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ABSTRACT

CLUSTERING METHODS FOR DELINEATING REGIONS OF SPATIAL

STATIONARITY

Jared M. Collings
Department of Statistics

Master of Science

The purpose of this paper is to examine and develop methods that can be
used to delineate regions of stationarity. One of the major assumptions used in spatial
estimation is that the data field is homogeneous with respect to the mean and the
covariance function. As such, any spatial estimation presupposes that these criteria are
met. With respect to analyses that may be considered new or experimental, however,
there is no evidence that these assumptions will hold.

This paper seeks to further investigate data extracted by the use of Functional
Magnetic Resonance Imaging (FMRI) as it is applied to brain tissue and how it measures
blood flow to certain areas of the brain following the application of a stimulus. As a
precursor to detailed spatial analysis of this kind of data, this paper develops methods of

grouping data based on the necessary conditions for spatial statistical analysis.
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1. INTRODUCTION

In considering the human brain, one area of interest is the relationship between
location and function. It is well known that the brain controls all functions of the body
and that parts of the brain are specialized to certain tasks. One area of interest, however,
is to determine whether or not parts of the brain associated with these certain tasks may
be identified by analyzing blood flow to a given region after some sort of stimulus is
applied.

In Silent Functional Magnetic Resonance Imaging (SFMRI), a series of audio
impulses are given to a patient and blood flow in the brain is measured. The blood flow
is measured in the “on” state, where the brain is subject to the stimulus, and in the “off”
state, where the brain returns to a normal or resting state. Each area of measurement is a
three-dimensional cube wherein the blood flow is measured, and these areas of
measurement are referred to as voxels. A voxel is called “active” when there exists a
significant difference between the “on” and “off” states.

Given the nature of blood flow, it is unreasonable to assume that the voxels are
independent of each other. Thus, before estimating the level of activation for each voxel,
the spatial dependence structure of the voxel measurements is estimated. Once such
estimates of the spatial dependence are obtained, voxel activation maps exhibiting spatial
smoothness can be created. However, in order to carry out spatial estimation of the voxel
activation levels for the measured regions, it is necessary to subdivide the brain into

regions that exhibit local stationarity. Stationarity is the condition where all the



observations in the region are distributed with the same mean and variance covariance

structures.



2. LITERATURE REVIEW

The first section of this chapter is devoted to explaining the nature of the FMRI
data. In order to clarify the spatial nature of such data, a brief overview of spatial
statistics will be given in Section 2.2. Section 2.3 outlines the process of hierarchical
clustering, which will be employed to delineate regions of stationarity. A discussion of

prior research and methodologies can be found in Section 2.4.

2.1 Brain Imaging Data (FMRI)

The idea that neuronal activity is connected to changes in brain metabolism and
blood flow was suggested by Roy and Sherrington (1890) when they conducted highly
invasive experiments with dogs, cats, and rabbits.

One method of measuring changes in brain blood flow is the high speed
functional magnetic resonance imaging (FMRI), which makes use of the paramagnetic
and diamagnetic properties of deoxyhemoglobin and oxyhemoglobin and the local,
tissue-specific changes in blood volume, blood flow, and blood oxygenation in response
to some controlled stimuli (Belliveau et al. 1991; Kwong et al. 1992; Ogawa et al., 1992).
As applied to analyses of brain activity, FMRI serves to map neurological function to
neuroanatomy, making it possible to connect function to location. One benefit of FMRI
is that it becomes possible to obtain, in a few seconds, hundreds of noninvasive “moving

pictures” of the brain as it processes stimuli.



Lange and Zeger (1997) gave a highly simplified explanation of the process of
FMRI. In blood, there exists iron (hemoglobin) and iron is paramagnetic—the property
of being weakly attracted to an external field. Deoxygenated blood, or “blue blood,” is
more paramagnetic than oxygenated blood, or “red blood.” So, when brain activity
increases, the flow and volume of red blood will also increase at the capillary level,
causing an increase in the relative oxygen content. This increase in red blood volume
results in a difference in the magnetic susceptibility of red blood with respect to blue
blood. This difference can be used to produce a detectable local signal. Signals such as
this can then be used to create contrast in a digital image.

Such digital images as produced by FMRI can be broken up into pixels (picture
elements) in the two-dimensional case and into voxels (volume elements) in the three-
dimensional case. Each two-dimensional image, or slice, consists of a 64 X 64 grid
measuring the response to the stimulus. The physical size of the voxels are typically
3.125 mm X 3.125 mm X 5 mm. Lange and Zeger (1997) studied the visual cortex,
where each voxel contained roughly 2 million neurons.

For this study, audio impulses are used as the stimuli. Instead of traditional FMRI
measurements, silent functional magnetic resonance imaging (SFMRI) is used. SFMRI
differs from FMRI in that only one measurement is taken during each recurrence of the
stimulus state and the rest state. Measurements are taken alternately in an “on” state
where an impulse is set upon the subject, denoted by (x), and an “off” state when the
subject returns to a resting or non-stimulated state, denoted by (y). This process is
repeated many times and the “activation” state of a voxel is assessed using some function

of Xand V, like X-Y.



The voxels of the brain that specialize in interpreting audio impulses are expected
to have higher blood flow. These active voxels are expected to cluster together in
contiguous groups with similar function, such as in the audio cortex. These hypothesized
groups within the brain may possess mean, variance, or spatial structures that are vastly
different from the structure of other sections. Traditionally, voxel activation is assessed
via t-tests. For a discussion of traditional approaches, see Genovese (2000). One
problem with this method lies in the fact that the data are noisy and, therefore, the
activation maps created from individual t-tests are unrealistically noisy or rough.
Additionally, there may be an insufficient number of observations to adequately test for
significant activation.

In order to apply spatial prediction methods to create voxel activation maps, the
usual approach is to assume stationarity for the region of interest to be mapped; however,
in this case (brain activation), the stationarity assumption is violated. The voxels in
different regions should not necessarily have the same means, nor should they necessarily
have the same variances or spatial dependence structures. Moreover, the highly irregular
manner in which brain tissue folds back on itself yields the potential for neighboring
voxels to have dramatically different behavior. Hence, the voxel observations can be

dramatically non-stationary.

2.2 Spatial Statistics

In this section, a short description of the general spatial model is given. In

general, the variable of interest Z is given as a function of its location s, where s € R is



a point in d-dimensional Euclidean space. Because s is allowed to vary over the fixed
index set D  R¢ the following random field is generated:
{Z(s) :se D}.

In this paper, Z(s) is modeled in terms of mean structure, or large-scale variation,
and in terms of the variogram, which models the dependent nature of the data. Let Z(s) =
u(s) + o(s), s € D, where p(s) denotes the deterministic mean structure, or large-scale
variation; that is, p(s) is equal to E(Z(s)) and 8(s) denotes a zero-mean intrinsically
stationary stochastic process with variogram 2y(h).

The assumption of stationarity is upheld when the characteristics of the data
elements do not vary across the region D. In other words, the probability of a given
fluctuation from the mean level (measured by 8(s)) is assumed to be the same for each
point Z(s) within the region. The variogram, 2y(h), from above is defined as 2y(s; — s2)
= var(Z(s)) — Z(s2)). (Note: y(s) has been referred to as the semivariogram. See Figure
2.1 for a graphical presentation of the semivariogram.)

The isotropic variogram and the semivariogram are solely functions of distance.
That is, when 2y(s;-s,) is a function solely of || $1-S2 || , 27(*) 1s said to be isotropic. In this
case, y(h) can be redefined using y( || h ||) where || : || is the L, norm. Clearly y(h) =y(—
h), where h is the distance between points and y(0) = 0. However, where y(h) — ¢y >0
as h — 0, ¢ is referred to as the nugget effect by Matheron (1962). This so-called nugget
effect represents microscale variation that causes this discontinuity at the origin, and is
comprised of two parts. The nugget effect, co, is due in part to measurement error, Cvg,
and a white noise process that is assumed to occur on the very small scale, cvs. Thus,

Co = Cms T CME.



The sill is equal to twice the variance of Z(s). Notationally, 26° = lim Zy(h).

[B}—>o0

Additionally, the sill, 26°, is equal to 2y( || $1-$2 ||) when s; and s; are far enough apart to

be considered independent.
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Figure 2.1 Semivariogram. The above diagram shows the behavior of the
semivariogram. The value of the semivariogram approaches ¢ (the nugget effect) as the
distance approaches zero. As the distance increases, the value of the semivariogram
approaches its upper limit (the sill).



As is implied by the above definition for 8(s), the variogram, 2y(h), can be
estimated only when the process is stationary. The proposed approach for modeling non-
stationary processes is to first discriminate, or delineate, areas of stationarity, after which
it should be possible to proceed with spatial analysis within each neighborhood of
stationarity.

2.2.1 Estimation of the variogram

Based on method-of-moments, Matheron (1962) suggested the following

methodas a way of estimating the variogram. This method is often referred to as the

classical estimator of the variogram. Let

27(h) = |N(h | 3 (Z(s,)-ZGs )Y, h e R° (2.2.1)
N(h)
where
N(h)s{(si,sj):si—sj:h;i,jzl,...,n} (2.2.2)

and |N (h)| is the number of distinct pairs in N(h).

Similarly, robust estimators of the variogram were introduced by Cressie and

Hawkins (1980). They set

e zo]
27(h)= N

(2.2.3)
(0.457 + 0494]
IN (h)]
and
{med{l(s) Z(s. )\/ :(s;,s;)eN(h )H

— (2.2.4)

(0 45T e 0494]

N (h)



Cressie and Hawkins also show through simulation that 2j(-) is generally preferred over
27().
2.3 Hierarchical Cluster Analysis
2.3.1 Clustering Methods

Cluster analysis is used to group observations, usually multivariate, into
clusters—groups containing observations that are “close” in terms of Euclidean distance.
The basic idea is to find an optimal grouping where the observations are similar within
each cluster, and the clusters themselves are different from each other. One common
approach to clustering is hierarchical clustering. This approach begins with n clusters,
one for each observation, and ends with all n observations in the same cluster. In other
words, the observations begin in separate clusters, then the two “closest” observations are
combined into one new cluster. This process of combining the two closest clusters into a
new single cluster continues until all the observations have been combined into a single
cluster.

Euclidean distance is a common measure of similarity, or dissimilarity, among
observations. For two vectors X = (X1, X2, ..., Xp)' and 'y = (y1, ¥2, ..., ¥p)' the Euclidean

distance between x and y is defined by

d(xy) =y (x—y) (x—y) =

Another method of measuring distance is using the statistical difference defined by

D(x,y) =y(x—y) T (x-y).

10



This measure adjusts for differing variances and covariances among the differing groups.
However, since there are assumed to be different groups within the data set, there is no
obvious way to choose X.

Attention should also be given to the scale of measurements used in computing
the Euclidean distance. Depending on the scale of measurements, the relative distances
can change. To counter this, many authors recommend the usual standardizing of the
variables—subtracting the mean and dividing by the standard deviation.

While the Euclidean distance between two points is clearly defined above, the
distance between two clusters can be defined in several ways. The following are some of
the most common methods for determining the distance between clusters (Fisher and Van
Ness 1971; Van Ness 1973).

In the single linkage (or nearest neighbor) method, the distance between two
clusters A and B is defined as the minimum distance from a point in A to a point in B.
Thus,

D(A,B) = min{d(yi,y;), for yiin A and y;jin B}.

In the complete linkage (or farthest neighbor) method, the distance between two
clusters A and B is defined as the maximum distance from a point in A to a point in B.
Thus,

D(A,B) = max {d(yi.y;), for yiin A and y;jin B}.

In the average linkage method, the distance between two clusters A and B is

defined as the average of the naX ng distances from each of the na points in A to each of

the ng points in B. That is,

1 Na Ng

d(Yian)

11



2.3.2 Clustering Outcomes

The agglomerative hierarchical method of clustering begins with each point in the
set as its own cluster. Then, the two closest clusters are grouped together, where
closeness is determined by the linkage method is being used. This process is repeated
until all the observations are grouped into a single cluster. The results are often displayed
graphically in a tree diagram, which shows the development of the clusters. The method
of determining the number of cluster ultimately used in analysis depends largely upon the
judgment of the analyst and may vary according to the specific situation.

Generally, the use of single linkage differs from complete and average linkage in
that it will create long string-like clusters. This phenomenon, known as chaining,
generally yields undesirable clustering results. The results from complete and average
linkage generally agree with each other. For additional information on displaying the
results of hierarchical clustering, see Gordon (1987).

2.4 Methods of Clustering Spatial Data: History
2.4.1 Clustering

In the case of spatially dependent data, the results of normal clustering techniques
do not always make sense given the nature of the data. With spatial data, one of the
assumptions is that each observation is dependent on other nearby observations. In the
case where similar observations exist but are separated by large distances it is often
unreasonable to group them together.

This idea is supported by Legendre (1987), who found that imposing constraints
on spatial data results in answers that are meaningful in context. He describes various

forms of constrained clustering and then examines whether constrained clustering is

12



needed to get meaningful results and how to determine if the groups found by constrained
clustering are real. Legendre answers the first question through a simulated data set,
where he found that constrained clustering recovered more information than
unconstrained clustering.

Legendre’s studies led to the conclusion that constrained clustering should
always used when the data are assumed to be spatially (or temporally) correlated.
Legendre also states, in answer to the second question, that it is possible to discern
whether the groups found by constrained clustering are real. Legendre found that the
spatially correlated data sets generally have larger differences between groups.
Additionally, Legendre found that with constrained clustering techniques, the different
linkage methods result in more similar groupings as compared to unconstrained
clustering.

Wartenberg (in an unpublished manuscript cited by Legendre 1987) gives an
example of what happens in situations of unconstrained clustering and constrained
clustering through a study from the health sciences. Lung ailments may come from many
different causes: occupational (such as coal mining), ambient (such as living near
industrial areas), or personal habits (such as tobacco consumption), all of which can lead
to differing severity of lung conditions. The unconstrained clustering tended to group the
samples by severity of cases while the spatially constrained clustering was more likely to
group observations with similar types of causes.

Another method of constrained clustering was also used by Huel, Petiot, and
Lazar (1986) as they developed an algorithm for analyzing contiguous zones in a

geographical epidemiology study. They developed an algorithm that groups the

13



continuous geographical units that are similar with respect to the variables of interest.
First, a distance measure between the zones is defined. This measure is defined in such a
way as to prevent two or more of the distances measured from resulting in equal
magnitudes; in other words, all distances calculated are unique and can be ranked from
smallest to largest. Next, a distance threshold is chosen beyond which two zones cannot
be grouped (i.e. if the distance between zones is less than the threshold, the zones are
considered to be adjacent). Then, the two zones that have the smallest distance, subject
to the constraint that the zones are adjacent, are grouped together. This process is
continued until all the groups have been combined. Huel, Petiot, and Lazar then use this
algorithm to group geographical zones in Normandy, France, where measurements of
suicide rates were taken. In this study, the probability level from Cochran’s test was
defined as the distance for the algorithm. (Note that Cochran’s test is useful for
measuring samples on a categorical scale and measures whether or not different samples
have the same number of successes and failures.)

One problem that arises in analysis of spatial data is that of non-stationarity. If,
for example, the data are assumed to be spatial in nature and are assumed to have
separate intrinsic groups, then estimating the variogram for the entire data set will violate
the stationarity assumption. This problem is addressed by Haas (1990), in which the
ecological effects of sulfuric and nitric acid (found in rainfall) on the environment in the
United States were studied. This process of statistical estimation was complicated
because of a strong spatial trend (mean non-stationarity) and an apparent spatial
covariance structure dependent on location (covariance non-stationarity). Haas evaluated

four statistical methods of estimating confidence intervals for the precipitation chemistry

14



at the locations of measurement. Of interest is a method of estimation where the sample
variogram is estimated using only data within a circular neighborhood immediately
surrounding the estimate location—this method is called a window. This window moves
along with the estimate location, where a new variogram estimate is calculated. This
allows for the variance covariance structure to be a function of location and allows the
model to account for more of the spatial trends.

However, the implementation of this moving window brings about the conflicting
goals of having the window as small as possible while still allowing for a covariance
model to be fitted using only the window’s data. The smaller the window, the better the
approximation of stationarity, while the larger the window, the more accurate the semi-
variogram estimates. Haas (1990) suggests that the semi-variogram estimates at shorter
lags have lower variance than estimates at longer lags given the same number of distance
pairs; thus, fewer pairs are needed at shorter lag distances.

Another problem in the analysis of spatially correlated data is that of scale.
Spatial resolution is associated with the smallest area for which data can be obtained.
High resolution comes from small geographical units, which allow for an increase in the
ability to differentiate nearby objects. However, small geographical areas, which usually
have small populations, tend to have large variability.

Carvalho, Cruz and Nobre (1996) developed an algorithm to combine small,
homogeneous areas in order to achieve minimum sample size requirements. As applied
to census data, the algorithm begins with a specified census tract for which a search is
performed among all adjacent tracts with the same risk profiles. In each census tract, a

centroid is defined as an average of all the data collected in the tract. Using Euclidean
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distances between these centroids, a measurement is available to compare how close
different tracts are to each other. The neighboring tract that is closest to the specified
tract is subsequently combined with the specified tract to create a new tract. Then, if the
desired sample size is achieved, the algorithm will move on to the next specified tract;
otherwise, it will compare the new tract with its neighboring tracts, repeating the process
until all census tracts have been specified by the algorithm. If, however, a census tract
exists without neighboring tracts exhibiting similar risk profiles, it is defined as isolated.

The results of this agglomerative algorithm include (1) complete—the desired
sample size is reached, (2) incomplete—the desired sample size is not reached, but there
are no additional neighboring tracts of the same class, and (3) isolated—no neighboring
tracts existed to be combined.

For additional studies in clustering see Anderson and Titterington (1997), Cuzick
and Edwards (1990), Marshall (1991), and Raubertas (1988).
2.4.2 Methods of Evaluating Clustering Techniques

Two methods of assessing the efficiency of clustering models were recommended
by Milligan (1983)—the Jaccard index and the Rand index. For a situation with n
observations where the true groups are known, two half matrices (triangular n X n) are
computed—one is computed according to the true groups and another is computed
according to the classification method, or estimated groups. The ij position of these
matrices contains a 1 when the i observation and the j observation are members of the
same group, and a 0 otherwise. Then a summary two-way table is set up using the counts
of 1s and Os for each observation. The Jaccard index and the Rand index are calculated

using such two-way tables (as in Figure 2.4.1) and are defined as
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Second Matrix

1 0
X
g 1 a b
[
iT 0 c d

Figure 2.2 General Two Way Table. The two way tables summarizes the comparison
counts, represented here by a, b, ¢, and d. The Rand and Jaccard indeces both, then,

reference these counts.

Jaccard = L,
a+b+c

Rand :& .
a+b+c+d

For example, in the simple situation where there are two groups, as given in
Figure 2.4.2, and there are three estimated groups, as given in Figure 2.4.3, the indices

would be computed by first constructing:

I |1
I |1
IT | II

Figure 2.3 True Grouping

I |1
IT | III
IT | III

Figure 2.4 Estimated Grouping
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To begin with, the two half matrices are computed for the true and estimated groups—
given in Figure 2.4.4. Each cell in the data field is compared to each other cell. A value
of 1 is assigned to the half matrix position if both cells are in the same group, otherwise
the value assigned to the half matrix position is a 0. For the true groupings, the first cell
(top left) is compared to the second cell (top right) and a value of 1 is assigned to the half
matrix. The same is true for the third and fourth cells (middle left and right). A value of 0
is assigned for cells five and six (bottom left and right) because they are in different

groups. The same process is continued for other columns of the half matrices.
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Second Matrix

0 Jaccard Index = 1 — l
X 1 1+6+2 9
g 1 1 6
[
i 0 2 6
Rand Index =i = l
1+6+2+6 15

Figure 2.5 Index Calculation Example. The half matrices are shown above. The matrix
for the true groups is on the left and the matrix for the estimated groups is on the right.
Below the matrices is the two-way table along with the calculations for both the Jaccard
and Rand indices.
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3. METHODS OF CLUSTERING OBSERVATIONS IN A NON-STATIONARY

RANDOM FIELD

3.1 Data Structure

The previous approaches attempt to create contiguous clusters that have similar
mean structures. In addition to having the same mean structure, however, the clusters
should group observations that have similar variances and similar spatial structures. In
other words, the non-stationary random field is to be broken down into contiguous
regions (clusters) that exhibit spatial stationarity.

