(4)
i−2 + αφ

(4)
i−1 + φ

(4)
i + αφ

(4)
i+1 + βφ

(4)
i+2 = a

φi+2 − 4φi+1 + 6φi − 4φi−1 + φi−2

h4
. (2.12)

As was demonstrated earlier in Section 2, the formal order of accuracy of the

compact schemes can be obtained by expanding each term in the above equations in

Taylor series about xi and then matching the Taylor series coefficients for like terms

in the scheme as performed in theorems 2 and 3.
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Here, the derivation of centered compact differencing formulas is extended in gen-

eral form to schemes with pentadiagonal implicit matrix and up to 9 grid point

stencils. First, consider the Taylor expansions for the left-hand side terms in (2.9)

with γ = 0:

φ′

i−2 = φ′

i − 2hφ′′

i +
22h2

2!
φ′′′

i − · · · − 29h9

9!
φ

(10)
i +

210h10

10!
φ

(11)
i +R11(x)

φ′

i−1 = φ′

i − hφ′′

i +
h2

2!
φ′′′

i − · · · − h9

9!
φ

(10)
i +

h10

10!
φ

(11)
i +R11(x)

φ′

i = φ′

i

φ′

i+1 = φ′

i + hφ′′

i +
h2

2!
φ′′′

i + · · ·+ h9

9!
φ

(10)
i +

h10

10!
φ

(11)
i +R11(x)

φ′

i+2 = φ′

i + 2hφ′′

i +
22h2

2!
φ′′′

i + · · ·+ 29h9

9!
φ

(10)
i +

210h10

10!
φ

(11)
i +R11(x).

Similarly, Taylor expansions of the right-hand side terms are given by

φi−4 = φi − 4hφ′

i +
42h2

2!
φ′′

i − · · · − 49h9

9!
φ

(9)
i +

410h10

10!
φ

(10)
i − R11(x)

φi−3 = φi − 3hφ′

i +
32h2

2!
φ′′

i − · · · − 39h9

9!
φ

(9)
i +

310h10

10!
φ

(10)
i − R11(x)

φi−2 = φi − 2hφ′

i +
22h2

2!
φ′′

i − · · · − 29h9

9!
φ

(9)
i +

210h10

10!
φ

(10)
i − R11(x)

φi−1 = φi − hφ′

i +
h2

2!
φ′′

i − · · · − h9

9!
φ

(9)
i +

h10

10!
φ

(10)
i −R11(x)

φi+1 = φi + hφ′

i +
h2

2!
φ′′

i + · · · + h9

9!
φ

(9)
i +

h10

10!
φ

(10)
i +R11(x)

φi+2 = φi + 2hφ′

i +
22h2

2!
φ′′

i + · · · + 29h9

9!
φ

(9)
i +

210h10

10!
φ

(10)
i +R11(x)

φi+3 = φi + 3hφ′

i +
32h2

2!
φ′′

i + · · · + 39h9

9!
φ

(9)
i +

310h10

10!
φ

(10)
i +R11(x)

φi+4 = φi + 4hφ′

i +
42h2

2!
φ′′

i + · · · + 49h9

9!
φ

(9)
i +

410h10

10!
φ

(10)
i +R11(x).

Following a similar procedure as in theorems 2 and 3, the Taylor series expansions
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are substituted into (2.9) and like terms are gathered. Ignoring the remainders gives

(1 + 2α + 2β)φ′

i +
2

2!
(α + 22β)h2φ′′′

i +
2

4!
(α+ 24β)h4φ

(5)
i +

2

6!
(α+ 26β)h6φ

(7)
i

+
2

8!
(α+ 28β)h8φ

(9)
i +

2

10!
(α + 210β)h10φ

(11)
i + · · ·

=(a+ b+ c+ d)φ′

i +
1

3!
(a+ 22b+ 32c + 42d)h2φ′′′

i +
1

5!
(a + 24b+ 34c+ 44d)h4φ

(5)
i

+
1

7!
(a+ 26b+ 36c+ 46d)h6φ

(7)
i +

1

9!
(a + 28b+ 38c+ 48d)h4φ

(9)
i

+
1

11!
(a + 210b+ 310c+ 410d)h10φ

(11)
i + · · · .

As a consequence of the second order centered terms on the right-hand side and

the symmetry of the left-hand side, the odd-order terms are annihilated leaving only

even-order terms. Equating coefficients with the same power of h gives the following

system of six equations with six unknowns:

a+ b+ c+ d = 2(α + β) + 1 (2.13)

a+ 22b+ 32c+ 42d = 2
3!

2!
(α + 22β) (2.14)

a+ 24b+ 34c+ 44d = 2
5!

4!
(α + 24β) (2.15)

a+ 26b+ 36c+ 46d = 2
7!

6!
(α + 26β) (2.16)

a+ 28b+ 38c+ 48d = 2
9!

8!
(α + 28β) (2.17)

a + 210b+ 310c+ 410d = 2
11!

10!
(α + 210β). (2.18)

The factorial terms are written together on the same side of the equation to show ex-

plicitly how the factorials combine. When using the system of equations to determine

the values of the constants, the factorial terms are easily simplified.

Satisfaction of each equation in this system represents two additional orders of

formal accuracy that can be obtained for the compact scheme. That is, by requiring

only (2.13) to be satisfied by the coefficients a, b, c, d, α, and β, a five parameter
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family of second order schemes may be produced. By requiring both (2.13) and (2.14)

to be satisfied, a four parameter family of fourth order formal accuracy schemes is

developed. Similarly (2.13) - (2.15) produce a three parameter family of sixth order

formal accuracy schemes. Continuing in the same fashion, satisfying (2.13) - (2.18)

will uniquely determine the values of all the coefficients resulting in a scheme with

twelfth order formal accuracy.

It should be noted however that this twelfth order scheme involves a large stencil

on the right-hand side. Setting the most distant coefficients to zero reduces the size

of the stencil but also reduces the maximum order of accuracy attainable by the

scheme. Thus setting d = 0 reduces the scheme to tenth order maximum degree

of formal accuracy. Alternatively, setting β = 0 reduces the scheme to a family of

tridiagonal schemes with a maximum of tenth order formal accuracy.

The schemes obtained by uniquely determining the coefficients for a specific stencil

are called order-optimized or Padé schemes. These schemes are so called due to the

Padé or rational function approximation of the derivative of φ from which they can

be derived. This alternative Padé rational approximation derivation is the subject of

the next section.

Coefficients of these schemes for various orders of formal accuracy are presented

in Table 1. The ‘TN’ schemes represent the coefficients of the tridiagonal schemes of

order ‘N’. The ‘PN’ schemes are pentadiagonal schemes of order ‘N’. Two additional

schemes are given, S8 and S10, which are septadiagonal schemes for the first derivative

of order eight and ten. By increasing the band width of the matrix for the first

derivative from five to seven, the minimum order of formal accuracy is increased by

two. The parameter γ is the additional term in the left-hand side of the compact

scheme when the bandwidth is increased from five to seven.

An analogous procedure can be applied to the second derivative scheme (2.10). In

Table 2, values of the coefficients for the various orders of formal accuracy are listed.
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Scheme γ β α a b c d Order

T4 1
4

3
2

4

T6 1
3

14
9

1
9

6

T8 3
8

25
16

1
5

−1
80

8

T10 2
5

39
25

4
15

−1
35

1
525

10

P6 −1
114

17
57

30
19

6

P8 1
36

4
9

40
27

25
54

8

P10 1
20

1
2

17
12

101
150

1
100

10

P12 1
15

8
15

308
225

182
225

4
175

−1
1575

12

S8 5
4688

−9
586

487
1519

945
586

8

S10 −1
2540

111
2540

249
508

182
127

161
254

10

Table 1: Coefficients of interior schemes for first derivative

Scheme β α a b c d Order

T4 1
10

6
5

4

T6 2
11

12
11

3
11

6

T8 9
38

147
152

51
95

−23
760

8

T10 8
29

1126
1305

988
1305

−74
1015

43
9135

10

P6 −1
194

12
97

120
97

6

P8 23
2358

344
1179

320
393

310
393

8

P10 43
1798

334
899

1065
1798

1038
899

79
1798

10

Table 2: Coefficients of interior schemes for second derivative

Centered compact schemes for higher order derivatives are easily constructed in

the same manner. A few coefficients for the third derivative schemes are given in

Table 3 as derived by [17] and [15].

Scheme α a b Order

T4 1
2

2 4

T6 7
16

2 -1
8

6

Table 3: Coefficients of interior schemes for third derivative
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2.2 Padé Approximations

As stated earlier, one of the first formulation of compact schemes was given by Kopal

[12] in 1961. This formulation was not clear as was the notation of Collatz [6] as

Kopal used a distinct operator notation for the differencing scheme. The following

presents a detailed derivation of Kopal’s result. First, a uniform sequence of real

numbers (with step size h) given by x0, x1, . . . , xi, . . . defined as xi = x0 + ih. The

differencing operator E is defined as

E = eh d/dx = I + h
d

dx
+
h2

2!

d2

dx2
+
h3

3!

d3

dx3
+ · · · . (2.19)

This operator is called the forward shift operator due to the fact that

Eφi = Eφ(xi) = φ(xi) + hφ′(xi) +
h2

2!
φ′′(xi) +

h3

3!
φ′′′(xi) + · · · = φ(xi + h) = φi+1.

From (2.19), it is found that the first derivative operator can be written in terms of

E as

d

dx
=
log(E)

h
.

Other well-known differencing operators are

µφi =
1

2
(φi+1/2 + φi−1/2) and δφi = φi+1/2 − φi−1/2.

Remark 1. The operator µ can be written as

µ =

√

1 +
1

4
δ2 (2.20)

First, note that

µ2φi =
1

4
(φi+1 + 2φi + φi−1)
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and

(

1 +
1

4
δ2

)

(φi) = φi +
1

4
(φi+1 − 2φi + φi−1)

=
1

4
(φi+1 + 2φi + φi−1) .

Therefore,

µ2φi =

(

1 +
1

4
δ2

)

φi.

As a consequence, µ2 =

(

1 +
1

4
δ2

)

and (2.20) follows.

Remark 2. The first derivative operator can now be expressed as

d

dx
=

2

h
sinh−1

(

δ

2

)

. (2.21)

In fact,

1

2
δφi =

1

2
(φi+1/2 − φi−1/2)

=
1

2
(exp

h
2

d
dx − exp−

h
2

d
dx )

=

[

sinh

(

h

2

d

dx

)]

φi.

This implies

δ

2
= sinh

(

h

2

d

dx

)

.

Then, by taking the inverse of sinh and solving for
d

dx
, equation (2.21) is obtained.

In Kopal, pp. 552, the coefficients of Padé rational approximations for the first

derivative operator divided by the operator µ are listed. A summary of how the

approximations are obtained is given in the following lines.
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Remark 3. The first derivative operator can be written as the infinite series

d

dx
=

2

h
sinh−1

(

δ

2

)

=
2

h

[

δ

2
−
(

1

2

)

δ3

23 · 3 +

(

1 · 3
2 · 4

)

δ5

25 · 5 − · · · −
(

1 · 3 · 5 · 7 · 9
2 · 4 · 6 · 8 · 10

)

δ11

211 · 11
+ · · ·

]

=
1

h

[

δ −
(

1

23 · 3

)

δ3 +

(

1 · 3
25 · 4 · 5

)

δ5 − · · · −
(

1 · 3 · 5 · 7 · 9
211 · 4 · 6 · 8 · 10 · 11

)

δ11 + · · ·
]

The Taylor series expansion of sinh−1 x is

sinh−1 x =

∞
∑

n=0

(

(−1)n(2n)!

22n(n!)2

)

x2n+1

2n + 1

= x−
(

1

2

)

x3

3
+

(

1 · 3
2 · 4

)

x5

5
−
(

1 · 3 · 5
2 · 4 · 6

)

x7

7
+ · · · .

Thus, substituting this expansion into (2.21), the above expression for the derivative

operator is obtained.

The odd powers of δ in the expansion do not give difference formulas with integer

subscripts. As it will be shown below, Kopal modified this expansion by dividing

it by the centered finite difference approximation of the first derivative of a discrete

function, φi, given by µδφi = 1
2
(φi+1 − φi−1) = δµφi. The commutativity of µ and δ

is straightforward to prove. Kopal then constructed rational approximations of the

new expansion to obtain formulas for compact centered finite difference schemes of

various orders. The following remark begins this construction.

Remark 4. The first derivative operator can be expanded as the following infinite

series times the centered difference operator µδ

d

dx
=

1

h

[

1 − 1

6
δ2 +

1

30
δ4 − 1

140
δ6 +

1

630
δ8 − 1

2772
δ10 + · · ·

]

µδ (2.22)

To show this statement, the expansion on Remark 3 is divided by the centered
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operator µδ followed by a substitution using the equivalence operator (2.20):

2

hµδ
sinh−1

(

δ

2

)

=
2

h δ
sinh−1

(

δ

2

)

µ−1

=
1

h

[

2

δ
sinh−1

(

δ

2

)]

[

(

1 +
1

4
δ2

)

−1/2
]

=

[

1 − 1

23 · 3δ
2 +

1 · 3
25 · 4 · 5δ

4 + . . .

] [

1 − 1

2 · 4δ
2 +

1 · 3
23 · 42

δ4 + . . .

]

=
1

h

[

1 − 1

6
δ2 +

1

30
δ4 + . . .

]

. (2.23)

Therefore, (2.22) follows after multiplication by µδ.

Theorem 4. The tridiagonal centered compact schemes (1.3) and (2.7) of fourth and

sixth order respectively, can be obtained from the rational Padé approximation of the

infinite series (2.23).

Proof. The rational function approximation (as outlined in [5]) of the product of the

two operators
[

2

δ
sinh−1

(

δ

2

)]

[

(

1 +
1

4
δ2

)

−1/2
]

with a polynomial of degree zero in the numerator and a first degree polynomial in

the denominator is given by

P (δ2)

Q(δ2)
=

p0

1 + q1δ2
. (2.24)

The coefficients p0 and q1 are found by solving the system of equations

1 − p0 = 0, q1 −
1

6
= 0

Thus, the approximation of (2.23) for polynomials of the given order is

P (δ2)

Q(δ2)
=

1

1 + 1
6
δ2
. (2.25)

Substituting this rational approximation into (2.22), and by acting the resulting op-
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erator on φi leads to

φ′

i ≈
1

h

(

1

1 + 1
6
δ2

)

µδφi =

(

1

1 + 1
6
δ2

)

(φi+1 − φi−1)

2h
.

By cross multiplying this operator in the denominator to the left-hand side, the

numerical approximation formula

(1 +
1

6
δ2)φ′

i =
1

6
φ′

i−1 +
2

3
φ′

i +
1

6
φ′

i+1 =
(φi+1 − φi−1)

2h

is obtained. Multiplication of this equation by 6
4

yields the tridiagonal centered fourth

order compact scheme (1.3).

