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Submitted for review to the AIAA Journal of Guidance, Dynamics, and Control

Coordination Variables, Coordination Functions,

and Cooperative Timing Missions

Timothy W. McLain ∗ Randal W. Beard †

Abstract

This paper presents a solution strategy for achieving cooperative timing
among teams of vehicles. Based on the notion of coordination variables and
coordination functions, the strategy facilitates cooperative timing by making
efficient use of communication and computation resources. The application of
the coordination variable/function approach to trajectory planning problems
for teams of unmanned air vehicles with timing constraints is described. Three
types of timing constraints are considered: simultaneous arrival, tight sequenc-
ing, and loose sequencing. Simulation results demonstrating the viability of the
approach are presented.

Introduction

The ability to plan paths in a cooperative fashion for a system of vehicles is of great
importance in a wide variety of applications. This is especially true for military
missions requiring precise timing or sequencing of tasks and operations. The ability
“to adjust mission timing on the move to compensate for inevitable changes to plans
and still make the time-on-target goal” has been identified as a key capability for
the effective military use of unmanned air vehicles (UAVs).1 Other operations of
importance in civil and military aviation that could benefit from cooperative path
planning include flight traffic control and landing operations.

There are numerous technical challenges to overcome to develop viable cooperative
planning methods for a distributed team of unmanned air vehicles. A significant
issue is the level of complexity involved in planning paths for a team of vehicles with
competing interests so that the team objective is attained in a satisfactory or optimal
manner. Given that the path planning process must produce desired state trajectories
for each UAV continually throughout a mission, a significant volume of information
must be computed in real time.

∗Associate Professor, Department of Mechanical Engineering, Brigham Young University, Provo,
Utah 84602

†Associate Professor, Department of Electrical and Computer Engineering, Brigham Young Uni-
versity, Provo, Utah 84602
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The complexity of the cooperative path planning problem is increased by the
possibility of a changing environment. In military missions, the path planner must
be able to respond quickly to pop-up threats or other unanticipated changes in the
threat scenario. To maintain desired levels of stealth, communication among vehicles
should be limited. For missions requiring precise timing or sequencing of operations,
the cooperative path planner must coordinate the timing of tasks so that the team
objectives are achieved. Finally, trajectories provided by the path planner must
be within the dynamic capabilities of the UAV. Precise timing of operations is not
possible if significant tracking errors exist.

Although path planning for single UAVs has been an active area of research for
some time (e.g., see Refs. 2–6), work on cooperative control and cooperative path
planning for UAVs has only recently begun to appear. In Ref. 7, a decentralized
optimization method is developed and applied to a multiple aircraft coordination
problem. A bargaining algorithm based on sequential local optimization is used to
approximate the global centralized optimization solution. Cooperative timing prob-
lems are sensitive to the assignment and ordering of tasks. One approach for handling
cooperative timing is to apply timing constraints to the task assignment problem. In
Refs. 8 and 9, mixed-integer linear programming (MILP) is used to solve tightly-
coupled task assignment problems with timing constraints. The advantage to this
approach is that it yields the optimal solution for a given problem. The primary dis-
advantages are the complexity of problem formulation and the computational burden
involved. Pruning strategies for simplifying the MILP problem have been proposed
to enable near-real-time solutions.

The objective of this paper is to introduce a general approach to cooperative
control problems, and to specifically demonstrate the application of the technique to
cooperative timing missions.

The fundamental axiom of our approach is:

Cooperation among a team of vehicles requires information to be shared.

Information may be shared in a variety of ways. For example, relative position sensors
may enable vehicles to construct state information of other vehicles, information may
be communicated between vehicles using a wireless network, or joint information
might be pre-programmed into the vehicles before the mission begins. Our approach
is to collect the information that must be jointly shared to facilitate cooperation into a
single quantity called the coordination variable. The coordination variable represents
the minimal amount of information needed to enable a specific cooperation objective.

Although it is known by different names, the notion of a coordination variable is
found in other works on cooperative control. For example Refs. 10, 11 introduce an
“action reference,” which if known by each vehicle, facilitates formation keeping. In
leader-following applications,12,13 the states of the leader constitute the coordination
variable since the action of the other vehicles in the formation are completely specified
once the leader states are known. In Refs. 14–16, the notion of a virtual structure
is used to derive formation control strategies. The motion of each vehicle is causally
dependent on the dynamic states of the virtual structure, therefore the states of the
virtual structure is the coordination variable. Coordination variables may also be
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more discrete in nature. For example, in Refs. 8 and 9, cooperative task allocation
is addressed. Individual vehicle behavior is dependent on the task allocation vector
which becomes the coordination variable.

A second main concept in the cooperative control strategy introduced in this
paper is the notion of coordination functions. Coordination functions parameterize
the effect of the coordination variable on the myopic objectives of each agent. The
idea is to parameterize how changing the coordination variable impacts the individual
myopic objectives, and then to use this information to select a feasible coordination
variable value for the team. Although the notion of coordination variables is prevalent
in other works, the notion of a coordination function and the concept of modifying the
team coordination variable based on costs to individual team members, seems to be
missing in most of the cooperative control literature. One of the contributions of this
paper is to provide a formal mechanism for introducing this type of team feedback.

