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ABSTRACT

SYNTHESIS OF OPTIMAL ARRAYS FOR

MIMO AND DIVERSITY SYSTEMS

Britton T. Quist

Department of Electrical and Computer Engineering

Master of Science

This thesis proposes a method for determining the optimal antenna element

radiation characteristics which maximize diversity gain given a specific power angu-

lar spectrum of the propagation environment. The method numerically constructs

the eigenfunctions of the covariance operator for the scenario subject to constraints

on the power radiated by each antenna as well as the level of supergain allowed in

the solution. The optimal antenna characteristics are produced in terms of radiat-

ing current distributions along with their resulting radiation patterns. The results

reveal that the optimal antennas can provide significantly more diversity gain than

that provided by a simple practical design. Computational examples illustrate the

effectiveness of adding additional elements to the optimal array and the relation-

ship between aperture size or the description of the impinging field and the array

performance.





A synthesis procedure is proposed which uses genetic algorithm optimization to op-

timally place a reduced number of dipoles. The results from this procedure demon-

strate that using the framework in conjunction with optimization strategies can lead

to practical designs which perform well relative to the upper performance bound. Fi-

nally a novel array architecture is proposed where subsets of antennas are combined

together into super-elements which are then combined in the same manner as the

optimal array. The simplifications that result from the genetically optimized small

array or the super-element array provide a design options which are feasible in many

communication applications.
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Chapter 1

Introduction

The increasing demand for wireless delivery of all forms of content has neces-

sitated the development of techniques that allow high data rate wireless communica-

tion on limited available frequency spectrum. While a variety of techniques exist for

increasing the spectral efficiency of wireless links, the use of multiple-input multiple-

output (MIMO) technology in multipath propagation environments is arguably the

most effective technique. This type of communication uses multiple antennas at both

the transmitter and the receiver to exploit the complex spatial structure of the mul-

tipath propagation, enabling dramatic increases in achievable data rates.

Naturally, the performance of MIMO communication depends critically on the

ability of the antenna arrays to effectively interact with the impinging field. Analyzing

the performance of specific antenna configurations in a propagation channel for any

type of multi-antenna system has become a relatively straightforward task thanks

to a large number of studies on this subject [1, 2] (also see [3] for references to a

large number of papers on this topic). The understanding gained by this prior work

has led to the common practice among antenna designers of seeking antenna arrays

whose element radiation patterns are nearly orthogonal, as such a criterion leads to

good performance in multi-antenna systems under specific assumptions regarding the

propagation environment [2].

While this rule-of-thumb has been useful in antenna synthesis work, its appli-

cability is limited to scenarios where the multipath is equally likely to arrive from (or

depart into) all angles. What is therefore needed is a generalization of this concept

which can specify optimal antenna radiation characteristics given basic information

about the propagation environment. This allows determination of the performance
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of a practical array relative to the achievable performance and facilitates synthesis

of antennas that approach the optimal bound. Recently, some work has appeared

on this topic, where optimal antenna characteristics can be determined for MIMO

systems operating in a specific propagation environment [4]-[7], although in reality

the resulting antenna radiation behavior is a by-product of an effort to determine the

antenna-independent capacity bound of a propagation channel. While these methods

are intriguing, they necessarily consider the transmit and receive antenna charac-

teristics together (i.e. the designs are interdependent), and the resulting antenna

properties are optimal for the specific propagation channel considered. An effective

and practical approach for antenna synthesis should rely only on average propagation

behavior at one end of the link.

1.1 Thesis Contributions

This thesis directly addresses the problem of defining optimal antenna char-

acteristics for MIMO systems through a series of related contributions. Those contri-

butions can be summarized as follows:

1. A method for determining optimal radiation characteristics based on stochastic

characteristics of the propagation environment at either the transmit or receive

end of the link along with an aperture within which the antenna must reside.

The approach is based on ensuring that the radiation patterns are eigenfunctions

of the spatial correlation operator and provides the optimal antenna current

distributions.

2. A synthesis procedure for the design of an array consisting of a small number

of dipoles that performs well with reference to the optimal performance bound.

This synthesis uses genetic algorithm optimization to select the placement of

the dipoles in the array.

3. A novel array architecture which provides simplified implementation relative to

the optimal array. This involves combining sets of antennas into what are called

2



super-elements which are then optimally combined to form the array. Multiple

methods are proposed for determining the super-element weightings.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses the

background research that is important in understanding the concepts and ideas ref-

erenced in subsequent chapters. This includes a discussion on the importance of

array design in achieving quality MIMO performance. In Chapter 3 the derivation

of the optimal antenna array is given. Several computational examples are explored

in Chapter 4. These examples facilitate discussion on supergain, mutual coupling,

and the effective number of spatial degrees of freedom that are present for a given

aperture size.

To explore what is achievable using practical array topologies, two different

techniques are explored. The first of these which also serves as a synthesis procedure

uses genetic algorithm [8] optimization to optimally place a reduced number of dipoles.

This approach which is discussed in Chapter 5 is a practical synthesis procedure which

can be easily implemented for any array size. Chapter 6 presents the second practical

array architecture which combines disjoint subsets of antennas into super-elements.

Chapter 7 concludes the research discussed in this thesis as well as suggests future

related work.
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Chapter 2

Background Research

MIMO uses multiple antennas at the transmitter and receiver to create par-

allel, independent channels in a multipath propagation environment. These spatial

channels allow the simultaneous transmission of multiple streams of data over the

same frequency band and at the same time. The signals are then decoupled at the re-

ceiver to reconstruct the transmitted data. This decoupling at the receiver is achieved

through analysis of the channel matrix which consists of the complex gain observed

between every transmit and receive antenna pair. The quantity and quality of these

spatial channels is dependent on the antenna radiation patterns. This idea moti-

vates simplifying the interdependent transmitter and receiver design problems into

two separate array design problems.

2.1 MIMO Model

The research discussed in this paper is based on the assumption that perfor-

mance of MIMO systems is strongly dependent on the performance of the arrays at

each end of a MIMO link. Although subsequent analysis considers the problem to be

one of array design, since capacity of a link is the metric used in evaluating communi-

cation system performance, it is important explore the relationship between antenna

array topology and capacity.

In a MIMO communication system, the vector of complex-baseband (ie sam-

pled matched filter outputs) signals at the receiver is given as

y = Hx + η, (2.1)

5



where H is the channel matrix, x is the vector of complex baseband transmit signals,

and η is vector of additive white Gaussian noise.

For a narrow band system, the channel matrix for a given channel realization

is given by

Hmn =

∫

ΩR

∫

ΩT

eR,m(ΩR) ·GP (ΩR, ΩT ) · eT,n(ΩT ) dΩR dΩT , (2.2)

where ΩT and ΩR are solid angle coordinates relative to the transmit or receive

array, eR,m is the radiation pattern for the mth receive element, and eT,n is the

radiation pattern for the nth transmit element. GP (ΩR, ΩT ) is a dyadic function

which represents the relationship between the field radiated by the transmitter in

direction ΩT to the field impinging on the receiver in direction ΩR. One realistic

model for GP (ΩR, ΩT ) is

GP (ΩR, ΩT ) =
L−1∑

l=0

βlδ(ΩT − ΩT,l)δ(ΩR − ΩR,l), (2.3)

where δ is a Dirac delta function. This models L discrete paths from the transmitter

to receiver each with dyadic complex gain βl. When this model is used, the channel

matrix for a given link becomes

Hmn =
L−1∑

l=0

eR,m(ΩR,l) · βl · eT,n(ΩT,l). (2.4)

The capacity of a MIMO link is found through analysis of the channel matrix

H using the water filling method [9]. The channel matrix can be expressed using

the singular value decomposition as H = USV† where {·}† is the conjugate trans-

pose. The singular values in S determine the number of spatial channels that can

be utilized for a given transmit power as well as the capacity of that channel. To

provide credibility to the assertion that MIMO capacity is heavily dependent on the

topology of the antenna array, an example is given in which two array topologies are

compared. Both arrays consist of 4 Hertzian dipoles oriented in the ẑ direction. In

the first array, four dipoles are spaced by λ/3 so that the linear array has length λ,