A compact scheme of sixth order can be obtained by employing polynomials of

degree one in both numerator and denominator of the rational approximations:

P (δ2)

Q(δ2)
=
p0 + p1δ

2

1 + q1δ2
. (2.26)

The coefficients are determined by solving the system of equations

1 − p0 = 0, q1 −
1

6
− p1 = 0, −1

6
q1 +

1

30
= 0

and it results the difference operator

P (δ2)

Q(δ2)
=

1 + 1
30
δ2

1 + 1
5
δ2
. (2.27)

Substituting this rational approximation into (2.22) and by applying the resulting

operator to φi leads to the tridiagonal sixth order scheme T6 given by

1

3
φ′

i−1 + φ′

i +
1

3
φ′

i+1 =
7

9h
(φi+1 − φi−1) +

1

36h
(φi+2 − φi−2) .
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Table 4 shows the Padé approximations of the derivative operator for each of the

first derivative interior compact schemes presented in Section 2.1.

Scheme Numerator Denominator

T4 1 1 + 1
6
δ2

T6 1 + 1
30
δ2 1 + 1

5
δ2

T8 1 + 1
21
δ2 − 1

420
δ4 1 + 3

14
δ2

T10 1 + 1
18
δ2 − 1

270
δ4 + 1

3780
δ6 1 + 2

9
δ2

P6 1 1 + 1
6
δ2 − 1

180
δ4

P8 1 + 5
42
δ2 1 + 2

7
δ2 + 1

70
δ4

P10 1 + 1
6
δ2 + 1

630
δ4 1 + 1

3
δ2 + 1

42
δ4

S8 1 1 + 1
6
δ2 − 1

180
δ4 + 1

1512
δ6

S10 1 + 23
150
δ2 1 + 8

25
δ2 + 1

50
δ4 − 1

5250
δ6

Table 4: Padé approximations of first derivative operator for compact schemes

2.3 One-Sided Boundary and Near Boundary Schemes

Most physical problems are defined on bounded domains. Their formulation requires

boundary conditions. For instance, suppose the domain of the problem consists of

the interval [a, b]. Then physical boundary conditions appropriate to the particular

problem should be imposed at the boundary points a and b respectively. To obtain the

approximate solution, the interval [a, b] is partitioned in N equally spaced subintervals

with nodes a = x1, x2, . . . , xN−1, xN = b. An application of any of the centered

compact schemes derived in the previous sections at the boundary points x1 = a or

xN = b requires points out the bounded interval [a, b], some to the right of xN and

others to the left of x1. For larger stencils, not only the boundary grid points x1 and

xN present this behavior but also near boundary points such as x2, xN−1, or others

depending on the stencil size.
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For problems posed with periodic boundary conditions, the interior scheme suf-

fices. At the boundary point x1 and other near boundary points, any schemes with

stencils that protrude the domain can substitute the appropriate boundary points on

the other side of the domain. For example, the tridiagonal fourth order scheme for the

first derivative (2.9) at x1 will require one point to the left of the domain. Assuming

that the boundary conditions are periodic, the value at xN−1 can be used in place of

this point. Thus the fourth order compact scheme at x1 will be

αφ′

N−1 + φ′

1 + αφ′

2 =
a

2h
(φ2 − φN−1).

A similar formula,

αφ′

N−1 + φ′

N + αφ′

2 =
a

2h
(φN−1 − φ2),

determine the approximation at xN .

For non-periodic boundary conditions, one-sided compact schemes can be defined

at boundary points to avoid using points outside the domain. They can be constructed

such that the banded (tridiagonal, pentadiagonal, etc) form of the interior scheme is

maintained. Also, their stencil size can be adjusted to match the formal order of

accuracy of the corresponding interior scheme.

Various one-sided compact formulas for the first derivative can be obtained from

the following general formulas at the boundary and near boundary grid points.

First derivative boundary point 1

φ′

1 + α1φ
′

2 + β1φ
′

3

=
1

h
(a1φ1 + b1φ2 + c1φ3 + d1φ4 + · · ·+ i1φ9 + j1φ10 + k1φ11)

(2.28)
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First derivative boundary point 2

α2,1φ
′

1 + φ′

2 + α2,2φ
′

3 + β2φ
′

4

=
1

h
(a2φ1 + b2φ2 + c2φ3 + d2φ4 + · · · + h2φ8 + i2φ9 + j10φ10)

(2.29)

First derivative boundary point 3

β3,1φ
′

1 + α3,1φ
′

2 + φ′

3 + α3,2φ
′

4 + β3,2φ
′

5

=
1

h
(a3φ1 + b3φ2 + c3φ3 + d3φ4 + · · ·+ g3φ7 + h3φ8 + i3φ9)

First derivative boundary point 4

β4,1φ
′

2 + α4,1φ
′

3 + φ′

4 + α4,2φ
′

5 + β4,2φ
′

6

=
1

h
(a4φ1 + b4φ2 + c4φ3 + d4φ4 + · · ·+ g4φ7 + h4φ8 + i4φ9)

First derivative boundary point N − 3

βN−3,1φ
′

N−5 + αN−3,1φ
′

N−4 + φ′

N−3 + αN−3,2φ
′

N−2 + βN−3,2φ
′

N−1

=
1

h
(aN−3φN + bN−3φN−1 + cN−3φN−2 + · · ·+ gN−3φN−6 + hN−3φN−7 + iN−3φN−8)

First derivative boundary point N − 2

βN−2,1φ
′

N−4 + αN−2,1φ
′

N−3 + φ′

N−2 + αN−2,2φ
′

N−1 + βN−2,2φ
′

N

=
1

h
(aN−2φN + bN−2φN−1 + cN−2φN−2 + · · ·+ gN−2φN−6 + hN−2φN−7 + iN−2φN−8)

First derivative boundary point N − 1

βN−1φ
′

N−3 + αN−1,1φ
′

N−2 + φ′

N−1 + αN−1,2φ
′

N

=
1

h
(aN−1φN + bN−1φN−1 + cN−1φN−2 + · · ·+ gN−1φN−6 + hN−1φN−7 + iN−1φN−8)
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First derivative boundary point N

βNφ
′

N−2 + αNφ
′

N−1 + φ′

N

=
1

h
(aNφN + bNφN−1 + cNφN−2 + · · ·+ gNφN−6 + hNφN−7 + iNφN−8)

The left-hand side of the boundary formulas above have been chosen such that

fewer right-hand side terms are required, that is, there is no requirement of symmetry

of the α and β terms. Maintaining the symmetry in the left-hand side of the boundary

schemes keeps the symmetry of the complete linear system but reduces the degrees

of freedom. Therefore, to obtain differencing formulas of higher order, the stencil of

grid points in the right-hand side must be increased.

The Taylor series matching procedure, already employed in the construction of

the interior schemes, applied to the boundary formula (2.28) at node 1 results in

a system of equations for the unknowns parameters: α1, β1, a1, b1, c1, etc. This

system of equations is presented in Appendix C. By requiring the coefficients to

satisfy the successive equations results in a sequence of higher order schemes. The

maximum order for the family of one-sided boundary schemes represented by (2.28)

when all equations are simultaneously satisfied is twelve. A list of coefficients values

for tridiagonal and pentadiagonal one-sided boundary compact schemes at node 1 is

given in Table 5.

β α a b c d e f g h i j k Order

T4 3 −17
6

3
2

3
2

−1
6 4

T6 5 −197
60

−5
12 5 −5

3
5
12

−1
20 6

T8 7 −503
140

−63
20

21
2

−35
6

35
12

−21
20

7
30

−1
42 8

T10 9 −2485
649

−1809
280 18 -14 21

2
−63
10

14
5

−6
7

9
56

−1
72 10

P6 6 8 −43
12

−20
3 9 4

3
−1
12 6

P8 15 12 −79
20

−77
5

55
4

20
3

−5
4

1
5

−1
60 8

P10 28 16 −1181
280

−892
35

77
5

56
3

−35
6

28
15

−7
15

8
105

−1
168 10

P12 45 20 −1590
359

−4609
126

711
56 40 −35

2
42
5

−7
2

8
7

−15
56

5
126

−1
360 12

Table 5: Coefficients of boundary schemes for first derivative at node 1
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For the one-sided compact scheme approximating the first derivative at the second

boundary point (2.29), the system of equations to be solved changes in the left-hand

side due to one additional term. The right-hand side is altered due to the fact that

the function is now centered about the second node as opposed to the first. The

system of equations for node 2 resulting after the matching of Taylor expansions is

also given in Appendix C.

All other one-sided compact schemes for the first derivative at boundary or near

boundary points are found using the same matching procedure. Tables 6 through 8

list values for tridiagonal and pentadiagonal schemes at nodes 2, 3, and 4.

β α1 α2 a b c d e f g h i j Order

T6 1
8

3
4

−43
96

−5
6

9
8

1
6

−1
96 6

T8 1
12

5
4

−79
240

−77
60

55
48

5
9

−5
48

1
60

−1
720 8

T10 1
16

7
4

−1181
4480

−223
140

77
80

7
6

−35
96

7
60

−7
240

1
210

−1
2688 10

P8 1
15 2 2

3
−247
900

−19
12

1
3

13
9

1
12

−1
300 8

P10 5
3

1
21 3 −544

2581
−39
20

−17
20

95
36

5
12

−1
20

1
180

−1
2940 10

P12 28
9

1
27 4 −857

4963
−621
280

−83
35

511
135

7
6

−7
30

7
135

−1
105

1
840

−1
13608 12

Table 6: Coefficients of boundary schemes for first derivative at node 2

β1 β2 α1 α2 a b c d e f g h i Order

T8 13
55

6
11

−1
66

−2051
3300

−53
132

31
33

7
66

−1
132

1
3300 8

T10 1
7 1 −1

168
−433
980

−19
20

21
20

5
12

−1
20

1
60

−1
420

1
5880 10

P10 1
90 1 4

15
8
9

−34
675

−127
225

−7
12

20
27

4
9

1
75

−1
2700 10

P12 1
168

5
12

4
21

4
3

−115
4024

−1019
2205

−19
20

23
45

125
144

1
15

−1
180

1
2205

−1
47040 12

Table 7: Coefficients of boundary schemes for first derivative at node 3

β1 β2 α1 α2 a b c d e f g h i Order

T10 1
4

5
8

1
1344

−1
42

−49
80

−9
20

15
16

1
6

−1
48

1
420

−1
6720 10

P12 1
42

1
6

1
3

5
6

−1
1680

−193
2205

−107
180

−9
20

25
36

19
45

1
60

−1
1260

1
35280 12

Table 8: Coefficients of boundary schemes for first derivative at node 4

The coefficients for the one-sided boundary compact schemes for the first deriva-

tive at nodes N,N−1, N −2, and N−3 are also determined with the same matching
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procedure. These schemes have right-hand side coefficients that are the negative of

the coefficients obtained for nodes 1, 2, 3, and 4, that is, aN = −a1, bN = −b1, etc.

The one-sided boundary compact schemes for the second derivative are similar to

those of the first derivative. For example, the boundary formula at node 1 is given

by

φ′′

1 + αφ′′

2 + βφ′′

3 =
1

h2
(aφ1 + bφ2 + · · ·+ iφ9 + jφ10).

Coefficients of boundary compact schemes at other nodes for the second derivative are

listed in Appendix D. These boundary compact schemes at nodes N−3, N−2, N−1,

and N have the same coefficients as the schemes for nodes 1, 2, 3, and 4, that is,

aN = a1, bN = b1, etc.

2.4 Matrix Representation

Having defined the interior centered compact schemes in Section 2.1 and the one-sided

boundary compact schemes in Section 2.3, it is possible to determine values of the first

and higher order derivatives from known values of the function on a given partition of

the domain. Consider a partition of the interval [a, b] in N equally spaced subintervals

with nodes a = x1, x2, . . . , xN−1, xN = b for the one-dimensional case. Then the first

derivative values can be calculated by compact schemes of the same formal order of

accuracy at every grid point.

Any compact scheme can be represented as a linear system of equations given by

Aφ′ =
1

h
Bφ. (2.30)

In particular, a sixth order tridiagonal scheme is shown in explicitly in Figure 3.

The first equation of this linear system corresponds to the one-sided compact

scheme of sixth order whose coefficients are listed in the second row of Table 5.

Similarly, the second equation also comes from a sixth order boundary scheme whose
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1 5 0 0 0 0 · · ·
1
8 1 3

4 0 0 0 · · ·
0 1

3 1 1
3 0 0 · · ·

0 0 1
3 1 1

3 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
...

· · · 0 1
3 1 1

3 0 0

· · · 0 0 1
3 1 1

3 0

· · · 0 0 0 3
4 1 1

8

· · · 0 0 0 0 5 1
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...
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N−3

φ′

N−2

φ′
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φ′
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1

h











































−197
60 − 5

12 5 −5
3

5
12 − 1

20 0

−43
96 −5

6
9
8

1
6 − 1

96 0 0

− 1
36 −14

18 0 14
18

1
36 0 0

0 − 1
36 −14

18 0 14
18

1
36 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 − 1

36 −14
18 0 14

18
1
36 0

0 0 − 1
36 −14

18 0 14
18

1
36

0 0 1
96 −1

6 −9
8

5
6

43
96

0 1
20 − 5

12
5
3 −5 5

12
197
60
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Figure 3: Complete sixth order matrix system
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coefficients are listed in the first row of Table 6. The following intermediate rows all

correspond to sixth order centered compact schemes at the interior nodes which are

listed in the second row of Table 1. Finally, the last two rows of Figure 3 correspond to

one-sided sixth order compact schemes which are applied at xN−1 and xN respectively.

When the boundary conditions include values of the unknown function at x1 = a

or xN = b (Dirichlet boundary conditions), two different approaches may be taken.

The simplest approach as suggested by Lele [15] is to exclude the boundary equations

at node 1 or node N . This means that the first row and column or the last row and

column of the matrices in (2.30) should be eliminated. A more appropriate method

is to substitute the known boundary value into the boundary formula at node 1 or

N and then combine the derivative value at that node with the adjacent boundary

formula as demonstrated by Carpenter et al. [4]. To maintain the stability of the

scheme with this approach, the boundary formula were the boundary value is known

must be at most one degree less than the interior scheme. The reduction of formal

order of accuracy maintains stability and generally does not diminish the order of

convergence of the scheme.

Computation of the first derivative with a higher order of formal accuracy requires

that more rows of the linear system correspond to boundary formulas as shown in

the matrix representation (2.31) on the following page. Depending on the parameter

choices, every equation of the following linear system represents a maximum tenth

order scheme with at most a seven point stencil.

For a two-dimensional problem, both partial derivatives in x and y may need to

be approximated. By using an equal number of grid points in both directions, this

is accomplished quite readily. For a fixed y value, the compact scheme is used to

approximate all partial derivatives with respect to x. This is done for all y values.