In the cooperative timing problems considered in this paper, the coordination
variable defines mission-critical timing information, such as estimated-time-of-arrival
(ETA) at a specified destination. The coordination function describes the cost to
an individual UAV of achieving different values of the coordination variable that are
feasible for the UAV. Cooperative path planning is enabled by communication of
coordination functions and coordination variables among UAVs participating in the
mission. Preliminary investigations of this approach have been reported in Refs. 17
and 18.

The approach presented here has several strengths that make it suitable for co-
operative timing scenarios.19,20 First, and perhaps most important, the coordination
variable/function strategy reduces the dimensionality and complexity of the problem
to tractable levels. The strategy requires information vital to the cooperative timing
effort to be organized in an efficient manner. If a global optimization approach were
attempted, determining the team-optimal timing for mission success would require
knowing the states of all of the UAVs participating as well as the location of all
threats and targets or destinations. Even for a relatively small number of vehicles,
the task of determining optimal timing and the corresponding UAV trajectories in
this global approach requires excessive communication bandwidth and is difficult due
to the large number of decision variables involved.

Alternatively, our approach simplifies the task of determining team-optimal timing
through the implementation of task-appropriate coordination variables and coordina-
tion functions. Rather than requiring the determination of UAV state trajectories
for all UAVs on the team centrally, only the critical timing information represented
by the coordination variable must be determined. Based on the team-optimal coor-
dination variable, UAV trajectories are determined in a decentralized fashion on the
individual UAVs. This decomposition of the cooperative path planning problem re-
sults in significant simplification of the team-level planning process and a substantial
reduction in the volume of information communicated among UAVs.
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Cooperative Timing Problem

The primary objective of this paper is to describe a general cooperative control strat-
egy based on coordination variables and functions. To aid and provide context for the
presentation, the specific problem of cooperative timing among a team of fixed-wing
UAVs will be considered. The UAVs are modeled as having 12th-order nonlinear dy-
namics as is typical for fixed-wing aircraft21,22 and having altitude-hold, heading-hold,
and velocity-hold autopilots. From a trajectory planning perspective, two constraints
imposed by the dynamics are most significant: those on turn radius due to heading
rate limits and on velocity due to stall and maximum thrust limits.

For the cooperative timing problems considered in this paper, the goal is to co-
ordinate the arrival of a team of UAVs at preassigned targets to satisfy a particular
timing constraint. The UAVs may have their own individual targets, or they may be
assigned the same target. The timing constraint must be satisfied while the UAVs on
the team minimize their exposure to threats. In this work, threats are assumed to be
radar sites and the objective is to stay away from the point of emanation of the radar
signal. Polygonal obstacles or no-fly zones have also been considered.23 Although
threats are assumed to be static to limit the scope of the discussion, the speed of the
cooperative path planning algorithm allows pop-up threats and slow moving (relative
the the UAV speed) threats to be handled effectively (see e.g., Ref. 24).

In this paper, three types of timing constraints are considered:

Simultaneous Arrival. Simultaneous arrival constraints imply that all vehicles on
the team arrive at their destinations at the same time.

Tight Sequencing. Tight sequencing constraints require that the vehicles arrive at
their destinations in a specified sequence with the time increments between
arrival times specified exactly.

Loose Sequencing. Loose sequencing constraints require that the vehicles arrive
at their destinations in a specified sequence with the time increments between
arrival times given in terms of acceptable ranges.

For cooperative timing problems, these timing constraints imply that trajectories
for all of the vehicles involved must be planned simultaneously. Given that near-real-
time planning of dynamically feasible trajectories for a single UAV is challenging,
cooperative planning for multiple vehicles poses significant difficulties. The coordi-
nation variable/function technique of this paper provides a computationally feasible
approach to the problem by enabling efficient distributed computation of cooperative
plans.

Figure 1 illustrates the trajectory planning architecture for a single UAV, which is
composed of three main parts: the Coordination Manager (CM), the Waypoint Path
Planner (WPP), and the Dynamic Trajectory Smoother (DTS). The WPP quickly
calculates threat-avoiding straight-line paths. These candidate paths are used by the
CM to determine coordination function information as well as cooperative timing
information for the team. Because the straight-line waypoint paths produced by
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the WPP are not dynamically feasible for the UAV to fly, the DTS is employed to
produce flyable trajectories and autopilot commands. The DTS smoothes junctions
in the waypoint path with a sequence of radial arcs that can be flown by the UAV.
This smoothing of the waypoint path is carried out in real-time. Most importantly,
the length of the original straight-line path is preserved in the smoothing process.6

This is essential for timing-critical missions.
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Figure 1: Trajectory planning architecture.

The cooperative control architecture for a team of three UAVs is shown in Fig-
ure 2. The architecture is distributed, enabling each UAV to perform its own trajec-
tory computations (WPP and DTS). The CM algorithm implemented on each UAV is
identical. By sharing the information contained in each UAV’s coordination function
across the team, each UAV computes the same cooperative timing solution. This ap-
proach efficiently utilizes the computational resources of the team and increases the
team’s robustness to a single point failure. Furthermore, coordination functions are
designed to efficiently communicate only that information essential for cooperation,
thereby reducing the communication demands on the system. Although shown for
three UAVs, the distributed structure of the architecture allows it to accommodate
larger numbers of UAVs without significantly impacting the computational require-
ments.