6



where λ is the free-space wavelength. In the second array, four dipoles are placed

at the corners of a square of side length λ/2. In the channel model, ΩR,l and ΩT,l

are restricted to the horizontal plane and are uniformly distributed in φ. Averaging

the water filling capacity [10] over several trials results in the behavior shown in Fig-

ure 2.1. The different configurations plotted are when both the transmitter and the

receiver are a linear array, when both are a grid array, or when the transmitter is

a grid array and the receiver is a linear array. The x axis is in SNRt which is the

ratio of total transmit power to the noise power received by a single element. These

results demonstrate that in the MIMO link modeled here, a grid antenna is superior

to a linear antenna. From these results, it is clear that the capacity is dependent on

the topology of the antenna array.
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2.1.1 Correlation

The ability for the system to utilize these spatial channels is dependent on

the channel state information (CSI) at the transmitter. In the case where the trans-

mitter has current and accurate knowledge of the channel matrix, called perfect CSI,

maximum capacity for the MIMO channel can be achieved. In fading environments,

continuously maintaining perfect CSI at the transmitter is difficult. In light of this,

analysis has been done to determine what performance can be achieved if the trans-

mitter knows nothing about the channel. Marzetta and Hochwald [11] showed that in

a fast fading environment with spatially white fading, the system capacity is degraded.

The assumption of spatially white fading is often overly pessimistic because when the

receive array elements are closely spaced, the receive signals will be correlated.

Adopting a new correlation model, Jafar and Goldstein [12] later showed that

spatially correlated fading makes improvement in performance is possible. With this

approach, the transmitter chooses the antenna weighting and power allocation based

on the eigenvectors and eigenvalues of the transmit antenna spatial covariance matrix.

This obviously requires that the transmit antenna have access to the transmit covari-

ance matrix. The advantage of this approach is that although the channel matrix

might be changing rapidly, the covariance matrix will change slowly so that feedback

can occur less frequently.

This covariance matrix is computed as follows for an N transmitter and M

receiver system. Given an M × N channel matrix H, the MN × MN covariance

matrix R = E
{
Vec(H)Vec(H)†

}
where E {·} represents an expectation and Vec(·)

indicates stacking the columns of an M × N matrix into an MN × 1 vector. The

covariance matrix R can be shown to be R = Rr⊗Rt where Rr and Rt are the receive

and transmit covariance matrices respectively and ⊗ is the Kronecker product. Jafar

and Goldsmith [12] then conclude that the capacity of a MIMO link is dependent on

the eigenvalues of Rt, although this conclusion also applies to Rr. This conclusion

means that maximizing the eigenvalues of the receive or transmit covariance matrices

will result in improved capacity.

8



Because MIMO communication is dependent on the relationships between all

transmit and receive antenna pairs, evaluating a MIMO link should include of both

transmitter and receiver. However the Kronecker nature of the covariance matrix

and the dependence of capacity on the eigenvalues of the correlation matrix make

considering one side of the communication system a valid approach.

2.2 Diversity Gain

In considering only one side of the communication system, the problem sim-

plifies to an antenna array design problem; as a result array analysis machinery can

be employed. Diversity gain will be used in this work to compare the performance of

the antenna arrays.

In most propagation environments, the signal received by an antenna can vary

widely in phase and magnitude as a result of multipath. The resulting wireless link

will at times be in a fade where received power is greatly reduced. To overcome

this, multiple receive antennas can be used. This is effective because it is unlikely

that all the antennas are simultaneously in a fade. In diversity systems, the signals

from the several antennas are combined to increase the resulting signal integrity. The

method for combining the receive signals which results in optimal performance is

called maximal ratio combining. Maximal ratio combining scales all the incoming

signals by a complex exponential to shift phase and adjust weighting to maximize

signal-to-noise ratio (SNR). The results in this paper assume the use of maximal

ratio combining.

The electric field observed by a single receiver is often modeled using a Rayleigh

probability density function (PDF). If Nt independent signals are received, each with

the same SNR, the cumulative distribution function (CDF) of the SNR for the com-

bined signal given in [1] is

P (γ ≤ x) = 1− e−x/Γ

Nt∑
m=1

(x/Γ)m−1

(m− 1)!
, (2.5)

9
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Figure 2.2: Diversity gain is the improvement in SNR that is achieved with a given
probability of failure.

where γ is the instantaneous receive SNR for mean SNR Γ. Figure 2.2 plots this

CDF for Nt ranging from one to four antennas and where Γ has been normalized

to unity. Diversity gain, labeled DG in the figure, is the improvement in SNR that

can be observed for a given probability of failure. The figure shows that by adding

a second independent branch results in a performance improvement of 11.7 dB over

the single branch case for a 1.0% probability of failure. The results given throughout

this thesis assume this value. If the branches each have a unique SNR then the CDF

can be expressed as

P (γ ≤ x) =
Nt∑

m=1

1

εm

(1− e−x/Γm) (2.6)

and

εm =
Nt∏

k=1k 6=m

1− Γk

Γm

, (2.7)
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where Γk is the SNR for the kth branch. The results form [1] demonstrate that the

eigenvalues of the spatial covariance for the array (either Rr or Rt) can be used for

the values of Γk.

2.3 Supergain

The array directivity is the ratio of power radiated in a given direction relative

to that radiated in the same direction by an isotropic antenna radiating the same total

power. If array elements destructively interfere and transmit very little power in all

directions, the average directivity will still be unity, because both the denominator and

numerator are functions of radiated power. If however, the destructive interference

in a specific direction is small relative to the interference in all other directions then

the array directivity can be artificially high. This phenomenon is known as supergain

and has several drawbacks that make the implementation of these modes impractical.

Supergain is often quantified as an array Q. This is defined as

Q =
w†w

w†Rw
, (2.8)

where {·}† is the conjugate transpose, w is a vector of driving currents, and R is the

impedance matrix of the array elements, scaled so that the diagonal is unity. Arrays

that have a high Q are often capable of achieving more directivity than is practically

achievable for the array electrical size. The Q is large when the radiated power is small

relative to the driving current. The prohibitive amounts of ohmic loss that results

from these high currents make transmission of an appreciable power using supergain

modes difficult. As a result, ohmic loss must be accounted for when optimizing

antenna array performance in order to prevent a tendency toward supergain solutions.

Another drawback of high Q arrays is that performance is very sensitive to the phase

of the driving currents. It should also be mentioned that Q is inversely proportional to

bandwidth, suggesting that supergain array weights result in narrowband operation.
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Chapter 3

Optimal Antenna Array Definition

While a truly optimal antenna design for MIMO systems in a given propaga-

tion environment necessarily involves interdependent synthesis of the transmit and

receive arrays, it is much more practical to devise design approaches which treat each

end of the link independently. Furthermore, optimal design, at least as previously

implemented [4]-[7], uses deterministic propagation information so that the result-

ing antennas are optimal for a single propagation channel rather than an ensemble

of typical channels. To overcome this difficulty, this thesis exploits the connection

between diversity and MIMO systems. Specifically, since both MIMO and diversity

systems operate on the principle of exploiting the spatial degrees of freedom enabled

by the antennas within the propagation environment, antennas designed for good

diversity performance generally also yield good MIMO performance [3]. Therefore,

using diversity gain as a performance metric allows design of antennas that will per-

form well in both MIMO and diversity applications while requiring only stochastic

information about the channel at only one end of the link. This chapter details the

antenna synthesis procedure based on this concept.

3.1 Derivation

The following derivation uses boldface lowercase and uppercase symbols to

denote column vectors (vector x with nth element xn) and matrices (matrix A whose

element in the mth row and nth column is Amn) respectively. Vectors which represent

a electromagnetic field or radiation pattern (where the vector elements correspond to

polarization) or coordinates in space have an overbar (e), and dyads have two overbars(
P

)
.