The partial derivatives with respect to y are approximated in a similar fashion for all

fixed x. The stencil diagram for a two-dimensional problem is shown in Figure 4.
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1 α1 β1 0 0 0 0 0 0 · · ·
α2,1 1 α2,2 β2 0 0 0 0 0 · · ·
β3,1 α3,1 1 α3,2 β3,2 0 0 0 0 · · ·
0 β α 1 α β 0 0 0 · · ·
0 0 β α 1 α β 0 0 · · ·
0 0 0 β α 1 α β 0 · · ·
...

...
...
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...

...
...

· · · 0 β α 1 α β 0 0 0
· · · 0 0 β α 1 α β 0 0
· · · 0 0 0 β α 1 α β 0
· · · 0 0 0 0 β3,2 α3,2 1 α3,1 β3,1

· · · 0 0 0 0 0 β2 α2,2 1 α2,1
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φ′

N−5

φ′
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a1 b1 c1 d1 e1 f1 g1 h1 i1 0 · · ·
a2 b2 c2 d2 e2 f2 g2 h2 0 0 · · ·
a3 b3 c3 d3 e3 f3 g3 0 0 0 · · ·
− c

6 − b
4 −a

2 0 a
2

b
4

c
6 0 0 0 · · ·

0 − c
6 − b

4 −a
2 0 a

2
b
4

c
6 0 0 · · ·

0 0 − c
6 − b

4 −a
2 0 a

2
b
4

c
6 0 · · ·

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...

· · · 0 − c
6 − b

4 −a
2 0 a

2
b
4

c
6 0 0

· · · 0 0 − c
6 − b

4 −a
2 0 a

2
b
4

c
6 0

· · · 0 0 0 − c
6 − b

4 −a
2 0 a

2
b
4

c
6

· · · 0 0 0 −g3 −f3 −e3 −d3 −c3 −b3 −a3

· · · 0 0 −h2 −g2 −f2 −e2 −d2 −c2 −b2 −a2

· · · 0 −i1 −h1 −g1 −f1 −e1 −d1 −c1 −b1 −a1
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(2.31)
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Figure 4: Stencil for two-dimensional problem

The sample MATLAB code given in Appendix B readily computes both partial

derivatives with respect to x and y. The code as given will compute y derivatives for

all nodes. To compute x derivatives, the transpose of the solution must be input and

the code will then give the transpose of the x derivative values at each node.

As it has been said before, the computational time increment, when implicit algo-

rithms such as the compact schemes are implemented, are marginal due to the banded

nature of the matrix to be inverted. There exists very efficient algorithms for this

type of sparse matrix. For compact schemes implemented in time marching methods,

the matrix equation does not need to be solved at each time level. In fact, both left

and right-hand side matrices remain unchanged at each time iteration. Therefore,

the matrix 1
h
A−1B = Q may be stored before the time iteration begins. The compact

scheme is then implemented with a matrix-vector or matrix-matrix product at each

time level. The computational savings by applying the compact scheme in this way

is very noteworthy.

Although the matrix Q is defined in term of the inverse of the matrix A, it should
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be noted that in the computation of Q the matrix A is not to be inverted. The

solution of the matrix equation AQ = B is found using a well-known algorithm such

as the Thomas algorithm for the tridiagonal case. The matrix Q is then stored and

used at each time step to determine the derivative values.

2.5 Matrix Stability Analysis

A stability analysis of some of the compact schemes, constructed in the previous

sections, is now performed. For completeness, this section includes the most common

definition of stability for finite difference approximations of initial value problems

attributed to Lax [8]. First, consider the one-dimensional IVP defined by

ut(x, t) = Lu(x, t), 0 < x < L, 0 < t < T, (2.32)

u(x, 0) = f(x), 0 < x < L, (2.33)

where L is a spatial differential operator and f is periodic on the interval [0, L].

Uniform partitions x1, x2, . . . , xM−1, xM = L and t0, t1, . . . , tN = T with step sizes

∆x for the space variable and ∆t for the time variable, respectively, are defined. The

values of the numerical approximation to the exact solution at the points (xi, tn) are

denoted by Un
i . By employing finite difference formulas to approximate the time and

space derivatives a finite difference scheme is obtained. It may be represented as a

matrix equation of the form:

Un+1 = L∆Un, U 0 = f , (2.34)

where L∆ is a finite difference operator that depends on the particular finite difference

approximations used, Un is a vector with components Un
i , and f is a vector whose

components are fi = f(xi), i = 1, 2, . . . ,M .
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Definition 5. Let Un and V n satisfy the finite difference scheme (2.34) with different

initial conditions U 0 = f and V 0 = g, respectively. Then the finite difference scheme

(2.34) is stable if there exists a positive constant C independent of the mesh spacing

and initial data such that

||Un − V n|| ≤ C||U 0 − V 0||, n→ ∞, ∆x → 0, ∆t→ 0, n∆t ≤ T. (2.35)

Extension of this definition to higher spatial dimensions is straightforward. As

mentioned above, this definition of stability is due to Lax. Strikwerda [21] studied

the stability or well-posedness property of initial boundary value problems for the

method of lines applied to hyperbolic and parabolic partial differential equations in

one space dimension. The method of lines consists of the approximation of IBVP for

partial differential equations by IVP for systems of ordinary differential equations.

As a result, a semi-discrete approximations of the original IBVP is obtained. In

particular, consider an IBVP modeled by the advection equation

∂u

∂t
(x, t) + c

∂u

∂x
(x, t), 0 < x < L, t > 0 c > 0, (2.36)

u(x, 0) = f(x), 0 < x < L, (2.37)

u(0, t) = g(t), t > 0. (2.38)

If a partition 0 = x1, x2, . . . , xM = L is defined in the interval [0, L], then the following

system of differential equations results

∂u

∂t
(xi, t) + c

∂u

∂x
(xi, t), i = 1, 2, 3 . . . ,M, t > 0. (2.39)

u(xi, 0) = f(xi), u(x1, t) = g(t). (2.40)

If a higher order compact scheme is used to approximate
∂u

∂x
(xi, t) at the grid points

x1, x2, . . . , xM , then as stated in Section 2.4, the vector formed from its approxima-
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tions at every grid point,
∂U

∂x
(t), satisfies the matrix equation.

A
∂U

∂x
(t) =

1

h
BU(t) = DU(t), (2.41)

where U (t) = (U(x1, t), U(x2, t), . . . , U(xM , t))
T = (U1(t), U2(t), . . . , UM(t))T . Sub-

stitution of this approximation into (2.39) - (2.40) leads to a system of ordinary

differential equations:

dU

dt
(t) = c(A−1D) U(t) = QU(t), (2.42)

U(0) = f . (2.43)

The exact solution for this problem can be written as U(t) = et Qf (x). The

stability (or well-posedness) of the IVP (2.42) - (2.43) depends on the properties

of Q, which includes information from the spatial interior scheme and boundary

discretizations [21].

In [13], it was found that stability of the semi-discrete problem implies Lax-

stability of the fully discrete problem under certain conditions for the time discretiza-

tion. This is the content of the following theorem.

Theorem 5. Under mild restrictions, if a semi-discrete approximation is stable in a

generalized sense and a Runge-Kutta method that is locally stable is used to time march

the semi-discretization, then the resulting totally discrete approximation is stable in

the same sense as long as the stability region of the R-K method encompasses the

norm of the semi-discretization.

Since stability analysis is easier to perform for the semi-discrete approximation

than Lax-stability analysis for the fully discrete numerical scheme, Carpenter et al.

[4] showed stability of this IVP when the spatial discretization is performed using the

fourth order interior compact scheme (1.3) combined with the one-sided fourth order
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compact scheme for the first derivative at node 1, found in the first row of Table 5.

To do this, they applied an extension of the stability theory of Gustafson, Kreiss, and

Sundstrom (G-K-S) to semi-discrete problems [13]. It consists of breaking the original

finite domain modal analysis of the G-K-S stability theory into three equivalent but

simpler modal problems.

A fully discrete problem can be obtained from the semi-discrete problem (2.42)

- (2.43) by using a conventional Runge-Kutta algorithm of third or fourth order to

advance in time. Then, numerical stability for this fully discrete approximation is

established from the stability of the corresponding semi-discrete problem by means

of the previous theorem due to Kreiss [13].

The Lax-stability definition deals with the “boundedness” behavior of the numeri-

cal solution when the mesh size ∆x→ 0 for a fixed time t0. Lax’s equivalence theorem

establishes that stable and consistent schemes converges at a fixed time t∗ to the an-

alytical solution when the mesh size is refined (∆x → 0). As pointed out in [1, 18],

nothing in the above definition excludes error growth in time, and it specifically allows

exponential growth of the error in time. However, for long time numerical simulation,

it is desirable that the numerical solution remain bounded for a fixed spatial mesh

(∆x = constant) as the time t→ ∞.

This property was studied by Abarbanel et al. in [1]. They called it “strict

stability.” In the case of semi-discrete approximations, strict stability implies that

for a fixed spatial discretization of size ∆x, all eigenvalues of the matrix defining the

system of ordinary differential equations have non-positive real part.

In this case, the matrix to be analyzed is the matrix Q = cA−1D. It includes

the spatial step size ∆x so the eigenvalues depends on the step size. For each step

size, these eigenvalues can be numerically approximated using the subroutine ‘eig’ of

MATLAB or any other numerical library with a numerical eigenvalue solver.

For the complete compact scheme presented by combining the interior and bound-
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ary schemes from sections 2.1 and 2.3, the eigenvalue plots are shown in Figures 5 - 7.

It is observed that some of the eigenvalues are located in the right half complex plane

for certain schemes. As a consequence, strict stability is not verified and for a fixed

grid the solution is expected to blow up for a long time run. However, as discussed

before this combined compact scheme is stable in the Lax sense.

Shown in figures 5 and 6 are the eigenvalue spectrum for the tridiagonal fourth and

sixth order schemes as well as the pentadiagonal sixth order scheme and septadiagonal

eight order scheme. These plots are formed by using the approach of Lele [15] by

eliminating the first row and column for a supposed known boundary condition. For

each scheme, the eigenvalues were determined using the MATLAB ‘eig’ command for

a 49 × 49 matrix.
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Figure 5: Eigenvalue spectra for T4 and T6 schemes

For the T8 scheme, the eigenvalues with the largest positive real part are λ =

0.0224518± 4.7187805i. The P8 scheme has eigenvalues λ = 0.0533402± 4.8228221i.

These schemes as given here are therefore unstable. The eighth order tridiagonal and

pentadiagonal schemes are implemented in the following section even though they are

unstable. It will be shown that the schemes do appear stable for a short time but

they do eventually blow up.

The eigenvalue spectrum for the fourth order tridiagonal scheme is shown in Figure
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Figure 6: Eigenvalue spectra for P6 and S8 schemes

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−6

−4

−2

0

2

4

6
Eighth order tridiagonal scheme

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−6

−4

−2

0

2

4

6
Eighth order pentadiagonal scheme

Figure 7: Eigenvalue spectra for T8 and P8 schemes

8 for several different step sizes. As discussed by Lele [15], the eigenvalues with the

smallest negative real part approach the imaginary axis at the rate of N−3 where N

is the size of the matrix. The compact schemes therefore remain stable as h → 0.

The largest real part of the eigenvalues for the various matrix sizes is shown in Table

9.
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Figure 8: Eigenvalue spectrum of T4 scheme with N = 50, 100, 150, 200, 250, 300

N ℜ(λ)

50 -0.0010

100 -2.4566e-004

150 -1.0687e-004

200 -5.9469e-005

250 -3.7815e-005

300 -2.6147e-005

Table 9: Largest real part in eigenvalue spectrum for T4 schemes

2.6 One-Dimensional Wave Equation

The compact schemes presented here will now be used to solve the spatial derivative

of the one-dimensional wave equation

φt + cφx = 0 (2.44)

in the domain [0, 1]. The domain will be partitioned into 100 equally spaced intervals

and solved with wave speed c = 0.05 and the boundary condition φ(0, t) = 0. Euler

time integration is used with a time step ∆t = 0.001. The CFL stability condition
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for this problem is based on the computation of the Courant number C = c∆t
∆x
. For

the given step sizes in space and time, the CFL number is C = 0.005, well within any

necessary range for stability. More detailed requirements for stability based on the

CFL condition will be given in section 7.

The numerical scheme to be solved is given by

φn+1
i − φn

i

∆t
= −c(φn

i )x. (2.45)

First, introduce a new function F n
i = (φn

i )x. The values of F n
i are then determined

using a compact scheme such as the fourth order

1

4
F n

i−1 + F n
i +

1

4
F n

i+1 =
3

4h

(

φn
i+1 − φn

i−1

)

.

The solution is then updated at each node i by the update formula φn+1
i = φn

i −

0.05∆t(F n
i ).

The initial profile that is to be propagated through the domain is given by

φ(x, 0) = sin(10πx). The exact solution as time progresses should see the initial

profile shifted to the right undisturbed. To the left of the initial profile, the solution

is zero. The compact scheme solutions are presented for several different orders of

accuracy at time steps T = 10s, T = 25s, and T = 60s in Figures 9 - 18.

The sixth order schemes show a slight improvement over the fourth order scheme

where the eighth order schemes seem to begin a breakdown in accuracy to the left of

the initial profile. Increasing the order of accuracy beyond eight has no improvement

and in some cases the spurious oscillations introduced by the approximation scheme

are amplified.

Among the eighth order schemes, increasing the band width or decreasing the

right-hand stencil does not seem to have a systematic effect on the solution of the

wave equation. The eighth order tridiagonal scheme is quite comparable to the sixth
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Figure 9: Exact solution and compact scheme T4 at T = 10s
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Figure 10: Compact schemes T6 and P6 at T = 10s
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Figure 11: Compact schemes T8 and P8 at T = 10s
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Figure 12: Compact scheme S8 at T = 10s

order schemes but the spurious oscillations of the eighth order pentadiagonal scheme

are not diminished at the same rate. The septadiagonal scheme however shows some

improvement over the sixth order schemes.

At T = 20s, the initial solution shall have passed through the domain and the

solution should thereafter be zero. The range of the graphs vary depending on the

maximum distance from zero of the approximation for the T = 25s and T = 60s cases.

Figures 13 through 15 show the compact scheme result five seconds after the solution

has passed through the domain.
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Figure 13: Spurious oscillations from T4 and S8 schemes at T = 25s

In each case the oscillations seems to be diminishing as time passes. Figures 16
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Figure 14: Spurious oscillations from T6 and P6 schemes at T = 25s
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Figure 15: Spurious oscillations from T8 and P8 schemes at T = 25s

through 18 show the wave equation solutions at T = 60s, contradicting the assumption

that the oscillations die down. One case in fact shows an amplification of the waves

as a consequence of the instability of the scheme.