In order to attain localized estimates of the spatial variogram, the moving window
approach introduced by Haas (1990) was used. In the moving window approach, a
window, or neighborhood, around each point is used to estimate the variance structure at
that point. In terms of this approach, the smaller the region, the better the approximation
of stationarity. On the other hand, with larger windows, more data points are available
for use in estimation.

In attempting to separate the observations into stationary regions, hierarchical
clustering can be performed. If the data to be analyzed exhibits spatial characteristics, a
location index should be included to encourage the creation of clusters that contain
spatially contiguous observations.

For each data point, a data vector was obtained with the form

v(8) = (Vi(8), Va(8s), Va(8), va(s), V5(8), Ve(s), V7(8)),
where v(s) represents the (possibly vector-valued) responses to be used in the clustering.

In the case of SFMRI, v,(s) represents the observed level of activation for a specific
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location s, defined using the difference between stimulated measurements and the
average blood flow for the non-stimulated measurements, Q(s) — y(s) ; Va(s) represents
the row (or x-coordinate) index; vs(s) represents the column (or y-coordinate) index; va(s)

is 27_/5(1), referred to as the lag 1 estimate of the variogram; vs(s) is 2;5(2), the lag 2
estimate; ve(s) is 27_/5(3), the lag 3 estimate; v4(s) is the estimated 90th percentile of the

measurements 2 7 (1), 27 s(2), 27 s(3), 27 s(4), 27 §(5), 27 «(6), and 2 (7). The quantity
v7(s) represents an approximation of the sill, which is equivalent to 26%(s), the variance at
location s.

To estimate the variogram, we recommend the use of the robust variogram

estimator 27(-) as discussed by Cressie and Hawkins (see Section 2.2.1). For data points

close to the natural boundary of a group, the estimates of the variogram are generally
clustered into two different and distinct “clouds” (see Figure 3.1). The more robust
(median-based) estimators generally provide variogram estimates that lie closer to the
actual variogram cloud as compared to the non-robust (mean-based) estimators. This is
particularly true for data points along a natural border between groups. The existence of

multiple groups causes the distinct variogram clouds shown in Figure 3.1.
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----Non-robust (Mean
Based) Estimator

— Robust (Median
Based) Estimator

Distance

Figure 3.1 Robust vs. Non-Robust Estimators of the Variogram. The A’s represent data
points from one group and the o’s represent data points from a second group.
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3.2 Proposed Methods

In this paper we will develop three methods of clustering data (as described later
in this chapter). To compare and evaluate these methods, simulated data sets on a 20 X
20 grid are used. The grid is separated into three different regions—one in the upper left,
one in the center and one in the lower right. Figure 3.2 provides two plots for each
simulated data set. In the top plot of each pair, darker shades of purple represent low
simulated values; the white squares represent intermediate simulated values; and darker
shades of blue represent high simulated values. The bottom plot of each pair provides a
three-dimensional view of the data set. In the first data set, the three different regions
have different mean structures. This allows each region to be identified with relative
ease. In the second data set, the three different regions have the same mean structure, but
different variance structures; thus, the smoothness of the plotted points is very different
across the regions and these regions are more difficult to identify.

The complete linkage clustering method, which clusters based solely on the
distance between Z(s), is demonstrated on the two sample data sets and results in the
clusters shown in Figures 3.3 and 3.4. As might be expected, this technique does a
relatively good job at identifying the groups in Simulated Data Set 1 (Figure 3.3).
However, as the number of groups increases, the clustered groupings become more and
more fragmented. As might be expected, the complete linkage method is ineffective at
identifying the groups in Simulated Data Set 2 (Figure 3.4). This technique is not able to
identify any of the true groups. The same problems exist as with Data Set 1, in that the

groups become increasingly fragmented as the number of groups increases.
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In general, complete linkage is able to identify the three main regions for
Simulated Data Set 1, but is not able to identify any of the regions in Simulated Data Set
2. In applying the complete linkage method to z(s) only the different mean structures are
identified, whereas no information is identified with regard to the variance structures.
Additionally, this method can produce non-contiguous groupings that cannot be used for
spatial analysis; as the number of clusters increases so does the fragmented quality of the
clusters. The three methods proposed in this chapter seek to address the limitations of

complete linkage methods as applied to spatial analysis.
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Figure 3.2 Simulated Data Sets. Each data set has three distinct regions: one in the top
left, one in the center, and one in the bottom right. In the first data set the three regions
have different mean structures. In the second data set the three regions have the same
mean structure, but different variance structures. The shades of purple represent low
simulated values; the white values represent intermediate simulated values; and the blue
values represent high simulated values.
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Figure 3.3 Complete Clustering Results for Simulated Data Set 1. The upper left plot
shows the original three groups in the data set. The remaining plots represent the

clustering produced by the Complete Linkage Method for 2 through 9 groups. The
Jaccard and Rand indices are provided for each plot.

26



Original Data Set

10 15 20

5

0

For 4 Groups, the indexes are:
Jaccard = 0.264 Rand = 0.518

10 15 2

5

0

For 7 Groups, the indexes are:
Jaccard = 0.184 Rand = 0.581

"

0 5 10 15

10 15 2

5

0

For 2 Groups, the indexes are:
Jaccard = 0.27 Rand = 0.498

10 15 20

5

For 5 Groups, the indexes are:
Jaccard = 0.217 Rand = 0.553

—
E ! — -
- -
|
5 10 15 20

For 8 Groups, the indexes are:
Jaccard = 0.184 Rand = 0.581

10 15 2

5

0

5

:H
|

Y
i

For 3 Groups, the indexes are:
Jaccard = 0.271 Rand = 0.512

10 15 2

For 6 Groups, the indexes are:
Jaccard = 0.187 Rand = 0.574

- i

10 15 2

0

For 9 Groups, the indexes are:
Jaccard = 0.152 Rand = 0.592

-

10 15 2

5

Figure 3.4 Complete clustering results for Simulated Data Set 2. The upper left plot
shows the original three groups in the data set. The remaining plots represent the
clustering produced by the Complete Linkage Method for 2 through 9 groups. The
Jaccard and Rand indices are provided for each plot.



3.2.1 Basic Window Method
In order to obtain estimates of v4(s), vs(s), ve(s), and v(s) that are valid at the
specific location s, the moving window described by Haas (1987) is used. For each

position in the data field (usually a grid), the variogram is estimated at distances of 1

through 7. For 27_/5(1), or lag 1, the window consists of all the data points within a

window of £ 1 row or column of the specified position. For 2;_/(2), or lag 2, all points
within a window of + 2 are used. The window size continues to grow in this manner until
2;(7), or lag 7, is estimated. For positions along the edges or in the corners, portions of

the window will be outside of the data grid. In this case, only the positions that are

aligned within the window and the grid are used for estimating the appropriate lags.
Finally, the 90 percentile among 2y (1), 27 «(2), 27 s(3), 27 s(4), 27 «(5), 27 «(6), and
2;5(7) is found at each specified location. After the data vector v(s) is constructed, the

measurements in v(s) are centered and scaled.

Weights are applied to the data vector depending upon the composition of the data
field. A weighting of (3, 1, 1) is applied to the mean structure and a weighting of (2, 1, 1,
0, 1) is applied to the spatial structure. The weights are chosen to be similar in their total
effect on the data vector v(s). The weights are then adjusted by multiplying the mean
structure weighting by a and the spatial structure weighting by 1-a, for increasing values
of a. These weighted data vectors are then clustered using the hierarchical clustering
method described above. Because both the Jaccard and the Rand indices evaluate
clustering processes in basically the same way, only the Jaccard index is shown

Using the Jaccard index as the criterion for analysis of the Basic Window Method,

Figures 3.5 and 3.6 provide a summary of how well this method identifies the groups
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within Data Examples 1 and 2, respectively. (Additional images of the hierarchical
clusters produced by application of the Basic Window Method to Simulated Data Sets 1
and 2 can be found in Appendix A.)

Generally, as the number of groups increases, the value of the Jaccard index
decreases. Recall that Simulated Data Set 1 contains differing mean structures and
similar spatial structures (see Figure 3.2). The Basic Window Method performs best with
equal weighting between mean structure and spatial structure (that is, when a = 0.50) for
Simulated Data Set 1. Recall that Simulated Data Set 2 has a similar mean structure
throughout the region (see Figure 3.3). The Basic Window Method using only spatial
information (a = 0.0) is at least as good as the subsequent iterations that include the mean
structure data (i.e. a > 0).

In summary, the Basic Window Method includes additional information in the
clustering process and thus provides an improvement over traditional clustering
techniques. However, in order to perform spatial analysis on a data structure, the data
within each cluster must be contiguous. The Basic Window Method fails to adequately

address this issue.
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Basic Window Method -- Simulated Data Set 1
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Figure 3.5 Basic Window Clustering for Simulated Data Set 1. The vertical axis shows
the Jaccard Index as a function of the number of groups with various weights being given
to the mean spatial structure and the spatial structure. The relative weight given to the
mean structure is represented by a, with relative weight 1-a given to the spatial structure.

Basic Window Method — Simulated Data Set 2
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Figure 3.6 Basic Window Clustering for Simulated Data Set 2. The vertical axis shows
the Jaccard Index as a function of the number of groups with various weights being given
to the mean spatial structure and the spatial structure. The relative weight given to the
mean structure is represented by a, with relative weight 1-a given to the spatial structure.
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3.2.2 Adjacent Constraint Method

As mentioned in the previous section, one of the difficulties with the Basic
Window Method lies in the fact that it will often produce groups that fail to be spatially
contiguous. The solution to this seems to be easy; one could simply increase the weights
applied to the location index of v(s)—v»(s) and v3(s). However, in order to achieve
spatially contiguous groups, the location indices begin to have a greater effect than the
other elements of the data vector. This results in groups that tend to reflect the four
quadrants of the grid rather than producing groups of similar data points.

Instead of including the location indices of the data vector, the next proposed
method—the Adjacent Constraint Method—utilizes the addition of an adjacency
constraint. In order for two observations or groups to be clustered together, they must
meet the requirement of being adjacent to each other. The data vectors for each position
are constructed according to the method described in section 3.1.

The imposition of this constraint on the clustering method allow for the results to
make sense in terms of the problem. Because the desired result of these clustering
methods is to separate regions for the application of spatial analysis, the delineated
regions must meet the required assumptions implicit in such analysis—one such
assumption is that of contiguous regions. Legendre gives examples of constraints in
ecological theory where the clusters are constrained to be contiguous; he then shows that
constrained clustering methods always recover a larger fraction of the information when
compared with the unconstrained methods (Legendre 1987).

After constructing v(s) for all s in the random field, the Adjacent Constraint

Method compares the data vectors for all adjacent observations and then groups the two
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observations that are closest together. In this case, adjacency is determined by how far
apart the two observations are located within the grid. Locations are considered to be
adjacent when the Euclidean distance between the two observations is less than 1.5. For
data sets that are set up in two-dimensional grids, this is equivalent to the eight nearest
neighbors. The process continues combining data in the same manner until all the
observations are combined into groups. Note that for an observation to be adjacent to a
group of observations, the observation only needs to be adjacent to one of the
observations in the group. Similarly, for two groups to be adjacent, at least one
observation from the first group must be adjacent to at least one observation from the
second group. This algorithm is similar to the one used by Huel, Petiot, and Lazar
(1986).

In addition to the imposition of this adjacency constraint, the weights applied to
the data vector, v(s), are also adjusted. Weights are applied to the data vector in two
ways. Recall that the data vector may be split into two different sections—a section
containing mean structure data points and a section containing spatial structure data
points. Weights are first applied to these structures—a weight on the mean structure,
represented by a, and a weight on the spatial structure, represented by 1-a. Where a is
constrained to be between 0 and 1.

The second way that weights are applied to the data vector is in determining the
relative importance of data elements within the mean structure and spatial structure.
These weights are not limited, but should be equal in total magnitude. Some care should
be taken to determine these weights, as they have a large impact on the results. Recall

from Chapter 2 that the data vector is of the form
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V(8) = (Vi(8), Va(8), v3(8), Va(s), Vs(s), Vs(8), Vi(s)).
The mean structure is reflected in the values (vi(s), va(s), v3(s)) and the spatial structure is
reflected in the remaining elements, (va(s), vs(s), ve(s), v7(s)). The weights applied to the
mean structure are 5, 0, and 0, respectively. Note that weights of zero are applied to the X
and y coordinates, which effectively removes their effect on clustering. These effects are
removed because the Adjacent Constraint Method of clustering forces groups to be
contiguous, thereby removing the need to include location elements in the data vector.
The weights applied to the variance structure are 2, 1, 1, and 1. This weight structure
seeks to reflect the relative importance of each lag estimate on clustering. Essentially, the
weights indicate that the most important data element for clustering based on a spatial
perspective is the estimate of lag 1, followed by the estimate of the sill (using the 90th
percentile of the lags as the estimate), then the estimates for lags 2 and 3.

As in the previous section, the effectiveness of the Adjacent Constraint Method
may be evaluated by examining the Jaccard indexes at differing values of a and differing
numbers of separated groups. The Jaccard index will generally decrease as the number of
groups increase. With the Adjacent Constraint Method, however, the summary of Jaccard
indices show a general increase up to a certain number of groups, and then the customary
decrease (see Figures 3.7 and 3.8). This is especially evident for Simulated Data Set 1 in
the case where a = (.25, and can be seen for Simulated Data Set 2 with a =0.0. As each
Simulated Data Set contains only three “true” groups, this seems a little counterintuitive.
The Jaccard indices reach a maximum at around 15 to 17 groups. Upon further
examination, there appear to be many small groups of elements that are clustered along

the borders of the natural groups. This phenomenon is examined in more detail in the
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following section. The hierarchical clustering produced by application of the Adjacent

Constraint Method to Simulated Data Sets 1 and 2 can be found in Appendix A.
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Figure 3.7 Adjacent Constraint Clustering Results for Simulated Data Set 1. The
vertical axis shows the value of the Jaccard Index as a function of groups using the
Adjacent Constraint Method. The relative weight given to the mean structure is a and

the relative weight given to the spatial structure is 1-a.
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Figure 3.8 Adjacent Constraint Clustering Results for Simulated Data Set 2. The
vertical axis shows the value of the Jaccard Index as a function of groups using the
Adjacent Constraint Method. The relative weight given to the mean structure is a and the

relative weight given to the spatial structure is 1-a.
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3.2.3 Two-Part Method

While using the two methods described above on the simulated data, the non-
stationarity is clearly evident at the border of two different regions. This leads to
estimated clusters that will be referred to as border clusters. When points reside along the
natural borders between regions, the estimation of the variance and spatial dependence
structure is highly affected by non-stationarity, or the vast difference between the natural
regions. When near such regional borders, the window used in the previous methods
(described in sections 3.2.1 and 3.2.2) spans the two regions and points from both regions
are included in the estimation process. This leads to the artificial creation of small, often
chain-like groups along the diagonal division between the three true groups. See Figure
3.9 for an illustration of such border blusters. The creation of border clusters is
particularly evident when bordering regions have dramatically different mean levels for
Z(s), yielding exaggerated values of v+(s) or 26°(s). See, for example, the clusters
formed where the known regional boundaries are located in Figure 3.7.

In order to account for the potential non-stationarity of the analyzed regions and
in an attempt to prevent the creation of border clusters, the clustering process was split
into two steps. The first step is to perform a cluster analysis only on v,(s)—that is Z(s).
As before, v,(s) and vs(s) (the row and column indices) are not included as the clustering
is already subject to the data elements being adjacent. Since this initial clustering is an
attempt to get better estimates of spatial structure, a stricter criterion of adjacent is used.
To prevent the chaining of data elements (where a sequence of data elements only border
each other diagonally), the physical distance must equal 1.0—only elements directly

above, below, or to either side will be considered for clustering.
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Figure 3.9 Border Clusters. This plot illustrates the artificial creation of groups on or
near the borders of the natural group divisions.
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This initial clustering is considered to be finished when each estimate of v4(s)—
lag 1—is close enough in relation to all other estimates of v4(s) within a specific region.
The estimates are considered close enough if they fall within the central 99.9% of the
range of a chi-squared distribution with a mean equal to the average estimate of v4(s)
within the region. In essence, this method prevents the estimation of extreme values for
v4(s) that result from differing mean structures between groups (as exhibited by border
clusters), not from natural variation within a group. For this initial clustering, the less
robust classical estimator of the variogram is used. Choosing a less robust estimator will
allow for more extreme values of v4(s) where different underlying groups fall within a
specific region, which this method seeks to identify.

Within these previously determined regions of significantly different mean
structures, Z(s), the data elements are clustered by variance and spatial dependence
structure using the Adjacent Constraint Method as described in Section 3.2.2. This
method will have the greatest impact on data regions where there is significant
fluctuation in the mean structure (as with Simulated Data Set 1). For regions where the
mean structure is fairly constant, this method is expected to perform approximately the
same as the Adjacent Constraint Method—in other words, all estimates of v4(s) may be
assumed to fall within the chi-squared distribution with the required cutoff. These
conclusions are supported by Figures 3.10 and 3.11. Figure 3.11 shows the Jaccard Index
values for varying numbers of groups using the Two-Part Method on Simulated Data Set
1. The problem created by the border clusters is mitigated somewhat, but there is still
evidence of such regions (for example, when a = 0.25). Figure 3.12 shows the Jaccard

Index values for varying numbers of groups using the Two-Part Method on Simulated
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Data Set 2. As expected, the results for Simulated Data Set 2 appear to be generally the
same as those obtained with the Adjacent Constraint Method.
The hierarchical cluster results produced by application of the Two-Part Method

to Simulated Data Set s 1 and 2 may be found in Aappendix A.
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Two Part Method — Simulated Data Set 1
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Figure 3.10 Two-Part Clustering Results for Simulated Data Set 1. The vertical axis
shows the value of the Jaccard Index as a function of groups using the Two-Part Method.
The relative weight given to the mean structure is a and the relative weight given to the
spatial structure is 1-a.
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Figure 3.11 Two-Part Clustering Results for Simulated Data Set 2. The vertical axis
shows the value of the Jaccard Index as a function of groups using the Two-Part Method.
The relative weight given to the mean structure is a and the relative weight given to the
spatial structure is 1-a.
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4. RESULTS

4.1 Simulated Examples

Each of the three previously described methods is used to cluster a series of
simulated data sets. Four separate data sets were simulated with differing mean and
covariance structures (as shown in Figures 4.1 and 4.2). Each data set has three different
regions. The left side of the grid is one data region, the center is the second data region,
and the right side is the third data region. The regions vary by mean and variance
structure. Lower variance and higher range regions appear to be more smooth. The
following provides a short description of each simulated data set’s characteristics.