13



3.1.1 Signal Covariance

Naturally, optimality of an antenna design will be related to the specific char-

acteristics of the propagation environment, although these characteristics can be spec-

ified stochastically [13] to ensure that the final design is appropriate over an ensemble

of channels. Consider a scenario where a vector field pinc(Ω) impinges on an antenna

confined to the volume V , where Ω is used here to represent an angular position in

spherical coordinates or Ω = (θ, φ), with θ and φ representing respectively elevation

and azimuthal angles. It can be assumed that the field is a zero-mean complex Gaus-

sian stochastic process with the field arriving at one angle uncorrelated with that

arriving at another angle, or

E
{
pinc(Ω)p†inc(Ω

′)
}

= E
{
pinc(Ω)p†inc(Ω)

}
δ(Ω− Ω′) (3.1)

= P(Ω)δ(Ω− Ω′), (3.2)

where E {·} represents an expectation, {·}† is the conjugate transpose, δ(·) is the

Dirac delta function, and P(Ω) is the dyadic power angular spectrum (PAS) of the

incident field. Note that this dyadic form is generated by the vector outer product and

generally contains the average power in each polarization (diagonal elements) and the

cross-correlation of the different polarizations (off-diagonal elements). If the signals

received in the different polarizations are uncorrelated, the off-diagonal elements of

this dyad are set to zero.

Using this representation of the channel, if em(Ω) represents the open-circuit

electric field radiation pattern of the mth receive antenna, then the open-circuit volt-

age on this antenna can be written as [2]

vm = ϕ

∫

Ω

em(Ω) · pinc(Ω) dΩ, (3.3)

where ϕ is a constant. Since this is simply a linear operation on a zero-mean com-

plex Gaussian random vector, the resulting voltage will also be a zero-mean complex

Gaussian random variable [14]. The covariance matrix R for the antenna terminal
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voltage signals has elements

Rmp = E
{
vmv∗p

}

= |ϕ|2
∫

Ω

∫

Ω′
em(Ω) · E

{
pinc(Ω)p†inc(Ω

′)
}
· e∗p(Ω′) dΩ dΩ′

= |ϕ|2
∫

Ω

em(Ω) ·P(Ω) · e∗p(Ω) dΩ, (3.4)

where {·}∗ is a conjugate and (3.2) is used along with the fact that the radiation

patterns are deterministic.

This covariance matrix is a key quantity which contains the information neces-

sary to determine the diversity performance of the antenna array in the environment.

In fact, a key contribution of the work reported in [1] is that the diversity gain of

a system with correlated antennas may be computed by creating an equivalent sys-

tem of uncorrelated antennas with the branch gains given by the eigenvalues of the

covariance matrix. Optimal antennas, therefore, physically create the scenario where:

1. Rmm is large, indicating a large received power and therefore signal-to-noise

ratio (SNR) for each antenna.

2. Rmp = 0 for m 6= p, indicating that the radiation patterns are orthogonal with

respect to the power angular spectrum of the incident field.

Note that under the condition P(Ω) = I (incident power uniformly distributed in

angle), item #2 means that the radiation patterns are orthogonal, consistent with

traditional design goals.

3.1.2 Basis Expansion

The first step in this formulation is to relate the radiation patterns used in (3.4)

to the physical aperture to which the antennas are restricted. Patterns can be defined

either by considering radiating currents (transmit perspective) or the weighting of

the fields incident on the aperture (receive perspective), with reciprocity being a

mechanism to tie these two perspectives into a single framework. While the prior
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development of the covariance has used received incident fields, it is arguably more

intuitive to define the radiation patterns in terms of radiating currents.

Therefore, consider an electric current distribution residing in our volume V

consisting of a weighted sum of vector functions jm(r), with the radiation pattern for

the mth current function being given by [15]

em(Ω) =

∫

V

G(Ω, r) · jm(r) dr, (3.5)

where G(Ω, r) is the dyadic Green’s function relating the currents to the far-field

radiation. To facilitate determination of the current functions which create the opti-

mal radiation patterns, the mth current function is represented as a weighted sum of

orthonormal vector basis functions fn(r), or

jm(r) =
∑

n

Bnmfn(r), (3.6)

where Bnm represents an unknown weighting coefficient. Substitution of this expan-

sion into (3.5) yields

em(Ω) =
∑

n

Bnm

∫

V

G(Ω, r)fn(r) dr =
∑

n

Bnmzn(Ω), (3.7)

where the function zn(Ω) is given by

zn(Ω) =

∫

V

G(Ω, r) · fn(r) dr. (3.8)

Use of this result in (3.4) gives

Rmp =
∑

n

∑
q

Bnm

∫

Ω

zn(Ω) ·P(Ω) · z∗q(Ω) dΩ

︸ ︷︷ ︸
Cnq

B∗
qp, (3.9)

or
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R = BTCB∗, (3.10)

where {·}T represents a transpose.

3.1.3 Constraints

Before determining the unknown coefficients contained in B, two constraints

must first be imposed on the solution. The first is that all radiation patterns should

be normalized so that they have the same radiated power, or

1

2η0

∫
e∗m(Ω) · em(Ω) dΩ = Prad, (3.11)

where Prad is the desired total radiated power for each pattern and η0 is the free-space

intrinsic impedance. If the vector bm represents the mth column of the matrix B,

then using (3.7) in (3.11) leads to

b†mAbm = Prad, (3.12)

where

Anq =
1

2η0

∫
z∗n(Ω) · zq(Ω) dΩ. (3.13)

Recognizing that since the coefficients in bm represent currents, the elements of A

effectively represent resistances. In fact, this matrix represents the real part of the

full impedance matrix for the array, and therefore contains self and mutual resis-

tances [16].

Next, recognizing that general current distributions can lead to supergain

which is impractical [16]-[19], motivating development of a constraint that limits

the level of supergain allowable in the solution. If A is constant along its diagonal,

the array Q factor for the mth current function is

Qm = A11
b†mbm

b†mAbm

, (3.14)
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where we have used A11 to normalize the diagonal of A. A substitution (3.12), results

in

Qm =
A11

Prad

b†mbm. (3.15)

Specifying the maximum allowable Q factor as QT , the constraint on the coefficients

becomes

b†mbm ≤ Prad

A11

QT . (3.16)

3.1.4 Solution

Examining the vector bm which maximizes the quadratic bT
mCb∗m subject to

the constraints (3.12) and (3.16) provides some insight into the problem solution (note

that this neglects diagonalization of the covariance). Using a Lagrange multiplier

formulation [20] leads to

bm = max
bm

{
b†mCTbm + γm(Prad − b†mAbm) + γ′m(QT − b†mbm)

}
, (3.17)

where γm and γ′m represent Lagrange multipliers and using the fact that the first term

is a scalar (so that it can be transposed). This expression can be written using index

notation

Bnm = arg max
Bnm

{∑
n

∑
q

γmPrad + γ′mQT + B∗
qm(Cnq − γmAqn − γ′mδqn)Bnm

}
,

(3.18)

where δpq is the Kronecker delta function. To find the maximizing solution, we take

the complex partial derivative [21] of the argument in (3.24) with respect to B∗
pm and

set it equal to zero

0 =
∂

{∑
p

∑
q γmPrad + γ′mQT + B∗

qm(Cnq − γmAqn − γ′mδqn)Bnm

}

∂B∗
pm

(3.19)

=
∑

p

(Cnp − γmApn − γ′mδpn)Bnm. (3.20)
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This optimized solution for all the elements of bm can be found simultaneously by

solving the expression

[
CT − γm (A + RL,mI)

]
bm = 0, (3.21)

where γ′m = γmRL,m.

The difficulties with this formulation are that (1) it is difficult to solve for

the unknown Lagrange multipliers in closed form and (2) inclusion of the last term

in (3.17) forces the array Q factor to equal QT , which overconstrains the solution.

However, since A represents the array resistance matrix, the form of (3.21) reveals

that RL,m represents the loss resistance associated with each basis function [16].

Therefore, to avoid the difficulties with the formulation, an alternate approach is

taken by specifying RL,m = RL as a loss resistance based on physical arguments

(such as a specified radiation efficiency for the basis functions) and reformulate the

solution.