The pentadiagonal eighth order scheme oscillations have grown in amplitude and

are now greater than the original profile, thus verifying the instability suggested by the

eigenvalue spectrum. These results suggest that the order-optimized compact scheme

is not necessarily the best method of approximation. Increased order of accuracy does

not guarantee the best solution. The spectral schemes will be shown to be much more

accurate. To discuss these, it is first necessary to discuss the Fourier error analysis of
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Figure 16: Spurious oscillations from T4 and S8 schemes at T = 60s

0 0.2 0.4 0.6 0.8 1

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time = 60.00, Maximum error = 0.03802

0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time = 60.00, Maximum error = 0.02048

Figure 17: Spurious oscillations from T6 and P6 schemes at T = 60s
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Figure 18: Spurious oscillations from T8 and P8 schemes at T = 60s
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the compact schemes.

Before moving to the next section, it is worth noting the computation time using

the compact scheme. The MATLAB code given in Appendix B can be optimized to

approximate the one-dimensional wave equation solution for a long time run (T =

60s) in about 2.5 seconds. The computation time can be made to be reasonably small

by performing as many operations outside of the time loop as possible.

3 Spectral function

Analysis of dispersion and dissipation errors can be achieved in part by considering

the spectral function associated with the compact schemes.

Assuming that the dependent variables are periodic over [0, L] and introducing

the step size h = L/N where N is the number of discretization points, the Fourier

coefficients are

φ(x) =

N/2
∑

k=−N/2

φ̂k exp

(

2πikx

L

)

. (3.1)

These coefficients satisfy φ̂k = φ̂∗

−k for k = 0, 1, . . . , N
2

where ∗ indicates complex

conjugation.

Scaling the spatial coordinates by a factor of 1/h gives a new spatial variable

s = x/h. Introducing the wave number ω =
2πkh

L
=

2πk

N
, the Fourier coefficients

reduce to

φ(x) =

N/2
∑

k=−N/2

φ̂ke
iωs (3.2)

where ω ∈ [0, π].
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Upon substitution of this expression into the compact scheme (2.9), the result is

βiω

N/2
∑

k=−N/2

φ̂ke
iωse−2iω + αiω

N/2
∑

k=−N/2

φ̂ke
iωse−iω + iω

N/2
∑

k=−N/2

φ̂ke
iωs

+αiω

N/2
∑

k=−N/2

φ̂ke
iωseiω + βiω

N/2
∑

k=−N/2

φ̂ke
iωse2iω

=
a

2h

N/2
∑

k=−N/2

(

φ̂ke
iωseiω − φ̂ke

iωse−iω
)

+
b

4h

N/2
∑

k=−N/2

(

φ̂ke
iωse2iω − φ̂ke

iωse−2iω
)

+
c

6h

N/2
∑

k=−N/2

(

φ̂ke
iωse3iω − φ̂ke

iωse−3iω
)

+
d

8h

N/2
∑

k=−N/2

(

φ̂ke
iωse4iω − φ̂ke

iωse−4iω
)

.

Combining summation terms and factoring out the common iω term from the

left-hand side gives

iω

N/2
∑

k=−N/2

[

βφ̂ke
iωse−2iω + αφ̂ke

iωse−iω + φ̂ke
iωs + αφ̂ke

iωseiω + βφ̂ke
iωse2iω

]

=

N/2
∑

k=−N/2

[

a

2h
(φ̂ke

iωseiω − φ̂ke
iωse−iω) +

b

4h
(φ̂ke

iωse2iω − φ̂ke
iωse−2iω)

+
c

6h
(φ̂ke

iωse3iω − φ̂ke
iωse−3iω) +

d

8h
(φ̂ke

iωse4iω − φ̂ke
iωse−4iω)

]

.

Factoring and collecting like terms leads to

hω

N/2
∑

k=−N/2

φ̂ke
iωs

[

1 + 2α

(

eiω + e−iω

2

)

+ 2β

(

e2iω + e−2iω

2

)]

=

N/2
∑

k=−N/2

φ̂ke
iωs

[

a

(

eiω − e−iω

2i

)

+
b

2

(

e2iω − e−2iω

2i

)

+
c

3

(

e3iω − e−3iω

2i

)

+
d

4

(

e4iω − e−4iω

2i

)]

.

A new variable ω̃ is introduced which is called the modified wave number. This

variable is the wave number ω scaled by a factor of h, or thus ω̃ = hω. Canceling the
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φ̂ke
iωs terms from each side, it is noted that the summations will be equal only upon

equality of the terms

ω̃

[

1 + 2α

(

eiω + e−iω

2

)

+ 2β

(

e2iω + e−2iω

2

)]

=

[

a

(

eiω − e−iω

2i

)

+
b

2

(

e2iω − e−2iω

2i

)

+
c

3

(

e3iω − e−3iω

2i

)

+
d

4

(

e4iω − e−4iω

2i

)]

.

Solving for the modified wave number ω̃ in terms of the wave number ω and using

the relations

sinω =
eiω − e−iω

2i
and cosω =

eiω + e−iω

2

gives the spectral function for the interior compact scheme

SF(ω) = ω̃(ω) =
a sin(ω) + b

2
sin(2ω) + c

3
sin(3ω) + d

4
sin(4ω)

1 + 2α cos(ω) + 2β cos(2ω)
. (3.3)

It should be noted that the spectral function corresponding to exact differentiation

is ω̃(ω) = ω. For a given interior scheme, the spectral function plotted against the

exact derivative function will show the percentage of wave numbers where the compact

scheme reasonably approximates the exact derivative. The spectral functions for the

interior schemes are purely real. All centered schemes are therefore non-dissipative

and the corresponding error shown in the real part of the spectral function describes

strictly the dispersive characteristics of the scheme.

The graphs of the spectral functions for tridiagonal and pentadiagonal schemes

in Figure 19 show that the pentadiagonal schemes generally have better resolution

characteristics. However, the exact degree to which the resolution characteristics

compare for the different schemes will be discussed in Section 4.1. It is also clear that

the resolution improves as higher order schemes are considered.

While the interior compact schemes have spectral functions that are entirely real

valued, the spectral functions for the boundary schemes are in general complex. Again
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Figure 19: Spectral functions for tridiagonal and pentadiagonal interior schemes

the real part of the spectral functions will describe the dispersive error while the

imaginary part projects the dissipative error. Therefore, the presence of necessary

boundary formulas for non-periodic problems introduces some level of dissipation into

the scheme.

For the first derivative boundary formula at node 1, the spectral function is found

using a similar procedure. Substitution of the Fourier coefficients gives

iω

[

φ̂1e
iωs + αφ̂1e

iωseiω + βφ̂1e
iωse2iω

]

=
1

h

[

a1φ̂1e
iωs + a2φ̂1e

iωseiω + a3φ̂1e
iωse2iω + · · ·+ a10φ̂1e

iωse9iω + a11φ̂1e
iωse10iω

]

.

Canceling common terms gives

iω
[

1 + αeiω + βe2iω
]

=
1

h

[

a1 + a2e
iω + a3e

2iω + · · ·+ a10e
9iω + a11e

10iω

]

.

Solving for ω̃ gives the spectral function for the first boundary point of the first

derivative scheme

ω̃(ω) =
a1 + a2e

iω + a3e
2iω + · · ·+ a10e

9iω + a11e
10iω

i(1 + αeiω + βe2iω)
. (3.4)
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The real and imaginary parts of the spectral functions for the first derivative

boundary formula at node 1 is shown in Figures 20 and 21 for the tridiagonal and

pentadiagonal boundary formulas given in Table 5. The spectral functions for other

boundary nodes are similar.
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Figure 20: Real part of spectral functions for node 1 schemes
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Figure 21: Imaginary part of spectral functions for node 1 schemes

After analyzing the spectral function, it is possible to derive another type of

compact scheme: the spectral scheme.
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4 Spectral schemes

The spectral compact scheme is derived by not requiring the maximum order of

formal accuracy. Spectral schemes are somewhat more complicated to derive but

possess certain properties that are advantageous over the Padé schemes.

For the first derivative scheme (2.9), the spectral scheme is developed by requiring

less than maximum formal accuracy such as fourth or sixth order. The coefficients

are also subjected to specific conditions in the spectral function. If fourth order

accuracy is guaranteed by requiring the first two equations (2.13) - (2.14) of the

matching procedure, then the remaining conditions needed to uniquely determine the

coefficients are found by requiring ω̃(ω1) = ω1, ω̃(ω2) = ω2, ω̃(ω3), . . . in the spectral

function (3.3) for specific wave numbers ω1, ω2, ω3, . . . on (0, π).

As is shown in the graphs of the spectral functions in the previous section, the

compact schemes generally have poor resolution characteristics on the interval (π
2
, π)

and this is generally where the values of ωi are chosen. These wave numbers may

be chosen arbitrarily but the hope is that the choice of wave numbers improves the

resolution characteristics of the scheme.

Coefficients of spectral schemes of both fourth order and sixth order accuracy are

presented in Table 10 and 11. The specific choice of wave numbers in the derivation

of the coefficients is also shown. However, no attempt was made to improve the reso-

lution characteristics of these schemes. The procedure for finding the best resolution

characteristics based on the choice of ωi will be described briefly in Section 4.1.

ω1 ω2 ω3 a b c α β

2.2 2.3 2.4 1.2950 1.0121 0.0406 0.5813 0.0925

2.2 2.4 2.6 1.2788 1.0523 0.0468 0.5903 0.0986

2.2 2.5 2.8 1.2597 1.0991 0.0547 0.6007 0.1060

2.2 2.6 3.0 1.2369 1.1537 0.0648 0.6128 0.1149

Table 10: Coefficients of interior spectral schemes of fourth order
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ω1 ω2 a b c α β

2.2 2.4 1.3349 0.9129 0.0252 0.5591 0.0775

2.2 2.6 1.3228 0.9458 0.0278 0.5667 0.0815

2.2 2.8 1.3079 0.9864 0.0309 0.5761 0.0864

2.2 3.0 1.2892 1.0369 0.0348 0.5878 0.0926

Table 11: Coefficients of interior spectral schemes of sixth order

Coefficients of optimized spectral schemes for the tridiagonal case are given by

Visbal [9] with details and references for the choices of wave numbers. For the pen-

tadiagonal case, Table 12 shows coefficients for both fourth and sixth order formal

truncation error. The A6 scheme is the spectral scheme presented in [7]. The B6

scheme is another sixth order scheme with an increased stencil size determined as

part of this work.

Scheme ω1 ω2 ω3 a b c d α β

A4 2.0 2.6 2.8 1.2603 1.0974 0.0531 0.6001 0.1503

A6 2.464 2.7171 1.2988 1.00616 0.03354 0.57967 0.0895

B6 2.3 2.6 2.8 1.2236 1.1703 0.0862 -0.0060 0.6169 0.1201

Table 12: Spectral schemes for minimum error

The spectral functions for the two sixth order schemes from Table 12 are plotted

together with the spectral functions for the two septadiagonal schemes from Table

1 in Figure 22. The spectral schemes by definition are better at approximating the

derivative for a larger percentage of wave numbers than the septadiagonal schemes

or any other type of scheme.

The spectral function can also be used to improve the percentage of wave num-

bers where the boundary formulas accurately approximate the first derivative at the

boundary nodes. For simplicity, the spectral schemes A6 and B6 presented here will

simply be linked with the sixth order Padé boundary formulas.

The eigenvalue spectra of the A6 and B6 schemes also verifies their stability. The

spectra of these two schemes is shown in Figure 23.
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Figure 22: Spectral functions for septadiagonal and sixth order spectral schemes
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Figure 23: Eigenvalue spectra of the A6 and B6 schemes

The two spectral schemes A6 and B6 prove their accuracy by considering their

solutions to the wave equation. Plots of the two approximation schemes at the three

time levels T = 10s, T = 25s, and T = 60s is presented in figures 24 through 26.

It is clear in comparison that the spectral schemes yield better solutions over

the order optimized schemes. To consider the degree to which the spectral solution

improves on the Padé scheme, it may be prudent to analyze the resolving efficiency

of the scheme.
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Figure 24: Compact schemes A6 and B6 at T = 10s
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Figure 25: Compact schemes A6 and B6 at T = 25s
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Figure 26: Compact schemes A6 and B6 at T = 60s

56



4.1 Resolving Efficiency

The resolving efficiency is a measure of the percentage of wave numbers for which the

numerical scheme most accurately approximates the exact derivative. The efficiency

is determined by the error tolerance

|ω̃(ω) − ω|
ω

≤ ǫ. (4.1)

Scheme ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

T4 0.65 0.43 0.28

T6 0.73 0.55 0.41

T8 0.78 0.62 0.49

T10 0.80 0.66 0.54

P6 0.72 0.53 0.39

P8 0.80 0.65 0.52

P10 0.83 0.70 0.59

P12 0.85 0.74 0.63

S8 0.76 0.60 0.46

S10 0.83 0.70 0.58

A6 0.92 0.88 0.55

B6 0.94 0.91 0.75

Table 13: Resolving efficiency of interior schemes

Table 13 shows the percentage of wave numbers of several first derivative compact

schemes that satisfy the error tolerance (4.1) for the error ǫ. These results show

that there is no clear distinction indicating an advantage of the Padé schemes of

different band width. That is, the tenth order septadiagonal scheme shows little or

no improvement over the pentadiagonal or tridiagonal cases of the same order. It

is clear however that the spectral schemes by far are the best at approximating the

derivatives for the majority of wave numbers.

The resolving efficiency is one method for which the spectral schemes are opti-

mized. The choice of wave numbers and coefficients are determined by maximizing
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the resolving efficiency of the given scheme or by minimizing certain error quantities

such as dispersion or isotropy as described by [9].

Despite the obvious improvements with the spectral scheme, there remains a small

degree of spurious oscillations that are not damped in the one-dimensional wave

equation approximation. To eliminate these, a small amount of damping may be

introduced. The filter scheme presented here will help eliminate some of the low-

frequency oscillations.

5 Filtering

Stability analysis of the compact scheme is not always a straightforward procedure.

Some analysis of the compact scheme can be done by considering the spectral func-

tion. Stability is often achieved in a numerical scheme by adding a small amount

of damping. A less common method is to filter the updated solution values adding

dissipation to the scheme. While explicit filters exists, the schemes presented here

are implicit filters that mimic the nature of the compact scheme.

The numerical filtering scheme is an artificial method for introducing dissipation

to the compact scheme. For the compact schemes presented above, the filter formula

is given by

βf φ̂i−2 + αf φ̂i−1 + φ̂i + αf φ̂i+1 + βf φ̂i+2 =

M
∑

k=0

ak

2
(φi+k + φi−k), (5.1)

or more explicitly,

βf φ̂i−2 + αf φ̂i−1 + φ̂i + αf φ̂i+1 + βf φ̂i+2

=a0φi +
a1

2
(φi+1 + φi−1) +

a2

2
(φi+2 + φi−2) + · · ·+ aM

2
(φi+M + φi−M).