The coordination function information depicted as being passed among vehicles
in Figure 2 is central to the cooperative control method presented in this paper. The
following section describes coordination functions, how they are generated, and how
they are used by the Coordination Manager to find team optimal timing solutions.
Although the focus of this paper is on cooperative timing, the cooperative control
strategy based on coordination variables and coordination functions is general and
can be applied to other cooperative control problems.

Coordination Variables and Coordination Functions

Cooperative control by a team of vehicles is dependent on the environment or mission
scenario in which the vehicles are acting. To characterize the significant elements of
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Figure 2: Cooperative control architecture for team of three.

the environment, define Xi to be the situation state space for the ith vehicle and let
xi ∈ Xi be the situation state of the ith vehicle. For the timing problems considered,
the situation state includes the location of threats and targets and the current location
of the UAV. The situation state could also include weather conditions or significant
geographic features.

For a given scenario, each vehicle can act to influence the effectiveness of the
team. Let Ui(xi) be the set of feasible decision values for situation state xi, and
let ui ∈ Ui(xi) be the decision variable for the ith vehicle. In this paper, the set of
feasible decision values for a vehicle is the set of threat-avoiding paths produced by
the Waypoint Path Planner. As the notation implies, this set of paths is functionally
dependent on the situation state.

Our basic axiom implies that there is a minimum amount of information needed by
the team to effect cooperation. We will call this information the coordination variable

and denote it by θ. The coordination variable is a vector in coordination space IRc.
The essential idea is that if every agent knows the coordination variable and responds
appropriately, then cooperative behavior will be achieved. As an example, for the
simultaneous arrival constraint introduced in the previous section, the coordination
variable is the arrival time. Similarly, for the tight and loose sequencing constraints,
the coordination variable is the arrival time of the first vehicle. In general, the coop-
eration constraints, such as the timing constraints considered here, can be expressed
in terms of the coordination variable. In the Coordination Manager, selection of the
coordination variable is made to ensure that the cooperation constraints are met.

The distillation of information from situation state and decision variables (full
information) to the coordination variable representation (minimal information) is
central to this method. If fi : Xi × Ui → IRc is a function that maps situation
state and decision vector pairs to coordination space IRc, then the set of feasible
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coordination variables for the ith vehicle in situation state xi is given by

Θi(xi) =
⋃

ui∈Ui(xi)

fi (xi,ui) . (1)

In the context of cooperative timing, fi is simply a map between the waypoint path
options for a certain situation and the resulting set of possible arrival times. Note that
Θi(xi) is not necessarily a connected set. For a specific path and velocity choice given
by ui, the coordination variable takes on a unique value θi = fi(xi,ui) ∈ Θi(xi). Note
also that the cooperative timing constraints considered previously can be represented
in terms of the coordination variable. For example, simultaneous arrival constraints
can be expressed as

fi(xi,ui) = fj(xj,uj), ∀i, j ∈ {1, · · · , N}.

We assume that fi is (pseudo) invertible in the sense that there exists a function
f †

i : Xi × Θi → Ui (called the pseudo-inverse of f), such that for every θ ∈ Θi(xi),
fi(xi, f

†
i (xi, θ)) = θ. Simply stated, if the situational state and the coordination vari-

able are known, the decision variable is unique. For the timing problems considered,
this can be interpreted to mean that if the desired arrival time is specified by the
Coordination Manager, then a specific path and velocity to achieve that arrival time
can be determined.

In addition to cooperation constraints (such as those on timing), the vehicles on
the team have individual performance objectives that are typically in harmony with
the team cooperation objective. As with the coordination variable, these individual
myopic objectives are dependent on the situation state and the decision vector. For
the ith vehicle, this myopic performance objective can be represented by the function
Ji : Xi × Ui → IR. By using the relationship ui = f †

i (xi, θ) for each θ ∈ Θi(xi), the
myopic objective can be parameterized as a function of the coordination variable:

φi(xi, θ) = Ji(xi, f
†
i (xi, θ)). (2)

The function φi : Xi × Θi(xi) → IR given by Equation (2) is called the coordination

function of the ith vehicle. For a given situation state xi, the coordination function
parameterizes the myopic performance objective of the ith vehicle verses the coor-
dination variable. For the cooperative timing problems posed here, the individual
myopic objective is to avoid threats. For each UAV, the coordination function de-
scribes the threat exposure cost that would be incurred for all of the achievable arrival
times. In this case the coordination function is an efficient representation of essential
information necessary for team timing decisions.

In this paper, the cooperation problems of interest can be posed as a minimization
of a team objective function, where the team objective is a function of the individual
myopic objective functions. If JT : IRN → IR is defined as the team objective function,
then the simultaneous arrival cooperative timing problem is to find decision variables
u1, . . .uN that solve the following optimization problem:

(u1, . . . ,uN) = arg min
U1×···×UN

JT (J1(x1,u1), · · · , JN(xN ,uN)) , (3)
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subject to
fi(xi,ui) = fj(xj,uj), ∀i, j ∈ {1, · · · , N}. (4)

This optimization problem will clearly pose computational problems as the number
of vehicles increase, and for large state and decision variable dimensions.