To simplify the analysis, let Â = A + RLI and, since loss is added,

b†mÂbm = Pd (3.22)

which represents the power delivered to the array. Using the transformation bm =

P
1/2
d Â

−1/2
dm leads to the maximization problem

dm = max
dm

{
Pdd

†
mÂ

−1/2
CT Â

−1/2
dm + γmPd(1− d†mdm)

}
. (3.23)

Substituting Ĉ = Â
−1/2

CT Â
−1/2

, then using index notation, the expression becomes

Dnm = arg max
Dnm

{∑
n

∑
q

γmPd + D∗
qm(PdĈnq − γmPdδqn)Dnm

}
, (3.24)
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where Dnm is the nth element of column vector dm. Taking a complex partial deriva-

tive with respect to Dnm and setting equal to zero results in

0 =
∂

{∑
n

∑
q γmPd + D∗

qm(PdĈnq − γmPdδqn)Dnm

}

∂D∗
pm

(3.25)

=
∑

p

(PdĈnp − γmPdδpn)Dnm. (3.26)

All elements of dm can be found simultaneously by solving (Ĉ − γmI)dm = 0. This

result indicates simply that γm is an eigenvalue of Ĉ and, since Ĉ is Hermitian so that

it has unitary eigenvectors, dm is the corresponding eigenvector. Writing Ĉ = ξΛξ†

and B = P
1/2
d Â

−1/2
ξ, where ξ and Λ represent respectively the unitary matrix of

eigenvectors and diagonal matrix of eigenvalues of Ĉ, leads to R = PdΛ which is

diagonal as desired. This is an intriguing result, since the actual Lagrange multiplier

problem was not formulated to ensure diagonalization of this matrix. Furthermore,

since the covariance represents the M eigenvalues of a matrix, then if the desired

system has M̂ ≤ M actual antennas, choosing the eigenvectors corresponding to the

M̂ largest eigenvalues will lead to the largest possible values of the diagonal covariance

matrix elements.

3.1.5 Loss Specification

The loss in the formulation must be specified in a physically meaningful way.

If the basis functions used are square-integrable, then one method for specifying the

loss is assuming that the currents flow in a material with a conductivity of σL. The

loss resistance associated with the nth basis is then given by

RL,n =
1

σL

∫

V

|fn(r)|2 dr, (3.27)

where | · | represents the vector magnitude.

When the formulation uses dipoles (approximated by delta functions such that

(3.27) cannot be used), it is convenient to specify the radiation efficiency of the nth
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dipole defined as µn = Ann/(Ann + RL,n) so that

RL,n = Ann(1/µn − 1). (3.28)

For identical dipoles this quantity will be specified as µT . In this case, Ann = A11

and as a result, RL,n is the same for all n.

3.1.6 Basis Functions

The basis functions used to describe the aperture should be a orthonormal set

for the geometry of the aperture chosen. Although not mandatory, it is also useful to

choose a set of basis functions that have a closed form far field radiation integral.

The basis functions used in the computational examples discussed in this thesis

are Hertzian or half-wave dipoles. In these examples, the optimal array consists of

a dense grid of dipoles positioned on a square aperture. An N × N Hertzian dipole

array for a square aperture of side length L is defined as

fn(Ω) = δ(x− xn)δ(y − yn), (3.29)

where N is the number of dipoles along a grid axis, n = mN +k, yn = m ∗L/(N − 1)

and xn = k ∗L/(N−1), for 0 ≤ m ≤ N−1, 0 ≤ k ≤ N−1. Although delta functions

shown here are used to model Hertzian dipoles, the positioning will also be used for

the optimal arrays analyzed later that are formed using half-wave dipole.

In defining the optimal antenna array there are two potential approaches for

basis functions. The first option is to use continuous basis functions like rectangular

pulses or Fourier functions. The second option is to model the optimal array using

Hertzian dipoles. If a rectangular pulse function array is used, as the number of pulses

in the grid gets large, the ratio of ohmic loss to transmit power observed for each pulse

gets infinitely small. However, because all basis functions can be seen as resisters

in parallel, both performance and total loss remain constant. Conversely, the loss

observed for each delta function does not increase as the array becomes increasingly

dense. This results in the fact that as the number of dipoles becomes large, the
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loss observed for the array gets small. This can be counteracted by decreasing the

radiation efficiency of each dipole.

The computational examples considered later define the optimal array using a

dense grid of dipoles. This choice was made to facilitate fair and accurate comparison

with smaller dipole arrays. This is a fair comparison as long as the radiation efficiency

is determined in a meaningful way. For most of the arrays considered in this thesis,

the optimal arrays will be defined using either 11×11 or 21×21 dipoles with µT = .99.

3.2 Summary

Receive array performance in diversity and MIMO systems has an optimality

bound. This bound provides both insight into what is theoretically possible for a

given aperture volume and a method comparing the results to the performance of

more common array architectures. This facilitates useful design goals and a method

for measuring performance against those goals.
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Chapter 4

Optimal Antenna Array Results

The purpose of this chapter is to apply the optimal array framework previously

developed in a way that provides general insights into the optimal bound and its

implications. The previous discussion claimed that ohmic loss should be introduced

to regulate supergain solutions. In the first example, the relationship between ohmic

loss and supergain suppression is demonstrated more fully. The second example first

introduces mutual coupling to the analytical framework and then analyzes the effects

of mutual coupling in optimal array design. Through analysis of a uniform PAS, the

third example illustrates that there is maximum effective number of modes that can

exist for a given aperture size. The fourth example uses the framework developed

in the third example to explore the relationship between array performance and the

number of modes included in the optimal array for several PAS functions. The final

section of this chapter involves a proposal of alternate power constraint that accounts

for source and load impedance mismatches.

To simplify the analysis, each example considers a set of vertically-oriented (z-

oriented) dipoles arranged in a regular grid in the x-y plane bounded by a square of

side length 1λ (unless otherwise noted), where λ represents the free-space wavelength.

Each example further assumes that the incident field is vertically polarized with

propagation confined to the horizontal plane, or

P(Ω) =


 P (φ) 0

0 0


 δ(θ − π/2), (4.1)

leading to the simplification that the vector-dyadic formulation can be reduced to a

scalar one.
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4.1 Computational Example 1 - Aperture Efficiency and Supergain

This example compares an optimal square aperture to an array formed by

placing dipoles at the aperture corners. The power angular spectrum for these sim-

ulations is a truncated Gaussian function (Fig. 4.1). The optimal array is defined

using a 21× 21 Hertzian dipoles grid. This example analyzes the effects of supergain

on the array by varying the radiation efficiency of the array. In the first simulation

Rn
L has been specified such that each dipole has a radiation efficiency of 99%. This

radiation efficiency is also used in the subsequent examples unless otherwise noted.
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Figure 4.1: Gaussian PAS used in the generation of the optimal radiation patterns
in computational example 1

Figure 4.2 shows the current distribution magnitude (in dB) for the dominant

four diversity modes for this environment, while Fig. 4.3 shows the resulting radiation

pattern magnitudes. For this symmetric and simple PAS, the antenna characteristics

show the regularity and symmetry that would be expected. The computation was

repeated for the situation where four Hertzian dipoles are situated on the extreme
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Figure 4.2: The magnitude in dB of the current in the optimal four current distri-
butions for an environment described by a Gaussian PAS when µT = .99.

corners of the square array. Using only the dominant four current distributions from

the large array results in a diversity gain of 23.3 dB relative to the performance of

a single dipole. In contrast, the diversity gain for the four dipoles at the corners

is 18.3 dB. This indicates that an optimal design is capable of providing a 5 dB

improvement in diversity gain relative to the most simple practical configuration for

this environment.

Figures 4.4 and 4.5 show the current and pattern magnitudes for the same

computation when the radiation efficiency is increased to 99.999% (µn = 0.99999).

The current tends to be more concentrated near the aperture edge and much larger in

magnitude compared to the case where µn = 0.99. In addition the pattern lobes ex-

hibit increased directivity, due to the increased exploitation of supergain excitations.