The size of M depends on the desired order of the filter. Generally, a filtering
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scheme is chosen to be at least two orders higher than the compact scheme that it is

coupled with.

The spectral function for a filter scheme is similar to the spectral function for the

interior compact schemes. Here the function involves only cosine terms. The domain

of the spectral function is again [0, π] and the function is

SF(ω) =

∑M
k=0 ak cos(kω)

1 + 2αf cos(ω) + 2βf cos(2ω)
, (5.2)

or more explicitly

SF(ω) =
a0 + a1 cos(ω) + a2 cos(2ω) + a3 cos(3ω) + · · ·+ aM cos(Mω)

1 + 2αf cos(ω) + 2βf cos(2ω)
.

To determine the order of the filter, the Taylor series matching procedure is again

used but at least one additional constraint is needed. For any filter, the spectral

function at the right endpoint of the domain must be zero, that is SF(π) = 0, thus

matching the spectral functions of the interior compact schemes.

The Taylor series expansions at all nodes is given by the formula

φ̂i+k = φi + kh

(

∂φ

∂x

)

i

+
k2h2

2!

(

∂2φ

∂x2

)

i

+ · · · + knhn

n!

(

∂nφ

∂xn

)

i

+Rn(x) (5.3)

where

Rn(x) =
kn+1hn+1

(n+ 1)!

(

∂n+1φ

∂xn+1

)

i+ξ

.

For the condition SF(π) = 0, the resulting equation is

a0 − a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 = 0.

The remainder of the equations come from matching terms for like powers of h.

Factorial terms are neglected as they appear in the same magnitude on both sides of
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the equations. The additional equations from the matching procedure are

a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 = 2αf + 2βf + 1

a1 + 22a2 + 32a3 + 42a4 + 52a5 + 62a6 + 72a7 + 82a8 = 2αf + 23βf

a1 + 24a2 + 34a3 + 44a4 + 54a5 + 64a6 + 74a7 + 84a8 = 2αf + 25βf

a1 + 26a2 + 36a3 + 46a4 + 56a5 + 66a6 + 76a7 + 86a8 = 2αf + 27βf

a1 + 28a2 + 38a3 + 48a4 + 58a5 + 68a6 + 78a7 + 88a8 = 2αf + 29βf

a1 + 210a2 + 310a3 + 410a4 + 510a5 + 610a6 + 710a7 + 810a8 = 2αf + 211βf

a1 + 212a2 + 312a3 + 412a4 + 512a5 + 612a6 + 712a7 + 812a8 = 2αf + 213βf

a1 + 214a2 + 314a3 + 414a4 + 514a5 + 614a6 + 714a7 + 814a8 = 2αf + 215βf .

The filter coefficients cannot be optimized for order of accuracy in the same way

as the compact scheme. When attempting to determine all coefficients uniquely, the

system of equations breaks down and many coefficients become zero. This occurs

when attempting to determine any of the left-hand side coefficients uniquely. One

approach is therefore to retain all left-hand side coefficients as free parameters and

solve the right-hand side coefficients in terms of the left-hand side parameters. These

free parameters are then available to adjust the amount of filtering.

The range of values of the free parameters from the left-hand side of the filter

scheme are determined by the spectral function. These parameters appear in the de-

nominator of the spectral function and therefore must guarantee a nonzero denomina-

tor for all ω ∈ (0, π). For a tridiagonal filter scheme, the choice of the free parameter

must be on the interval (−0.5, 0.5). The pentadiagonal case is less straightforward.

Here the choices of α and β should satisfy

1 + 2α cos(ω) + 2β cos(2ω) > 0 (5.4)
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for all ω ∈ (0, π).

It should be noted that by setting all free parameters to zero in the filter ultimately

leaves the solution unaffected.

As is common with the interior compact schemes, filter schemes also require

boundary formulas for those points where the stencil protrudes the boundary. Fil-

tering schemes generally have larger stencils and therefore require more boundary

formulas. The spectral function for these boundary formulas is derived similarly to

the spectral function for interior schemes and the SF (π) = 0 condition is also re-

quired for the boundary schemes. The boundary formulas for the filter are presented

in Appendix E for completeness.

As is similar to the second derivative boundary formulas, the coefficients of the

filter boundary formulas at nodes 1 through 5 are the same as the coefficients for

nodes N through N − 4. The coefficients for the interior filter schemes are presented

in Table 14. The coefficients for the tridiagonal filter were given by [9]. The boundary

formula coefficients are also presented in Appendix E.

a0 a1 a2 a3 a4 a5

T4 5+6α
8

1+2α
2

−1+2α
8

T6 11+10α
16

15+34α
32

−3+6α
16

1−2α
32

T8 93+70α
128

7+18α
16

−7+14α
32

1−2α
16

−1+2α
128

T10 193+126α
256

105+302α
256

15(−1+2α)
62

45(1−2α)
512

5(−1+2α)
256

1−2α
512

P6 11+10α−10β

16
15+34α+30β

32
−3+6α+26β

16
1−2α+2β

32

P8 93+70α−70β

128
7+18α+14β

16
−7+14α+50β

32
1−2α+2β

16
−1+2α−2β

128

P10 193+126α−126β

256
105+302α+210β

256
−15+30α+98β

64
45(1−2α+2β)

512
5(−1+2α−2β)

256
1−2α+2β

512

Table 14: Coefficients of interior filtering schemes

The spectral functions for the boundary filter formulas are in general complex.

This indicates that the boundary formulas may introduce some degree of dispersion

in addition to the desired dissipation. Also, the real part of the spectral functions for

the boundary schemes is greater than one for certain wave numbers with a given choice

of the free parameters suggesting that certain wave numbers will be amplified. These
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concerns can be reduced by appropriate choice of α and β. For a tridiagonal filter

scheme, both concerns are minimized as α is chosen as close as possible to 0.5. For a

pentadiagonal filter, the choice of α and β must be made with more care to minimize

these problems and still satisfy (5.4). One such suitable choice is α = β = 0.4.
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Figure 27: Real/imaginary parts of T6 and P6 spectral functions for filter node 1

The real and imaginary parts of the spectral function for the filter boundary

formula at node 1 are shown in Figure 27. The amount of excess over unity of the

real parts and the amount of deviation from zero in the imaginary parts is clearly

seen.

Although the filtering scheme coefficients have been presented for both the tridi-

agonal and pentadiagonal filter cases, the tridiagonal filter may be applied in place

of larger band width filters with similar results.

5.1 Wave Equation Revisited

The effect of filtering can be most easily seen for the one-dimensional wave equation.

Considering the same problem as before, the updated solution filtered at every time

step should eliminate the presence of the spurious oscillatory wave frequencies. In

Figure 28, tridiagonal filters are applied after each time step for the fourth and sixth

order schemes.
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Figure 28: Filtered T4 scheme and filtered T6 scheme (α = 0.4) at T = 10s

The filters successfully remove much of the oscillations to the left of the initial

profile while leaving the remainder of the wave relatively unaffected. Demonstrating

the success of the eighth order pentadiagonal filter, figures 29 and 30 show the filtered

solutions at T = 10s, T = 25s and T = 60s for the sixth order pentadiagonal compact

scheme.
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Figure 29: P6 schemes with eighth order filter (α = β = 0.4) at T = 10s

After 25 seconds, the filtered result appears with a maximum error of order 10−3.

After 60 seconds, the filtered solution approximates the exact solution to within 10−15.

Although filtering does produce the desired damping of these low frequency os-

cillations, it must be used with caution. The degree of filtering may have such an
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Figure 30: P6 scheme with eighth order filter (α = β = 0.4) at T = 25s, 60s

impact as to damp the actual solution. Thus the filter must be employed with care

to guarantee that only the low frequency oscillations are removed.

6 Boundary Conditions

Dirichlet boundary conditions are easy to implement with compact schemes. Combi-

nations of the boundary condition with the adjacent node approximation formula can

then be accomplished as discussed previously. Neumann boundary conditions require

more care. For instance, the homogeneous Neumann boundary condition ∂φ
∂x

= 0 can

be determined using the one-sided explicit formula

αφ1 = a0φ2 + a1φ3 + a2φ4 + a3φ5 + a4φ6 + a5φ7 + a6φ8 + a7φ9. (6.1)

The Taylor series matching procedure is again used in this process. Each term

is expanded about node 1 and like terms are equated to arrive at certain orders of

accuracy for the boundary condition. In this case, however, the coefficients of the φ′

term are set to 1. These coefficients can be set to equal any constant to obtain the

same effect and the choice of 1 keeps the algorithm simple. This leaves the φ′ term

as the only nonzero term left over. The system of equations to be solved is given in
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Table 15.

a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 = α

a0 + 2a1 + 3a2 + 4a3 + 5a4 + 6a5 + 7a6 + 8a7 = 1

a0 + 22a1 + 32a2 + 42a3 + 52a4 + 62a5 + 72a6 + 82a7 = 0

a0 + 23a1 + 33a2 + 43a3 + 53a4 + 63a5 + 73a6 + 83a7 = 0

a0 + 24a1 + 34a2 + 44a3 + 54a4 + 64a5 + 74a6 + 84a7 = 0

a0 + 25a1 + 35a2 + 45a3 + 55a4 + 65a5 + 75a6 + 85a7 = 0

a0 + 26a1 + 36a2 + 46a3 + 56a4 + 66a5 + 76a6 + 86a7 = 0

a0 + 27a1 + 37a2 + 47a3 + 57a4 + 67a5 + 77a6 + 87a7 = 0

a0 + 28a1 + 38a2 + 48a3 + 58a4 + 68a5 + 78a6 + 88a7 = 0.

Table 15: System of equations for Neumann boundary formula coefficients

Table 16 lists coefficients for the Neumann boundary condition ∂φ
∂x

= 0. These

coefficients are the same for both nodes 1 and N .

Order a0 a1 a2 a3 a4 a5 a6 a7 α

4 48 -36 16 -3 25

6 360 -450 400 -225 72 -10 147

8 6720 -11760 15680 -14700 9408 -3920 960 -105 2283

Table 16: Coefficients for Neumann boundary condition ∂φ
∂x

= 0

7 Temporal Derivatives

The compact scheme approximates spatial derivatives only. For problems such as

the wave equation above, the explicit Euler time differencing method can be easily

implemented. The higher-order Runge-Kutta methods are also commonly applied for

temporal derivatives. This section considers a modified fourth order Runge-Kutta

method by incorporating the compact scheme.

It is noted that for any time marching scheme, the Courant-Friedrichs-Lewy (CFL)

condition must be satisfied. This type of stability analysis of the compact scheme is
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often only verified by numerical experimentation rather than with the detailed von

Neumann analysis. This is considered only briefly here.

For the explicit Euler time marching scheme, the necessary conditions are outlined

by Vichnevetsky [23] and Lele [15]. When the compact scheme is employed with the

Euler time approximation, the requirements are generally more strict [11] than for

the low order explicit finite difference schemes.

The von Neumann stability analysis begins by considering the explicit Euler time

integration of the semi-discrete equation φ′

i = Aφi where A is the discrete differential

operator for the spatial derivatives. The updated solution is given by

φn+1
i = φn

i + ∆tAφn
i . (7.1)

Substitution of the “trial” solution φn
i = bneiωx into this scheme yields

bn+1 = [1 + ∆tω̃(ω)]bn (7.2)

where ω̃(ω) is the spectral function of the discrete differential operator A. The ratio

z(ω) = bn+1/bn = 1+∆tω̃(ω) is called the amplification factor and the von Neumann

stability condition requires that |z(ω)| ≤ 1.

Definition 6. The stability region S for the explicit Euler scheme is defined as the

region in the ∆tω̃(ω) plane determined by

∆tω̃(ω) = z − 1, |z| ≤ 1. (7.3)

The stability of the Euler time integration method then corresponds to the step sizes

in time and space for which ∆tω̃(ω) lies within the stability region S for all ω. This

stability region is a disc centered at −1 + 0i in the complex ∆tω̃(ω) plane as shown

in Figure 1 of [23].
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The fourth order first derivative compact scheme has the spectral function ω̃(ω) =

3 sin(ω)
2+cos(ω)

. As the spectral function is entirely real-valued, the segment of the real axis

where ∆tω̃(ω) lies within the disc of the stability region S will determine the step size

ratio for which the Euler scheme is stable in combination with this compact scheme.

The spectral function of the fourth order scheme has the bound
∣

∣

∣

3 sin(ω)
2+cos(ω)

∣

∣

∣
≤

√
3 and

the stability condition for the advection case determined by Hirsh [11] is

c∆t

∆x
≤
√

1/6, (7.4)

showing that the scheme is stable on the interval [−
√

1/2, 0] of the real axis in the

∆tω̃(ω) plane.

For the diffusion case, the stability region of the fourth order second derivative

compact scheme is determined in a similar manner. The limitations here are

ν∆t

∆x2
≤ 1

3
. (7.5)

For the Runge-Kutta time approximation methods, a similar approach proves to be

much more difficult. However, Figure 5(d) of [23] shows plots of the stability regions

of the Runge-Kutta methods of orders 1, 2, 3, and 4 which assist in determining the

stability of these methods.

As discussed by Lele [15], the exact stability limitations in time and space steps

depend on segments of the real and imaginary axis where the time advancement

scheme is stable. Let σr and σi denote the segment lengths on the real and imaginary

axes respectively. For the advection case,

c∆t

∆x
≤ σi

ω̃m
(7.6)

where σi is from the segment of the imaginary axis [−iσi, iσi] where the time advance-
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ment scheme is stable. In the diffusion case, the restriction is to

ν∆t

∆x2
≤ σr

ω̃m
(7.7)

where [−σr, 0] is the segment of the real axis where the time advancement scheme

is stable. The value of ω̃m is the maximum value of the modified wave number for

the first and second derivative compact schemes respectively. Vichnevetsky [23] also

shows that the values of σi and σr for the fourth order Runge-Kutta method are 2.85

and 2.9 respectively.

For problem with non-periodic boundaries, stability requirements depend on the

spectral radius of the matrix of the compact scheme. As this is much more compli-

cated, step size requirements for stability with the use of compact schemes are usually

determined by numerical experimentation. The step sizes are then chosen to fall well

within the necessary range.

The application of the Runge-Kutta time approximation method to stiff differen-

tial equations in conjunction with the compact scheme space derivative approximation

has yet to be analyzed or implemented in the current research available.

The modified fourth order Runge-Kutta method is discussed in the remainder of

the section. For an initial value problem of the form















φ′(t) = f(φ(t))

φ(0) = φ0

,

the solution at a given time step can be computed with the fourth order Runge-Kutta
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method by determining the four values

(K1)
n
i = ∆tf(φn

i ),

(K2)
n
i = ∆tf(φn

i +
1

2
(K1)

n
i ),

(K3)
n
i = ∆tf(φn

i +
1

2
(K2)

n
i ),

(K4)
n
i = ∆tf(φn

i + (K3)
n
i ),

(7.8)

and then computing

φn+1
i = φn

i +
1

6
((K1)

n
i + 2(K2)

n
i + 2(K3)

n
i + (K4)

n
i ) (7.9)

for i = 1, 2, 3, . . . , N − 2, N − 1, N .