Using coordination variables and coordination functions, a decomposition of the
optimization problem of Equations (3) and (4) that captures the information essential
for cooperation can be posed:

θ∗ = arg min
θ∈∩Θi(xi)

JT (φ1(x1, θ), · · · , φN(xN , θ)) . (5)

Cooperation is said to occur when the cooperation constraint of Equation (4) is sat-
isfied. In the decomposed formulation of Equation (5), the cooperation constraint is
implicitly satisfied through the choice of a single coordination variable value θ∗. The
objective functions of Equations (3) and (5) give a measure of the quality of cooper-
ation achieved. In the case of the cooperative timing problem, the best solutions not
only satisfy the timing constraints, but also minimize the collective threat exposure
of the team.

Once a team optimal value for the coordination variable θ∗ is found, individual
vehicle decisions can be found by solving for the decision variable from the relationship

ui = f †
i (xi, θ

∗).

This two-level decomposition process significantly reduces the computation and
communication loads. In the next section, we will apply the coordination vari-
able/coordination function framework to several cooperative timing scenarios.

Application to Cooperative Timing Scenarios

The situation state space Xi for the cooperative timing problems considered in this
paper, consists of the Cartesian product of a UAV position vector, a target position
vector, and the set of threat locations. Therefore

xi =





zi0

zif

Hi



 ,

where zi0 is the current position of the UAV, zif is the target position, and Hi is the
set of threat locations known to the ith vehicle.

The set of feasible decision vectors Ui(xi) at xi ∈ Xi is a range of feasible velocities
[vmin, vmax], and a set of waypoint paths from the UAV position to the target position.
Therefore a decision vector

ui =

(

vi

Wi

)

consists of a feasible velocity vi and a waypoint path Wi = {wi1,wi2, · · · ,wiP}, where
wi1 = zi0 and wiP = zif .
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For cooperative timing problems, coordination hinges on arrival times at the tar-
get. Therefore the coordination variable θi is the estimated-time-of-arrival (ETA) if
the UAV were to fly the waypoint path Wi at velocity vi. For a given path Wi, the
length of the path is given by

L(Wi) =
P

∑

j=2

∥

∥wij − wi(j−1)

∥

∥ .

The mapping from state and decision vectors to the coordination variable is given by

fi(xi,ui) = L(Wi)/vi. (6)

Since vi can vary over the feasible range [vmin, vmax], for a given path Wi, the set of
possible coordination variable values associated with that path is given by the compact
segment [L(Wi)/vmax, L(Wi)/vmin]. If Ui(xi) consists of a finite set of waypoint paths,
then the set of feasible coordination variables given by Equation (1) consists of the
union of a set of compact segments on IR, as shown in Figure 3.

timing - θ
path #1 path #2

path #3

+ + +, , ,

Θ(x)

Figure 3: The set of feasible coordination variables Θi(xi) is the union of a finite set
of compact intervals on IR.

In this paper we will assume that the myopic performance objective Ji is given by
a linear combination of threat cost and fuel cost:

Ji(xi,ui) = (1 − κ)Jthreat(xi,ui) + κJfuel(xi,ui), (7)

where κ ∈ [0, 1] gives the designer flexibility to emphasize exposure to threats or fuel
expenditure depending on the particular mission scenario.

The threat cost model is based on exposure to threat radar sites and is influenced
by the proximity of the threat and the length of time exposed. The signal reflected
to the threat radar is assumed to be uniform in all directions and its strength is
proportional to 1/d4 where d is the distance from the UAV to the threat.25 The total
threat cost is given by

Jthreat(xi,ui) =
∑

h∈H

P
∑

j=2

Ĵthreat(h,wj,wj−1), (8)

where

Ĵthreat(h,wj,wj−1) =
1

vi

∫ 1

s=0

1

‖h − (wj−1 + s(wj − wj−1))‖
4 ds,
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and where s ∈ [0, 1] parameterizes the straight-line path from wj−1 to wj. A closed-
form solution to this integral is given by

Ĵthreat(h,wj,wj−1) =
1

2β2 ‖wj − wj−1‖
3

[

1 − α

(1 − α)2 + β2
+

1

β
tan−1

(

1 − α

β

)

+
α

α2 + β2
+

1

β
tan−1

(

α

β

)]

,

where

α =
(h − wj−1)

T (wj − wj−1)

‖wj − wj−1‖
2

β =

∥

∥

[

‖wj − wj−1‖
2 I − (wj − wj−1)(wj − wj−1)

T
]

(h − wj−1)
∥

∥

‖wj − wj−1‖
3 .

The fuel cost for traversing an edge is calculated based on the assumption that
fuel usage rate is proportional to the aerodynamic drag force which is proportional
to velocity squared. Accordingly, the fuel required to traverse an edge of a waypoint
path from wj−1 to wj is given by

Ĵfuel(vi,wj,wj−1) =

∫ tj

tj−1

ḟ dt

= cfuelv
2
i (tj − tj−1)

= cfuelvi ‖wj − wj−1‖ ,

where cfuel > 0 is a constant. Under the assumption of constant, uniform velocity
over the path, the total fuel cost is given by

Jfuel(xi,ui) =
P

∑

j=2

Ĵfuel(vi,wj,wj−1) = cfuelviL(Wi). (9)

Next consider the problem of determining a trajectory ui ∈ Ui(xi) to achieve a
specified arrival time θ ∈ Θi(xi) for a given situation state xi. If the function fi

is a one-to-one map between U and Θ, then the inverse of fi exists and the tra-
jectory u can easily be determined from the specification of the arrival time θ. In
this case, the coordination function is equal to the myopic individual cost function:
⋃

θ∈Θi(xi)
φi(xi, θ) =

⋃

ui∈Ui(xi)
Ji(xi,ui). In practice, this is seldom the case. As illus-

trated by Figures 3 and 4, a specific arrival time can typically be achieved by more
than one trajectory.