In fact, the Q factor for the dominant mode in this case is 320 times larger than that

for the dominant mode obtained with the lower efficiency. Remarkably, however, this

increased directivity only results in a 0.5 dB increase in the diversity gain.
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Figure 4.3: Optimal four radiation patterns for an environment described by a Gaus-
sian PAS when µT = .99.

4.2 Computational Example 2 - Mutual Coupling

It is also interesting to consider the use of more practical elements as basis

functions for the current distribution. This simulation will involve an array of half-

wave wire dipole antennas arranged in an 11 × 11. The radiation pattern for each

element in the presence of all other elements terminated in an open circuit is computed

using the NEC thin-wire moment method simulator [22], and the resulting patterns

are used in the formulation outlined here. Each wire has a diameter of 0.005 wave-

lengths, and 11 cells per dipole are used in the NEC moment method computation.

All subsequent half-wave dipole radiation patterns discussed in this thesis are found

using these same parameters. The computations assume the multi-cluster truncated

Laplacian distribution shown in Fig. 4.6.

Naturally, full characterization of this system requires also including the mu-

tual impedance of the array elements. However, the results obtained will depend on

the assumptions regarding the antenna terminations (i.e. matching network). The
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Figure 4.4: The magnitude in dB of the current in the optimal four current distri-
butions for an environment described by a Gaussian PAS when µT = .99999.

results obtained here can be used in conjunction with well-established analysis tech-

niques based on network theory to include the impact of impedance effects [23, 24].

Therefore, the following discussion concentrates on the open-circuit characterization

so that the results depend only on the patterns.

Figures 4.8 and 4.10 show the current distributions and radiation patterns re-

spectively for this half-wave dipole array. Figures 4.7 and 4.9 show the corresponding

results for an 11 × 11 Hertzian dipole array in the same environment. All compu-

tations assume a radiation efficiency of 99%. The resulting diversity gains assuming

the four largest communication modes are 22.9 dB for the Hertzian dipole array

compared to 23.0 dB for the optimal half-wavelength dipole array. The results are

nearly identical, with the slight improvement for the half-wavelength dipoles created

by the unique open-circuit patterns exhibited by the coupled dipoles which produces

some angle diversity in addition to the space diversity enabled by the array. How-

ever, it is important to re-emphasize that the performance of the coupled array of
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Figure 4.5: Optimal four radiation patterns for an environment described by a Gaus-
sian PAS when µT = .99999.

half-wave dipoles will typically degrade significantly if the antennas are attached to

a sub-optimal matching network.

4.3 Computational Example 3 - Uniform PAS and the Effective Number
of Spatial Degrees of Freedom

In any optimally weighted array, the number of modes which collect appre-

ciable power as well as the performance of each individual mode are dependent on

the number of basis functions, the size of the aperture, and the angular spread of

the impinging PAS. Increasing aperture size results in improved performance due to

an enhanced ability to form beams appropriate for the environment. Increasing the

number of basis functions increases array performance by enabling improved approx-

imation to the true optimal radiating currents. For a given aperture size, as the

number of basis functions is increased, the power observed by each dominant mode

converges to a specific value. As this happens, increasing the number of basis func-

tions indefinitely does not improve array performance by any appreciable amount.
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Figure 4.6: Multi-cluster Laplacian power angular spectrum used in the generation
of the optimal radiation patterns in computational example 2

For sparse arrays, increasing the number of basis functions facilitates a much better

approximation of the true dominant modes and, as a result, much better performance.

To understand the effects of aperture size and number of basis functions on the

optimal array performance, it is fruitful to first analyze the performance of an array in

the presence of a uniform PAS. This scenario also provides insight into the relationship

between basis functions and performance. In this computation, the radiated power

Prad rather than the power delivered Pd to the lossy array was constrained. Since

fixing radiated power is identical to fixing power received from an impinging uniform

PAS, the resulting performance is independent of the type or number of basis functions

used. An 11 × 11 dipole grid results in an optimal array with 121 equally dominant

array elements. If only four of these 121 optimal elements are selected to form an

array, the resulting diversity gain is identical to the diversity gain observed using

dipoles at the four corners of the aperture.

Including loss in the simulations changes the results slightly. All modes have

degraded performance due to ohmic loss, with the loss observed for each array element
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Figure 4.7: The magnitude in dB of the current in the optimal four current distri-
butions for an environment described by a multi-cluster Laplacian PAS using Hertzian
dipoles

proportional to the array Q. The example discussed here compares an 11 × 11 grid

of Hertzian dipoles to an array that consists of four Hertzian dipoles placed at the

aperture corners. The four optimal radiation patterns shown in Figure 4.11 result

in a diversity gain of 19.2 dB. The radiation patterns (Fig. 4.12) resulting from the

dipoles at the aperture corners have a diversity gain of 19.1 dB. The difference in

performance between the two arrays is entirely based on loss and can be seen as the

difference between 4 and 112 resistors in parallel.

The performance that results from this example can be expressed as a function

of the array Q. This can be done using the delivered power constraint in equation

(3.22)

Pd = b†mÂbm. (4.2)

First, the delivered power is separated into power dissipated as ohmic loss and power

dissipated as radiated signal. Substituting Â = A+RLI and rearranging the equation
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Figure 4.8: The magnitude in dB of the current in the optimal four current dis-
tributions for an environment described by a multi-cluster Laplacian PAS using half-
wavelength dipoles

results in
Pd

b†mAbm

= 1 +
RLb

†
mbm

b†mAbm

. (4.3)

Using equation (3.14) and noting that b†mAbm = Prad, the equation simplifies to

Pd/Prad = 1+RLQm/A11. Finally, substituting equation (3.28) into this result changes

the problem from one in terms of loss resistance to one specified in terms of radiation

efficiency. The final expression then becomes

Prad =
Pd

1 + (1/µn − 1)Qm

. (4.4)

In the presence of a uniform PAS, Pd is the same as P0. As Qm gets large, it has

an inverse relationship with received signal power. This expression shows that, for

lossless arrays and a uniform PAS, all modes are equally optimal. The performance dip

associated with fewer available antennas then becomes a function of the four element

antennas having an array Q that is 15 times larger than that for the 11 × 11 array.

In addition, many of the modes that are not used in the 11× 11 array correspond to
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Figure 4.9: Optimal four radiation patterns for a the square aperture in an environ-
ment described by a multi-cluster Laplacian PAS using Hertzian dipoles

supergain excitations. The number of modes that are viable increases with the size of

the aperture or the radiation efficiency. This property is demonstrated in Figure 4.13.

The diagonal elements of the covariance matrix which represent the received

power for each of the optimal modes is shown in Figure 4.13. The number of modes

which can be excited to radiate an appreciable power can be considered the spatial

degrees of freedom available for defining the optimal modes independent of PAS. For

a λ square aperture, there are approximately 15 basis functions that can be used to

define the optimal antenna. It is remarkable to see how similar the mode performance

is for the 11× 11 and 21× 21 arrays, with the deviation in performance between the

two resulting from the difference between 212 and 112 resisters in parallel. The two

would have identical performance if rectangular pulse functions were used instead of

Hertzian dipoles. For a 2λ square aperture this number increases to 26. The exact

number of usable modes will increase or decrease as a function of aperture efficiency.

The improvement in diversity gain observed by increasing aperture size is merely the
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Figure 4.10: Optimal four radiation patterns for a the square aperture in an envi-
ronment described by a multi-cluster Laplacian PAS using half-wavelength dipoles

result of more basis functions becoming practically available, resulting in a better

approximation of the true optimal mode radiation patterns.