For partial differential equations, the function f will be treated simply as a func-

tion of φ instead of a function of the derivatives of φ. For example, applying this

method to the one dimensional wave equation begins with ut = −cux = f(u). Now

for the given function f , it is straightforward to compute K1 through K4:
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(K1)
n
i = ∆tf(un

i )

= −c∆t(un
i )x

(K2)
n
i = ∆tf(un

i +
1

2
(K1)

n
i )

= −c∆t(un
i +

1

2
(K1)

n
i )x

= −c∆t(un
i )x −

c∆t

2
((K1)

n
i )x

= −c∆t(un
i )x +

c2∆t2

2
(un

i )xx

(K3)
n
i = ∆tf(un

i +
1

2
(K2)

n
i )

= −c∆t(un
i +

1

2
(K2)

n
i )x

= −c∆t(un
i )x −

c∆t

2
(K2)

n
i )x

= −c∆t(un
i )x +

c2∆t2

2
(un

i )xx −
c3∆t3

2
(un

i )xxx

(K4)
n
i = ∆tf(un

i + (K3)
n
i )

= −c∆t(un
i + (K3)

n
i )x

= −c∆t(un
i )x − c∆t((K3)

n
i )x

= −c∆t(un
i )x + c2∆t2(un

i )xx −
c3∆t3

2
(un

i )xxx +
c4∆t4

2
(un

i )xxxx.

The updated solution then computed with these values is given by

un+1
i = un

i +
1

6
[(K1)

n
i + 2(K2)

n
i + 2(K3)

n
i + (K4)

n
i ]

= un
i +

1

6

[

− 6c∆t(un
i )x + c2∆t2(un

i )xx +
c3∆t3

2
(un

i )xxx −
c4∆t4

2
(un

i )xxxx

]

.

The difficulty presented here is in computing values of (un
i )x, (u

n
i )xx, (u

n
i )xxx, (u

n
i )xxxx.

For problems involving higher order derivatives, the Runge-Kutta algorithm requires

knowledge of derivatives of order greater than four. The approach taken here is to

70



approximate (un
i )x using the compact scheme yielding the values of (K1)

n
i . Following

this, the values of (K2)
n
i = −c∆t(un

i )x − c∆t
2

((K1)
n
i )x can be computed by using both

the values of (K1)
n
i and the derivative values of (K1)

n
i which may be obtained by using

the compact scheme on (K1)
n
i . (K3)

n
i is then computed using the values of (K1)

n
i and

the derivative of (K2)
n
i which again can be found using the compact scheme. (K4)

n
i

is found in a similar manner.

A similar idea is considered in the following section where second derivatives are

computed by applying the first derivative scheme once to yield the first derivative

values and then the compact scheme is used again on the derivative values to approx-

imate the second derivative. This would likely double the required computation time,

but the derivation of compact schemes for higher-order derivatives may therefore be

bypassed. Li and Visbal [17] gave an excellent discussion of the effect of successive

application of lower-order derivative schemes. The formal order of accuracy appears

to be maintained, but the resolution characteristics are diminished in comparison to

the direct application of schemes for higher-order derivatives.

An interesting question that arises from such a combination is whether or not

such an approach can be used to accurately approximate a mixed partial derivative.

Applying the compact scheme over a grid to obtain derivatives in one direction and

then running the compact scheme again over those derivative values in the other

direction may yield an accurate approximation of such second order mixed partial

derivatives.

8 Applications

The compact scheme has been analyzed in the application to the one-dimensional

wave equation. Four other application problems will be considered here.
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8.1 Heat Equation

The one-dimensional heat equation

φt = σφxx (8.1)

is solved on the domain [0, 2π] with 100 grid points for diffusivity σ = 2. The

initial heat distribution is given by φ(x, 0) = sin x. The exact solution is given by

φ(x, t) = e−2t sin(x) and the compact scheme solution is compared with the standard

forward in time, centered in space (FTCS) method. With a time step ∆t = 0.0001, the

solution is iterated 10000 times using the Euler explicit time derivative approximation

and the solution is shown after 1 second. The step size in time must be chosen to

satisfy the CFL condition

C =
2∆t

∆x2
≤ 1

3

for the fourth order scheme where 1
3

is the ratio of σr

ω̃m
from 7.6. This is more restrictive

than the 1
2

requirement for the forward in time, centered in space second order finite

difference scheme. The given step size in time yields C = 0.0507 which should be

sufficient for the fourth order scheme and other higher order compact schemes.

Two experiments were run in this problem. First, the second derivative scheme was

used to approximate the spatial derivative. Then the first derivative compact scheme

was run twice in succession to approximate the second derivative. The maximum

point-wise error of the second derivative compact scheme in comparison to the exact

solution are given in column A of Table 17. Column B represents the maximum

point-wise error of the first derivative compact scheme run twice in succession. The

maximum point-wise error for the FTCS solution was 0.0138 where this scheme is

formally second order accurate in space.

For most of the schemes, the first derivative algorithm applied twice approximates

the second derivative with a reasonable degree of accuracy. However, the table shows
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Figure 31: Heat Equation exact solution φ(x, t) = e−2πt sin(x)

Scheme A B

T4 2.7046e-005 2.7012e-005

T6 2.7065e-005 2.7065e-005

P6 2.7224e-005 1.9427e-004

Table 17: Point-wise errors in numerical approximation of heat equation at T = 1s

little advantage of this approach in comparison with the second derivative algorithm.

The Neumann boundary condition dφ
dx

= 0 was applied for another experiment

to determine the effectiveness of the boundary formulas presented in Section 6. The

Neumann condition was used for the left boundary and the Dirichlet condition for

the right boundary. The initial condition and all other details remain the same from

the previous experiment. The graph of the approximation is shown in Figure 32.
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Figure 32: Heat Equation with Neumann boundary condition

8.2 Burgers’ Equation

Burgers’ equation is a nonlinear convection-diffusion equation that is often used as a

standard test for numerical algorithms. The equation given here is

φt +

(

1

2
− φ

)

φx = νφxx (8.2)

where ν represents the viscosity. The problem is to be solved on the physical domain

where lim
x→−∞

φ(x, t) = 0, and lim
x→∞

φ(x, t) = 1. For the approximation, the simplified

domain [−5, 5] is used with assumed boundary conditions φ(−5, t) = 0, and φ(5, t) = 1

and a linear initial profile φ(x, 0) = 1
10
x+ 1

2
.

With a value of ν = 1
8

for the viscosity, the spatial derivatives will be computed

using the fourth order compact schemes for both first and second derivatives. The

steady-state behavior of the solution will be determined and approximate values will

be compared to the actual steady-state solution φ(x) = 1
2

(

1 + tanh x
4ν

)

. Euler explicit

time integration is used to march the solution forward in time with step size ∆t = 0.05.

74



The spatial step size is ∆x = 0.2. These choices yield the ratio ν∆t
∆x2 = 0.3 which is

less than the required 1
3

necessary for stability of the fourth order scheme. The exact

solution is plotted in Figure 33.

−5 0 5

0

0.2

0.4

0.6

0.8

1

Burgers Equation Exact solution

Figure 33: Exact steady-state solution of Burgers’ Equation

The results of the experiment are given in Table 18. The scheme was marched

in time until a steady state was reached, that is, the time derivative change was less

than 10−8 (chosen arbitrarily). The infinity norm of the difference of the steady state

approximation and the exact solution was 0.00035367.

To determine the correct order of accuracy of the compact scheme, an approach

similar to that given by LeVeque [16] and Villamizar [3] is followed. For the steady

state solution, the infinity norm error is computed since the exact solution is known.

This is done for various step sizes ∆x. Table 19 shows the error for various step sizes

along with the logarithms of the step sizes and errors.

A linear regression for the two logarithms in Table 19 produces an equation with

a slope approximately equal to the exponent in the truncation error of the numerical

scheme. The data and regression line are plotted in Figure 34. The linear regression
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x Exact T4

0 0.5 0.5

0.2 0.68997 0.69033

0.4 0.83202 0.83224

0.6 0.91683 0.91687

0.8 0.96083 0.96082

1.0 0.98201 0.98199

1.2 0.99184 0.99182

1.4 0.99632 0.99631

1.6 0.99834 0.99834

1.8 0.99925 0.99925

2.0 0.99966 0.99966

Table 18: Burgers’ Equation Solutions

∆x − log(∆x) Error − log(Error)
1
5

1.6094379 0.00035367 7.947146283
1
6

1.7917595 0.00015300 8.785072637
1
7

1.9459101 0.00008251 9.402542582
1
8

2.0794415 0.00004994 9.904648226
1
9

2.1972246 0.00003106 10.37946097
1
10

2.3025851 0.00001991 10.82428844

Table 19: Error and convergence analysis for Burgers’ Equation

equation is y = 4.0931x+ 1.4046 with a correlation coefficient of R2 = 0.999 showing

the expected rate of convergence.

8.3 Convection Equation

The compact schemes are used here to solve the convection-diffusion equation

φt + uφx + vφy = α(φxx + φyy) (8.3)
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Figure 34: Convergence rate of fourth order scheme for Burgers’ Equation

on the domain x ∈ [−1
2
, 1

2
], y ∈ [−1

2
, 1

2
] over a grid 100×100 grid. The initial condition

is given by

φ(x, y, 0) = 5 exp

(

−1500

[

(

x− 1

4

)2

+ y2

])

. (8.4)

The velocity components are taken to be u = −y, v = x and α = 0. The time

derivative is solved using the Runge-Kutta fourth order method with ∆t = 1.0×10−3.

This is a re-creation of the experiment analyzed by [7]. The choice of step sizes in the x

and y direction along with the time step size is sufficient for the stability requirements

as discussed earlier.
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The Runge-Kutta system of equations is given by

(K1)
n
ij = ∆tf(φn

ij)

= ∆t(y(φn
ij)x − x(φn

ij)y)

(K2)
n
ij = ∆tf(φn

ij +
1

2
(K1)

n
ij)

= ∆t(y(φn
ij)x − x(φn

ij)y +
1

2
(y((K1)

n
ij)x − x((K1)

n
ij)y))

(K3)
n
ij = ∆tf(φn

ij +
1

2
(K2)

n
ij)

= ∆t(y(φn
ij)x − x(φn

ij)y +
1

2
(y((K2)

n
ij)x − x((K2)

n
ij)y))

(K4)
n
ij = ∆tf(φn

ij + (K3)
n
ij)

= ∆t(y(φn
ij)x − x(φn

ij)y + y((K3)
n
ij)x − x((K3)

n
ij)y)

φn+1
ij = φn

ij +
1

6
((K1)

n
ij + 2(K2)

n
ij + 2(K3)

n
ij + (K4)

n
ij).

The initial condition is a sharp Gaussian profile with a peak at five. The cone

will be convected in a circular pattern around the origin. Without the diffusive term,

the initial profile should be undistorted when it returns to the initial position. Each

figure lists the minimum and maximum values of the approximate solution after one

full rotation. The initial profile is plotted in Figure 35.

With a discretized domain, the peak of the initial condition is not rendered exactly

at the value of 5 but at 4.76649. As the cone rotates around the circle, the peak of

the cone is rendered at different grid points and the maximum value fluctuates. With

the refined mesh size 100× 100, any significant loss introduced by the approximation

scheme should be apparent. The approximations for several different schemes are

shown in figures 36 and 37.

For the spectral scheme A6, the solution was again approximated after four full

rotations to determine if the initial peak is diminished after a longer time simulation.

The results given in Figure 38 show that there is only a minimal loss. All other fourth

and sixth order schemes used here showed a significant loss after two full rotations.
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Figure 35: Initial profile for convection equation
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Figure 36: Convection solution at T = 2π with the T4 and T6 schemes

As was suggested earlier, the Runge-Kutta method applied to the partial dif-

ferential equations considered here incorporates the compact scheme in computing

spatial derivatives. All previous experiments on the convection equation (8.3) used

the Runge-Kutta method for the time derivative approximation. The values of K1

through K4 were all computed using the compact scheme with the same order of

accuracy as was used for the derivatives φx and φy.
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Figure 37: Convection solution at T = 2π with the P6 and A6 schemes
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Figure 38: Convection solution at T = 8π with the A6 scheme

Another experiment was run using both the T4 and T6 schemes for the spatial

derivatives. This time the Runge-Kutta method employed various compact schemes

in the approximations of K1 through K4. The results are shown in Table 20.

Table 20 shows both maximum and minimum values obtained for both the T4

and T6 schemes used for the spatial derivative. That is, the solution depended more

on which compact scheme was incorporated into the Runge-Kutta algorithm than the
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RK4

scheme max min
T4 4.4925 -0.3631

T6 4.8140 -0.0286

P6 4.8020 -0.0380

A6 4.8311 -0.0001

Table 20: Convection max and min at T = 2π for (8.3) with compact schemes

scheme used for the spatial derivatives.

8.4 Korteweg-de Vries (KdV) Equation

As demonstrated by [17], the compact scheme may be applied to the standard Korteweg-

de Vries (KdV) equation

φt + 3(φ2)x + φxxx = 0. (8.5)

This is a nonlinear equation with a third derivative term. Li and Visbal claim that [17]

is the first known implementation of a third derivative compact scheme. Such schemes

have been considered for several years, yet implementation for third derivatives has

generally been performed by successive use of the first derivative scheme.

With the initial condition

φ(x, 0) = −2sech2x, (8.6)

the exact solution is

φ(x, t) = −2sech2(x− 4t). (8.7)

The numerical solution is obtained by applying the sixth order compact scheme with

periodic boundary conditions. The solution is approximated on the interval [−10, 12]

with N = 41, 81, 161 equally spaced grid points. The time step ∆t = 0.01∆x2 is

suggested by [17]. Numerical results show the scheme to be unstable for ∆t
∆x2 > 0.05.
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The solution is filtered with an eighth order tridiagonal filter (α = 0.4)

The maximum point-wise error is computed for the three grid spacings. The

effect of the frequency of the filter is shown in Table 21. The first column shows

the maximum point-wise error when the filter is run every time step and the second

column shows the error with the filter applied every 10 time steps. The third column

shows the effect of the filter run every 100 time steps. For comparison, the last column

shows the maximum point-wise error when the filter is not applied.

N filter 1 filter 10 filter 100 no filter

41 0.1865 0.0201 0.0491 0.0544

81 0.0116 0.0118 0.0138 0.0139

161 0.0024 0.0034 0.0035 0.0035

Table 21: Maximum point-wise errors for KdV equation

As the grid is refined, the frequency of the filter application appears to become

less important in considering the maximum point-wise error. It is also interesting to

note the effect of the filter application for the N = 41 case. The filter applied at every

time step produced a result that was worse than the approximation without filtering.