A method for constructing a pseudo-inverse for fi is needed. As a first step in
constructing f †

i , note that for a given situation state xi, each candidate trajectory
ui ∈ Ui(x) results in both a myopic cost Ji(xi,ui) and a candidate coordination
variable θ = f(xi,ui). It is interesting to plot the locus of points

⋃

ui∈Ui(xi)
(Ji, θ) ,

which is shown in Figure 4. Each line segment represents a specific path. The spread

10



timing - θ

����

J(x,u)

path #1 path #2

path #3

+ + +, , ,

Figure 4: The locus of points (Ji, θ) over the set U(xi) for a fixed xi.

in arrival times and in the myopic cost results from the range of velocities that can
be taken along each possible path.

While several pseudo-inverses are possible for fi, in this paper we will select ui

that results in the minimum cost trajectory:

f †
i (xi, θ) = arg min

ui∈U(xi)
Ji(xi,ui)

subject to :

θ = fi(xi,ui).

The coordination function given by Equation (2) is shown in Figure 5. If fi is not
one-to-one (as it is not in Figure 5), then it follows that

⋃

θ∈Θi(xi)
f †

i (xi, θ) may only

be a proper subset of Ui, and φi(xi, ·) an approximation of Ji(xi, ·). By taking the
lowest cost trajectory for a specified arrival time, this approximation is made so that
only good, locally optimal decisions are considered from Ui.

For this problem the coordination function can be conveniently represented by
a sequence of (J, θ) pairs that define the straight-line segments represented in Fig-
ure 5. Therefore the coordination function for each vehicle is simple to represent and
communicate.

In this paper, the team objective function JT is simply the sum of myopic objective
functions:

JT (J1, · · · , JN) =
N

∑

i=1

Ji ≈
N

∑

i=1

φi(θ).

As such, the team objective can easily be expressed as a function of the individual
coordination functions. The problem then becomes that of finding the best value of
the coordination variable for the team.
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����

J(x,u)

path #1 path #2

path #3

φ(x,θ )

+ + +, , ,

Figure 5: The coordination function is based on a pseudo-inverse of f that selects
lowest cost path associated with the candidate coordination variable θ.

Simultaneous Arrival Constraints

For a team of N vehicles that are constrained to arrive simultaneously at their des-
tinations, the simultaneous arrival constraint can be stated simply as

T1 = T2 = · · · = TN = Ts,

where Ti = f(xi,ui) given in Equation (6), and θ = Ts is the coordination vari-
able. The upper plot in Figure 6 shows coordination functions for a team of three
vehicles. The team optimization problem can be visualized as sweeping through the
coordination functions while continually monitoring their sum (the team objective).
For the timing problems considered here, the coordination functions are piecewise
monotonically increasing. It can be shown that the team optimum occurs at the left
extreme of a piecewise continuous segment of one of the coordination functions. The
resulting optimization problem is therefore straightforward to solve, requiring only a
global search through the left extreme points of each of the coordination functions.

Tight Sequencing Constraints

Tight sequencing is characterized by enforcing specified intervals between the arrival
times of each of the vehicles composing the team. The middle plot of Figure 6 shows
coordination functions for a team of three vehicles with the vertical lines indicating
the spacing in arrival times. The tight sequencing constraint for a team of vehicles
can be formulated as

T1 = Ts

Ti = Ts + ∆i i = 2, · · · , N,

where ∆i represents the interval between the arrival of the first and ith vehicles, and
θ = Ts is the coordination variable. The mapping of Equation (6) must therefore be
modified to

fi(xi,ui) = L(Wi)/vi − ∆i.
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The team-optimal arrival time for one of the vehicles will occur at the left extreme of a
piecewise continuous segment of its coordination function. The corresponding optimal
arrival times for the other vehicles will be determined by the specified intervals.
Therefore, as indicated in Figure 6, the team optimization problem can be formulated
as sweeping through the set

⋂N

i=1 Θi(xi) and examining the critical points where the
vertical timing line of each vehicle intersects the left extremes of its coordination
function.

Loose Sequencing Constraints

Loose sequencing can be described as having desired arrival time windows for each
vehicle on the team. The lower plot of Figure 6 depicts coordination functions with
the vertical bars indicating acceptable time windows for each vehicle on the team.
Loose sequencing constraints can be stated as

Ts ≤ T1 ≤ Ts + τ1

Ts + ∆i ≤ Ti ≤ Ts + ∆i + τi i = 2, · · · , N,

where ∆i is the time interval between the opening of the first time window and the
opening of the ith time window and τi indicates the duration of the ith time window.
The coordination variable is given by θ = Ts and fi in Equation (6) must be modified
to

fi(xi,ui) = L(Wi)/vi − ∆i − σi,

where σi ∈ [0, τi] is a slack variable. In this case, the team optimal arrival time for
one of the vehicles will occur when the right side of its time window intersects the left
extreme of a piecewise continuous segment of its coordination function. Team optimal
times for the other vehicles will either occur at the left side of their windows or at
discontinuities in their coordination functions inside their time windows. Searching
through these options to find the optimum is straightforward and fast.

