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ASSESSING CHEATGRASS (BROMUS TECTORUM) GENETIC DIVERSITY 
AND POPULATION STRUCTURE USING RAPD AND 

MICROSATELLITE MOLECULAR MARKERS

Michael C. Ashley1,3 and William S. Longland1,2

ABSTRACT.—Two molecular marker systems, random amplified polymorphic DNA (RAPD) and microsatellites, were
used to evaluate population diversity and differentiation in 4 northern Nevada Bromus tectorum populations. From 80
RAPD primers, we found 16 (20%) that yielded 165 strong repeatable bands. Of those bands, 60 (35.8%) were polymor-
phic. Of those, 21 met data-pruning guidelines for final analysis. RAPD variation was moderate (x– = 0.363, sx– = 0.022),
ranging from 0.312 to 0.404. Microsatellite variation was similar (x– = 0.234, sx– = 0.051) but varied more widely, rang-
ing from 0.009 to 0.551. All populations were out of Hardy-Weinberg equilibrium, as expected in a predominantly self-
ing species. RAPDs revealed significant differentiation (P < 0.0001) across populations, whereas microsatellites only
resolved 2 of the 4 populations. RAPDs revealed a considerable amount of variation in the 2 populations, Hot Springs
and Truckee, which had nearly identical microsatellite profiles. Of 184 individuals, we found 182 unique RAPD pheno-
types. We found 51 microsatellite genotypes across individuals, one of which was present in 95.3% of the individuals in
the Hot Springs–Truckee group and 29% of the Stillwater individuals. The UPGMA phenograms were similar in group-
ing Hot Springs with Truckee, and Stillwater with Peavine, and were highly correlated but not significantly. Both
marker systems proved useful in assessing population genetic variation. One population-specific RAPD marker and 6
new microsatellite-length polymorphisms were identified. Both marker systems may also prove useful in studying other
closely related species such as red brome (Bromus rubens).
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Molecular markers are powerful tools for
studying population genetics (Haig 1998,
Parker et al. 1998, Sunnucks 2000). Four fre-
quently used marker systems are isozymes,
random amplified polymorphic DNA (RAPD),
amplified fragment length polymorphisms
(AFLP), and microsatellites (Sunnucks 2000).
The use of molecular markers to study popula-
tion genetics of plants is widespread. For exam-
ple, such markers have been applied to crop
improvement (Virk et al. 2000, Ferdinandez et
al. 2001), conservation (Cole and Kuchen-
reuther 2001, Mattner et al. 2002), and resis-
tance to pesticides (Rutledge et al. 2000) and
pathogens (Araújo et al. 2001, Levi et al. 2001,
Ramakrishnan et al. 2004), the latter being
important in crop and weed management. Mol-
ecular genetic studies employ from one (Rut-
ledge et al. 2000, Ferdinandez et al. 2001,
Novak 2004) to several (Russell et al. 1997,
Sun et al. 1999, Virk et al. 2000) marker sys-
tems. Questions can be addressed at many
levels of resolution, for example among acces-
sions within a varietal group (Russell et al.

1997, Araújo et al. 2001), among populations
(Green et al. 2001, Bartlett et al. 2002, Mattner
et al. 2002, Ramakrishnan et al. 2004), and
among species (Ferdinandez and Coulman
2002, Fu et al. 2002).

Microsatellites and RAPDs differ in the
way they reveal genetic diversity. RAPDs
amplify fragments that are dominant, meaning
that both homozygous and heterozygous indi-
viduals produce a band, while homozygous
nulls produce no band. This results in binary
phenotypic (1/0) data (Williams et al. 1990,
Sunnucks 2000). Direct detection of heterozy-
gotes with these data is not possible (Williams
et al. 1990, Sunnucks 2000), and estimation of
heterozygosity is limited to non-inbreeding
species in Hardy-Weinberg equilibrium (Lynch
and Milligan 1994). RAPDs do allow for sur-
veying many bands per decamer primer; they
are relatively inexpensive and eliminate the
time and expense of microsatellite primer
development (Williams et al. 1990). Most micro -
satellite alleles, on the other hand, are codom-
inant markers, meaning that every individual



carries 2 alleles of the marker, allowing for
identification of heterozygous individuals (Haig
1998, Parker et al. 1998, Sunnucks 2000).

Cheatgrass (Bromus tectorum) is a highly
invasive exotic annual grass that has spread
throughout North America, most heavily in
the Intermountain West (Mack 1981, Novak et
al. 1991), and has had enormous ecological
impacts since its introduction to North Amer-
ica in the late 19th century (Young and Evans
1978, Knapp 1996, DiTomaso 2000). Differen-
tiation of cheatgrass populations has been
demonstrated with allozymes (Novak et al.
1991, Novak and Mack 2001, Bartlett et al.
2002, Novak 2004) and microsatellite markers
(Ramakrishnan et al. 2002, Ramakrishnan et
al. 2004, Ramakrishnan et al. 2006). Localized
adaptation has been demonstrated with recip-
rocal planting (Rice and Mack 1991) and com-
mon garden studies (Meyer and Allen 1999).
These studies all point to the tendency for
cheatgrass populations to differentiate and
sometimes develop adaptive allelic complexes. 