If the order of the filter is increased to eight, the approximation is still worse than

all other results for this case. Only when the filter is increased to tenth order is the

maximum point-wise error (0.0543) better than no application of the filter for this

grid spacing. A plot of the approximate solution after 0.5 seconds for the N = 81

case is shown in Figure 39 and the point-wise error is shown in Figure 40.

A similar analysis as before is done to determine the order of accuracy of the

compact scheme in this application. The sixth order compact scheme with peri-

odic boundary formulas was used for the first and third derivative. A tenth order

tridiagonal filter was implemented with α = 0.4. Table 22 shows the point-wise er-

ror for several different grid spacings. The least squares line from this data set is

y = 4.1566x+ 0.294 with a correlation coefficient of R2 = 0.9939 showing that there
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Figure 39: KdV approximate solution after 0.5s with filtered sixth order scheme
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Figure 40: Point-wise error in KdV equation approximation after 0.5 seconds

is approximately fourth order convergence rather than sixth order. Since there was

no steady state to be reached with this problem, the solution was simply marched in

time for 1.5 seconds and the approximation was compared with the exact solution at
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that time.

∆x − log(∆x) Error − log(Error)
22
60

0.435729 0.1136 2.1750718
22
80

0.5606673 0.0772 2.5613558
22
100

0.6575773 0.0508 2.9798589
22
120

0.7367586 0.0354 3.3410435
22
140

0.8037054 0.0260 3.6496587
22
160

0.8616973 0.0199 3.9170355

Table 22: Error and convergence for KdV Equation

The error and least squares line are plotted together in Figure 41.
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Figure 41: Convergence rate of sixth order scheme for KdV Equation

If the filter coefficient α is increased to 0.45, the least squares line for the error is

y = 4.424x+0.0859 with a correlation coefficient R2 = 0.9988. With a filter coefficient

of 0.495, the regression line becomes y = 4.6423x−0.084 with a correlation coefficient

R2 = 1.
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9 Summary

The development of the high order compact schemes was done in several parts. In-

terior point formulas of the Padé type were derived using the Taylor series matching

procedure. Boundary formulas of the same type were also derived. Comparison of

these schemes with the explicit finite difference methods of the same order showed

several advantages of the compact scheme. Necessary conditions of stability and con-

vergence were discussed and the eigenvalue analysis showed some of the schemes to

be strictly stable.

The resolving efficiency of the schemes were determined by considering the spec-

tral functions of the compact schemes. The spectral functions were also used to

derive coefficients for the spectral type schemes. Comparison of Padé and spectral

schemes in approximation of the one-dimensional wave equation showed the spectral

schemes to be considerably better. Filter formulas were derived and implemented.

The Euler explicit and fourth-order Runge-Kutta temporal approximation methods

were considered in conjunction with the compact schemes.

Several test problems were considered. The order of convergence was shown to be

higher than the typical second order explicit method. The method of implementation

of the compact schemes in MATLAB showed that the compact schemes may be used

with relatively good efficiency. The compact schemes perform well in the examples

considered here and merit further analysis and consideration in more general two

dimensional and three dimensional initial/boundary value problems.

Appendix A

The algorithm used to solve a differential equation with the compact scheme is simple.

Assuming that all the details of the numerical scheme have already been determined,

such as mesh size, time integration method, time step size, and initial profile, the
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procedure is as follows:

• Choose degree of accuracy

• Choose stencil sizes

• Determine necessary coefficients

• Generate implicit left-hand side matrix

• Generate right-hand side matrix

• Solve system to obtain necessary derivative matrices

• Update solution with time integration method

The matrices involved in the computation do not change at each time level. There-

fore it is best to code the algorithm with the matrices predetermined and defined.

These matrices can then be called at the necessary step in the algorithm without

having to be reproduced.

Appendix B

The following MATLAB codes are designed to run the compact scheme for one and

two dimensional problems.
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The function ‘compactLHS’ saved as a ‘.m’ file with the input ‘N’ generates the

square matrix of size N×N for the left hand side of the sixth order tridiagonal scheme.

function A = compactLHS(N)

A = zeros(N,N); B = ones(N,3);

%Interior scheme

B(:,1) = 1 / 3; B(:,3) = 1 / 3; %alpha

%Boundary formulation

B(2,3) = 5; B(N-1,1) = 5; %Nodes 1 and N

B(1,1) = 1 / 8; B(3,3) = 3 / 4; %Node 2

B(N-2,1) = 3 / 4; B(N,3) = 1 / 8; %Node N-1

%Sparse matrix generation

A = spdiags(B,[-1 0 1],A);

The function ‘compactRHS’ saved as a ‘.m’ file with the same input as ‘com-

pactLHS’ generates the right-hand side matrix of the compact scheme.

function B = compactRHS(N)

B = zeros(N,N); C = zeros(N,5);

C(:,1) = -1 / 36;

C(:,2) = -14 / 18;

C(:,4) = 14 / 18;

C(:,5) = 1 / 36;

B = spdiags(C,[-2 -1 0 1 2],B);

B(1,1) = -197/60; B(1,2) = -5/12; B(1,3) = 5;

B(1,4) = -5/3; B(1,5) = 5/12; B(1,6) = -1/20;

B(2,1) = -43/96; B(2,2) = -5/6; B(2,3) = 9/8; B(2,4) = 1/6;

B(2,5) = -1/96;

B(N-1,N) = 43/96; B(N-1,N-1) = 5/6; B(N-1,N-2) = -9/8; B(N-1,N-3) = -1/6;

B(N-1,N-4) = 1/96;
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B(N,N) = 197/60; B(N,N-1) = 5/12; B(N,N-2) = -5; B(N,N-3) = 5/3;

B(N,N-4) = -5/12; B(N,N-5) = 1/20;

The matrices A and B from ‘compactLHS’ and ‘compactRHS’, initial value of the

solution u, spatial step size dx, and ‘int1’ and ‘int2’ are the inputs for the ‘compact’

function where ‘int1’ and ‘int2’ are the first and last node required for computation.

The function then approximates the values of the first derivative at all nodes from

‘int1’ to ‘int2’ solving the matrix equation (2.30).

function z = compact(A,B,u,dx,int1,int2);

[m n] = size(u);

if m> 1 && n > 1

m = int1; n = int2;

else

m = 1; n = 1;

end

rhs = B * (u / dx);

z = A(int1:int2,int1:int2) \ rhs(int1:int2,m:n);

For a two dimensional problem, the code readily computes the y derivatives for

all mesh points. The same code can be used to determine the x derivatives by

substituting the transpose of the matrix u. The solution z then returns the transpose

of the matrix of x derivatives. Similar codes can be written for compact schemes of

all orders.

The code presented here for the compact scheme does not optimize the compu-

tation time. As noted earlier, the matrix equation solution X of AX = B may be

pre-determined outside of the time loop for a given scheme. This new matrix X may

therefore be multiplied with the previous time solution to obtain the approximate

derivative values at the current time iteration. Thus the matrix system to be solved

at each time level reduces to matrix-vector or matrix-matrix multiplication.
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The filter scheme can be accomplished in a similar manner as the compact scheme.

There is one code which generates the implicit left hand side and another to generate

the right hand side. Again the functions ‘filterLHS’ and ‘filterRHS’ should be saved

as ‘.m’ files. The input is similar to that of the compact schemes. Here the free

parameter ‘alpha’ is necessary is input for both functions. The function ‘filterLHS’ is

shown here.

function C = filterLHS(N,alpha)

C = zeros(N,N); D = ones(N,3);

D(:,1) = alpha; D(:,3) = alpha;

C = spdiags(D,[-1 0 1],C);

The function ‘filterRHS’ is shown here.

function D = filterRHS(order,N,alpha)

D = zeros(N,N);

a = (93 + 70 * alpha) / 128;

b = (7 + 18 * alpha) / 16;

c = (-7 + 14 * alpha) / 32;

d = (1 - 2 * alpha) / 16;

e = (-1 + 2 * alpha) / 128;

B = zeros(N,9);

B(:,1) = e / 2; B(:,2) = d / 2; B(:,3) = c / 2; B(:,4) = b / 2;

B(:,5) = a;

B(:,6) = b / 2; B(:,7) = c / 2; B(:,8) = d / 2; B(:,9) = e / 2;

D = spdiags(B,[-4 -3 -2 -1 0 1 2 3 4],D);

D(1,1) = (255 + alpha) / 256; D(1,2) = (1 + 31 * alpha) / 32;

D(1,3) = (-7 + 7 * alpha) / 64; D(1,4) = (7 - 7 * alpha) / 32;
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D(1,5) = 7 * (-5 + 5 * alpha) / 128; D(1,6) = (7 - 7 * alpha) / 32;

D(1,7) = 7 * (-1 + alpha) / 64; D(1,8) = (1 - alpha) / 32;

D(1,9) = (-1 + alpha) / 256;

D(2,1) = (1 + 254 * alpha) / 256; D(2,2) = (31 + 2 * alpha) / 32;

D(2,3) = (7 + 50 * alpha) / 64; D(2,4) = (-7 + 14 * alpha) / 32;

D(2,5) = 7 * (5 - 10 * alpha) / 128; D(2,6) = (-7 + 14 * alpha) / 32;

D(2,7) = (7 - 14 * alpha) / 64; D(2,8) = (-1 + 2 * alpha) / 32;

D(2,9) = (1 - 2 * alpha) / 256;

D(3,1) = (-1 + 2 * alpha) / 256; D(3,2) = (1 + 30 * alpha) / 32;

D(3,3) = (57 + 14 * alpha) / 64; D(3,4) = (7 + 18 * alpha) / 32;

D(3,5) = 7 * (-5 + 10 * alpha) / 128; D(3,6) = (7 - 14 * alpha) / 32;

D(3,7) = (-7 + 14 * alpha) / 64; D(3,8) = (1 - 2 * alpha) / 32;

D(3,9) = (-1 + 2 * alpha) / 256;

D(4,1) = (1 - 2 * alpha) / 256; D(4,2) = (-1 + 2 * alpha) / 32;

D(4,3) = (7 + 50 * alpha) / 64; D(4,4) = (25 + 14 * alpha) / 32;

D(4,5) = (35 + 58 * alpha) / 128; D(4,6) = (-7 + 14 * alpha) / 32;

D(4,7) = (7 - 14 * alpha) / 64; D(4,8) = (-1 + 2 * alpha) / 32;

D(4,9) = (1 - 2 * alpha) / 256;

D(N-3,N) = (1 - 2 * alpha) / 256; D(N-3,N-1) = (-1 + 2 * alpha) / 32;

D(N-3,N-2) = (7 + 50 * alpha) / 64; D(N-3,N-3) = (25 + 14 * alpha) / 32;

D(N-3,N-4) = (35 + 58 * alpha) / 128; D(N-3,N-5) = (-7 + 14 * alpha) / 32;

D(N-3,N-6) = (7 - 14 * alpha) / 64; D(N-3,N-7) = (-1 + 2 * alpha) / 32;

D(N-3,N-8) = (1 - 2 * alpha) / 256;
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D(N-2,N) = (-1 + 2 * alpha) / 256; D(N-2,N-1) = (1 + 30 * alpha) / 32;

D(N-2,N-2) = (57 + 14 * alpha) / 64; D(N-2,N-3) = (7 + 18 * alpha) / 32;

D(N-2,N-4) = 7 * (-5 + 10 * alpha) / 128; D(N-2,N-5) = (7 - 14 * alpha) / 32;

D(N-2,N-6) = (-7 + 14 * alpha) / 64; D(N-2,N-7) = (1 - 2 * alpha) / 32;

D(N-2,N-8) = (-1 + 2 * alpha) / 256;

D(N-1,N) = (1 + 254 * alpha) / 256; D(N-1,N-1) = (31 + 2 * alpha) / 32;

D(N-1,N-2) = (7 + 50 * alpha) / 64; D(N-1,N-3) = (-7 + 14 * alpha) / 32;

D(N-1,N-4) = 7 * (5 - 10 * alpha) / 128; D(N-1,N-5) = (-7 + 14 * alpha) / 32;

D(N-1,N-6) = (7 - 14 * alpha) / 64; D(N-1,N-7) = (-1 + 2 * alpha) / 32;

D(N-1,N-8) = (1 - 2 * alpha) / 256;

D(N,N) = (255 + alpha) / 256; D(N,N-1) = (1 + 31 * alpha) / 32;

D(N,N-2) = (-7 + 7 * alpha) / 64; D(N,N-3) = (7 - 7 * alpha) / 32;

D(N,N-4) = 7 * (-5 + 5 * alpha) / 128; D(N,N-5) = (7 - 7 * alpha) / 32;

D(N,N-6) = 7 * (-1 + alpha) / 64; D(N,N-7) = (1 - alpha) / 32;

D(N,N-8) = (-1 + alpha) / 256;

The the left-hand side and right-hand side matrices generated, the solution X of

the matrix equation CX = D encodes all the necessary information about the filter.

At any time step, the filter can be accomplished by multiplying this matrix by the

solution vector or matrix.

Appendix C

The derivation of compact schemes relies heavily upon Taylor’s theorem.
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Theorem 6. If f is an n+1 times differentiable function on an interval I containing

x0, then for each x in I there exists ξ between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 +
f ′′′(x0)

3!
(x− x0)

3 + · · ·+

f (n)(x0)

n!
(x− x0)

n +Rn(x) (9.1)

where

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

The proof of Taylor’s theorem can be found in many Calculus texts such as [14].

If a partition, x = x0 + ih, i = 0, 1, . . . , J , is defined in the interval I containing

x0, xi, and xi+j then, (9.1) can be used to obtain a representation of fi+j = f(xi+j)

(xi+j = x0 + (i+ j)h) as a Taylor series centered at xi. In fact,

fi+j = fi + jhf ′

i +
j2h2

2!
f ′′

i + · · · j
nhn

n!
f

(n)
i +Rni+j

,

where f
(n)
i = f (n)(xi), n = 0, 1, . . . , n.

For functions of two or more variables as for example, φ(x, t), having n+1 partial

derivatives with respect to x in the interval I , the above Taylor series expansion can

be written as

φi+j = φi + jh

(

∂φ

∂x

)

i

+
j2h2

2!

(

∂2φ

∂x2

)

i

+ · · · + jnhn

n!

(

∂nφ

∂xn

)

i

+Rni+j
(9.2)

where the error term Rn is given by

Rni+j
=
jn+1hn+1

(n + 1)!

(

∂n+1φ

∂xn+1

)

i+ξ

, 0 < ξ < j. (9.3)

Assuming that φ has n+ 2 derivatives with respect to x in the interval I, the Taylor
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0 = a+ b+ c+ d+ e+ f + g

1 + α + β = b+ 2c+ 3d+ 4e+ 5f + 6g

2!(α+ 2β) = b+ 22c+ 32d+ 42e+ 52f + 62g

3!