Data Set 1:
Region 1 exhibits high mean, moderate variance, and moderate range
Region 2 exhibits low mean, moderate variance, and moderate range
Region 3 exhibits moderate mean, moderate variance, and moderate range

Data Set 2:
Region 1 exhibits moderate mean, moderate variance, and moderate range
Region 2 exhibits moderate mean, small variance, and moderate range
Region 3 exhibits moderate mean, large variance, and moderate range

Data Set 3:
Region 1 exhibits moderate mean, moderate variance, and small range
Region 2 exhibits moderate mean, moderate variance, and large range
Region 3 exhibits moderate mean, moderate variance, and moderate range

Data Set 4:
Region 1 exhibits high mean, moderate variance, and small range
Region 2 exhibits low mean, small variance, and large range
Region 3 exhibits moderate mean, large variance, and moderate range
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Figure 4.1 Sample Data Sets (Perspective Plot). Each data set has three different
regions. The left side of the grid is one data region, the center is the second data region,
and the right side is the third data region. The regions vary by mean and variance
structure. Lower variance and higher range regions appear to be more smooth.
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Figure 4.2 Sample Data Sets (Image View). This figure provides an alternate view of
each of the data sets. Each data set has three different regions. The upper left portion of
the grid is one data region, the center is the second, and the lower right portion is the
third. The regions vary by mean and variance structure. Darker shades of purple
represent low simulated values, the white values represent intermediate simulated values,
and the darker shades of blue represent high simulated values.
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The reasons for comparing and contrasting these three methods are as follows: 1)
to determine how well the methods correctly identify the true groupings within each data
sets—measured according to the Jaccard index value, and 2) to determine how useful the

results will be in the view of performing spatial analysis on the resulting clusters.

4.2 Evaluation of Performance

The Jaccard index values resulting from the clustering methods proposed in this
paper are shown in tables and charts in Appendix A (chapter 4 tables). Figure 4.3
presents a portion of these results for the case where a = 0.50. Different values of a were
used for clustering the sample data sets. In most instances, however, a produced the
highest values of the Jaccard index when set to 0.50.

An analysis of these results indicates that the Adjacent Constraint Method and the
Two-Part Method perform at least as well as the Basic Window Method and the value of
the Jaccard index is generally higher for these two methods. This result is consistent with
the findings of Legendre (see Section 2.4) in that through imposing constraints on the
clustering criteria more of the information is retained. It is evident that when delineating
regions of spatial stationarity it is important to impose constraints upon the clustering
criteria. These constraints will not only allow the clustering methods to retain more
information, and thus perform better, but they provide the added benefit of resulting in
clusters where the data points are spatially contiguous, as required for subsequent spatial
analysis.

In general, the first groups that are identified through the proposed clustering

techniques do not reflect the true groups. Initially, the regions that stand out represent
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small artificial groups found along the natural borders of the true groups. The Two-Part

Method
Data Set 1
LU —=— Basic Window
0.800 A (a=0.50)
0.600 - —a— Adjacent
Constraint
0.400 (a=0.50)
—e—Two Part
0200 (a=0.50)
1 3 5 7 9 1113151719 21 23 25
Number of Groups
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Figure 4.3 Sample Data Sets (Graphical Clustering Results a = 0.50). Graphical
summary of the clustering results (based on the Jaccard Index) for the four simulated data
sets using the Basic Window method, the Adjacent Constraint Method and the Two-Part
Method. The vertical axis gives the Jaccard Index value as a function of the number of
groups.
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Data Set 2 Summary Statistics

Group 1 Group 2 Group 3

Standard Standard Standard

Mean Deviation | Mean Deviation | Mean Deviation
Activation Level — v4(s) 4.3 1.1 4.2 1.2 4.9 1.9
Lag 1 Estimate — v4(s) 13 1.3 0.4 0.4 2.4 2.3
Lag 2 Estimate — vs(S) 1.6 15 0.7 0.7 3.1 2.9
Lag 3 Estimate — vg(S) 1.7 1.9 0.8 0.8 3.7 4.2
Estimate of 90th Percentile — v4(s) 2.6 2.1 1.9 1.6 5.4 5.8

Figure 4.4 Summary statistics for Data Set 2. The relatively high standard deviations
for the estimates of the spatial structure (with comparison to the average estimate values)
make it difficult to accurately delineate the simulated regions within this data set.

mitigates this problem somewhat, but does not completely remove it. Figure 4.4

illustrates this for Data Set 4. Notice that the Two-Part Method does not completely

solve the problem of the creation of small groups generally found along the natural

borders. In fact, it is not until there are 10 groups that we see the division of all three true

groups.

Because of this initial artificial border grouping issue, the Jaccard index starts off

relatively low and then may exhibit large increases. Similarly, the final results generally

indicate the presence of more groups than there actually are. In the simulated case, there

are three actual groups, but Figures 4.3 and 4.4 indicate the presence of anywhere from

five to ten groups.

The proposed clustering techniques perform better with regard to Data Sets 1 and

4. By construction, Data Sets 1 and 4 have differing mean structures across groups,

whereas Data Sets 2 and 3 have the same mean structure with differing spatial structures.

This suggests that the estimates of the variogram are inadequately reflecting differences

in the spatial structure. (See Figure 4.4 for the summary statistics of Data Set 2). Recall
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that these methods employ a moving window approach. As a result, there are relatively
few data points available for the estimates for each lag. For future studies, it would be
worthwhile to investigate methods to improve these estimates, or to increase the number
of data points used in estimation.

One possible way to improve the variogram estimation would be to calculate the
variogram for the specified location using the methods proposed in this paper. Then, as a
second step, calculate the variogram for each data point adjacent to the specified location
(again using the methods proposed in this paper). Lastly, take the average of all the
estimated variograms as the estimate of the variogram at the specified location. This
method of estimation might also mitigate the impact of the border clusters by smoothing

some of the extreme estimates of the variogram that are found along natural borders.
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Figure 4.5 Graphical Clustering Results (Data Set 4). Graphical clustering results for
Data Set 4 (with a = 0.50) for n groups where n =

Original Data Set
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From a practical standpoint and as described in previous sections, the Two-Part
and the Adjacent Constraint Methods are superior to the Basic Window Method when the
aim is to perform spatial analyses. To perform spatial statistical procedures on a data
region, all of the data points within the region must be contiguous, as will be the case
with the Two-Part Method and the Adjacent Constraint Method. This is not to say that
the clustered groups produced using the Two-Part Method and the Adjacent Constraint
Methods are necessarily ideal for spatial analysis. These two methods may produce
groupings that include many groups with a small number of data points (border clusters).
This necessitates careful judgment before performing spatial analysis; groups with small

numbers of data points may need to be manually combined with neighboring groups.
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5. SFMRI DATA ANALYSIS

5.1 Clustering of SFMRI Data

This section details the results of applying the proposed clustering techniques to
SFMRI data. The data represent measurements of blood flow to areas of the brain (as
described in chapter 2). Recall that measurements within the voxels are taken in the “on”
(stimulated) and the “off” (non-stimulated) positions. Figure 5.1 shows the average

blood flow for these two conditions within the defined voxels.

5.2 Evaluation of Clustering

Upon inspection of the SFMRI data set (see Figure 5.1), there is evidence of
differences in blood flow across the various regions of the brain. These changes in mean
structure indicate that increasing the weights applied to the mean structure might be
appropriate. Because of this, clustering results for a = 0.75 are chosen as representative
of the underlying groups (even though the clustering was done for all five values of a).

When evaluating the clusters produced as a result of applying the clustering
techniques, it becomes apparent that each additional group does not necessarily add
information to the clustering (See Figure 5.2). Note the groups added that appear to be
mere border clusters. For example, groups 4 through 8 do not add any real value to the
identification of the underlying regions. As more groups are split out, some contain very

few data points.
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Figure 5.1 SFMRI Brain Data (Image Plot). This figure represents the average blood
flow between the “on” and “off” conditions to the defined voxels of the brain. The
highlighted area is the area to which the clustering techniques are applied. Darker shades
of purple represent lower measurements of blood flow, the white values represent
intermediate measurements of blood flow, and darker blue shades represent higher
measurements of blood flow.
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Also, as the larger groups emerge within the target region, these smaller groups are seen
to be along the edges of, or between the larger groups—evidence that they are likely not
true groups, but merely manifestations of the border cluster issue. Moreover, these
groups also increase the number of groups that must be separated before all the
underlying true groups show up in the cluster analysis.

It is also useful to compare results from both the Adjacent Constraint Method and
Two-Part Methods. A representative sample of this information is presented in Figure
5.3, giving the image plots for all three clustering methods with a = 0.75 and 12 groups.
Overall, there tends to be agreement in the location of the larger groups. In identifying
the general underlying differences across regions of the brain, the small groups that are
inconsistent across methods may be attributed to the border cluster issue. Also, the
voxels outside the outline of the brain clearly do not reflect blood flow measures, and any
clusters that show up there may be ignored, as is the case with the Basic Window Method
where some groups are identified outside the measurement area. As was shown in
Chapter 4, both of the proposed methods perform similarly in terms of accuracy. Thus,
they may be used as a cross-check to determine which groups reflect underlying structure
and which groups are likely to be border clusters.

These techniques as applied to the SFMRI data set enable the delineation of the
different regions within the brain. However, it is insufficient to take the resulting groups
straight into an analytic application. Care and judgment must be applied to ensure that
the resulting groups are appropriate and reflective of underlying information. Any
groups that are artificially split out should be rejoined to an adjacent group. As indicated,

these groups may be identified through analysis of the cluster images as well as cross
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validation between clustering methods. The subsequent application of spatial statistical
methods on the delineated regions should provide increased understanding of the

structure within these distinct regions of the brain.
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Figure 5.2 Graphical Clustering Results (Adjacent Constraint Method a = 0.75).
Clustering results for the Adjacent Constraint Method with a = 0.75, for n groups with n
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Basic Window Method: Adjacent Constraint Method:
a=0.75, 12 Groups. a=0.75, 12 Groups.
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Two Part Method:
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Figure 5.3 Clustering Results for the SFMRI Brain Data. Comparison of the three
clustering techniques as applied to the SFMRI data with a = 0.75 and 12 groups.
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6. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH
6.1 Conclusions

In general, the application of constraints greatly improved the usefulness of the
clustering methods. The clustering of contiguous regions allows for further spatial
analysis to take place. However, these methods still have difficulty in grouping all of the
data elements into regions of sufficient size to perform this type of analysis. As with all
clustering methods, the results of these methods are unable to produce definite results as
to the correct number and placement of the true groups. Some judgment is required for
the application of the clustering results.

Of the three methods presented, the Two-Part Method appears to be best equipped
for delineating regions of spatial stationarity. This method is able to anticipate and
account for potential problems due to non-stationarity of the mean structure, while still
preserving the benefits gained from forcing grouped data elements to be adjacent to each
other.

The last item of note is in regard to the weights applied to the data structure.

Since the results must be viewed as indications of grouping rather than concrete evidence,
it is useful to use various values of a. The weights must also be reasonable with regard to
the data to be analyzed. If it can be assumed that the data field has similar mean
structure, selection of a value of a that up-weights the variance components would be

appropriate, whereas up-weighting the mean structure would not make as much sense.
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6.2 Directions for Further Research

Further research options in this field exist primarily in two distinct areas: 1) how
to improve the clustering of groups and analysis of how data regions are delineated, and
2) what to do with the data after the groups have been delineated.

With regards to clustering of the groups and the analysis of how the data regions
are delineated, it would be useful to examine the extreme estimates of the variance
structure more closely. In this paper, it was noted that one of the problems was the
clustering and grouping of the border regions. If a method could be developed that could
more accurately identify where border regions exist, one could divide a region based on
where the most likely place for a border exists. Instead of trying to group data elements
within a region, one could attempt to divide a region into homogenous groups.

One difficulty that exists with these methods is that they tend to produce various
small clusters within the entire data region. A method to prevent or limit these small
clusters would be very useful. Alternatively, one could examine how to recombine these
small clusters with others in order to produce regions of sufficient size to perform
additional spatial analysis.

Improvements to the clustering methods may also be realized through improved
estimates of the variogram. As discussed in Chapter 4, there are various ways to increase
the amount of data used to estimate the variogram for each location.

Another question of interest would be how to better identify regions with differing
spatial structures. The approach of combining data points with the closest covariance

structures seems to favor clustering results that produce many groups with very similar
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spatial structures rather than producing fewer groups with more variability in spatial
structure between groups.

After data regions have been delineated, spatial statistical methods may be used
for estimation within the region or space. With regards to the SFMRI data, these
methods may be used to identify specifically which areas of the brain are associated with
specific types of impulses and ultimately allow researchers to predict the physiological

effects of such specified impulses or stimuli
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A. HIERARCHICAL CLUSTER IMAGES

A.1 Graphical Examples
The following images provide a selection of clustering resulting from applying the three
proposed methods to the two data examples from Chapter 3.Each chart indicates the

method used as well as the weight used for a.
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Simulated Data Set 1 Basic Window Method (a = 0.75)
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Original Data Set

Basic Window Method— Simulated Data Set 2
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Simulated Data Set 2 Basic Window Method (a = 0.25)
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Jaccard = 0.236 Rand = 0.569
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For 12 Groups, the indexes are:
Jaccard = 0.233 Rand = 0.569
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For 13 Groups, the indexes are:
Jaccard = 0.233 Rand = 0.569

For 14 Groups, the indexes are:
Jaccard = 0.212 Rand = 0.588

For 15 Groups, the indexes are:
Jaccard = 0.212 Rand = 0.588
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For 16 Groups, the indexes are:
Jaccard = 0.212 Rand = 0.588

For 17 Groups, the indexes are:
Jaccard = 0.212 Rand = 0.588

For 18 Groups, the indexes are:
Jaccard = 0.211 Rand = 0.588
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Original Data Set
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Jaccard = 0.278 Rand = 0.593
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For 8 Groups, the indexes are:
Jaccard = 0.283 Rand = 0.59

i

10 15 20

7

0

For 11 Groups, the indexes are:
Jaccard = 0.279 Rand = 0.593
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For 17 Groups, the indexes are:
Jaccard = 0.189 Rand = 0.602

Simulated Data Set 2 Basic Window Method (a = 0.50)

For 3 Groups, the indexes are:
Jaccard = 0.336 Rand = 0.488
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For 6 Groups, the indexes are:
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For 9 Groups, the indexes are:
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For 12 Groups, the indexes are:
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For 15 Groups, the indexes are:
Jaccard = 0.278 Rand = 0.593
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For 18 Groups, the indexes are:
Jaccard = 0.186 Rand = 0.605
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Original Data Set
a= 05

Adjacent Constraint Method— Simulated Data Set 1

For 2 Groups, the indexes are:

Simulated Data Set 1 Adjacent Constraint Method (a = 0.50)

For 3 Groups, the indexes are:
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For 4 Groups, the indexes are:
Jaccard = 0.709 Rand = 0.851

For 5 Groups, the indexes are:
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For 6 Groups, the indexes are:
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For 7 Groups, the indexes are:
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For 10 Groups, the indexes are:

For 11 Groups, the indexes are:
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For 12 Groups, the indexes are:
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For 13 Groups, the indexes are:
Jaccard = 0.489 Rand = 0.791

For 14 Groups, the indexes are:
Jaccard = 0.486 Rand = 0.79

For 15 Groups, the indexes are:
Jaccard = 0.35 Rand = 0.735
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For 16 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.761

For 17 Groups, the indexes are:
Jaccard = 0.322 Rand = 0.746

For 18 Groups, the indexes are:
Jaccard = 0.315 Rand = 0.743
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Simulated Data Set 1 Adjacent Constraint Method (a = 0.50) (continued)

For 19 Groups, the indexes are:
Jaccard = 0.315 Rand = 0.743

20

5 10 15

0

For 22 Groups, the indexes are:
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For 25 Groups, the indexes are:
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For 20 Groups, the indexes are:
Jaccard = 0.315 Rand = 0.743
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For 23 Groups, the indexes are:
Jaccard = 0.311 Rand = 0.742

e

For 26 Groups, the indexes are:
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For 21 Groups, the indexes are:
Jaccard = 0.314 Rand = 0.743
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For 24 Groups, the indexes are:
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For 27 Groups, the indexes are:
Jaccard = 0.266 Rand = 0.725
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Simulated Data Set 1 Adjacent Constraint Method (a = 0.75)
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Original Data Set
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For 4 Groups, the indexes are:
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For 2 Groups, the indexes are:
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For 5 Groups, the indexes are:
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For 8 Groups, the indexes are:
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For 3 Groups, the indexes are:
Jaccard = 0.941 Rand = 0.977
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For 6 Groups, the indexes are:
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For 9 Groups, the indexes are:
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For 10 Groups, the indexes are:
Jaccard = 0.457 Rand = 0.795

For 11 Groups, the indexes are:
Jaccard = 0.426 Rand = 0.784

Simulated Data Set 1 Adjacent Constraint Method (a = 0.75) (continued)

For 12 Groups, the indexes are:
Jaccard = 0.4 Rand = 0.774
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For 13 Groups, the indexes are:
Jaccard 0.391 Rand = 0.771
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For 14 Groups, the indexes are:
Jaccard = 0.37 Rand = 0.763

For 15 Groups, the indexes are:
Jaccard = 0.343 Rand = 0.753
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For 16 Groups, the indexes are:
Jaccard = 0.34 Rand = 0.752

S}
o
=
o

15 20

For 17 Groups, the indexes are:
Jaccard = 0.337 Rand = 0.751

For 18 Groups, the indexes are:
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For 19 Groups, the indexes are:
Jaccard = 0.332 Rand = 0.749
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For 20 Groups, the indexes are:
Jaccard = 0.33 Rand = 0.749

For 21 Groups, the indexes are:
Jaccard = 0.323 Rand = 0.746
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For 22 Groups, the indexes are:
Jaccard = 0.3 Rand = 0.737
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For 23 Groups, the indexes are:
Jaccard = 0.297 Rand = 0.736

For 24 Groups, the indexes are:
Jaccard = 0.297 Rand = 0.736
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For 25 Groups, the indexes are:
Jaccard = 0.289 Rand = 0.733

For 26 Groups, the indexes are:
Jaccard = 0.287 Rand = 0.732

For 27 Groups, the indexes are:
Jaccard = 0.283 Rand = 0.731
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Original Data Set
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For 4 Groups, the indexes are:
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Adjacent Constraint Method— Simulated Data Set 2

For 2 Groups, the indexes are:
Jaccard = 0.369 Rand = 0.371

20

5 10 15

0

S}
o
i
o
-
a
N
S

For 5 Groups, the indexes are:
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For 8 Groups, the indexes are:
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For 11 Groups, the indexes are:
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For 14 Groups, the indexes are:
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For 17 Groups, the indexes are:
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Simulated Data Set 2 Adjacent Constraint Method (a = 0.25)

For 3 Groups, the indexes are:
Jaccard = 0.365 Rand = 0.391
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For 18 Groups, the indexes are:
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For 19 Groups, the indexes are:
Jaccard = 0.276 Rand = 0.54

For 20 Groups, the indexes are:

Simulated Data Set 2 Adjacent Constraint Method (a = 0.25) (continued)

For 21 Groups, the indexes are:
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For 22 Groups, the indexes are:
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For 23 Groups, the indexes are:
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For 25 Groups, the indexes are:
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For 27 Groups, the indexes are:
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Original Data Set
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Simulated Data Set 2 Adjacent Constraint Method (a = 0.50)

For 3 Groups, the indexes are:
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For 4 Groups, the indexes are:
Jaccard = 0.326 Rand = 0.586

For 5 Groups, the indexes are:
Jaccard = 0.321 Rand = 0.584

For 6 Groups, the indexes are:
Jaccard = 0.271 Rand = 0.61
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For 7 Groups, the indexes are:
Jaccard = 0.27 Rand = 0.611

For 8 Groups, the indexes are:
Jaccard = 0.27 Rand = 0.611

For 9 Groups, the indexes are:
Jaccard = 0.246 Rand = 0.622
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For 10 Groups, the indexes are:
Jaccard 0.232 Rand = 0.621

For 13 Groups, the indexes are:
Jaccard = 0.238 Rand = 0.64
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For 16 Groups, the indexes are:
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For 19 Groups, the indexes are:
Jaccard = 0.233 Rand = 0.641
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For 22 Groups, the indexes are:
Jaccard = 0.238 Rand = 0.691

For 25 Groups, the indexes are:
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For 17 Groups, the indexes are:
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For 20 Groups, the indexes are:
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For 23 Groups, the indexes are:
Jaccard = 0.23 Rand = 0.688