In general, timing constraints for simultaneous arrival, tight sequencing, and loose
sequencing can be stated in the form

Ts + ∆i ≤ Tj ≤ Ts + ∆i + τi i = 1, · · · , N, (10)

where ∆1 = 0 and ∆i and τi are specified for each of the N vehicles composing the
team. For loose sequencing, ∆i and τi are positive constants. For tight sequencing,
∆i are positive constants and τi = 0. For simultaneous arrival, ∆i = τi = 0. The
timing constraints of Equation (10), can be written as

Ts + ∆i − Ti ≤ 0

Ti − Ts − ∆i − τi ≤ 0 i = 1, · · · , N

which is of the general form c(T1, · · · , TN) ≤ 0. This formulation for timing con-
straints is inherently flexible and can accommodate a mixture of simultaneous arrival,
tight sequencing, and loose sequencing constraints in the same mission.
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Waypoint Path Planning

The cooperative timing solutions described in the previous section depend upon the
availability of a set of feasible decision vectors

Ui(xi) =

{(

vi

Wi

)}

,

where vi ∈ [vmin, vmax] and Wi = {wi1, · · · ,wiP} is a waypoint path, given the current
decision state

xi =





zi0

zif

Hi



 ,

where zi0 is the start location, zif is the target location, and Hi = {h1, · · · ,hM} is the
set of known threat locations. The role of the Waypoint Path Planner (WPP) is to
generate a sufficiently rich set of feasible decision variable vectors. This section briefly
describes our approach to the waypoint path planner. More detailed descriptions
appear in Refs. 18 and 19.

The WPP is called at the beginning of a specific mission and at other event driven
instances during the mission, such as when a target is reached or when a previously
unknown threat is detected. The WPP consists of three stages. In the first stage, a
Voronoi graph is constructed using the initial and destination points and the known
threat locations. In the second stage, costs are assigned to each edge of the Voronoi
graph. In the third stage, paths from the present location to the desired destination
are generated from a k-best path search.

For a battle area having M threats, the Voronoi graph partitions the battle area
into M convex polygons or cells. Each cell contains one threat and every location
within a cell is closer to the enclosed threat than to any other. The edges of the
Voronoi graph represent lines that are equidistant from the two closest neighboring
threats. Therefore, the graph edges maximize the distance from the two closest
threats. The Voronoi graph also contains initial and final locations within cells to
ensure that threats will be avoided when joining and leaving the graph. The current
location and destination of the UAV are nominally not on the graph. To connect them
to the graph, edges are connected between the start and end points and the adjacent
nodes. Figure 7 shows a Voronoi diagram created for a set of specified threats, UAV
location, and target location.

To search the graph, the cost associated with traversing each edge must be de-
termined. Edge costs are assigned by using the myopic cost metric introduced in
Equation (7), where the Jthreat and Jfuel given in Equations (8) and (9) are applied
separately to each edge.

With the costs for traversing an edge defined and the start and destination loca-
tions joined to the graph, the graph is searched using Eppstein’s k-best paths algo-
rithm.26 Eppstein’s algorithm is similar to Dijkstra’s algorithm with the exception
that the k-best paths are found rather than simply the best path. Modifications have
been made to Eppstein’s algorithm to allow edges to be traversed in both directions.
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Figure 7: Threat-based Voronoi diagram. The threats are represented by dots.

Paths traversing an edge in one direction and then immediately in the opposite di-
rection are not allowed, although edges can be traversed multiple times in the same
path if the algorithm dictates that this is cost effective. The parameter k is used to
specify the number of paths Wij in Ui(xi). Therefore

Ui(xi) = [vmin, vmax] × {Wi1, · · · ,Wik} .

Figure 7 shows the five best paths resulting from the WPP. Paths 1, 2, and 4 are
very similar with the only differences occurring near the start point. Paths 1 and 5
are identical with the exception of the detour in path 5 near the end. Path 3 takes
an altogether different route from the other paths.

Waypoint path planning based on the Voronoi graph is computationally efficient.
Generation and searching of a Voronoi graph with 100 threats takes about 10 ms on
a desktop personal computer. A primary advantage of the Voronoi graph approach is
that it reduces the path planning problem from one having a continuum of solutions
(that are infinite in number) to a problem having a finite number of threat-avoiding
solutions. The efficiency of the method is directly associated with this reduction
in the solution space. This abstraction makes the waypoint path planning problem
feasible in real time. One disadvantage of the WPP is that it produces straight-line
paths that cannot be flown accurately by a UAV. This problem is overcome by the
dynamic trajectory smoother (DTS), which is discussed next.