2!
(α + 22β) = b+ 23c+ 33d+ 43e+ 53f + 63g

4!

3!
(α + 23β) = b+ 24c+ 34d+ 44e+ 54f + 64g

5!

4!
(α + 24β) = b+ 25c+ 35d+ 45e+ 55f + 65g

6!

5!
(α + 25β) = b+ 26c+ 36d+ 46e+ 56f + 66g

7!

6!
(α + 26β) = b+ 27c+ 37d+ 47e+ 57f + 67g

8!

7!
(α + 27β) = b+ 28c+ 38d+ 48e+ 58f + 68g

Table 23: System of equations for first derivative node 1 coefficients

series expansion of
∂φ

∂x
centered at xi is given by

(

∂φ

∂x

)

i+j

=

(

∂φ

∂x

)

i

+jh

(

∂2φ

∂x2

)

i

+
j2h2

2!

(

∂3φ

∂x3

)

i

+· · ·+j
nhn

n!

(

∂n+1φ

∂xn+1

)

i

+Rni+j
(9.4)

where

Rni+j
=
jn+1hn+1

(n + 1)!

(

∂n+2φ

∂xn+2

)

i+ξ

, 0 < ξ < j.

These formulas and their analogs for higher order derivatives are the basis for deriving

finite difference schemes and are used extensively in this work.

The system of equations for determining the first derivative boundary formula at

node 1 is shown in Table 23.

A systematic adding of more variables and equations will increase the formal

accuracy of the boundary formula. Shown also in Table 24 is the system of equations

for the first derivative boundary formula at node 2.

Of note is the change in the left and right hand sides of these systems. The number
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0 = a + b+ c+ d+ e+ f

α1 + 1 + α2 + β = −a + c+ 2d+ 3e+ 4f

2!(−α1 + α2 + 2β) = a + c+ 22d+ 32e+ 42f

3!

2!
(α1 + α2 + 22β) = −a + c+ 23d+ 33e+ 43f

4!

3!
(−α1 + α2 + 23β) = a + c+ 24d+ 34e+ 44f

5!

4!
(α1 + α2 + 24β) = −a + c+ 25d+ 35e+ 45f

6!

5!
(−α1 + α2 + 25β) = a + c+ 26d+ 36e+ 46f

7!

6!
(α1 + α2 + 26β) = −a + c+ 27d+ 37e+ 47f

8!

7!
(−α1 + α2 + 27β) = a + c+ 28d+ 38e+ 48f

Table 24: System of equations for first derivative node 2 coefficients

of points needed on the right hand side decreases as an additional point become

available for the left hand side. Similarly a shift in the values of the coefficients of

the right hand side indicates the change for the center of the Taylor series expansions

at each node.

Appendix D

The coefficients of the second derivative boundary formulas are listed here in Tables

25 through 31.

α a b c d e f g h i j k

T4 10 145
12

−76
3

29
2

−4
3

1
12

T6 126
11

2077
157

−2943
110

573
44

167
99

−18
11

57
110

131
1980

T8 3044
223

2515
171

−5075
187

3996
733

4636
301

−2658
191

4483
578

−4112
1465

1221
2023

−137
2335

T10 6710
419

1432
89

−3878
151

−1689
166

5681
119

17776
329

9619
221

7447
289

3715
339

−1456
459

1310
2339

517
11351

Table 25: Tridiagonal coefficients of second derivative at nodes 1 and N
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β α a b c d e f g h i j

P6 −131
4

11
2

177
16

−507
8

783
8

−201
4

81
16

−3
8

P8 10073
86

7999
238

5546
257

11427
110

−16102
55

20492
107

−15403
535

1751
333

−3720
5081

232
4421

P10 3987
37

18025
564

9743
464

7937
85

−40827
152

10786
61

−3445
128

1567
319

−532
891

−79
5935

61
3175

−115
48923

Table 26: Pentadiagonal coefficients of second derivative at nodes 1 and N

α1 α2 a b c d e f g h i j

T6 2
11

−131
22

177
88

−507
44

783
44

−201
22

81
88

−3
44

T8 238
7999

2206
633

1001
1559

7211
2333

−2500
287

2285
401

−1906
2225

217
1387

−127
5830

24
15371

T10 343
12956

1830
479

843
1391

1530
431

−9017
948

3216
535

−554
799

−86
24291

399
6271

−242
8755

55
9259

−4
7291

Table 27: Tridiagonal coefficients of second derivative at nodes 2 and N − 1

β α1 α2 a b c d e f g

P8 1150
1339

23
688

2335
688

1607
2376

1943
701

−1421
201

955
308

459
851

−212
11191

12
25283

P10 −1062
1297

155
4886

4725
1508

1165
1754

1502
545

−283
31

4879
642

−934
423

1060
2823

−209
3160

114
13543

Table 28: Pentadiagonal coefficients of second derivative at nodes 2 and N − 1

α1 α2 a b c d e f g h i k

T8 9
38

−563
342

1313
15199

1165
867

−2969
570

3082
487

−1969
684

851
2280

−223
4663

23
6840

T10 151
3108

2467
859

132
19553

6575
9089

1265
593

−2967
425

14435
3039

−198
257

467
2821

−107
3451

80
19827

−11
42057

Table 29: Tridiagonal coefficients of second derivative at nodes 3 and N − 2

β1 β2 α1 α2 a b c d e f g h

P10 −82
12267

1185
931

−235
2263

1451
320

−355
3002

2803
3935

814
181

−17489
1775

5035
1284

504
575

−174
4631

31
22718

Table 30: Pentadiagonal coefficients of second derivative at nodes 3 and N − 2

α1 α2 a b c d e f g h i k

T10 8
29

−151
232

−218
62217

287
1882

597
551

−3793
1044

1112
311

−3563
2629

166
781

−658
18037

37
8049

−14
47587

Table 31: Tridiagonal coefficients of second derivative at nodes 4 and N − 3

Appendix E

Listed here are the boundary formulas for the filtering scheme. They are listed here

for completeness at nodes 1, 2, . . ., 5, N − 4, N − 3, . . . , N . Following the filter

formulas in Tables 32 through 36 are the coefficients of the boundary filter formulas.
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Filter formula at boundary point 1

φ̂1 + αf φ̂2 + βf φ̂3 = a1φ1 + a2φ2 + a3φ3 + · · ·+ a9φ9 + a10φ10 + a11φ11

Filter formula at boundary point 2

αf φ̂1 + φ̂2 + αf φ̂3 + βf φ̂4 = a1φ1 + a2φ2 + a3φ3 + · · · + a9φ9 + a10φ10 + a11φ11

Filter formula at boundary point 3

βf φ̂1 + αf φ̂2 + φ̂3 + αf φ̂4 + βf φ̂5 = a1φ1 + a2φ2 + a3φ3 + · · ·+ a9φ9 + a10φ10 + a11φ11

Filter formula at boundary point 4

βf φ̂2 + αf φ̂3 + φ̂4 + αf φ̂5 + βf φ̂6 = a1φ1 + a2φ2 + a3φ3 + · · ·+ a9φ9 + a10φ10 + a11φ11

Filter formula at boundary point 5

βf φ̂3 + αf φ̂4 + φ̂5 + αf φ̂6 + βf φ̂7 = a1φ1 + a2φ2 + a3φ3 + · · ·+ a9φ9 + a10φ10 + a11φ11

Filter formula at boundary point N − 4

βf φ̂N−6 + αf φ̂N−5 + φ̂N−4 + αf φ̂N−3 + βf φ̂N−2

= aNφN + aN−1φN−1 + aN−2φN−2 + · · ·+ aN−8φN−8 + aN−9φN−9 + aN−10φN−10

Filter formula at boundary point N − 3

βf φ̂N−5 + αf φ̂N−4 + φ̂N−3 + αf φ̂N−2 + βf φ̂N−1

= aNφN + aN−1φN−1 + aN−2φN−2 + · · ·+ aN−8φN−8 + aN−9φN−9 + aN−10φN−10
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Filter formula at boundary point N − 2

βf φ̂N−4 + αf φ̂N−3 + φ̂N−2 + αf φ̂N−1 + βf φ̂N

= aNφN + aN−1φN−1 + aN−2φN−2 + · · ·+ aN−8φN−8 + aN−9φN−9 + aN−10φN−10

Filter formula at boundary point N − 1

βf φ̂N−3 + αf φ̂N−2 + φ̂N−1 + αf φ̂N

= aNφN + aN−1φN−1 + aN−2φN−2 + · · ·+ aN−8φN−8 + aN−9φN−9 + aN−10φN−10

Filter formula at boundary point N

βf φ̂N−2 + αf φ̂N−1 + φ̂N

= aNφN + aN−1φN−1 + aN−2φN−2 + · · ·+ aN−8φN−8 + aN−9φN−9 + aN−10φN−10
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a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

T6 63+α
64

3+29α
32

15(−1+α)
64

5(1−α)
16

15(−1+α)
64

3(1−α)
32

−1+α
64

T8 255+α
256

1+31α
32

7(−1+α)
64

7(1−α)
32

35(−1+α)
128

7(1−α)
32

7(−1+α)
64

1−α
32

−1+α
256

T10 1023+α
1024

5+507α
512

45(−1+α)
1024

15(1−α)
128

105(−1+α)
512

63(1−α)
256

105(−1+α)
512

15(1−α)
128

45(−1+α)
1024

5(1−α)
512

−1+α
1024

P6 63+α−β
64

3+29α+3β
32

−15+15α+49β
64

5(1−α+β)
16

15(−1+α−β)
64

3(1−α+β)
32

−1+α−β
64

P8 255+α−β

256
1+31α+β

32
−7+7α+57β

64
7(1−α+β)

32
35(−1+α−β)

128
7(1−α+β)

32
7(−1+α−β)

64
1−α+β

32
−1+α−β

256

P10 1023+α−β
1024

5+507α+5β
512

−45+45α+979β
1024

15(1−α+β)
128

105(−1+α−β)
512

63(1−α+β)
256

105(−1+α−β)
512

15(1−α+β)
128

45(−1+α−β)
1024

5(1−α+β)
512

−1+α−β
1024

Table 32: Coefficients of filtering schemes at node 1

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

T6 1+62α
64

29+6α
32

15+34α
64

−5+10α
16

15(1−2α)
64

3(−1+2α)
32

1−2α
64

T8 1+254α
256

31+2α
32

7+50α
64

7(−1+2α)
32

35(1−2α)
128

7(−1+2α)
32

7(1−2α)
64

−1+2α
32

1−2α
256

T10 1+1022α
1024

507+10α
512

45+934α
1024

15(−1+2α)
128

105(1−2α)
512

63(−1+2α)
256

105(1−2α)
512

15(−1+2α)
128

45(1−2α)
1024

5(−1+2α)
512

1−2α
1024

P6 1+62α+β

64
29+6α−3β

32
15+34α+15β

64
−5+10α+11β

16
15(1−2α+β)

64
3(−1+2α−β)

32
1−2α+β

64

P8 1+254α+β
256

31+2α−β
32

7+50α+7β
64

−7+14α+25β
32

35(1−2α+β)
128

7(−1+2α−β)
32

7(1−2α+β)
64

−1+2α−β
32

1−2α+β
256

P10 1+1022α+β

1024
507+10α−5β

512
45+934α+45β

1024
(−15+30α+113β)

128
105(1−2α+β)

512
63(−1+2α−β)

256
105(1−2α+β)

512
15(−1+2α−β)

128
45(1−2α+β)

1024
5(−1+2α−β)

512
1−2α+β

1024

Table 33: Coefficients of filtering schemes at node 2
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a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

T6 −1+2α
64

3+26α
32

49+30α
64

5+6α
16

15(−1+2α)
64

3(1−2α)
32

−1+2α
64

T8 −1+2α
256

1+30α
32

57+14α
64

7+18α
32

35(−1+2α)
128

7(1−2α)
32

7(−1+2α)
64

1−2α
32

−1+2α
256

T10 −1+2α
1024

5+502α
512

979+90α
1024

15+98α
128

105(−1+2α)
512

63(1−2α)
256

105(−1+2α)
512

15(1−2α)
128

45(−1+2α)
1024

5(1−2α)
512

−1+2α
1024

P6 −1+2α+62β

64
3+26α+6β

32
49+30α−30β

64
5+6α+10β

16
−15+30α+34β

64
3(1−2α+2β)

32
−1+2α−2β

64

P8 −1+2α+254β

256
1+30α+2β

32
57+14α−14β

64
7+18α+14β

32
−35+70α+58β

128
7(1−2α+2β)

32
7(−1+2α−2β)

64
1−2α+2β

32
−1+2α−2β

256

P10 −1+2α+1022β

1024
5+502α+10β

512
979+90α−90β

1024
15+98α+30β

128
−105+210α+302β

512
63(1−2α+2β)

256
105(−1+2α−2β)

512
15(1−2α+2β)

128
45(−1+2α−2β)

1024
5(1−2α+2β)

512
−1+2α−2β

1024

Table 34: Coefficients of filtering schemes at node 3

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

T8 1−2α
256

−1+2α
32

7+50α
64

25+14α
32

35+58α
128

7(−1+2α)
32

7(1−2α)
64

−1+2α
32

1−2α
256

T10 1−2α
1024

5(−1+2α)
512

45+934α
1024

113+30α
128

105+302α
512

63(−1+2α)
256

105(1−2α)
512

15(−1+2α)
128

45(1−2α)
1024

5(−1+2α)
512

1−2α
1024

P8 1−2α+2β
256

−1+2α+30β
32

7+50α+14β
64

25+14α−14β
32

35+58α+70β
128

−7+14α+18β
32

7(1−2α+2β)
64

−1+2α−2β
32

1−2α+2β
256

P10 1−2α+2β

1024
−5+10α+502β

512
45+934α+90β

1024
113+30α−30β

128
105+302α+210β

512
−63+126α+130β

256
105(1−2α+2β)

512
15(−1+2α−2β)

128
45(1−2α+2β)

1024
5(−1+2α−2β)

512
1−2α+2β

1024

Table 35: Coefficients of filtering schemes at node 4

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

T10 −1+2α
1024

5(1−2α)
512

45(−1+2α)
1024

15+98α
128

407+210α
512

63+130α
256

105(−1+2α)
512

15(1−2α)
128

45(−1+2α)
1024

5(1−2α)
512

−1+2α
1024

P10 −1+2α−2β

1024
5(1−2α+2β)

512
−45+90α+934β

1024
15+98α+30β

128
407+210α−210β

512
63+130α+126β

256
−105+210α+302β

512
15(1−2α+2β)

128
45(−1+2α−2β)

1024
5(1−2α+2β)

512
−1+2α−2β

1024

Table 36: Coefficients of filtering schemes at node 5
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