For 26 Groups, the indexes are:
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Simulated Data Set 2 Adjacent Constraint Method (a = 0.50) (continued)

For 12 Groups, the indexes are:
Jaccard = 0.233 Rand = 0.625

For 15 Groups, the indexes are:
Jaccard = 0.237 Rand = 0.641

For 18 Groups, the indexes are:
Jaccard = 0.236 Rand = 0.642
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For 24 Groups, the indexes are:
Jaccard = 0.229 Rand = 0.688
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For 27 Groups, the indexes are:
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Original Data Set
a=

Two-Part Method— Simulated Data Set 1

Simulated Data Set 1 Two-Part Method (a = 0.50)

For 2 Groups, the indexes are:

For 3 Groups, the indexes are:
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For 4 Groups, the indexes are:
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For 6 Groups, the indexes are:
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For 7 Groups, the indexes are:
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For 8 Groups, the indexes are:
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For 9 Groups, the indexes are:
Jaccard = 0.895 Rand = 0.96
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For 10 Groups, the indexes are:
Jaccard = 0.881 Rand = 0.955
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For 11 Groups, the indexes are:
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For 12 Groups, the indexes are:
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For 13 Groups, the indexes are:
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For 15 Groups, the indexes are:
Jaccard = 0.636 Rand = 0.861

20

5 10 15

0

5 10 15

0

0

5 10 15 20

o
o
[
1S}
[
o
N
o

For 16 Groups, the indexes are:
Jaccard = 0.631 Rand = 0.86
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For 17 Groups, the indexes are:
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For 18 Groups, the indexes are:
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Simulated Data Set 1 Two-Part Method (a = 0.50) (continued)

For 19 Groups, the indexes are:
Jaccard = 0.472 Rand = 0.801
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Simulated Data Set 1 Two-Part Method (a = 0.75)

74

Original Data Set
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For 4 Groups, the indexes are:
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For 5 Groups, the indexes are:
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For 8 Groups, the indexes are:
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For 21 Groups, the indexes are:
Jaccard = 0.423 Rand = 0.782
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For 24 Groups, the indexes are:
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For 27 Groups, the indexes are:
Jaccard = 0.386 Rand = 0.768

0 5 10 15 20

2

5 10 15

0

5 10 15 20

5 10 15 2

0

For 3 Groups, the indexes are:
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For 6 Groups, the indexes are:
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For 9 Groups, the indexes are:
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For 10 Groups, the indexes are:
Jaccard 0.324 Rand = 0.744

For 11 Groups, the indexes are:
Jaccard = 0.294 Rand = 0.733

Simulated Data Set 1 Two-Part Method (a = 0.75) (continued)

For 12 Groups, the indexes are:
Jaccard = 0.292 Rand = 0.732
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For 13 Groups, the indexes are:
Jaccard = 0.29 Rand = 0.731

For 14 Groups, the indexes are:
Jaccard = 0.262 Rand = 0.725

For 15 Groups, the indexes are:
Jaccard = 0.259 Rand = 0.724
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For 16 Groups, the indexes are:
Jaccard = 0.256 Rand = 0.723

For 17 Groups, the indexes are:
Jaccard = 0.254 Rand = 0.722

For 18 Groups, the indexes are:
Jaccard = 0.252 Rand = 0.721
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For 19 Groups, the indexes are:
Jaccard = 0.249 Rand = 0.72

For 20 Groups, the indexes are:
Jaccard = 0.248 Rand = 0.72

For 21 Groups, the indexes are:
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For 22 Groups, the indexes are:
Jaccard = 0.233 Rand = 0.714

For 23 Groups, the indexes are:
Jaccard = 0.23 Rand = 0.713

For 24 Groups, the indexes are:
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For 25 Groups, the indexes are:
Jaccard = 0.226 Rand = 0.712

For 26 Groups, the indexes are:
Jaccard = 0.209 Rand = 0.705

For 27 Groups, the indexes are:
Jaccard = 0.201 Rand = 0.702
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Original Data Set
a= 0.25
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For 4 Groups, the indexes are:
Jaccard = 0.369 Rand = 0.376
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For 7 Groups, the indexes are:
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For 10 Groups, the indexes are:
Jaccard = 0.369 Rand = 0.447

5 10 15 20

0

0

o
o
[
1S}
[
o
N
o

For 13 Groups, the indexes are:
Jaccard = 0.372 Rand = 0.46
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For 16 Groups, the indexes are:
Jaccard = 0.369 Rand = 0.462
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Two-Part Method— Simulated Data Set 2

Simulated Data Set 2 Two-Part Method (a = 0.25)

For 2 Groups, the indexes are:
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For 19 Groups, the indexes are:
Jaccard = 0.358 Rand = 0.473

For 20 Groups, the indexes are:
Jaccard = 0.357 Rand = 0.474

Simulated Data Set 2 Two-Part Method (a = 0.25) (continued)

For 21 Groups, the indexes are:
Jaccard = 0.358 Rand = 0.478
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For 22 Groups, the indexes are:
Jaccard = 0.359 Rand = 0.481

For 23 Groups, the indexes are:
Jaccard = 0.359 Rand = 0.481

For 24 Groups, the indexes are:
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For 25 Groups, the indexes are:
Jaccard = 0.358 Rand = 0.481

For 26 Groups, the indexes are:
Jaccard = 0.287 Rand = 0.541

For 27 Groups, the indexes are:
Jaccard = 0.287 Rand = 0.543
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Simulated Data Set 2 Two-Part Method (a = 0.50)

For 2 Groups, the indexes are:
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For 10 Groups, the indexes are:
Jaccard = 0.27 Rand = 0.663

For 13 Groups, the indexes are:
Jaccard = 0.259 Rand = 0.665

For 16 Groups, the indexes are:
Jaccard 0.257 Rand = 0.667
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For 23 Groups, the indexes are:
Jaccard = 0.209 Rand = 0.678
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Simulated Data Set 2 Two-Part Method (a = 0.50) (continued)

For 12 Groups, the indexes are:
Jaccard = 0.264 Rand = 0.662

For 15 Groups, the indexes are:
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A.2 Numerical and Graphical Results

The following Tables and associated charts show the Jaccard indexes resulting from the
application of each of the three proposed clustering methods as applied to the four
simulated data sets. Select weights of a are used for each of of the clustering methods

(values of a vary between 0.00, 0.25, 0.50, 0.75 and 1.00).
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Data Set 1 (a = 0.50)

Adjacent
Number of Basic Window Constraint Two Part
Groups (a=0.50) (a=0.50) (a=0.50)
2 0.360 0.366 0.696
3 0.360 0.640 0.688
4 0.617 0.632 0.631
5 0.617 0.804 0.631
6 0.611 0.802 0.619
7 0.564 0.802 0.619
8 0.564 0.708 0.615
9 0.546 0.698 0.607
10 0.546 0.689 0.588
11 0.440 0.665 0.444
12 0.440 0.665 0.497
13 0.440 0.676 0.497
14 0.440 0.671 0.495
15 0.440 0.653 0.495
16 0.505 0.637 0.493
17 0.493 0.604 0.492
18 0.493 0.558 0.490
19 0.445 0.588 0.486
20 0.443 0.588 0.478
21 0.384 0.587 0.475
22 0.384 0.587 0.472
23 0.384 0.574 0.469
24 0.381 0.556 0.468
25 0.368 0.552 0.466
26 0.315 0.547 0.474
27 0.315 0.547 0.472
Data Set 1
1.000 —m— Basic Window
0.800 (a=0.50)
0.600 —a— Adjacent
Constraint
0.400 (a = 0.50)
—e&— Two Part
0.200 (a = 0.50)

1 3 5 7 9 11131517 19 21 23 25

Number of Groups
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Data Set 2 (a=0.00)

Adjacent
Number of Basic Window Constraint Two Part
Groups (a=10.00) (a=10.00) (a=0.00)
2 0.365 0.369 0.369
3 0.361 0.373 0.365
4 0.361 0.374 0.364
5 0.347 0.375 0.361
6 0.340 0.371 0.363
7 0.347 0.371 0.362
8 0.311 0.371 0.362
9 0.311 0.370 0.361
10 0.311 0.372 0.361
11 0.310 0.371 0.362
12 0.302 0.372 0.361
13 0.302 0.372 0.360
14 0.302 0.370 0.359
15 0.302 0.371 0.358
16 0.286 0.370 0.357
17 0.285 0.370 0.358
18 0.284 0.370 0.359
19 0.284 0.370 0.360
20 0.284 0.368 0.356
21 0.284 0.367 0.343
22 0.284 0.366 0.344
23 0.283 0.365 0.343
24 0.283 0.364 0.342
25 0.283 0.362 0.342
26 0.283 0.362 0.342
27 0.283 0.358 0.341
Data Set 2
1.000 —m— Basic Window
0.800 - (a=0.00)
0.600 —A— Adjacent
Constraint
O st | 0
—o— Two Part
CA00 (a=0.00)

1 3 5 7 9 11 131517 19 21 23 25

Number of Groups
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Data Set 3 (a=0.25)

Adjacent
Number of Basic Window Constraint Two Part
Groups (a=0.25) (a=0.25) (a=0.25)
2 0.365 0.367 0.364
3 0.362 0.366 0.360
4 0.351 0.365 0.359
5 0.350 0.362 0.358
6 0.350 0.361 0.359
7 0.350 0.360 0.358
8 0.278 0.356 0.357
9 0.277 0.282 0.356
10 0.262 0.261 0.355
11 0.262 0.260 0.354
12 0.262 0.252 0.354
13 0.258 0.248 0.354
14 0.258 0.247 0.351
15 0.210 0.247 0.350
16 0.209 0.247 0.348
17 0.209 0.246 0.338
18 0.208 0.246 0.282
19 0.208 0.243 0.282
20 0.206 0.243 0.276
21 0.205 0.242 0.277
22 0.205 0.238 0.271
23 0.205 0.237 0.271
24 0.205 0.237 0.267
25 0.202 0.236 0.267
26 0.202 0.231 0.266
27 0.202 0.231 0.266
Data Set 3
1.000 —m— Basic Window
0.800 - (@=0.25)
0.600 —a— Adjacent
Constraint
0.400 (a=0.25)
==;==;;;=;:;;iiiﬁiiiﬁtiiﬁi —e— Two Part
0.200 (a = 0.25)

1 3 5 7 9 11 13 1517 19 21 23 25

Number of Groups
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Data Set 4 (a=0.75)

Adjacent
Number of Basic Window Constraint Two Part
Groups (a=10.75) (a=0.75) (a=0.75)
2 0.609 0.347 0.705
3 0.760 0.342 0.686
4 0.702 0.423 0.679
5 0.696 0.420 0.885
6 0.695 0.546 0.881
7 0.565 0.544 0.811
8 0.383 0.550 0.736
9 0.377 0.520 0.725
10 0.350 0.538 0.715
11 0.350 0.534 0.636
12 0.349 0.531 0.622
13 0.316 0.525 0.621
14 0.308 0.524 0.620
15 0.245 0.519 0.619
16 0.227 0.516 0.617
17 0.225 0.516 0.615
18 0.221 0.408 0.564
19 0.226 0.403 0.349
20 0.225 0.403 0.346
21 0.226 0.389 0.328
22 0.224 0.298 0.326
23 0.190 0.297 0.325
24 0.190 0.213 0.322
25 0.190 0.212 0.320
26 0.174 0.211 0.320
27 0.174 0.207 0.319
Data Set 4
1.000 —m— Basic Window
0.800 - @=0.75)
0.600 —a— Adjacent
Constraint
0.400 - (a=0.75)
—o— Two Part
0.200 (a=0.75)
1 3 5 7 9 11 131517 19 21 23 25
Number of Groups
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For 10 Groups, the indexes are:
Jaccard = 0.546 Rand = 0.789
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Data Set 1 Basic Window Method (a = 0.50)

For 11 Groups, the indexes are:
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For 19 Groups, the indexes are:
Jaccard = 0.445 Rand = 0.788

For 20 Groups, the indexes are:
Jaccard = 0.443 Rand = 0.788

Data Set 1 Basic Window Method (a = 0.50) (continued)

For 21 Groups, the indexes are:
Jaccard = 0.384 Rand = 0.766
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For 22 Groups, the indexes are:
Jaccard = 0.384 Rand = 0.766

For 23 Groups, the indexes are:
Jaccard = 0.384 Rand = 0.766

For 24 Groups, the indexes are:
Jaccard = 0.381 Rand = 0.765
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For 25 Groups, the indexes are:
Jaccard = 0.368 Rand = 0.762

For 26 Groups, the indexes are:
Jaccard = 0.315 Rand = 0.743

For 27 Groups, the indexes are:
Jaccard = 0.315 Rand = 0.743
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Data Set 2 Basic Window Method (a = 0.00)

For 2 Groups, the indexes are:
Jaccard = 0.365 Rand = 0.375

For 3 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.411
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For 4 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.411

For 5 Groups, the indexes are:
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For 9 Groups, the indexes are:
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For 10 Groups, the indexes are:
Jaccard = 0.311 Rand = 0.553
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Data Set 2 Basic Window Method (a = 0.00) (continued)

For 12 Groups, the indexes are:
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Original Data Set

Data Set 3 Basic Window Method (a = 0.25)

For 2 Groups, the indexes are:
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For 16 Groups, the indexes are:
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Data Set 3 Basic Window Method (a = 0.25) (continued)

For 19 Groups, the indexes are:
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Data Set 4 Basic Window Method (a = 0.75)
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For 10 Groups, the indexes are:
Jaccard = 0.35 Rand = 0.742

For 11 Groups, the indexes are:
Jaccard = 0.35 Rand = 0.742

Data Set 4 Basic Window Method (a = 0.75) (continued)
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Jaccard = 0.19 Rand = 0.698
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For 25 Groups, the indexes are:
Jaccard = 0.19 Rand = 0.697

For 26 Groups, the indexes are:
Jaccard = 0.174 Rand = 0.694

For 27 Groups, the indexes are:
Jaccard = 0.174 Rand = 0.694
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Original Data Set
a= 05

5 10 15 20

o
A, T

0

For 4 Groups, the indexes are:
Jaccard = 0.632 Rand = 0.802
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For 7 Groups, the indexes are:
Jaccard = 0.802 Rand = 0.922
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For 10 Groups, the indexes are:
Jaccard = 0.689 Rand = 0.878
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For 13 Groups, the indexes are:
Jaccard = 0.676 Rand = 0.876
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For 16 Groups, the indexes are:
Jaccard = 0.637 Rand = 0.861
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Data Set 1 Adjacent Constraint Method (a = 0.50)

For 2 Groups, the indexes are:
Jaccard = 0.366 Rand = 0.37
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For 5 Groups, the indexes are:
Jaccard = 0.804 Rand = 0.923
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For 8 Groups, the indexes are:
Jaccard = 0.708 Rand = 0.885
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For 11 Groups, the indexes are:
Jaccard = 0.665 Rand = 0.869
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For 14 Groups, the indexes are:
Jaccard = 0.671 Rand = 0.874
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For 17 Groups, the indexes are:
Jaccard = 0.604 Rand = 0.848
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For 3 Groups, the indexes are:
Jaccard = 0.64 Rand = 0.805
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For 6 Groups, the indexes are:
Jaccard = 0.802 Rand = 0.922

e

For 9 Groups, the indexes are:
Jaccard = 0.698 Rand = 0.881
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For 12 Groups, the indexes are:
Jaccard = 0.665 Rand = 0.868
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For 15 Groups, the indexes are:
Jaccard = 0.653 Rand = 0.867
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For 18 Groups, the indexes are:
Jaccard = 0.588 Rand = 0.843
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For 19 Groups, the indexes are:
Jaccard = 0.588 Rand = 0.843

For 20 Groups, the indexes are:
Jaccard = 0.588 Rand = 0.843

Data Set 1 Adjacent Constraint Method (a = 0.50) (continued)

For 21 Groups, the indexes are:
Jaccard = 0.587 Rand = 0.842
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For 22 Groups, the indexes are:
Jaccard = 0.587 Rand = 0.842

For 23 Groups, the indexes are:
Jaccard = 0.574 Rand = 0.837

For 24 Groups, the indexes are:
Jaccard = 0.556 Rand = 0.831
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For 25 Groups, the indexes are:
Jaccard = 0.552 Rand = 0.829

For 26 Groups, the indexes are:
Jaccard = 0.547 Rand = 0.827

For 27 Groups, the indexes are:
Jaccard = 0.547 Rand = 0.827
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Original Data Set

Data Set 2 Adjacent Constraint Method (a = 0.00)

For 2 Groups, the indexes are:
Jaccard = 0.369 Rand = 0.371

For 3 Groups, the indexes are:
Jaccard = 0.373 Rand = 0.391

o

« -'E' g 8 &
) - It} )
B B B - 3 B
2 = - ] 5

-=
e} - - wn e}
o #.- o o
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

For 4 Groups, the indexes are:
Jaccard = 0.374 Rand = 0.399

For 5 Groups, the indexes are:
Jaccard = 0.375 Rand = 0.402

For 6 Groups, the indexes are:
Jaccard = 0.371 Rand = 0.405
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For 7 Groups, the indexes are:
Jaccard = 0.371 Rand = 0.409

For 8 Groups, the indexes are:
Jaccard = 0.371 Rand = 0.409

For 9 Groups, the indexes are:
Jaccard = 0.37 Rand = 0.409
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For 10 Groups, the indexes are:
Jaccard 0.372 Rand = 0.416

For 13 Groups, the indexes are:
Jaccard = 0.372 Rand = 0.42

For 16 Groups, the indexes are:
Jaccard = 0.37 Rand = 0.446
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For 19 Groups, the indexes are:
Jaccard = 0.37 Rand = 0.446
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For 22 Groups, the indexes are:
Jaccard = 0.366 Rand = 0.449

For 25 Groups, the indexes are:
Jaccard = 0.362 Rand = 0.573
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For 11 Groups, the indexes are:
Jaccard— 0.371 Rand = 0.417

For 14 Groups, the indexes are:
Jaccard = 0.37 Rand = 0.422

For 17 Groups, the indexes are:
Jaccard = 0.37 Rand = 0.446
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For 20 Groups, the indexes are:
Jaccard = 0.368 Rand = 0.447
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For 23 Groups, the indexes are:
Jaccard = 0.365 Rand = 0.574

For 26 Groups, the indexes are:
Jaccard = 0.362 Rand = 0.573
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Data Set 2 Adjacent Constraint Method (a = 0.00) (continued)

For 12 Groups, the indexes are:
Jaccard = 0.372 Rand = 0.42

For 15 Groups, the indexes are:
Jaccard = 0.371 Rand = 0.445

For 18 Groups, the indexes are:
Jaccard = 0.37 Rand = 0.446
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For 21 Groups, the indexes are:
Jaccard = 0.367 Rand = 0.448
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For 24 Groups, the indexes are:
Jaccard = 0.364 Rand = 0.574

For 27 Groups, the indexes are:
Jaccard = 0.358 Rand = 0.572
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Original Data Set
a= 0.25

Data Set 3 Adjacent Constraint Method (a = 0.25)

For 2 Groups, the indexes are:
Jaccard = 0.367 Rand = 0.369

For 3 Groups, the indexes are:
Jaccard = 0.366 Rand = 0.37
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For 4 Groups, the indexes are:
Jaccard = 0.365 Rand = 0.371

For 5 Groups, the indexes are:
Jaccard = 0.362 Rand = 0.375

For 6 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.376

20

5 10 15

5 10 15 20

0

20

5 10 15

For 7 Groups, the indexes are:
Jaccard = 0.36 Rand = 0.377

For 8 Groups, the indexes are:
Jaccard = 0.356 Rand = 0.381

For 9 Groups, the indexes are:
Jaccard = 0.262 Rand = 0.5
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For 10 Groups, the indexes are:
Jaccard = 0.261 Rand = 0.501