4.4 Computational Example 4 - Mode Number PAS Relationship

Another factor that impacts the number of modes with an appreciable power

is the angular spread of the impinging signal. If most of the power for an impinging

PAS is arriving from a single direction, the number of modes receiving appreciable

power will be greatly reduced. The trade off for this is that the received power for the

dominant mode will increase as the angular spread of the signal decreases. Figure 4.14

shows the diagonal elements of the covariance matrix relative to P0 for the optimal

modes as a function of mode number and PAS. These results were computed for an

11× 11 grid of Hertzian dipoles placed on a square aperture of side length λ. For the

uniform PAS, the received power remains constant for the first 15 modes and taper

off for higher-order modes. The Laplacian PAS results in the highest power for the

dominant mode and the most rapid roll-off for subsequent modes. In this case, the
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Figure 4.11: Optimal four radiation patterns for environment described by a uniform
PAS

four modes with significant received power each lie within the 15 dimensional space

corresponding to low Q excitations for the given aperture size. The diversity gain

as a function of the number of modes used is plotted in Figure 4.15. For all PASs,

the diversity gain eventually levels off as all useful modes are exhausted, although

this occurs much later for the uniform PAS than for the other PASs included in the

computation.

4.5 Modified Power Constraint

The arrays synthesized in this chapter are based on constraining either power

radiated by or delivered to the array. As a result, any reactance associated with

the antenna array or a mismatch between the array and feeding network will not be

included in the synthesis approach. However, such mismatches are often undesirable

in real systems. To account for this, two modifications to the initial formulation are

proposed. This formulation solves for the optimal source voltages vm rather than

the optimal currents. If ZS and ZA are the source and load impedance matrices
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Figure 4.12: Radiation patterns for a optimally weighted dipoles positioned at the
aperture corners in an environment described by a uniform PAS

respectively, the covariance matrix R can be given as

R = VTCT
TCC∗

TV∗, (4.5)

where CT = (ZA +ZS)−1 and C is defined in (3.9). The penalty for impedance effects

can be incorporated using the modified power constraint

P0 = v†mAMvm (4.6)

and by defining AM = (ZA +Z†A)−1. This approach constrains the power delivered to

the array assuming a conjugate matched load while measuring performance based on

the actual load. Most importantly, this reveals that the formulation can be modified

to accommodate different desired power constraints. Using simple network theory

and by redefining AM , performance can be optimized for any power constraint.
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Figure 4.13: The ordered received power of the optimal modes from a uniform PAS
for various aperture size and basis function density

4.6 Summary

This section has used several computational examples to outline important

aspects of the optimal antenna array formulation. The relationship between antenna

efficiency and supergain was discussed, as well as the effect of supergain on array

performance. The effects of mutual coupling on array performance were analyzed.

In section 4.3, optimal performance was considered for a uniform PAS which gave

insight into the spatial degrees of freedom available to construct the optimal array

independent of PAS. The final computational example analyzed the effects of angular

spread on performance, as well as the number of dominant modes that should be

included in an optimal array. Finally, the constraints used in formulating the optimal

array were extended to a wider class of array optimization problems by proposing a

modified power constraint. This constraint allows the approach outlined here to be

adapted to any reasonable design criteria.
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Figure 4.14: The ordered received power of the optimal modes normalized to the
receive power of a single dipole for various PASs
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Chapter 5

Genetic Algorithm Optimization

In Chapters 3 and 4, the optimal antennas considered were composed of either

112 or 212 dipoles arranged in a grid. The complex nature of this array configu-

ration makes forming the optimal array from weighted combinations of 121 dipoles

prohibitive for most situations. The relationship between performance and the num-

ber of half-wave dipoles placed in a grid is explored in Section 5.1. This leads to

the question of what performance can be achieved when antenna placement is not

restricted to a grid architecture. The answer to this question is explored using ge-

netic algorithm optimization. An advantage of this approach is that it also provides

a useful synthesis procedure for practical array design with near optimal results. The

details of the genetic algorithm and the results from the simulations are discussed in

Sections 5.2 and 5.3 respectively.

5.1 Performance and the Number of Array Elements

Prior computations have demonstrated that increasing the number of basis

functions results in improved performance. The performance of the array cannot

be increased to an arbitrary value, but additional basis function elements will result

in monotonic convergence to the performance of the true optimal currents. The

optimal arrays considered thus far were approximated 11 × 11 dipole arrays. To

explore the validity of this approximation, Figure 5.1 plots the performance of the

optimal array for several different PAS representations as the number of half-wave

dipoles along a grid axis is increased. The Uniform PAS shows effectively no increase

in performance for any array size increase. The other PAS functions considered all

converge to performance near the true optimal around 11 or 12 dipoles per axis. The
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simulations used for this figure involve a square aperture of side length λ and dipole

efficiency of 99%.
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Figure 5.1: The diversity gain of the optimal antenna array as a function of the
number half-wave dipoles of along one axis of the grid.

5.2 Genetic Algorithm

Achieving optimal performance for a nonuniform PAS involves at least 121

dipoles. Implementing an optimal array with 121 sensors would be impractical for

most communication systems. Reducing the array to a 4 × 4 array results in sub-

optimal performance and in many cases, a 16 element array is still impractical. In

order to reduce the number of elements required to achieve near optimal performance,

a genetic algorithm(GA) will be used to optimally place a small number of half-

wave dipoles. GAs have been used extensively for optimization in electromagnetic

problems [25] and have the advantage of an acceptable convergence time coupled

with a tendency toward global optimization.
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5.2.1 Generic Genetic Algorithm

In a generic genetic algorithm [8], an initial population is created. Each mem-

ber of the population is described by a chromosome which incorporates all of the

attributes being optimized. In the case of an antenna array, this would be the loca-

tion of each dipole in the array. Each member of the population is given a fitness

function based on some performance criteria. Members of the population are selected

in pairs to be parents. Selection of parents should favor the more fit members of

the population and can occur in a variety of ways. Once parents are selected, the

chromosomes of the parents are crossbred to form children. In addition, mutations

can be introduced into the children’s chromosomes to promote genetic diversity. The

children from all selected parent pairs are then either used to replace the entire popu-

lation or merged with a subset of the parent population. The process of repeating this

for a fixed number of generations or until the population converges is called a trial.

The solution then comes from the population member with the best performance

from either a single or several trials. For discontinuous multidimensional problems

like the one in question, trials will rarely result in the same solution, although the

best performance from each trial will often be similar.

5.2.2 Genetic Algorithm Implementation

The genetic algorithm implemented here is used to find the optimal half-wave

dipole locations for a sparse antenna array. To explore the trade off between array

performance and the number of dipoles used in the array, the GA is used to optimize

arrays consisting of 4, 6, or 8 half-wave dipoles. The fitness function used was the

diversity gain. Since the impinging field only varies in azimuth, only the optimal x

and y coordinate are found for each dipole in the array. The dipole locations are

constrained so that all dipoles must be within a square of side length λ.

Once a population is initialized, the trial is allowed to run for 125 generations

unless all the antenna arrays in the population converged to a single array topology.

For each generation, the population is modified using a steady state genetic algorithm,

where the least fit portion of the parent population was replaced with a group of
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children. The portion of the old population replaced by new children is specified as

µr. If the population size is 100 and µr = .8, then at each generation the 20 most fit

members of the old generation are combined with 80 new children to create the new

generation. The x and y coordinates for each dipole are represented by a single 7 bit

gene (i.e. a 4-element array consists of 8 genes). This approach is a slight deviation

from conventional GAs, but results in children that quickly explore the solution space.

Tournament selection is used to determine which members of the population

should become parents. This involves randomly selecting several members of the

population and then choosing the two fittest members to be parents. This selection

approach favors the fitter members more than other approaches and as a result im-

proves convergence. Although other values were explored, in all the simulation results

shown here, each tournament consists of five members. Once two parents are selected,

crossover occurs on each individual gene (i.e. 8 unique crossovers for a 4-element ar-

ray) with a probability of 0.7. Once the children have been created, mutations are

introduced into the optimization with a probability of .04. To further improve con-

vergence, every 10 generations children are locally optimized with a probability of

0.01 using the Nelder-Mead simplex method. In addition, all mutated children are

locally optimized using the same algorithm.