Dynamic Trajectory Smoothing

As shown in Figure 1, the Coordination Manager, using the WPP, produces waypoint
paths for each vehicle that are both low in cost and satisfy the timing constraints.
The objective of the Dynamic Trajectory Smoother (DTS) is to smooth the straight-
line waypoint paths into time-parameterized trajectories that are flyable by the UAV.

16



Since the UAV will be operating in a dynamic environment with popup and dy-
namically moving threats, the smoothing process must take place in real-time. The
waypoint paths have been chosen to satisfy timing constraints, therefore the trajecto-
ries must be smoothed so that the resulting path length is identical to the waypoint
path. In addition, since individual and team objectives are based on the cost of the
waypoint paths, the smoothed trajectory must deviate, as little as possible from the
waypoint paths produced by the coordination manager/WPP.

In this paper we assume that the UAV is flying at constant altitude and is equipped
with trajectory tracking capability. The input to the DTS is a constant feasible
velocity vc

i ∈ [vmin, vmax], and a constant waypoint path

Wi = {wi1,wi2, . . . ,wiP} ,

where wij ∈ IR2 denote the waypoints expressed in inertial coordinates.
The essential idea of our approach is to give the trajectory generator a mathemat-

ical structure that captures the dominant dynamic behavior of the UAV. In particular
the DTS is given by the differential equations

żc
ix = vc

i cos ψc
i

żc
iy = vc

i sin ψc
i (11)

ψ̇c
i = ui

where ui ∈ [−c, c] is chosen to minimize the deviation from Wi and to ensure that the
trajectory has the same path length as Wi. Although relatively simple, Equations (11)
effectively model the heading and position states of a UAV in level, constant-speed
flight. The DTS equations are solved via a fixed-step ODE solver and are propagated
in real-time. If a fourth-order Runge-Kutta algorithm27 is used then ui is computed
four times each sample period. Therefore, the computational complexity is partially
dependent upon the computation of ui.

Note that if ui = +c, then the DTS given in Equation (11) traces out a right-
handed circle as shown in Figure 8. Similarly, if ui = −c then the DTS traces out a
left-handed circle. As shown in Figure 8, the local reachability region of the DTS is
bounded by these two circles. The radius of the circles defining the local reachability
region is given by Ri =

vc
i

c
. Note that as the desired velocity increases, the minimum

turning radius increases.
Consider the problem of turning from one waypoint path segment onto another

in minimum time at constant velocity. If the trajectory is not constrained to pass
through the waypoint connecting the two segments, then the time-optimal trajectory
connecting the segments is indicated by the red line of Figure 9. If the trajectory
is constrained to pass through the intermediate waypoint, then the time-optimal
trajectory between the segments is indicated by the blue line.

One of the disadvantages of both minimum-time transitions and transitions con-
strained to go through the waypoint is that the trajectories will have different path
lengths than the original Voronoi path. Since the Voronoi path is used for determining
intercept times, it is important for the smoothed trajectory to have the same length
as the original Voronoi path.
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From Figure 9, it is clear that the path length of the minimum-time trajectory
is shorter than the path length of the Voronoi path, while the path length of the
constrained trajectory is longer than the Voronoi path. As Figure 10 shows, by
positioning the transition circle between the inscribed circle and the circle that inter-
sects the waypoint, a transitioning trajectory can be determined that has the same
length of the original Voronoi path. Details of this trajectory generation strategy
and algorithms for implementing it can be found in Refs. 28 and 6. The trajectory
smoothing approach taken here is computationally efficient. On average, one step of
the smoothing algorithm requires about 40 µsec on a desktop computer. The out-
put of the trajectory generator is a smooth trajectory (ẑix(t), ẑiy(t)) for the UAVs to
follow, calculated in real time as the they move between waypoints.

Simulation Results

Simulation results are presented for a team of three UAVs flying three different mis-
sions: simultaneous arrival, tight sequencing, and loose sequencing. In each mission,
there is one target and 33 threats distributed over a 5 km square battle area. The
objective is to avoid the threats while meeting the timing constraints imposed for the
mission. Collision avoidance is not treated explicitly and is achieved by flying the
UAVs at different altitudes.

For the simulations, small 6 foot wingspan UAVs are simulated using 12th-order
nonlinear dynamic models. The DTS on each UAV produces desired heading, velocity,
and position commands to be tracked to accomplish the cooperative timing objectives.
Commands are tracked using a trajectory tracking algorithm based on the satisficing
framework.29,30 This approach guarantees asymptotic tracking under the velocity
and heading rate constraints imposed on the UAV. One particular advantage of this
approach for real time implementation is its computational simplicity.

Simultaneous Arrival Constraints

Simulation results for the simultaneous arrival mission are presented in Figure 11.
The trajectories taken to the target are indicated by dotted lines. The larger dots
along each trajectory indicate 50 second intervals. The initial jog in the path of the
blue UAV is a low-risk deviation that enables simultaneous arrival at the target with
the other team members.

The desired arrival time for the team determined by the Coordination Manager
was 450.1 seconds. Figure 12 shows range-to-target information for each of the three
missions. From the simultaneous arrival results in the upper plot it can be seen that
the UAVs arrived at the target at 450 seconds as commanded. The small errors in
the arrival time that do exist can be attributed to tracking errors by the UAVs.