For 11 Groups, the indexes are:
Jaccard = 0.26 Rand = 0.502

For 12 Groups, the indexes are:
Jaccard = 0.252 Rand = 0.51

20

5 10 15

0

10 15 20

5

0

5 10 15 20

0

For 13 Groups, the indexes are:
Jaccard = 0.248 Rand = 0.513

For 14 Groups, the indexes are:
Jaccard = 0.247 Rand = 0.513

For 15 Groups, the indexes are:
Jaccard = 0.247 Rand = 0.513
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For 16 Groups, the indexes are:
Jaccard = 0.247 Rand = 0.513

For 17 Groups, the indexes are:
Jaccard = 0.246 Rand = 0.514

For 18 Groups, the indexes are:
Jaccard = 0.246 Rand = 0.515
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Data Set 3 Adjacent Constraint Method (a = 0.25) (continued)

For 19 Groups, the indexes are:
Jaccard 0.243 Rand = 0.519
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For 22 Groups, the indexes are:
Jaccard = 0.238 Rand = 0.527
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For 25 Groups, the indexes are:
Jaccard 0.236 Rand = 0.529
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For 20 Groups, the indexes are:
Jaccard = 0.243 Rand = 0.519
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For 23 Groups, the indexes are:
Jaccard = 0.237 Rand = 0.529
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For 26 Groups, the indexes are:
Jaccard = 0.231 Rand = 0.542
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Data Set 4 Adjacent Constraint Method (a = 0.75)
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Ongmal Data Set
For 4 Groups, the indexes are:
Jaccard = 0.423 Rand = 0.665
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For 7 Groups, the indexes are:
Jaccard = 0.544 Rand = 0.805
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For 2 Groups, the indexes are:
Jaccard = 0.347 Rand = 0.441

For 5 Groups, the indexes are:
Jaccard = 0.42 Rand = 0.663
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For 8 Groups, the indexes are:
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For 21 Groups, the indexes are:
Jaccard = 0.242 Rand = 0.52
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For 24 Groups, the indexes are:
Jaccard = 0.237 Rand = 0.529
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For 27 Groups, the indexes are:
Jaccard = 0.231 Rand = 0.542
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For 3 Groups, the indexes are:
Jaccard = 0.342 Rand = 0.468
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For 6 Groups, the indexes are:
Jaccard = 0.546 Rand = 0.805
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For 9 Groups, the indexes are:
Jaccard = 0.52 Rand = 0.799
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For 10 Groups, the indexes are:
Jaccard 0.538 Rand = 0.813

For 11 Groups, the indexes are:
Jaccard = 0.534 Rand = 0.812

Data Set 4 Adjacent Constraint Method (a = 0.75) (continued)

For 12 Groups, the indexes are:
Jaccard = 0.531 Rand = 0.81
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For 13 Groups, the indexes are:
Jaccard = 0.525 Rand = 0.808

For 14 Groups, the indexes are:
Jaccard = 0.524 Rand = 0.808

For 15 Groups, the indexes are:
Jaccard = 0.519 Rand = 0.806
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For 16 Groups, the indexes are:
Jaccard 0.516 Rand = 0.805

For 17 Groups, the indexes are:
Jaccard = 0.516 Rand = 0.805

For 18 Groups, the indexes are:
Jaccard = 0.408 Rand = 0.764
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For 19 Groups, the indexes are:
Jaccard = 0.403 Rand = 0.762

For 20 Groups, the indexes are:
Jaccard = 0.403 Rand = 0.762

For 21 Groups, the indexes are:
Jaccard = 0.389 Rand = 0.757
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For 22 Groups, the indexes are:
Jaccard = 0.298 Rand = 0.725

For 23 Groups, the indexes are:
Jaccard = 0.297 Rand = 0.724

For 24 Groups, the indexes are:
Jaccard = 0.213 Rand = 0.701
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For 25 Groups, the indexes are:
Jaccard = 0.212 Rand = 0.701

For 26 Groups, the indexes are:
Jaccard = 0.211 Rand = 0.7

For 27 Groups, the indexes are:
Jaccard = 0.207 Rand = 0.699
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Original Data Set
a= 05
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For 4 Groups, the indexes are:
Jaccard = 0.631 Rand = 0.817

e

For 7 Groups, the indexes are:
Jaccard 0.619 Rand = 0.813
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For 10 Groups, the indexes are:
Jaccard = 0.588 Rand = 0.798
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For 13 Groups, the indexes are:
Jaccard = 0.497 Rand = 0.805
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For 16 Groups, the indexes are:
Jaccard = 0.493 Rand = 0.803
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Data Set 1 Two-Part Method (a = 0.50)

For 2 Groups, the indexes are:
Jaccard = 0.696 Rand = 0.843
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For 5 Groups, the indexes are:
Jaccard = 0.631 Rand = 0.818
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For 8 Groups, the indexes are:
Jaccard = 0.615 Rand = 0.811
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For 11 Groups, the indexes are:
Jaccard = 0.444 Rand = 0.732
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For 14 Groups, the indexes are:
Jaccard = 0.495 Rand = 0.804
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For 17 Groups, the indexes are:
Jaccard = 0.492 Rand = 0.803
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For 3 Groups, the indexes are:
Jaccard = 0.688 Rand = 0.839

il

For 6 Groups, the indexes are:
Jaccard = 0.619 Rand = 0.813
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For 9 Groups, the indexes are:
Jaccard = 0.607 Rand = 0.808

For 12 Groups, the indexes are:
Jaccard = 0.497 Rand = 0.805
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For 15 Groups, the indexes are:
Jaccard = 0.495 Rand = 0.804
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For 18 Groups, the indexes are:
Jaccard = 0.49 Rand = 0.802
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For 19 Groups, the indexes are:
Jaccard = 0.486 Rand = 0.801

Data Set 1 Two-Part Method (a = 0.50) (continued)

For 20 Groups, the indexes are:
Jaccard = 0.478 Rand = 0.798

For 21 Groups, the indexes are:
Jaccard = 0.475 Rand = 0.797
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For 22 Groups, the indexes are:
Jaccard = 0.472 Rand = 0.796

For 23 Groups, the indexes are:
Jaccard = 0.469 Rand = 0.795

For 24 Groups, the indexes are:
Jaccard = 0.468 Rand = 0.794

20

5 10 15

5 10 15 20

0

20

5 10 15

For 25 Groups, the indexes are:
Jaccard = 0.466 Rand = 0.793

For 26 Groups, the indexes are:
Jaccard = 0.474 Rand = 0.801

For 27 Groups, the indexes are:
Jaccard = 0.472 Rand = 0.8
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Original Data Set

Data Set 2 Two-Part Method (a = 0.00)

For 2 Groups, the indexes are:
Jaccard = 0.369 Rand = 0.371

For 3 Groups, the indexes are:
Jaccard = 0.365 Rand = 0.375
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For 4 Groups, the indexes are:
Jaccard = 0.364 Rand = 0.376

For 5 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.379

For 6 Groups, the indexes are:
Jaccard = 0.363 Rand = 0.385
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For 7 Groups, the indexes are:
Jaccard = 0.362 Rand = 0.386

For 8 Groups, the indexes are:
Jaccard = 0.362 Rand = 0.389

For 9 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.39
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For 10 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.39

For 13 Groups, the indexes are:
Jaccard = 0.36 Rand = 0.395

For 16 Groups, the indexes are:
Jaccard 0.357 Rand = 0.398
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For 19 Groups, the indexes are:
Jaccard = 0.36 Rand = 0.411
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For 22 Groups, the indexes are:
Jaccard = 0.344 Rand = 0.439

For 25 Groups, the indexes are:
Jaccard = 0.342 Rand = 0.441
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Data Set 2 Two-Part Method (a = 0.00) (continued)

For 11 Groups, the indexes are:
Jaccard = 0.362 Rand = 0.393

For 14 Groups, the indexes are:
Jaccard = 0.359 Rand = 0.396

For 17 Groups, the indexes are:
Jaccard = 0.358 Rand = 0.401

20

10 15

5

0

5 10 15 20

0

10 15 20

5

0

For 20 Groups, the indexes are:
Jaccard = 0.356 Rand = 0.414
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For 23 Groups, the indexes are:
Jaccard = 0.343 Rand = 0.44

For 26 Groups, the indexes are:
Jaccard = 0.342 Rand = 0.441
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For 12 Groups, the indexes are:
Jaccard = 0.361 Rand = 0.394

For 15 Groups, the indexes are:
Jaccard = 0.358 Rand = 0.397

For 18 Groups, the indexes are:
Jaccard = 0.359 Rand = 0.407
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For 21 Groups, the indexes are:
Jaccard = 0.343 Rand = 0.436
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For 24 Groups, the indexes are:
Jaccard = 0.342 Rand = 0.441

For 27 Groups, the indexes are:
Jaccard = 0.341 Rand = 0.444
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Original Data Set
a= 0.25

Data Set 3 Two-Part Method (a = 0.25)

For 2 Groups, the indexes are:
Jaccard = 0.364 Rand = 0.372

For 3 Groups, the indexes are:
Jaccard = 0.36 Rand = 0.377
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For 4 Groups, the indexes are:
Jaccard = 0.359 Rand = 0.378

For 5 Groups, the indexes are:
Jaccard = 0.358 Rand = 0.379

For 6 Groups, the indexes are:
Jaccard = 0.359 Rand = 0.382
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For 7 Groups, the indexes are:
Jaccard 0.358 Rand = 0.383

For 8 Groups, the indexes are:
Jaccard = 0.357 Rand = 0.384

For 9 Groups, the indexes are:
Jaccard = 0.356 Rand = 0.385
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For 10 Groups, the indexes are:
Jaccard = 0.355 Rand = 0.386

For 11 Groups, the indexes are:
Jaccard = 0.354 Rand = 0.387

For 12 Groups, the indexes are:
Jaccard = 0.354 Rand = 0.387
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For 13 Groups, the indexes are:
Jaccard = 0.354 Rand = 0.387

For 14 Groups, the indexes are:
Jaccard = 0.351 Rand = 0.392

For 15 Groups, the indexes are:
Jaccard = 0.35 Rand = 0.393

20

5 10 15

0

10 15

5

0

5 10 15 20

0

For 16 Groups, the indexes are:
Jaccard = 0.348 Rand = 0.395

For 17 Groups, the indexes are:
Jaccard = 0.338 Rand = 0.417

For 18 Groups, the indexes are:
Jaccard = 0.282 Rand = 0.465
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For 19 Groups, the indexes are:
Jaccard 0.282 Rand = 0.465

For 22 Groups, the indexes are:
Jaccard = 0.271 Rand = 0.551

For 25 Groups, the indexes are:
Jaccard 0.267 Rand = 0.552
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Ongmal Data Set
For 4 Groups, the indexes are:
Jaccard = 0.679 Rand = 0.835
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For 7 Groups, the indexes are:
Jaccard = 0.811 Rand = 0.927
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Data Set 3 Two-Part Method (a = 0.25) (continued)

For 20 Groups, the indexes are:
Jaccard— 0.276 Rand = 0.473

For 23 Groups, the indexes are:
Jaccard = 0.271 Rand = 0.553

For 26 Groups, the indexes are:
Jaccard = 0.266 Rand = 0.553
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Data Set 4 Two-Part Method (a = 0.75)

For 2 Groups, the indexes are:
Jaccard = 0.705 Rand = 0.848
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For 5 Groups, the indexes are:
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For 8 Groups, the indexes are:
Jaccard = 0.736 Rand = 0.898
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For 21 Groups, the indexes are:
Jaccard = 0.277 Rand = 0.555

For 24 Groups, the indexes are:
Jaccard = 0.267 Rand = 0.553

For 27 Groups, the indexes are:
Jaccard = 0.266 Rand = 0.553
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For 3 Groups, the indexes are:
Jaccard = 0.686 Rand = 0.839
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For 6 Groups, the indexes are:
Jaccard = 0.881 Rand = 0.953
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For 9 Groups, the indexes are:
Jaccard = 0.725 Rand = 0.894
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For 10 Groups, the indexes are:
Jaccard = 0.715 Rand = 0.89

Data Set 4 Two-Part Method (a = 0.75) (continued)

For 11 Groups, the indexes are:
Jaccard = 0.636 Rand = 0.862

For 12 Groups, the indexes are:
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For 13 Groups, the indexes are:
Jaccard = 0.621 Rand = 0.856

For 14 Groups, the indexes are:
Jaccard = 0.62 Rand = 0.856

For 15 Groups, the indexes are:
Jaccard = 0.619 Rand = 0.855
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For 16 Groups, the indexes are:
Jaccard 0.617 Rand = 0.855

For 17 Groups, the indexes are:
Jaccard = 0.615 Rand = 0.854

For 18 Groups, the indexes are:
Jaccard = 0.564 Rand = 0.834
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For 19 Groups, the indexes are:
Jaccard = 0.349 Rand = 0.756

For 20 Groups, the indexes are:
Jaccard = 0.346 Rand = 0.755

For 21 Groups, the indexes are:
Jaccard = 0.328 Rand = 0.748
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For 22 Groups, the indexes are:
Jaccard = 0.326 Rand = 0.748
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For 23 Groups, the indexes are:
Jaccard = 0.325 Rand = 0.747
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For 24 Groups, the indexes are:
Jaccard = 0.322 Rand = 0.746
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A.3 SFMRI Brain Data Graphical Analysis
The following images show the clustering resulting from applying the three proposed

methods to the SFMRI data from Chapter 5. A weight of 0.75 was selected for a.

SFMRI Brain Data Set Basic Window Method (a = 0.75)
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SFMRI Brain Data Set Basic Window Method (a = 0.75) (continued)
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SFMRI Brain Data Set Adjacent Constraint Method (a = 0.75)
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SFMRI Brain Data Set Adjacent Constraint Method (a = 0.75) (continued)
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B. SPLUS CODE

B.1 Data Generation

B R R L R R R AR AR a A A A a A
HHHHHHHHHHHHHHHHH
#for (s in 1:wd)

#{

# w[s,j[<(s-10)"3/100+10]] <- 92[s,j[i<(s-10)"3/100+10]]

# grp[s.Jj[i<(s-10)"3/100+10]] <- "Grp 2"

# w[s,j[(s-10)"2/2+(J-10)"2/3<9]] <- g3[s,.i[(s-10)"2/2+(j-10)"2/3<9]]
# grpls,.j[(s-10)"2/2+(J-10)"2/3<9]] <- "Grp 3"

#}

i oo #
###The following sequence of code simulates the following regions HHH
i oo #

o #
###Test Region 1 Hittt
###1_. Region 1 => high mean, moderate variance, moderate range HitH
###1_. Region 2 => low mean, moderate variance, moderate range Hit#
###1. Region 3 => moderate mean, moderate variance, moderate range HitH
e #

testdata.1.1 <- matrix(8+rfsim(grid,covfun=exp.cov,range=3,sill=3,nc=10000),wd,wd)
testdata.1.2 <- matrix(O+rfsim(grid,covfun=exp.cov,range=3,sill=3,nc=10000) ,wd,wd)
testdata.1.3 <- matrix(4+rfsim(grid,covfun=exp.cov,range=3,sill=3,nc=10000),wd,wd)
testdata.l.grid <- testdata.l.1

testdata.l.grid[grp=="Grp 2] <- testdata.l.2[grp=="Grp 2]
testdata.l.grid[grp=="Grp 3"] <- testdata.l.3[grp=="CGrp 3]

o #
###Test Region 2 HH#t
###2 . Region 1 => moderate mean, moderate variance, moderate range HitH
###2 . Region 2 => moderate mean, small variance, moderate range H#
###2 . Region 3 => moderate mean, large variance, moderate range Ht#
e - #

testdata.2.1 <- matrix(4+rfsim(grid,covfun=exp.cov,range=3,sill=3,nc=10000),wd,wd)
testdata.2.2 <- matrix(4+rfsim(grid,covfun=exp.cov,range=3,sill=1,nc=10000) ,wd,wd)
testdata.2.3 <- matrix(4+rfsim(grid,covfun=exp.cov,range=3,sill=5,nc=10000),wd,wd)
testdata.2.grid <- testdata.2.1

testdata.2.grid[grp=="Grp 2'] <- testdata.2.2[grp=="Grp 2'"]
testdata.2.grid[grp=="Grp 3'"] <- testdata.2.3[grp=="CGrp 3"]

T e #
###Test Region 3 Hit#
###3. Region 1 => moderate mean, moderate variance, small range H#H
###3. Region 2 => moderate mean, moderate variance, large range Hit#
###3. Region 3 => moderate mean, moderate variance, moderate range Hit#
H——_————— . ——_——_—_—————————————————————————— - . . —— #

testdata.3.1 <- matrix(4+rfsim(grid,covfun=exp.cov,range=1,sill=3,nc=10000) ,wd,wd)
testdata.3.2 <- matrix(4+rfsim(grid,covfun=exp.cov,range=5,sill=3,nc=10000),wd,wd)
testdata.3.3 <- matrix(4+rfsim(grid,covfun=exp.cov,range=3,sill=3,nc=10000) ,wd,wd)
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testdata.

3.grid <- testdata.3.1

testdata.3.grid[grp=="Grp 2'"] <- testdata.3.2[grp=="CGrp 2]
testdata.3.grid[grp=="Grp 3'] <- testdata.3.3[grp=="Grp 3"]
o #
###Test Region 4 HH#
###4 . Region 1 => high mean, moderate variance, small range HitH
###4_. Region 2 => low mean, small variance, large range Hit#
###4 . Region 3 => moderate mean, large variance, moderate range Hit#
o #
testdata.4.1 <- matrix(8+rfsim(grid,covfun=exp.cov,range=1,sill=3,nc=10000) ,wd,wd)
testdata.4.2 <- matrix(O+rfsim(grid,covfun=exp.cov,range=5,sill=1,nc=10000),wd,wd)
testdata.4.3 <- matrix(4+rfsim(grid,covfun=exp.cov,range=3,sill=5,nc=10000) ,wd,wd)
testdata.4.grid <- testdata.4.1

testdata.4.grid[grp=="Grp 2'"] <- testdata.4.2[grp=="CGrp 2"]
testdata.4.grid[grp=="Grp 3'] <- testdata.4.3[grp=="Grp 3'"]

- #
###Chart all regions HitH

- - #

par(mfrow=c(2,2))
image(testdata.1l.grid)
title("Image of Test Data 1')
image(testdata.2.grid)
title("Image of Test Data 2')
image(testdata.3.grid)
title("Image of Test Data 3")
image(testdata.4.grid)
title("Image of Test Data 4')
persp(testdata.l.grid)
title("Image of Test Data 1)
persp(testdata.2.grid)
title("Image of Test Data 2')
persp(testdata.3.grid)
title("Image of Test Data 3")
persp(testdata.4.grid)
title("Image of Test Data 4")
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B.2 General Functions

e et e e e #
###Defined Functions HitH
e i e e e e e e #
e et e e e et #
###The following three functions are estimators of the variogram HtHt
e ettt e i L #

gamma.classic <- function(zdat) {
nh <- length(zdat)
gval <- .5*(sum(zdat*zdat))/nh
return (gval)

}

gamma.bar <- function(zdat) {
nh <- length(zdat)
bh <- 0.457
gval <- _.5*((sum(sgrt(abs(zdat)))/nh)"4/(bh+.494/nh))
return (gval)

}

gamma.tilda <- function(zdat) {
nh <- length(zdat)
bh <- 0.457
gval <- .5*((median(sqrt(abs(zdat)))”4)/(bh+.494/nh))
return (gval)

3

S ———— #
###Function to test if ind < O Hit#H
S — #

test.fun <- function (ind) {
if (ind < 0) return (T)

return (F)
H o #
###Calculates groups to be similar to S-Plus output HitH
### (for use in hclust function) HHtH
o #

order.fun <- function (t,m,i){
index.history <- NULL
index_history <- c(i,index._history)
column.history <- NULL
column_history <- c(l1,column._history)

while (length(t) < i+1){
while (n[index.history[1],column_history[1]] > 0) {
index.history <- c(m[index.history[1],column_history[1]], index.history)
column_history <- c(1,column._history)