5.3 Genetic Algorithm Results

For all arrays considered here, the diversity gain is found using the four dom-

inant modes of the array. The PAS used for all simulations is a described by a

truncated Gaussian pdf (Fig. 4.1). For each set of parameters, the number of trials

simulated is fixed by the simulation wall time of 600 hours. When a population size

of 20 is used and µr = .5, the performance for different array sizes is shown in Fig-

ure 5.2. Each array size is analyzed for 20 trials and then the fittest member is chosen

from all 20 trials. For the purpose of comparison, the optimal performance bound is

plotted as well as 2 common array architectures. The array consisting of 8 antennas

along the aperture boundary has a dipole at each corner and a dipole positioned at

the midpoint of each edge of the square aperture.
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Figure 5.2: The performance of arrays designed using genetic optimization compared
to the performance of common array architectures and the optimal bound.

It is surprising to note how well the eight element array performs relative to

the optimal performance that can be achieved. Performance is dependent on how

well the array can create four patterns that are orthogonal with respect to the PAS.

In the four element array, because there are only four degrees of freedom available to

create four patterns, the driving currents corresponding to small eigenvalues must be

used. As two additional degrees of freedom are added for the six and then two more

again for eight element array, the smaller eigenvalues can be ignored and the most

effective modes utilized. It is worth noting that the performance of the GA optimized

8 element array performs better than a 7× 7 grid of half-wave dipoles.

5.3.1 Parameter Dependent Performance

While the achievable performance is the most significant result of the GA

optimization, it is also important to understand how the parameters used in the

calculation relate to performance. The parameters that will be explored in detail are
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the population size and the portion of the parent population that is replaced each

generation with new children.

The first variable discussed is the size of the population which is denoted as P .

The simulation time for each trial is dependent on the number of dipoles in the array

and the population size. In the case of a 4 dipole array, the 600 hour simulation wall

time resulted in 39 trials for P = 20, 12 trials for P = 60, and 6 trials for P = 100.

For each trial, the fittest member for each generation determines the performance

of that trial. Comparison for the different population sizes occurs for the average

trial performance and for the optimal trial performance which consists of the best

member of all trials. The average trial performance (Fig. 5.3) is reduced for the

smaller population sizes because fewer points of the solution space are explored. The

optimal performance for multiple trials is shown in Figure 5.4. These results show

that even though the average trial performance is lower for the smaller population, the

optimal performance across all trials is approximately the same. Because increasing

population size decreases the number of trials that can be completed within the

fixed simulation time, the number of trials included in calculating the optimal trial

performance for each population size is set by the number of trials that can be run in

the fixed time window. In these simulations, the computation time was 1200 hours

and µr = .5.

In the steady state genetic algorithm used here, for each generation the least

fit portion of the population is replaced with an equal number of children. The

motivation for this approach is that preserving the fittest members of a population

results in more focused exploration of the solution space around the fitter members

of the population. The drawback to this approach is the tendency for premature

convergence to a local optimum. When each generation is completely replaced by

new children or µr = 1, the approach is called a generational GA. This method has

no tendency toward premature convergence, but the algorithm does not guarantee

that if convergence occurs, it will be to the fittest member of the entire trial. In

Figure 5.5, the average trial performance of different µr values is compared for a

four element array with different GA population sizes. Figure 5.6 shows the best
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Figure 5.3: The average performance of genetically optimized arrays for different
array and population sizes

performance for all trials. It should be mentioned that the trends shown in both

these figures is also characteristic of the six and eight element arrays. The average

performance is the worst when µr = 1 which makes sense because the best members

of the previous population are not being carried over. This is especially true for

P = 20. Even though the average performance is better when the fittest members
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Figure 5.4: The optimal performance of genetically optimized arrays for different
array and population sizes

of the population are carried over, the best performance for all trials is not really

affected by µr.

5.4 Summary

The impractical nature of the dense arrays necessary to achieve optimal per-

formance makes a sparse array with reduced performance appealing. Using a genetic
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Figure 5.5: The average performance of genetically optimized arrays for a four element
array for different population sizes when varying µr

algorithm to optimally place the antenna elements can result in good diversity gain

performance from a much more sparse array. In the example shown here, near optimal

performance was achieved with only eight elements. The average performance of GA

trials was found to vary with the parameters used in calculation, but the best per-
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Figure 5.6: The best performance of genetically optimized arrays for a four element
array for different population sizes when varying µr

formance for several trials of a GA was shown to be relatively unaffected by specific

parameters.
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Chapter 6

Super Element Arrays

There are two options for implementing an optimal receive array, given that

M basis functions are used to form an N element optimal array. The first of these

methods performs the weighting and combining of the received signals using analog

circuitry. In this approach, for each of the N elements in the optimal array the M

basis function receive signals must be scaled by a complex gain and then combined

before sampling. The difficulty associated with this technique is that precise analog

complex gains must be implemented for MN ports, and then M signals must be

summed N times. The advantage of this approach is that only N RF front ends

and A/D converters are required. The second option is to have an RF front end

with an A/D converter at each of the M basis functions. After digitization, optimal

weighting and combining using discrete hardware is feasible. This option is difficult

to implement due to both the space and cost associated with the additional RF and

sampling hardware. Because each optimal array element has a unique weighting

vector, it is necessary that the weighting and combining of the receive signals be

completed in a single block either before or after sampling.

The modified approach proposed here facilitates simpler analog combining,

and reduces the number of signals that must be sampled. This is accomplished by

creating super-elements, each of which is composed of a fixed weighted sum of a

subset of the basis functions. The received signal from each super-element is then

sampled and combined to form a near-optimal antenna array. If the weightings for the

sub-elements can be easily changed real-time and the PAS is time varying, then this

approach is superior to optimally placing elements using a genetic algorithm. This is
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because the improvements in performance from the super-elements can be sustained

because the sub-element weightings can adapt as the PAS changes.

This chapter proposes several potential methods for determining the weight-

ings applied to the sub-elements. Section 6.1 discusses methods of local optimization

with super-elements as well as the resulting performance. This section also addresses

performance when the analog weightings are limited to phase delays with unit gain.

In Section 6.2, two closed form solutions are given which result in near optimal per-

formance and do not require extensive optimization searches.

6.1 Local Optimization

The nature of the optimization makes finding a closed form optimal solution

impossible. The several approaches proposed here are attempts to achieve near op-

timal performance either by a brute force optimization search or by modifying the

problem definition to make a closed form solution possible. Because the goal of the

proposed architecture is to simplify implementation, the practical advantages and

disadvantages associated with the each approach will be discussed.

The first approach is to use local optimization to find the sub-element weight-

ings. Because the relative phase between super-elements is insignificant, the dimen-

sionality of the optimization is Ns−Ne, where Ns is the total number of sub-elements

and Ne is the number of super-elements. This approach guarantees a local optimum

because the optimization algorithm can maximize diversity gain directly. Another

advantage of this approach is that if the complex gains can be adjusted in real time,

it might be possible to perform the optimization search while the array is in use. Such

an approach would require a length initial calibration in which performance would be

sub-optimal, but maintaining near optimal performance for a slowly changing PAS

would be feasible. If the optimization search cannot be done while the array is in use

but the weighting can be changed, then the computationally intensive nature of this

approach might be prohibitive.

To compare the performance of the approaches outlined here, a single antenna

array configuration will be analyzed in the presence of four different PAS’s for each of
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the proposed algorithms. The antenna array consists of four super-elements, each of

which is composed of three dipoles. These dipoles are spaced equally along the edge

of a circle of radius .5λ with the first elements having (x,y) coordinate of (0,.5). The

super-elements are formed from sets of neighboring dipoles. The local optimization

performed here was done using the Nelder-Mead simplex method with the initial

values specified using the covariance approach outlined in Section 6.2.1. The problem

is an eight dimensional optimization because the complex gain of the first dipole in

each super-element can be set to unity. The resulting performance for the different

algorithms is shown in Table 6.1. The optimal bound given in this table is computed

using of antennas placed in the same locations but with weighting determined without

enforcing the super-element constraint. The performance of the locally optimized

super-element array is 1.9 dB less than that for the unconstrained array, which is

small considering the dramatic simplification in design implementation. The optimal

results are also compared to a traditional four element array consisting of dipoles at

the corners of a square aperture with side length λ. The four element array has an

average diversity gain that is 4.4 dB less than that for the optimal unconstrained

twelve element circular array.