Coordination functions for the team for each of the missions are shown in Fig-
ure 13 (paths resulting in arrival times outside

⋂N

i=1 Θi(xi) have been deleted). Each
line segment represents one possible trajectory for a UAV. In the upper plot, the
team-optimal ETA for simultaneous arrival is indicated by the black vertical line. It
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Figure 11: Simultaneous arrival paths to target.

can be seen that the optimal ETA occurs at the left extremes of a coordination func-
tion segment for UAV 3 (blue). From an individual, myopic perspective, this team
ETA is optimal for UAV 3, close to optimal for UAV 1 (red), and suboptimal for
UAV 2 (green). Considering the entire team however, the indicated ETA is most cost
effective. In examining Figure 13, it is important to recognize that the coordination
functions represent the essential information for good team timing decisions. Their
value lies in the compactness of this representation.

Tight Sequencing Constraints

Simulation results for tight sequencing are shown in Figure 14 where the UAVs are
required to arrive at the target with a 40 second interval between UAV 1 and UAV 2
and a 50 second interval between UAVs 2 and 3. Comparing with simultaneous arrival
case of Figure 11, it can be seen that UAV 1 and UAV 3 take the same paths, while
UAV 2 takes a slightly longer, but less costly route.

The desired arrival times produced by the Coordination Manager for the team
are 449.4, 489.4, and 539.4 seconds. The range data in the middle plot of Figure 12
shows that these times are met very closely. The middle plot of Figure 13 shows
coordination function information for the tight sequencing mission. Vertical colored
lines indicate the desired ETAs for each of the UAVs. Note that each line segment
on the coordination function plot corresponds to a unique path. The width of each
segment corresponds to a range of speeds that can be flown by the UAV. From this
information, it can be seen that UAV 1 flies virtually the same trajectory as in the
simultaneous arrival case, UAV 2 flies a slower, less costly path, and UAV 3 flies
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Figure 12: Range to target for missions.

the same path at a much slower velocity. The optimum occurs at a left extreme of a
coordination function segment for UAV 2 (489.4 seconds). The arrival time for UAV 1
is offset 40 seconds earlier, while the arrival time for UAV 3 is offset 50 seconds later.

Loose Sequencing Constraints

The loose sequencing constraints give the UAVs flexibility in their arrival times
through the use of acceptable time windows. For the problem considered, the open-
ing of the second arrival time window occurs 40 seconds after the first, while the
opening of the third arrival time window occurs 50 seconds after the second. The
first and second windows are 20 seconds wide, while the third window is 30 seconds
wide. Figure 15 shows simulation results for the loose sequencing scenario. As before,
UAV 1 and UAV 3 fly the same paths (although at different velocities) as in the other
cases, but UAV 2 flies a different path. The additional flexibility provided by the
time windows allows it to choose a lower-cost path.

The desired arrival times determined by the Coordination Manager are 448.1,
469.7, and 518.1 seconds. The bottom plot of Figure 12 shows range to target data
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Figure 13: Coordination functions for missions.

for the UAVs that confirms arrival at times very close to those desired. The bottom
plot of Figure 13 shows coordination function information for loose sequencing. In
this case, the shaded regions show the acceptable time windows for each UAV, while
the colored vertical lines indicate the desired arrival time for each vehicle. For UAV 1
the desired arrival time is at the upper limit of the time window, while for UAV 3 the
desired arrival time is at the lower limit of the time window. By making their arrival
times as close as the windows will allow, the cost to the team is minimized. For
UAV 2, the minimum cost lies on the interior of the time window at the left extreme
of a coordination function segment rather than the lower or upper bound. Clearly,
the flexibility provided by time windows in the loose sequencing scenario results in a
lower cost solution than the tight sequencing case.

Conclusions

In this paper we have outlined a cooperative control strategy based on coordination
functions and coordination variables. While sufficiently general to address a wide
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Figure 14: Tight sequencing paths to target.
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Figure 15: Loose sequencing paths to target.
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range of problems, we have applied the approach to cooperative trajectory planning
problems involving timing constraints. Simultaneous arrival, tight sequencing, and
loose sequencing constraints can each be accommodated using the cooperative con-
trol algorithms and constraint formulations developed. Primary advantages of the
approach include: (1) the distillation of information essential for cooperation leading
to low communication demands and (2) the efficient formulation and solution of the
team-optimal cooperation problem leading to real-time implementation on hardware
platforms.
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Nomenclature

(·)i variable pertaining to the ith UAV
cfuel fuel consumption constant
fi map from decision variable to coordination variable
Hi known threat locations
h threat location
Ji UAV myopic performance objective
Jfuel waypoint path fuel cost
Jthreat waypoint path threat cost
JT team performance objective
L waypoint path length
Ri turn circle radius
Ti arrival time
Ts time of first arrival for team
Ui decision space
ui decision variable
ui heading rate input
vmin UAV minimum velocity
vmax UAV maximum velocity
vi UAV velocity
vc

i UAV velocity command
Wi waypoint path
wij waypoint
Xi situation state space
xi situation state
zi0 current UAV position
zif UAV destination position
zc

ix inertial x position command
zc

iy inertial y position command
∆i arrival time spacing interval
κ cost function weighting factor
φi coordination function
ψc

i heading command
Θi set of feasible coordination variable values
θ coordination variable
τi arrival time window width
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