}
t <- c(t,-m[index.history[1],column_history[1]1])

if (column_history[1] == 1) {
column._history[1] <- 2

else {
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while ((column_history[1] == 2) && (length(column_.history >0))) {
index.history <- index.history[-1]
column_history <- column_history[-1]

}
column_history[1] <- 2
}
}
return(t)

ord.fun <- function (t,m,i) {
indl <- m[i,1]
if (test.fun(indl)) t <- c(t,-indl) else t <- ord.fun(t,m,indl)

ind2 <- m[i,2]
if (test.fun(ind2)) t <- c(t,-ind2) else t <- ord.fun(t,m,ind2)

return(t)

get.index <- function(group.mat, cluster.mat) {
v.known <- c(group.mat)
v.clust <- c(cluster.mat)
nn <- length(v.known)
mat.known <- matrix(-1,nn,nn)
mat.clust <- matrix(-1,nn,nn)

for (i in 1:(nn-1)) {
mat.known[i, (i+1):nn] <- (v.known[(i+1):nn] == v.known[i])
mat.clust[i,(i+1):nn] <- (v.clust[(i+1):nn] == v.clust[i])
}

count.mat <- mat.known + mat.clust

a <- length(count.mat[count.mat==2])

bc.sum <- length(count.mat[count.mat==1])

d <- length(count.mat[count.mat==0]) index <-
c(Jaccard=a/ (atbc.sum) ,Rand=(a+d)/(atbc.sum+d))

return(index)

}
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###Constrained Clustering (using complete linkage, or maximum, as distance ###
#i#tcriteria) Hit#

hclust.adj.com <- function(data.vec,nr,nc,adjacent.distance) {

ntot <- nr*nc

e e #
#i#tgeneral positions for any data matrix HitH
###Hdata.pos represents a matrix with the pairings of each point of the HHH
#i#tdata matrix (i.e. column 1 provides the row number, column 2 the column###
##H#number) HH#
o #

data.pos <- matrix(c(rep(1l:nr, times=nc),rep(l:nc,
each=nr)),ncol=2,byrow=F,dimnames=list(NULL,c('row","col'")))

e #
#i#temp.dist contains the distances between each data point of the data  ###
HH#matrix Hit#
e #

A e #
###Htemp.dist.pos contains the distances between each physical location in ###
###the data matrix HitH
Hm e e #

b #
###lists the observation pairs that correspond to the distances from the ###
###S-PLUS dist function i
pom————————————_————————————————— #

tt.cl <- tt.c2 <- NULL
for (i in 1:(ntot-1)) {
temp.seq <- seq(l:(ntot-i))+i
tt.c2 <- c(tt.c2,temp.seq)
tt.cl <- c(tt.cl,numeric(length(temp.seq))+i)

tt <- matrix(-c(tt.cl,tt.c2),ncol=2,byrow=F)

#priiiiiiiiii i oo #
#i#temp.merge, temp.height, and temp.order match the output from the it
###S-PLUS hclust function dist.mat contains the distance between data Hit
###points, physical locations and the data index for which the distances ###
#i#tcorrespond Hit#
o —————————————————— #

temp.merge <- matrix(0,nrow=ntot-1,ncol=2)

temp.height <- temp.order <- numeric(length = ntot-1)

dist.mat <-
matrix(c(temp.dist,temp.dist.pos,tt),ncol=4,byrow=F,dimnames=list(NULL,c("'dist", "pos
dist”,"™,"™")))

i oo #
###This algorithm clusters based on maximum distance HHH
i oo #
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for (i in 1:(ntot-1)) {
if (length(dist.mat) > 4) {

#poriiiiiiiiiiii i oo #
#i#records the point number and row and column coordinates of the HH
###observations with the smallest distance. Hitt
###Note that the physical locations must be adjacent H#
### (i.e. < adjacent.distance) HitH
priiiiiiiiiiii i ——, —— - ¢ — - — - —- -, — -, - . . — . . — — — — — — — — — — — — —— — ————————————— #

min.dist <- min(dist.mat[(dist.mat[,2] <
adjacent.distance)&(dist.mat[,1]>0),1])

temp.pos <- which(dist.mat[,1]==min.dist)[1]

temp.mergel[i,] <- dist.mat[temp.pos,3:4][order(dist.mat[temp.pos,3:4]1)]

e — #
###trecords the min distance between points HitH
o #

Hm e e #
###adjust the distance matrix dist.mat by combining the joined groups HitH
Hm e e e #

dist.mat <-
dist.mat[!(((dist.mat[,3]==temp.merge[i,][1]D&(dist.mat[,4]==temp.merge[i,]1[2]D)I
((dist.mat[,3]==temp.merge[i,][2])&(dist.mat[,4]==temp.merge[i,]1[11))).]

- ———— #
###change the negative point number to a positive group number HH#
##t (to match S-Plus requirements) it
Hm o #

temp.pairs <- temp.merge[i,]
dist.mat[(dist.mat[,3]==temp.pairs[1]) | (dist.mat[,3]==temp.pairs[2]),3] <-
dist.mat[(dist.mat[,4]==temp.pairs[1l]) ]| (dist.mat[,4]==temp.pairs[2]).,4] <-

o ——_—_— . — ——— - — . — — — ——————————————— #
#i#trecalculate the distances between groups in dist.mat HitH
###the measured distance between groups is the max distance from the point###
###in question to any point within the group. HHH
###the physical distance is the minimum distance between groups HH#H
Hmm————————————— o #

pos.lIst <- which((dist.mat[,3]==i1) ] (dist.mat[,4]==1))
delete.row <- NULL
for (k in 1:(length(pos.Ist))) {
temp.pairs <- dist.mat[pos.Ist[Kk],3:4]
ind_pos <-
which(((dist.mat[pos.Ist,3]==temp.pairs[1l])&(dist.mat[pos.Ist,4]==temp.pairs[2]))
| ((dist.mat[pos.Ist,3]==temp.pairs[2])&(dist._mat[pos.Ist,4]==temp.pairs[1l])))
dist.mat[pos.Ist[ind.pos],1] <- max(dist.mat[pos.Ist[ind.pos],1])
dist.mat[pos.Ist[ind.pos],2] <- min(dist.mat[pos.Ist[ind.pos],2])
delete.row <- c(delete.row,pos.Ist[ind.pos[2:1ength(ind.pos)]])

}
dist.mat <- dist.mat[-unique(delete.row),]

}

else {
temp.merge[i,] <- dist.mat[3:4]
temp.height[i] <- dist.mat[1]

}
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o #
#i#tcombine data into a list---similar to output of hclust function in S-Plus###
o ————————————————— #
mlen <- length(temp.merge[,1])
temp.order <- NULL
temp.order <- order.fun(temp.order,temp.merge,mlen)
link.adj <- list(temp.merge,temp.height,temp.order)
names(link.adj) <- c("merge","height","order")
return (link.adj)
}
priiiiiiiiiiii i ——,—  — . — — — -, - . — . — — — — — — — —————————————————————————— #
###Constrained Clustering (using average linkage as distance criteria) HitH
priiiiiiiiii i oo #
hclust.adj.ave <- function(data.vec,nr,nc,adjacent._distance) {
ntot <- nr*nc
ey #
###general positions for any data matrix HHtH
#i##data.pos represents a matrix with the pairings of each point of the HitH
###data matrix (i.e. column 1 provides the row number, column 2 the HiH
##H#column number) HHH
i oo-_—_—— — ———————————————————————— #
data.pos <- matrix(c(rep(l:nr, times=nc),rep(l:nc,
each=nr)),ncol=2,byrow=F,dimnames=list(NULL,c("row","col'")))
fom————————————_———————————————— #
#i#temp.dist contains the distances between each data point of the data HitH
#H#matrix HH#
e #
temp.dist <- dist(data.vec)
e #
#i#temp.dist.pos contains the distances between each physical location in ###
###the data matrix HitH
o ———— _—_—_——-F—-— . . . . — — — — ————————————————— #
temp.dist.pos <- dist(data.pos)
#priiiiiiiiiiii i ——, —— - — — - — - — — — — — — ————————————————————————————— #
###lists the observation pairs that correspond to the distances from the ###
###S-PLUS dist function H#HHE
o —————————————————— #
tt.cl <- tt.c2 <- NULL
for (i in 1:(ntot-1)) {
temp.seq <- seq(l:(ntot-i))+i
tt.c2 <- c(tt.c2,temp.seq)
tt.cl <- c(tt.cl,numeric(length(temp.seq))+i)
tt <- matrix(-c(tt.cl,tt.c2),ncol=2,byrow=F)
i oo #
#iHtemp.merge, temp.height, and temp.order match the output from the HHH
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###S-PLUS hclust function dist.mat contains the distance between data HitH
#i##tpoints, physical locations and the data index for which the distances ###
#i#correspond Hi#

temp.merge <- matrix(0,nrow=ntot-1,ncol=2)

temp.height <- temp.order <- numeric(length = ntot-1)

dist.mat <-
matrix(c(temp.dist,temp.dist.pos,tt),ncol=4,byrow=F,dimnames=list(NULL,c('dist", " po
s dist”,"™,"")))

R —— #
###This algorithm clusters based on average distance HitH
S — #

for (i in 1:(ntot-1)) {
if (length(dist.mat) > 4) {

priiiiiiiiii i —, — —— - — — — -  , — — — — — — — — ——— ——— —————————————————— #
#i#records the point number and row and column coordinates of the HitH
###observations with the smallest distance. HitH
###Note that the physical locations must be adjacent HH#H
### (i.e. < adjacent.distance) HitH
o -——_— - — — — - — -, . — — — —————————————————— #

min.dist <- min(dist.mat[(dist.mat[,2] <
adjacent.distance)&(dist.mat[,1]>0),1])

temp.pos <- which(dist.mat[,1]==min.dist)[1]

temp.merge[i,] <- dist.mat[temp.pos,3:4][order(dist.mat[temp.pos,3:4])]

R —— #
###records the min distance between points HiH
R — #

e #
#i##tadjust the distance matrix dist.mat by combining the joined groups HitH
T #

dist.mat <-
dist.mat[!(((dist.mat[,3]==temp.merge[i,1[1]D&(dist.mat[,4]==temp.merge[i,1[21)) ] ((
dist.mat[,3]==temp.merge[i,][2])&(dist.mat[,4]==temp.merge[i,][1]))).]

o ——_— . — ——- -, — — — ———————————————— #
###change the negative point number to a positive group number i
### (to match S-Plus requirements) HitH
e e e e e e e P e e e e #

temp.pairs <- temp.merge[i,]
dist.mat[(dist.mat[,3]==temp.pairs[1]) | (dist.mat[,3]==temp.pairs[2]),3] <-
dist.mat[(dist.mat[,4]==temp.pairs[1l]) ]| (dist.mat[,4]==temp.pairs[2]).,4] <-

o ————————————————— #
#i#trecalculate the distances between groups in dist.mat HitH
#i#the measured distance between groups is the average distance from the ###
###point in question to any point within the group. HitH
###the physical distance is the minimum distance between groups Hi#
e et e e e e e #

pos.Ist <- which((dist.mat[,3]==1)]|(dist.mat[,4]==1))
delete.row <- NULL
for (k in 1:(length(pos.Ist))) {
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temp.pairs <- dist.mat[pos.Ist[k],3:4]

ind.pos <-
which(((dist.mat[pos.Ist,3]==temp.pairs[l])&(dist.mat[pos.Ist,4]==temp.pairs[2])) ]| ((
dist.mat[pos.Ist,3]==temp.pairs[2])&(dist.mat[pos.Ist,4]==temp.pairs[1])))

dist.mat[pos.Ist[ind.pos],1] <- mean(dist.mat[pos.Ist[ind.pos],1])

dist.mat[pos.Ist[ind.pos],2] <- min(dist.mat[pos.Ist[ind.pos],2])

delete.row <- c(delete.row,pos.Ist[ind.pos[2:1length(ind.pos)]])

}
dist.mat <- dist.mat[-unique(delete.row),]
}
else {
temp.mergel[i,] <- dist.mat[3:4]
temp.height[i] <- dist.mat[1]
}
}
priiiiiiiiiiii i ——,—  — . — — — -, - . — . — — — — — — — —————————————————————————— #
###combine data into a list---similar to output of hclust function in S-Plus###
priiiiiiiiii i oo #

mlen <- length(temp.merge[,1])

temp.order <- NULL

temp.order <- order.fun(temp.order,temp.merge,mlen)
link.adj <- list(temp.merge,temp.height,temp.order)
names(link.adj) <- c("merge","height","order")

return (link.adj)
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B.3 Basic Window (Central) Method Function

o #
###Beginning of Code for the Central Method Function HitH
e #

Central .Method.Cluster <- function(data.grid, distance.type, estimator.type){
#

###""distance.type'" may be equal to "average' or 'compact" L
###"'estimator.type" may be equal to "gamma bar', ''gamma tilda" or "classical'###
o #

data.rows <- nrow(data.grid)
data.columns <- ncol(data.grid)
sz <- data.rows*data.columns

priiiiiiiiiiii i ——, 0 — . —m - — - — - — -, . . . — — — — — — — —— ——————————————————————— #
###defining the measurement value, and the location (row/column number) HHH
#i#tdenoted by x and y HitH
e e e e e e e P e P e e e P e #

zval <- c(data.grid)

c.row <- diag(c(l:data.rows))

c.col <- diag(c(l:data.columns))
iwd.row <- diag(c(l1),data.columns)
iwd.col <- diag(c(l),data.rows)

yval <- diag(kronecker(c.col,iwd.col))
xval <- diag(kronecker(iwd.row,c.row))

i ooooo-_——————————————— #
###Step 1 —-- Get estimates of the variogram HH#
priiiiiiiiiiii oo #
b #
#i#Estimates of the variogram are calculated at lags 1 through 7 HH
###For each cell in the data grid, this function determines the other data###
###points to be incluced in the calculations of the variogram at each HHE
###lag (1 through 7) HH#
pom————————————_—————————————————————————— #

for (i in 1:7) {

for (cc in l:data.columns) {
h_max <- min(i,data.columns-cc)
h.min <- max(l-cc,-i)

for (rr in l:data.rows) {
v.max <- min(i,data.rows-rr)
v.min <- max(l-rr,-i)

temp.pos.c <-
diag(kronecker(diag(c(h.-min:h.max)) ,diag(length(v.min:v.max))))

temp.pos.r <-
diag(kronecker(diag(length(h.min:h.max)),diag(c(v.min:v.max))))

temp.dist <-
matrix(c(temp.pos.r,temp.pos.c),ncol=2,byrow=F,dimnames=list(NULL,c("'row","col'))
)

dist.pos <- sqrt(temp.dist[,1]"2+temp.dist[,2]"2)

temp.window <- temp.dist[(dist.pos > i-.5)&(dist.pos < i+.5),]

temp.window[,1] <- temp.window[,1]+rr

temp.window[,2] <- temp.window[,2]+cc

diff.use <- data.grid[temp.window]-data.grid[rr,cc]
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temp.b <- c(temp.b, gamma.bar(diff.use))
temp.t <- c(temp.t, gamma.tilda(diff.use))
temp.cl <- c(temp.cl, gamma.classic(diff.use))

}
}

}
S E——— #
###Hestimates of the variogram at each lag are split into separate arrays ###
### (1 through 7) HHH
T #
if (estimator.type == "gamma bar'™) {

#Gamma Bar Estmator

lag.bl <- temp.b[1l:sz]

lag.b2 <- temp.b[(sz+1):(2*sz)]
lag.b3 <- temp.b[(2*sz+1):(3*sz)]
lag.b4 <- temp.b[(3*sz+1):(4*sz)]
lag.b5 <- temp.b[(4*sz+1):(6*sz)]
lag.b6 <- temp.b[(5*sz+1):(6*sz)]
lag.-b7 <- temp.b[(6*sz+1):(7*sz)]

##90th Lag Percentile
q90.b <- numeric(sz)
for (i in 1:s2) {
g90.b[i] <-
quantile(c(lag.bl[i],lag-b2[i],lag-b3[i],lag-b4[i],lag.-b5[i],lag-b6[i],lag-b7[i]).,-9
,na.rm=T)

}

measure.b <-
matrix(c(xval,yval,zval,lag.bl,lag.-b2,lag.b3,lag-b4,q90.b),nrow=sz,ncol=8,byrow=F,di
mnames=l1ist(NULL,,c("'xval","yval",""zval","lagl","lag2","1ag3","1ag4',' q90")))
mstand.b <- scale(measure.b,center=T,scale=T)

return (mstand.b)

}

if (estimator.type == "gamma tilda'") {
#Gamma Tilda Estmator
lag-tl <- temp.t[1l:sz]
lag.t2 <- temp.t[(sz+1):(2*sz)]
lag-t3 <- temp.t[(2*sz+1):(3*sz)]
lag.t4 <- temp.t[(3*sz+1):(4*sz)]
lag.t5 <- temp.t[(4*sz+1):(56*sz)]
lag.t6 <- temp.t[(5*sz+1):(6*sz)]
lag.t7 <- temp.t[(6*sz+1):(7*sz)]

##90th Lag Percentile

q90.t <- numeric(sz)

for (i in 1:s2) {

qo0.t[i] <-

quantile(c(lag-tl[i],lag-t2[i],lag-t3[i],lag.t4[i],lag-t5[i],lag-t6[i],lag-t7[i]),-9
,ha.rm=T)

}

measure.t <-
matrix(c(xval,yval,zval,lag.-tl,lag-t2,lag.t3,lag.t4,q90.t),nrow=sz,ncol=8,byrow=F,di
mnames=list(NULL,,c("'xval™,"yval™,"zval","lagl","lag2","lag3","lag4'," q90"")))

mstand.t <- scale(measure.t,center=T,scale=T)

return (mstand.t)
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}

if (estimator.type == "classical'™) {
#Classical Estmator
lag.cll <- temp.cl[1l:sz]
lag.cl2 <- temp.cl[(sz+1):(2*sz)]
lag.cl3 <- temp.cl[(2*sz+1):(3*sz)]
lag.cl4 <- temp.cl[(3*sz+1):(4*sz)]
lag.cl5 <- temp.cl[(4*sz+1):(5*sz)]
lag.cl6 <- temp.cl[(6*sz+1):(6*sz)]
lag.cl7 <- temp.cl[(6*sz+1):(7*sz)]

##90th Lag Percentile
q90.cl <- numeric(sz)
for (i in 1:s2) {
q90.cl[i] <-
quantile(c(lag-cl1i[i],lag-cl2[i],lag-cl3[i],lag.cl4[i],lag.cl5[i],lag.cl6[i],lag.-
cl7[i]),-9,na.rm=T)
}

measure.cl <-
matrix(c(xval,yval,zval,lag.cll,lag.cl2,lag.cl3,lag.cl4,q90.cl),nrow=sz,ncol=8, by
row=F,dimnames=list(NULL,c('xval™,"yval™, "zval™,"lagl", "lag2", " lag3", " lag4", " q90"
D))

mstand.cl <- scale(measure.cl,center=T,scale=T)

return (mstand.cl)
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B.4 Adjacent Constraint Method Function

o #
###Beginning of Code for Adjacent Constraint Method Function HitH
e #

Adjacent._Constraint.Cluster <- function(data.grid, distance.type, adjacent.distance,
maximum.groups, estimator.type){

data.rows <- nrow(data.grid)
data.columns <- ncol(data.grid)
sz <- data.rows*data.columns

e #
#i##tdefining the measurement value, and the location (row/column number) HitH
###denoted by x and y HitH
e e #

zval <- c(data.grid)

c.row <- diag(c(l:data.rows))

c.col <- diag(c(l:data.columns))
iwd.row <- diag(c(l),data.columns)
iwd.col <- diag(c(l),data.rows)

yval <- diag(kronecker(c.col,iwd.col))
xval <- diag(kronecker(iwd.row,c.row))