Table 6.1: Results if dB for the different super-element weighting algorithms
PAS Optimal Four Local Phase Covariance Current
Description Bound Dipoles Optimal Only Approach Approach
Multi-cluster 22.29 18.46 20.30 20.03 18.97 19.61
Laplacian
Sinc 21.72 18.24 20.27 20.01 20.08 19.69
Gaussian 22.68 18.31 20.93 20.62 20.38 20.38
Laplacian 21.31 15.52 19.04 18.56 18.68 17.80

Another possible design simplification is to locally optimize only the phasing

associated with the sub-elements. Such a system would be easier to realize because

implementing an adjustable phase delay is easier than implementing adjustable gain

and phase delay together. Using the same scenario as before with the same local
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optimization algorithm, the resulting performance is on average only 0.3 dB less

then that for the locally optimized super-element system that uses complex gain for

weightings and 2.2 dB less than that for the true optimal with no super-elements.

6.2 Closed Form Optimization

If the PAS is consistently changing but accurate information about the full

covariance matrix is regularly available then a closed form approach might be more

desirable. This would be the case if limited processing power made local optimization

methods such as a gradient search prohibitive. The approaches outlined in this section

require knowledge of the full covariance matrix for all array sub-elements. This can

be computed directly or using the PAS

Since the optimal solution can not be solved for in closed form, alternative

approaches must be adopted. The first of these approaches attempts to maximize the

power received from the PAS relative to the power transmitted for each super-element

individually. The second approach is an attempt to effectively span the space defined

by the optimal weighting vectors.

6.2.1 Covariance Approach

The motivation for this approach is that locally optimizing the performance

of each super-element should result in better performance for the array as a whole.

This super-element optimization is achieved by defining the sub-element covariance

matrix C̃ for a single super-element to be

C̃nq =

∫
zn(Ω) ·P(Ω) · z∗q(Ω) dΩ, (6.1)

where zn(Ω) represents the open circuit radiation pattern of the nth sub-element.

The received power for weighting vector w is wT C̃w∗. The radiated power can be

fixed to γ by enforcing the constraint w†Ãw = γ and

Ãnq =
1

2η0

∫
z∗n(Ω) · zq(Ω) dΩ. (6.2)
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Parameterizing wm using w = γ1/2Ã
−1/2

w̄ so that w̄w̄
†
= 1 leads to received power

w̄
T
C̄w̄

∗
where C̄ = γÃ

−1/2
C̃Ã

−1/2
. Using an eigen-decomposition of C̄, the perfor-

mance of each super-element can be optimized by choosing w̄ to be the conjugate

of the eigenvector corresponding to the largest eigenvalue of C̄. The math used in

this approach is identical to that used to find the optimal array. This approach does

not achieve optimal results, but by optimizing each super-element locally, the perfor-

mance of the entire array can be improved. When this approach is adopted for the

PASs used in the computations above, the average diversity gain is only 0.6 dB less

than that found using the local optimization search and 2.5 dB less than that of the

true optimal.

6.2.2 Current Approach

The use of super-elements requires fixing the ratio between weights for sets

of sub-elements. This leads to the idea that near optimal array performance can

be achieved by choosing the sub-element weights to approximate the unrestricted

weights from the optimal array. To do this, the fixed sub-element weights associated

with a given super-element should approximate the weights applied to those same

sub-elements for each optimal element in the unconstrained array.

Formalizing this concept requires development of some appropriate terminol-

ogy. Let the mth super-element Sm be composed of sub-elements (j, k, l) with weights

wm, and further let bm
i be a vector containing weights from bi for the sub-elements

in super-element Sm. When weight vector bi is used, the received power observed is

Λi. Having this terminology in place, the performance metric Pm is defined for each

super-element to be

Pm = max
N∑
i

Γi cos2 θm
i , (6.3)

where θm
i is the angle between bm

i and wm and Γi is a scalar. The number N is a

design choice corresponding to the number of optimal modes accounted for in the

approximation. Experiments reveal that N = 4 works well. If N = 1, the weights are
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chosen so that the dominant unconstrained antenna weights determine all sub-element

weights. Γi is defined as

Γi = Λi‖bm
i ‖2, (6.4)

The motivation for this choice is that scaling by the received power results in a better

approximation of the more dominant modes. In addition, scaling by the squared norm

of bm
i places additional weight on sub-elements that are important to a given optimal

antenna. Noting that cos θm
i = |bm

i
†wm|/(‖bm

i ‖‖wm‖) it is easy to see that that

cos2 θm
i =

w†
mbm

i bm
i
†wm

‖bm
i ‖2w†

mwm

. (6.5)

Substituting (6.5) and (6.4) into (6.3), Pm can be found by maximizing

Pm = max
N∑
i

Λi
w†bm

i bm
i
†w

w†w
. (6.6)

This maximization occurs when

wm = arg max
w

N∑
i

Λi
w†bm

i bm
i
†w

w†w
. (6.7)

Rearranging terms and defining B̃m =
∑N

i Λib
m
i bm

i
†, the problem can be rewritten

as

wm = arg max
w

w†B̃mw

w†w
. (6.8)

The solution to this optimization is when wm is the eigenvector corresponding to the

largest eigenvalue of B̃m. Using this approach for the same configuration used in the

previous examples results in the the diversity gain for the different PASs shown in

Table 6.2.1. The average reduction in diversity gain is 0.8 dB relative to the locally

optimized solution and 2.7 dB relative to the unconstrained optimal.
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6.3 Summary

Implementing a MIMO array that achieves the optimal performance bound

is difficult and costly. This chapter proposed an alternative scheme which achieves

improved performance and can adapt to a PAS that changes with time. This in-

volves combining basis functions or sub-elements into super-elements which are then

combined in the same way as the optimal array. Performing the signal combining in

this way facilitates significant simplifications in weighting and sampling the incoming

signals. Several approaches were proposed for determining the sub-element weighting

for this architecture including an iterative local optimization and two other closed

form approaches.
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Chapter 7

Conclusions

In this thesis, an optimality bound for MIMO antenna array performance is

formulated. Because the design is based on the stochastic description of the propaga-

tion environment, the results are optimal over the ensemble of channel realizations.

The optimal antenna array is found by determining the eigenfunctions of the spatial

correlation operator. The solution to this problem is found as a basis function expan-

sion of the optimal radiating currents. The performance indicated by the optimality

bound is achievable if all the basis functions used in the expansion can be physically

combined the same way.

The impractical nature of receiving and accurately combining a large number

incoming signals makes finding a way to achieve near optimal performance with a

reduced number of antennas desirable. A synthesis procedure was given for optimally

placing a small number of dipoles using a genetic algorithm which resulted favorable

performance. The other simplified array architecture proposed here is the super-

element array. Prototyping the array configuration and then validating the weighting

algorithms would be a first step in subsequent research. One of the proposed methods

for determining the sub-element weighting in the super-element array was to perform

a local optimization search while the array was operating. Further exploration into

the validity of this approach, as well as potential algorithms for implementation would

be valuable extensions to the research presented here.

The most significant contribution of the research developed here is the in-

troduction of the optimality bound for MIMO array performance. The problems

analyzed here considered a field that was vertically polarized and was restricted to

the horizontal plane. This simplification was adopted for computational efficiency and
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the resulting model worked well with the dipoles considered in the computational ex-

amples. The synthesis procedure achieves improved performance by simply placing

the dipoles optimally. The framework developed in defining the optimal bound is not

restricted to small dipole arrays. The most powerful extension of this research would

be to use that fact to determine practical antenna configurations for any propagation

environment. This could involve the use of other antenna architectures such as patch

or slot antennas as well as experimentation with polarization diversity. Such an an-

tenna synthesis procedure could provide a substantial improvement in performance

compared to the dipole arrays proposed here.
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