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Objectives

Our objectives

Determine the cause of rebound mitigation.
I Quantify the motion of the sphere.
I Video analysis shows the formation of an internal jet at the same time

as rebound mitigation.

Determine the details of the internal energy exchange.
I Determine the jet velocity and mass through PIV and numerical

models.
I Model the global effect of the energy exchange.
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Observed Phenomena

The measured rebound heights of a 10cm drop: water filled.
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Ratio of Rebound Height and Weight

The same plot, yet simplified.
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Ratio of Rebound Height and Weight

The measured rebound heights of a 20cm drop: water filled.
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Ratio of Rebound Height and Weight

The measured rebound heights of a 30cm drop: water filled.
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Change of Viscosity

We considered different viscosities and observed different phenomena
as seen in the video below.
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Change of Viscosity

Analysis of our data showed that the global effect of the sphere’s
motion is unchanged.
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Previous Work

In 2006, Antkowiak et. al. analyzed jet formation dependence on
meniscus formation within a test tube.

I Note the meniscus in the far left frames.

I Treating the test tube so that no meniscus forms
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Basis - Antkowiak et. al, 2006

The dynamics of the cavity collapse and impulse-generated jet were
modeled through a pressure-impulse model.
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Potential Flow

Fluid motion is defined by φ, a partial differential equation

Potential flow theory utilizes an ideal fluid that is inviscid and
irrotational.

I φ = m
2π lnr → source/sink |m| = magnitude of φ

I When m > 0, φ represents a source (pushes fluid away).
I When m < 0, φ represents a sink (pulls fluid in).
I m is found by the localized use of m = Vr2πr
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The Model

We approximate the free surface as a parabola and set the sources
and sinks along the parabolic interface.

Theory

φ = m
2π ln r

m = Vr 2πr
Vr =

√
u2 + v2

Implementation

φ =
n∑

k=1

mk

2π
ln rk[

M
]

= 2π
[
V0

] [
ln r

]−1

V0 = kgh, 0 < k << 1 except at
the points within the impulse diameter.
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The Model

Then we calculate the velocity field using the source strengths and
the distances of every point in the field to the parabolic boundary.
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Validation with PIV

PIV was performed to compare with model.
I Challenging due to internal flow, spherical shape and deformable

surface.
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Validation with PIV

PIV was performed to compare with model.
I Challenging due to internal flow, spherical shape and deformable

surface.
I 32x32 pixels interrogation on a portion of the total image, 3 passes,

nearest neighbor filtering.

Just after impact Fully formed jet
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Future/Continued Work

Implement a 2D Spherical Boundary Condition.

Expand model to 3D.

Analyze the rebound coefficient and mass removal dynamics.

Verify numerical results with experimental results.

Begin exploring the elasticity of the sphere.
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Anticipated Applications

Future application of our findings could lead to:

More efficient methods of damping the shock incurred while traveling
over water at high speed.

A cheaper and more effective way to stabilize oil during transport,
reducing oil spills.
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Conclusions

Conclusions

Rebound suppression depends on drop height and fill volume.

There is an exchange of energy from the sphere to the fluid.

The collapse of the cavity can be shown using a potential flow model.
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