Hm e e e #
###Step 1 —- Get estimates of the variogram HH#
Hm e e e e #

temp.b <- numeric(0)
temp.t <- numeric(0)
temp.cl <- numeric(0)

#i#Estimates of the variogram are calculated at lags 1 through 7 HH
###For each cell in the data grid, this function determines the other data###
###points to be incluced in the calculations of the variogram at each lag ###
### (1 through 7) HitHt

for (cc in l:data.columns) {
h_max <- min(i,data.columns-cc)
h.min <- max(l-cc,-i)

for (rr in l:data.rows) {
v.max <- min(i,data.rows-rr)
v.min <- max(l-rr,-i)

temp.pos.c <-
diag(kronecker(diag(c(h.-min:h.max)) ,diag(length(v.min:v.max))))

temp.pos.r <-
diag(kronecker(diag(length(h.min:h.max)),diag(c(v.min:v.max))))

temp.dist <-
matrix(c(temp.pos.r,temp.pos.c),ncol=2,byrow=F,dimnames=list(NULL,c("'row",""col'™)))

dist.pos <- sgrt(temp.dist[,1]"2+temp.dist[,2]"2)

temp.window <- temp.dist[(dist.pos > i-.5)&(dist.pos < i+.5),]
temp.window[,1] <- temp.window[,1]+rr
temp.window[,2] <- temp.window[,2]+cc

diff.use <- data.grid[temp.window]-data.grid[rr,cc]
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temp.b <- c(temp.b, gamma.bar(diff.use))
temp.t <- c(temp.t, gamma.tilda(diff.use))
temp.cl <- c(temp.cl, gamma.classic(diff.use))

}
}

}
S —— #
#it#testimates of the variogram at each lag are split into separate arrays ###
### (1 through 7) B
e #
if (estimator.type == "gamma bar'™) {

#Gamma Bar Estmator

lag.bl <- temp.b[l:sz]

lag.b2 <- temp.b[(sz+1):(2*sz)]
lag.b3 <- temp.b[(2*sz+1):(3*sz)]
lag.b4 <- temp.b[(3*sz+1):(4*sz)]
lag.-b5 <- temp.b[(4*sz+1):(6*sz)]
lag.b6 <- temp.b[(5*sz+1):(6*sz)]
lag.-b7 <- temp.b[(6*sz+1):(7*sz)]

##90th Lag Percentile
q90.b <- numeric(sz)
for (i in 1:sz) {
g90.b[i] <-
quantile(c(lag-bl[i],lag-b2[i],lag-b3[i],lag-b4[i],lag-b5[i],lag-b6[i],lag.b7[i]),-
9,na.rm=T)

measure.b <-
matrix(c(xval,yval,zval,lag.bl,lag.-b2,lag-b3,lag-b4,q90.b),nrow=sz,ncol=8,byrow=F,d
imnames=list(NULL,c("'xval","yval™, "zval","lagl”,"lag2","1ag3","1ag4",''q90"")))
mstand.b <- scale(measure.b,center=T,scale=T)

return (mstand.b)

}

if (estimator.type == "gamma tilda'") {
#Gamma Tilda Estmator
lag.tl <- temp.t[1l:sz]
lag.t2 <- temp.t[(sz+1):(2*sz)]
lag.t3 <- temp.t[(2*sz+1):(3*sz)]
lag.-t4 <- temp.t[(3*sz+1):(4*sz)]
lag.t5 <- temp.t[(4*sz+1):(56*sz)]
lag.t6 <- temp.t[(5*sz+1):(6*sz)]
lag.t7 <- temp.t[(6*sz+1):(7*sz)]

##90th Lag Percentile
q90.t <- numeric(sz)
for (i in 1:sz2) {
qo0.t[i] <-
quantile(c(lag-tl[i],lag-t2[i],lag-t3[i],lag.-t4[i],lag-t5[i],lag-t6[i],lag-t7[i]), -
9,na.rm=T)

measure.t <-

matrix(c(xval,yval,zval,lag-tl,lag-t2,lag-t3,1ag-t4,q90.t) ,nrow=sz,ncol=8,byrow=F,d
imnames=list(NULL,c("'xval™,"yval","zval","lagl","lag2","lag3","1ag4"," q90"")))
mstand.t <- scale(measure.t,center=T,scale=T)
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return (mstand.t)

}
if (estimator.type == "classical'™) {
#Classical Estmator
lag.cll <- temp.cl[1l:sz]
lag.cl2 <- temp.cl[(sz+1):(2*sz)]
lag.-cl3 <- temp.cl[(2*sz+1):(3*sz)]
lag.cl4 <- temp.cl[(3*sz+1):(4*sz)]
lag.cl5 <- temp.cl[(4*sz+1):(5*sz)]
lag.cl6 <- temp.cl[(6*sz+1):(6*sz)]
lag.cl7 <- temp.cl[(6*sz+1):(7*sz)]
##90th Lag Percentile

q90.
for

cl <- numeric(sz)

(¢

q90.cl[i] <-

quantile(c(lag-clli[i],lag-cl2[i],lag-cl3[i],lag-cl4[i],lag-cl5[i],lag-cl6[i],

in 1:s2) {

lag.cl7[i]),-9,na.rm=T)
3

measure.cl <-

matrix(c(xval,yval,zval,lag.cll,lag.-cl2,lag.cl3,lag.cl4,q90.cl),nrow=sz,ncol
=8,byrow=F,dimnames=list(NULL,c("xval*,"yval*, "zval","lagl","lag2",""1ag3",

“lag4”,"q90")))

mstand.cl <- scale(measure.cl,center=T,scale=T)

return (mstand.cl)
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B.5 Two Part Method Function

o #
###Beginning of Code for Two Part Method Function HitH
o #

Two.Part_Method.Cluster <- function(data.grid, distance.type, adjacent.distance,
maximum.groups, estimator.type){

data.rows <- nrow(data.grid)
data.columns <- ncol(data.grid)
sz <- data.rows*data.columns

R —— #
#i##tdefining the measurement value, and the location (row/column number) HitH
##denoted by x and y HitH
. —————_—————_——————— #

zval <- c(data.grid)

c.row <- diag(c(l:data.rows))

c.col <- diag(c(l:data.columns))
iwd.row <- diag(c(l),data.columns)
iwd.col <- diag(c(l),data.rows)

yval <- diag(kronecker(c.col,iwd.col))
xval <- diag(kronecker(iwd.row,c.row))

e e ettt et e e #
###Step 1 -- Cluster Based upon Mean Structure (ignore location, limiting ###
#H#distance to be "1.1") HHt#
S S S S #

measurel <- matrix(c(xval,yval,zval),ncol=3,byrow=F)
mstdl <- scale(measurel, center=T ,scale=T)
ms.w <- mstdl%*%diag(c(0,0,1))

if (distance.type == "‘complete')

mean.adj.comp <- hclust.adj.com(ms.w,data.rows,data.columns, adjacent.distance)
if (distance.type == "average')

mean.adj.comp <- hclust.adj.ave(ns.w,data.rows,data.columns, adjacent.distance)

Hm——————_—————————————— #
###Step 2 -- Get ""good" estimates of the variogram HitH
Ho——————_————————————————— #
o —————————————— #
#H##Initialize a loop to combine the separated groups until variogram it
###estimates are "close” HitH
### 'close™ is determined by whether or not the variograms all fall within ###
#i#the chi-square distribution with 99.9% probability H#
###the variogram estimator is gamma bar HitH
e e e e e e e P e e e e #

done.test <- 0
loop.number <- 1

while (done.test == 0) {
tree.mean.temp <-
matrix(cutree(mean.adj .comp,k=loop.number) ,nrow=data.rows,ncol=data.columns,
byrow=F)

temp.b <- numeric(0)

temp.t <- numeric(0)
temp.cl <- numeric(0)
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#i#Estimates of the variogram are calculated at lags 1 through 7 HH
###For each cell in the data grid, this function determines the other data###

###points to be incluced in the calculations of the variogram at each lag ###
### (1 through 7) HHE

for (i in 1:7) {

for (cc in l:data.columns) {
h.max <- min(i,data.columns-cc)
h.min <- max(l-cc,-i)

for (rr in l:data.rows) {
v.max <- min(i,data.rows-rr)
v.min <- max(l-rr,-i)

temp.group <- tree.mean.temp[rr,cc]

temp.pos.c <-
diag(kronecker(diag(c(h.min:h_max)) ,diag(length(v.min:v.max))))

temp.pos.r <-
diag(kronecker(diag(length(h.min:h_.max)),diag(c(v-min:v.max))))

temp.dist <-
matrix(c(temp.pos.r,temp.pos.c),ncol=2,byrow=F,dimnames=list(NULL,c('row"," " col'")))

dist.pos <- sgrt(temp.dist[,1]"2+temp.dist[,2]"2)

temp.window <- temp.dist[(dist.pos > i-.5)&(dist.pos < i+.5),]

temp.window[,1] <- temp.window[,1]+rr

temp.window[,2] <- temp.window[,2]+cc

diff <- data.grid[temp.window]-data.grid[rr,cc]
diff_use <- diff[which(tree.mean.temp[temp.window]==temp.group)]

if (length(diff.use) > 0) {
temp.b <- c(temp.b, gamma.bar(diff.use))
temp.t <- c(temp.t, gamma.tilda(diff.use))
temp.cl <- c(temp.cl, gamma.classic(diff.use))

else {
temp.b <- c(temp.b, -1)
temp.t <- c(temp.t, -1)
temp.cl <- c(temp.cl, -1)

}

}
}
}

lag.1.b <- temp.b[1:400]
lag-1.t <- temp.t[1:400]
lag.1l.cl <- temp.cl[1:400]

if (max(lag.1.b) < qgqchisq(.999,mean(lag.1.b)))
done.test <- 1

loop.number = loop.number + 1

}
e e Rt L #
#i#testimates of the variogram at each lag are split into separate arrays ###
### (1 through 7) L
ettt T sttt #
if (estimator.type == "gamma bar™) {
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##Gamma Bar
lag.
lag.
lag.
lag.
lag.
lag.
lag.-

##lag s

lag.-
lag.
lag.-
lag.
lag.
lag.

##90th

q90.

for

}

bl <-
b2 <-
b3 <-
b4 <-
b5 <-
b6 <-
b7 <-

temp.
temp.
temp
temp.
temp.
temp.
temp.

Estmator

b[1:sz]
b[(sz+1):(2*sz)]

b[(2*sz+1):(3*sz)]

b[(3*sz+1):(4*sz)]
b[(4*sz+1):(6*sz)]
b[(5*sz+1):(6*sz)]
b[(6*sz+1):(7*sz)]

et to -1 if region is not large enough to calculate.
##in this case, set estimate to value of next lowest lag

b2[lag-
b3[lag.
b4[lag-
b5[lag.
b6[lag-
b7[lag.

b2==-1] <- lag.-bi[lag-b2==-1]
b3==-1] <- lag.b2[lag.b3==-1]
b4==-1] <- lag-b3[lag.-b4==-1]
b5==-1] <- lag.b4[lag.b5==-1]
b6==-1] <- lag.-b5[lag-b6==-1]
b7==-1] <- lag.b6[lag.b7==-1]

Lag Percentile

b <- numeric(sz)

(i in 1:s2) {
g90.b[i] <-

quantile(c(lag-bi[i],lag-b2[i],lag-b3[i],lag-b4[i],lag-b5[i],lag-b6[i],lag-b7[i])

,-9,na.rm=T)

measure.b <-
matrix(c(xval,yval,zval,lag.bl,lag-b2,lag-b3,lag-b4,q90.b),nrow=sz,ncol=8,byrow=F
,dimnames=list(NULL,c("'xval","yval","zval","lagl","lag2","1ag3", " 1ag4',''q90'")))
mstand.b <- scale(measure.b,center=T,scale=T)

return (mstand.b)

}

if (estimator.type

#Gamma
lag.-
lag.
lag.
lag.
lag.-
lag.
lag.-

#i#lag s

Tilda
tl <-
2 <-
3 <-
4 <-
5 <-
16 <-
t7 <-

et to

temp.
temp.
temp.
temp.
temp.
temp.
temp.

== "'gamma tilda") {

Estmator

t[1l:sz]
t[(sz+1):(2*sz)]
t[(2*sz+1): (3*sz)]
t[(3*sz+1):(4*sz)]
t[(4*sz+1): (5*sz)]
t[(5*sz+1):(6*sz)]
t[(6*sz+1): (7*sz)]

-1 if region is not large enough to calculate.

##in this case, set estimate to value of next lowest lag

lag.
lag.
lag.
lag.
lag.
lag.

##90th
q90.
for

}
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t2[lag.-
t3[lag.
t4[lag.-
t5[lag.
t6[lag-
t7[lag.

t2==
t3==
t4==
t5==
t6==
t7==

-1] <- lag-til[lag-t2==-1]
-1] <- lag-t2[lag.-t3==-1]
-1] <- lag-t3[lag-t4==-1]
-1] <- lag-t4[lag.t5==-1]
-1] <- lag-t5[lag-t6==-1]
-1] <- lag.t6[lag.-t7==-1]

Lag Percentile

t <- numeric(sz)

(i in 1:s2) {
qo90.t[i] <-

quantile(c(lag-ti[i],lag-t2[i],lag-t3[i],lag-t4[i],lag-t5[i],lag-t6[i],lag-t7[i])

,-9,na.rm=T)



measure.t <-

matrix(c(xval,yval,zval,lag.tl,lag.t2,lag.t3,lag.t4,q90.t),nrow=sz,ncol=8,byrow
=F,dimnames=list(NULL,c('xval","yval", "zval","lagl"”,"lag2",""1ag3", " 1ag4',"'q90"")))
mstand.t <- scale(measure.t,center=T,scale=T)

return (mstand.t)

}

if (estimator.type == "classical'™) {
#Classical Estmator
lag.cll <- temp.cl[1l:sz]
lag.cl2 <- temp.cl[(sz+1):(2*sz)]
lag.cl3 <- temp.cl[(2*sz+1):(3*sz)]
lag.cl4 <- temp.cl[(3*sz+1):(4*sz)]
lag.cl5 <- temp.cl[(4*sz+1):(5*sz)]
lag.cl6 <- temp.cl[(6*sz+1):(6*sz)]
lag.cl7 <- temp.cl[(6*sz+1):(7*sz)]

##lag set to -1 if region is not large enough to calculate.

##in this case, set estimate to value of next lowest lag
lag.cl2[lag.cl2==-1] <- lag.cll[lag.cl2==-1]
lag.cl3[lag.cl3==-1] <- lag.cl2[lag.cl3==-1]
lag.cl4[lag.cl4==-1] <- lag.cl3[lag.cl4==-1]
lag.cl5[lag.cl5==-1] <- lag.cl4[lag.cl5==-1]
lag.cl6[lag.cl6==-1] <- lag.cl5[lag.cl6==-1]
lag.cl7[lag.cl7==-1] <- lag.cl6[lag.cl7==-1]

##90th Lag Percentile
g90.cl <- numeric(sz)
for (i in 1:s2) {
q90.cl[i] <-
quantile(c(lag-cli[i],lag.cl2[i],lag-cl3[i],lag.cl4[i],lag-cl5[i],lag.cl6[i],
lag.cl7[i]),-9,na.rm=T)
}

measure.cl <-
matrix(c(xval,yval,zval,lag.cll,lag.cl2,lag.cl3,lag.cl4,q90.cl),nrow=sz,ncol=8,
byrow=F,dimnames=list(NULL,c('xval*,"yval", "zval","lagl”,"lag2","1ag3",

" I ag4'l , llq90ll)))
mstand.cl <- scale(measure.cl,center=T,scale=T)

return (mstand.cl)
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B.6 Simulated Data Examples

e et e e e e P e e e e #
###Chapter 3 Examples HitH
o #
chapter.3.1.1 <- matrix(O+rfsim(grid,covfun=exp.cov, range=3,sill1=3,nc=10000) ,wd,wd)
chapter.3.1.2 <- matrix(8+rfsim(grid,covfun=exp.cov, range=3,sill=3,nc=10000) ,wd,wd)
chapter.3.1.3 <- matrix(4+rfsim(grid,covfun=exp.cov, range=3,sill=3,nc=10000) ,wd,wd)
Chapter.3.Data.Set.1 <- chapter.3.1.1

Chapter.3.Data.Set.1[grp=="Grp 2"] <- chapter.3.1.2[grp=="Crp 2"]
Chapter.3.Data.Set.1[grp=="CGrp 3"] <- chapter.3.1.3[grp=="Grp 3"]

chapter.3.2.1 <- matrix(4+rfsim(grid,covfun=exp.cov, range=5,sill1=3,nc=10000) ,wd,wd)
chapter.3.2.2 <- matrix(4+rfsim(grid,covfun=exp.cov,range=5,sill=1,nc=10000) ,wd,wd)
chapter.3.2.3 <- matrix(4+rfsim(grid,covfun=exp.cov, range=5,sill=5,nc=10000) ,wd,wd)
Chapter.3.Data.Set.2 <- chapter.3.2.1

Chapter.3.Data.Set.2[grp==""Grp 2"] <- chapter.3.2.2[grp=="CGrp 2"]
Chapter.3.Data.Set.2[grp=="Grp 3"] <- chapter.3.2._3[grp=="Crp 3"]

par(mfrow=c(1,1))

image(Chapter.3.Data.Set.1)
persp(Chapter.3._Data.Set.1)
image(Chapter.3.Data.Set.2)
persp(Chapter.3.Data.Set.2)

example_.3.1.cluster <- hclust(dist(c(Chapter.3.Data.Set.1)), method = "compact”)

par(mfrow=c(3,3))
image(Chapter.3.Data.Set.1)
title(main=paste('Original Data Set"))
for (i in 2:9) {
tree.adj.constraint <-
matrix(cutree(example.3.1_cluster,k=i),nrow=data.rows,ncol=data.columns,byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj .constraint)
title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}

example.3.2.cluster <- hclust(dist(c(Chapter.3.Data.Set.2)), method = "compact”)

par (mfrow=c(3,3))

image(Chapter.3.Data.Set.2)

title(main=paste("'Original Data Set"))

for (i in 2:9) {
tree.adj.constraint <-
matrix(cutree(example.3.2_cluster,k=1i),nrow=data.rows,ncol=data.columns,byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj.constraint)
title(main=paste("For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))

###Chapter 3 Basic Window Method Example
Chapter.3.Data.Set.1.Central <- Central _Method.Cluster(Chapter.3.Data.Set.1,
"complete', ''gamma bar')

for (inc in 0:4) {
w.mean <- .25%*inc
w.spatial <- 1-w._mean
weight.adjcon <- diag(c(w.mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
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msw <- Chapter.3_Data.Set.1._Central%*%weight.adjcon
msw <- dist(data.matrix(msw))
constraint.cluster.3.1 <- hclust(msw, method = "compact®)

par (mfrow=c(3,3))
image(testdata.1l.grid)
title(main=paste("Original Data Set\n a = ", inc*.25))
for (i in 2:18) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.3.1,k=i),nrow=data.rows,ncol=data.columns,
byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj.constraint)
title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}

}

Chapter.3.Data.Set.2._Central <- Central _Method.Cluster(Chapter.3.Data.Set.2,
"complete', ''gamma bar')

for (inc in 0:4) {
w.mean <- .25%inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
msw <- Chapter.3._Data.Set.2._Central%*%weight.adjcon

msw <- dist(data.-matrix(msw))
constraint.cluster.3.2 <- hclust(msw, method = “compact®)

par (mfrow=c(3,3))
image(Chapter.3.Data.Set.2)
title(main=paste(*'Original Data Set\n a = ", inc*.25))
for (i in 2:18) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.3.2,k=i),nrow=data.rows,ncol=data.columns,
byrow=F)
index <- get.index(grp.-mat,tree.adj.constraint)
image(tree.adj .constraint)
title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = *,round(index[2],digits=3),collapse = "))
}

}

###Chapter 3 Adjacent Contstraint Method Example

Chapter.3.Data.Set.1_Adjacent <- Adjacent.Constraint.Cluster (Chapter.3.Data.
Set.1, "complete"™, 1.5, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean

weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- Chapter.3.Data.Set.1l._Adjacent%*%weight.adjcon

constraint.cluster.3.1 <- hclust.adj.com(msw,data.rows,data.columns,1.5)

par (mfrow=c(3,3))
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image(Chapter.3.Data.Set.1)
title(main=paste(*"'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint.cluster.3.1,k=i),nrow=data.rows,ncol=data.columns,byrow=
)

index <- get.index(grp-mat,tree.adj.constraint)

image(tree.adj.constraint)

title(main=paste(For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
b

}

Chapter.3.Data.Set.2._Adjacent <- Adjacent.Constraint.Cluster (Chapter.3.Data.Set.2,
“"complete™, 1.5, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- Chapter.3.Data.Set.2_Adjacent%*%weight.adjcon

constraint.cluster.3.2 <- hclust.adj.com(msw, data.rows, data.columns, 1.5)

par (mfrow=c(3,3))
image(Chapter.3.Data.Set.2)
title(main=paste("Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint._cluster.3.2,k=1i),nrow=data.rows,ncol=data.columns,byrow=
)

index <- get.index(grp-mat,tree.adj.constraint)

image(tree.adj.constraint)

title(main=paste("For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}

}

###Chapter 3 Two Part Method Example

Chapter.3.Data.Set.1.TwoPart <- Two.Part.Method.Cluster (Chapter.3.Data.Set.1,
“"complete™, 1.1, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- Chapter.3_Data.Set.1.TwoPart%*%weight.adjcon

constraint.cluster.3.1 <- hclust.adj.com(msw, data.rows, data.columns, 1.1)

par (mfrow=c(3,3))
image(Chapter.3.Data.Set.1)
title(main=paste(*'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint._cluster.3.1,k=i),nrow=data.rows,ncol=data.columns,byrow=
)

index <- get.index(grp-mat,tree.adj.constraint)

image(tree.adj .constraint)
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title(main=paste("For ",i," Groups, the indexes are: \n Jaccard = "

round(index[1],digits=3), * Rand = ",round(index[2],digits=3),collapse = "))

}
}

Chapter.3.Data.Set.2_TwoPart <- Two.Part.Method.Cluster (Chapter.3._Data.Set.2,
"complete™, 1.1, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w._mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- Chapter.3.Data.Set.2.TwoPart%*%weight.adjcon

constraint.cluster.3.2 <- hclust.adj.com(msw, data.rows, data.columns, 1.1)

par (mfrow=c(3,3))
image(Chapter.3.Data.Set.2)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.3.2,k=i),nrow=data.rows,ncol=data.columns,
byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj .constraint)
title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = "

round(index[1].digits=3), " Rand = ",round(index[2].digits=3),collapse = "))
}

}

e et e e e e e e e #

###Analysis of Simulated Data Sets with above functions HitH

fom————————————_———————————————— #

grp.mat <- grp

grp-mat[grp.mat == "Grp 1"] <- 1

grp.mat[grp.mat == "Grp 2"] <- 2

grp-mat[grp.mat == "Grp 3] <- 3

grp-mat <- matrix(as.numeric(grp.mat),20,20)

e #

###Central Method - Data Set 1 HitH

e #

datacluster.1l._Central <- Central _Method.Cluster(testdata.1l.grid, "complete",
""gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.-mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.l.Central%*%weight.adjcon

msw <- dist(data.matrix(msw))

constraint.cluster.l <- hclust(msw, method = "compact®)
par(mfrow=c(3,3))

image(testdata.l.grid)

title(main=paste(Original Data Set\n a = ', inc*.25))
for (i in 2:27) {
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tree.adj.constraint <-
matrix(cutree(constraint.cluster.1,k=1),nrow=data.rows,ncol=data.columns,byrow=F)

index <- get.index(grp-mat,tree.adj.constraint)

image(tree.adj.constraint)

title(main=paste("For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = ""))
¥
}
e #
###Central Method - Data Set 2 Hit
e #
datacluster.2._Central <- Central.Method.Cluster(testdata.2.grid, "complete', '‘gamma
bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.-mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.2._Central%*%weight.adjcon

msw <- dist(data.matrix(msw))
constraint.cluster.2 <- hclust(msw, method = "compact®)

par(mfrow=c(3,3))

image(testdata.2.grid)

title(main=paste("'Original Data Set\n a = ", inc*.25))

for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.2,k=1),nrow=data.rows,ncol=data.columns,byrow
:F)
index <- get.index(grp.-mat,tree.adj.constraint)
image(tree.adj .constraint)

title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}
}
o #
###Central Method - Data Set 3 HitH
- #
datacluster._3.Central <- Central _Method.Cluster(testdata.3.grid, "complete™, "‘gamma
bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.-mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.3.Central%*%weight.adjcon

msw <- dist(data.matrix(msw))

constraint.cluster.3 <- hclust(msw, method = "compact®)
par (mfrow=c(3,3))

image(testdata.3.grid)

title(main=paste("Original Data Set\n a = ', inc*.25))
for (i in 2:27) {
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tree.adj.constraint <-

matrix(cutree(constraint.cluster.3,k=i1),nrow=data.rows,ncol=data.columns
,byrow=F)

index <- get.index(grp.-mat,tree.adj.constraint)
image(tree.adj -constraint)

title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),
collapse = "))

}
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###Central Method - Data Set 4 Hitt
o #
datacluster._.4_Central <- Central _Method.Cluster(testdata.4.grid, "complete™, ‘‘gamma
bar')

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w._mean
weight.adjcon <- diag(c(w.mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.4_Central%*%weight.adjcon

msw <- dist(data.matrix(msw))
constraint.cluster.4 <- hclust(msw, method = "compact®)

par (mfrow=c(3,3))
image(testdata.4.grid)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj .constraint <-
matrix(cutree(constraint.cluster.4,k=1),nrow=data.rows,ncol=data.columns,byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj -constraint)
title(main=paste(*For ",i," Groups, the indexes are: \n Jaccard "

round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}

}

priiiiiiiiiiii i oo #

###HAdjacent Contstraint Method -- Data Set 1 HH

R #

datacluster.l.Adjacent <- Adjacent.Constraint.Cluster (testdata.l.grid, "complete",
1.5, 20, ""‘gamma bar™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.l_Adjacent®%*%weight.adjcon

constraint.cluster.1l <- hclust.adj.com(msw, data.rows, data.columns, 1.5)

par (mfrow=c(3,3))
image(testdata.1l.grid)
title(main=paste(*'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint._cluster.1,k=1),nrow=data.rows,ncol=data.columns,byrow=F)
index <- get.index(grp.-mat,tree.adj.constraint)
image(tree.adj .constraint)
title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}
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datacluster.2_Adjacent <- Adjacent._Constraint.Cluster (testdata.2.grid,
"complete™, 1.5, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w._mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.2_Adjacent%*%weight.adjcon

constraint.cluster.2 <- hclust.adj.com(msw, data.rows, data.columns, 1.5)

par(mfrow=c(3,3))
image(testdata.2.grid)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.2,k=1),nrow=data.rows,ncol=data.columns
,byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj.constraint)

title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = *,round(index[2],digits=3),collapse = ""'"))
}
B #
###Adjacent Contstraint Method -- Data Set 3 HiH
B #

datacluster.3.Adjacent <- Adjacent._Constraint.Cluster (testdata.3.grid,
"complete"™, 1.5, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25%*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.3.Adjacent%*%weight.adjcon

constraint.cluster.3 <- hclust.adj.com(msw, data.rows, data.columns, 1.5)

par(mfrow=c(3,3))
image(testdata.3.grid)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint.cluster.3,k=1),nrow=data.rows,ncol=data.columns,

byrow=F)

index <- get.index(grp.-mat,tree.adj.constraint)

image(tree.adj .constraint)

title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), "™ Rand = ",round(index[2],digits=3),collapse = "))
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datacluster.4_Adjacent <- Adjacent._Constraint._Cluster (testdata.4.grid,
“"complete™, 1.5, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w._mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.4_Adjacent%*%weight.adjcon

constraint.cluster.4 <- hclust.adj.com(msw, data.rows, data.columns, 1.5)

par(mfrow=c(3,3))
image(testdata.4.grid)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.4,k=i),nrow=data.rows,ncol=data.columns,
byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj.constraint)
title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard "

round(index[1],digits=3), " Rand = *,round(index[2],digits=3),collapse = ""'"))
}

}

e e e #
###Two Part Method H#HHE
e et e e e e e #
###The data points are run through the clustering fuction subject to the ###
#i#weights. Weights are assigned to give initial equal weighting to HH

###non-spatial data points (i.e. the measured data) and the spatial data ###
###points (i.e. the variogram estimators) The clustering is done 5 times ###

###with added loads to non-spatial and spatial data points HitH
###The clustering is then graphically displayed HHH
i oo #
e et e e e e P e e e e #
###Two Part Method -- Data Set 1 Hitt
e et #

datacluster.l.TwoPart <- Two.Part.Method.Cluster (testdata.l.grid, "complete"
, 1.1, 20, "gamma bar'™)

for (inc in 0:4) {
w.mean <- .25*iInc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.l._TwoPart%*%weight.adjcon

constraint.cluster.1l <- hclust.adj.com(msw, data.rows, data.columns, 1.1)

par(mfrow=c(3,3))
image(testdata.1l.grid)
title(main=paste(*"'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-

matrix(cutree(constraint._.cluster.1,k=1),nrow=data.rows,ncol=data.columns,
byrow=F)
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index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj.constraint)

title(main=paste("For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
e
¥
.- - #
###Two Part Method -- Data Set 2 H#H
- #

datacluster.2._TwoPart <- Two.Part.Method.Cluster (testdata.2.grid, "complete",
1.1, 20, "gamma bar')

for (inc in 0:4) {
w.mean <- .25*iInc
w.spatial <- 1-w.mean
weight_adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.2.TwoPart%*%weight.adjcon

constraint.cluster.2 <- hclust.adj.com(msw, data.rows, data.columns, 1.1)

par(mfrow=c(3,3))
image(testdata.2.grid)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.2,k=i),nrow=data.rows,ncol=data.columns,
byrow=F)
index <- get.index(grp.-mat,tree.adj.constraint)
image(tree.adj -constraint)

title(main=paste(For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = ""))
}
T
e #
###Two Part Method -- Data Set 3 Hit#H
T #

datacluster.3.TwoPart <- Two.Part.Method.Cluster (testdata.3.grid, "complete",
1.1, 20, *‘gamma bar')

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight_adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.3.TwoPart%*%weight.adjcon

constraint.cluster.3 <- hclust.adj.com(msw, data.rows, data.columns, 1.1)

par(mfrow=c(3,3))
image(testdata.3.grid)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.3,k=1),nrow=data.rows,ncol=data.columns,
byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj -constraint)
title(main=paste("'For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}
}
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datacluster.4.TwoPart <- Two.Part.Method.Cluster (testdata.4.grid, "complete",
1.1, 20, *‘gamma bar')

for (inc in 0:4) {
w.mean <- _25%*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w-mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- datacluster.4.TwoPart%*%weight.adjcon

constraint.cluster.4 <- hclust.adj.com(msw, data.rows, data.columns, 1.1)

par (mfrow=c(3,3))
image(testdata.4.grid)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint.cluster.4,k=1),nrow=data.rows,ncol=data.columns,
byrow=F)
index <- get.index(grp-mat,tree.adj.constraint)
image(tree.adj -constraint)
title(main=paste("For ",i," Groups, the indexes are: \n Jaccard = ",
round(index[1],digits=3), " Rand = ",round(index[2],digits=3),collapse = "))
}
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B.7 SFMRI Brain Data Analysis

e #
###Brain Data HitH
i #

###Brain Data Matrix is 64 x 64

a6s10.sort <- a6s10
a6sl0.sort[,2] <- 65 - a6sl0.sort[,2]
a6sl10.sort <- a6sl0.sort[order(a6sl0.sort[,2],a6s10.sort[,1]), 1]

a6sl10.mean.0 <- matrix(apply(a6sl0.sort[,4:39], 1, mean), nrow = 64, ncol
F)

byrow =

###Hequivalent method to plot the data
a6sl0.mean.1l <- interp(a6sl0[, 1], 65-a6s10[, 2], apply(a6sl10[,4:39], 1, mean),
X0 = c(1:64), yo = c(1:64))

on.array.sort <- c(a6slO.sort[, 4], a6sl0.sort[, 6], a6slO.sort[, 8],
a6s10.sort[,10],
a6s10.sort[,12], a6sl1l0.sort[,14], a6sl0.sort[,16], a6sl0.sort[,18],
a6s10.sort[,20],
a6s10.sort[,22], a6sl0.sort[,24], a6sl0.sort[,26], a6sl0.sort[,28],
a6s10.sort[,30],
a6s10.sort[,32], a6sl0.sort[,34], a6sl0.sort[,36], a6sl10.sort[,38])

a6sl0.on <-

matrix{on.array.sort, nrow = 4096, ncol = 18, byrow = F)

a6sl1l0.on.mean <- apply(a6sl10.on, 1, mean)

off.array.sort <- c(a6slO.sort[, 5], a6sl0.sort[, 7], a6slO.sort[, 9],
a6sl10.sort[,11],
a6s10.sort[,13], a6sl1l0.sort[,15], a6slO.sort[,17], a6sl0.sort[,19],
a6sl10.sort[,21],
a6s10.sort[,23], a6sl0.sort[,25], a6slO.sort[,27], a6sl0.sort[,29],
a6s10.sort[,31],
a6s10.sort[,33], a6sl0.sort[,35], a6sl0.sort[,37], a6sl0.sort[,39])

a6s10.off <- matrix(off.array.sort, nrow = 4096, ncol = 18, byrow = F)
a6s10.off.mean <- apply(a6slO.off, 1, mean)

a6sl0.mean.diff.0 <- matrix(a6sl0.on.mean - a6sl0.off.mean, nrow = 64, ncol
= 64, byrow = F)

###Captures

all meaningful brain data

a6sl0.mean <- a6s10.mean.0[13:52,6:48]
a6sl10.mean.diff <- a6sl0.mean.diff.0[13:52,6:48]

###Captures

portion for computing (physical computing restraints)

a6sl0.mean <- a6s10.mean.0[14:34,15:48]
a6sl0.mean.diff <- a6sl0.mean.diff.0[14:34,15:48]

par(mfrow=c(2,2))

image(a6s10.
persp(a6si0.

image(a6s10.
persp(a6sl0.

image(a6s10.
persp(a6si0.

mean.0)
mean.0)

mean)
mean)

mean.diff)
mean.diff)

64,
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###increase the following to help with the dynamic memory problems
options(memory = 14336*1024"2)

#priiiiiiiiii i oo #
###Central Method - Brain Data it
e e e e e P e e #
braincluster.1l._Central <- Central .Method.Cluster(a6s10.mean, "complete', "gamma

bar™)

braindata.rows <- nrow(a6s10.mean)
braindata.columns <- ncol (a6s10.mean)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
msw <- braincluster.l_Central%*%weight.adjcon

msw <- dist(data.matrix(msw))
constraint.cluster.1l <- hclust(msw, method = “compact®)

par (mfrow=c(3,3))
image(a6s10.mean)
title(main=paste("Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint._cluster.1,k=1),nrow=braindata.rows,ncol=
braindata.columns,byrow=F)

image(tree.adj -constraint)

title(main=paste("'Data Clustered into ",i," Groups.'))
}

}

braincluster.2.Central <- Central _Method.Cluster(a6sl0.mean.diff, "complete",

"‘gamma bar')

braindata.rows <- nrow(a6sl0.mean.diff)
braindata.columns <- ncol(a6sl10.mean.diff)

for (inc in 0:4) {
w.mean <- .25%*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(1,1,3),w.spatial*c(2,1,1,0,1)))
msw <- braincluster.2_Central%*%weight.adjcon

msw <- dist(data.-matrix(msw))
constraint.cluster.2 <- hclust(msw, method = "compact®)

par (mfrow=c(3,3))
image(a6s10.mean.diff)
title(main=paste(*'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {
tree.adj.constraint <-
matrix(cutree(constraint._cluster.2,k=1),nrow=braindata.rows,ncol=
braindata.columns,byrow=F)
image(tree.adj -constraint)
title(main=paste(''Data Clustered into ",i," Groups.™))

}
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i #
###Adjacent Contstraint Method -- Brain Data Hit#
i #

braincluster.l.Adjacent <- Adjacent.Constraint.Cluster (a6sl0.mean, "complete",
1.5, *"gamma bar')

braindata.rows <- nrow(a6sl10.mean)
braindata.columns <- ncol (a6s10.mean)

for (inc in 0:4) {
w.mean <- .25*inc
w.spatial <- 1-w._mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- braincluster.l_Adjacent%*%weight.adjcon

constraint.cluster.1l <- hclust.adj.com(msw, braindata.rows, braindata.columns,
1.5)

par (mfrow=c(3,3))
image(a6s10.mean)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint.cluster.1,k=1),nrow=braindata.rows,ncol=
braindata.columns,byrow=F)

image(tree.adj -constraint)

title(main=paste("'Data Clustered into ",i," Groups.'))
}

}

braincluster.2_Adjacent <- Adjacent.Constraint.Cluster (a6sl0.mean.diff,
"complete™, 1.5, "gamma bar'™)

braindata.rows <- nrow(a6sl0.mean.diff)
braindata.columns <- ncol(a6s10.mean.diff)

for (inc in 0:4) {
w.mean <- .25%*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- braincluster.2_Adjacent%*%weight.adjcon

constraint.cluster.2 <- hclust.adj.com(msw, braindata.rows,
braindata.columns, 1.5)

par (mfrow=c(3,3))
image(a6sl0.mean.diff)
title(main=paste(*'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint._.cluster.2,k=1),nrow=braindata.rows,ncol=
braindata.columns,byrow=F)

image(tree.adj .-constraint)

title(main=paste("'Data Clustered into ",i," Groups.'))

3
3
S ———————, #
###Two Part Method -- Brain Data Hit
o #
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braincluster.1._TwoPart <- Two.Part.Method.Cluster (a6sl0.mean, ‘‘complete', 1.1,
""gamma bar'™)

braindata.rows <- nrow(a6sl10.mean)
braindata.columns <- ncol(a6s10.mean)

for (inc in 0:4) {
w.mean <- _25%*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w-mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- braincluster.l.TwoPart%*%weight.adjcon

constraint.cluster.l <- hclust.adj.com(msw, braindata.rows,
braindata.columns, 1.1)

par(mfrow=c(3,3))
image(a6s10.mean)
title(main=paste("'Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint.cluster.1,k=1),nrow=braindata.rows,ncol=
braindata.columns,byrow=F)

image(tree.adj -constraint)

title(main=paste(''Data Clustered into ",i," Groups.™))
}

}

braincluster.2_TwoPart <- Two.Part.Method.Cluster (a6sl0.mean.diff,
"complete™, 1.1, "gamma bar')

braindata.rows <- nrow(a6s10.mean.diff)
braindata.columns <- ncol(a6sl10.mean.diff)

for (inc in 0:4) {
w.mean <- .25%*inc
w.spatial <- 1-w.mean
weight.adjcon <- diag(c(w.mean*c(0,0,5),w.spatial*c(2,1,1,0,1)))
msw <- braincluster.2._TwoPart%*%weight.adjcon

constraint.cluster.2 <- hclust.adj.com(msw, braindata.rows,
braindata.columns, 1.1)

par (mfrow=c(3,3))
image(a6s10.mean.diffF)
title(main=paste('Original Data Set\n a = ", inc*.25))
for (i in 2:27) {

tree.adj.constraint <-
matrix(cutree(constraint._cluster.2,k=1),nrow=braindata.rows,ncol=
braindata.columns,byrow=F)

image(tree.adj -constraint)

title(main=paste(''Data Clustered into ",i," Groups.'™))
}

}
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