Surveying the genetic variation of any
species with a single molecular marker system
may lead to erroneous conclusions, as one or
more populations may be genetically different
yet exhibit little or no variation relative to the
marker employed (Ayers and Strong 2001). In
a recent microsatellite study of heterozygosity
in 4 cheatgrass populations from northern
Nevada (Ashley and Longland 2007), we found
2 populations that, despite being assayed with
7 loci, exhibited both low genetic variation
and lack of differentiation. Our goals for this
paper are to use microsatellite and RAPD
markers to evaluate genetic variation within
and among 4 cheatgrass populations residing
in different habitats and having different his-
tories and to address the relative advantages
and disadvantages of the 2 marker systems.
This paper marks the first use of both
microsatellites and RAPDs to evaluate popula-
tion variation and differentiation in cheatgrass
populations.

METHODS

Study Area

We sampled individual plants in 2003 from 4
locations in northern Nevada: Hot Springs
Mountains (39°40�N, 119°05�W; Churchill
County), Truckee Range (39°40�N, 119°10�W;
Churchill County), Peavine Mountain (39°35�N,

119°05�W; Washoe County), and Stillwater
Wildlife Refuge (39°40�N, 118°35�W; Churchill
County). The Hot Springs Mountains popula-
tion (Hot Springs) is a semistable dune habitat
supporting a salt desert shrub community typ-
ified by the genera Sarcobatus, Atriplex, and
Tetrademia. The Hot Springs Mountains pop-
ulation is relatively new. Ecological studies of
rodent-plant interactions had been ongoing
since 1992, when cheatgrass was not present.
Following 3 relatively wet years, cheatgrass
invaded and became widespread by 1995. The
Truckee Range (Truckee) population is in an
alluvial salt desert community and has been
present for at least 20 years. Peavine Moun-
tain (Peavine) supports both a long-standing
cheatgrass population as well as a shrubsteppe
community on alluvial soils, with sagebrush
(Artemisia tridentata) as the dominant shrub.
The Stillwater Wildlife Refuge (Stillwater) had
been burned recently; the result was a virtual
cheatgrass monoculture surrounded by a salt
desert community with a clay-loam substrate.
These 4 population collection sites also repre-
sent moderate elevation differences, with Still-
water at ~1200 m, Hot Springs at ~1250 m,
Truckee Range at ~1300 m, and Peavine Moun-
tain at ~1650m.

Sample Preparation

We collected single plants ≥5 m apart,
placed them individually in marked plastic
bags, and stored them at –80 °C until DNA
extraction. We extracted DNA from green tissue
(excluding seed heads and roots) ground under
liquid nitrogen using a Qiagen DNEasy® Plant
Mini Kit. DNA sample concentration was
measured using an Eppendorf BioPhotometer.
The bulk DNA samples were stored at –80 °C
while 10 μg ⋅ μL–1 template aliquots were
stored at –10 °C until use.

Microsatellite Techniques

Eighteen species-specific microsatellite
primer pairs were developed for Bromus tec-
torum by Ramakrishnan et al. (2002). Of those
primer pairs 6 amplified poorly, 3 exhibited
serious subbanding, 2 were monomorphic, and
the remaining 7 amplified from 2 to 7 alleles
across 4 populations screened for polymor-
phism (Ramakrishnan et al. 2002). We chose to
use all 7 of those polymorphic microsatellite
primers (Ramakrishnan et al. 2002) for our
analyses. We amplified DNA products with a
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Perkin Elmer GeneAmp 9600 PCR thermo -
cycler, using Applied Biosystems Amplitaq
Gold DNA polymerase and reagents. Following
Ramakrishnan et al. (2002), we optimized the
reactions by primer to attain strong band pro-
duction in single primer reactions. Reaction
volume was 25 μL consisting of 2.5 μL 10X
reaction buffer, 2–3 μL of 25 mM magnesium
chloride, 2 μL dNTP mix (2.5 mM each dATP,
dCTP, dGTP, and dTTp), 1–2 μM primer, 0.5
U DNA polymerase, 50 ng DNA template, and
deionized water to volume in a 0.2-mL reac-
tion tube. The PCR profile was 45 cycles of
95 °C (1 minute), 60 °C (30 seconds), 72 °C (30
seconds). Amplification was preceded by a
polymerase activation cycle of 95 °C (10 min-
utes) and followed by a final extension cycle at
72 °C for 30 minutes. All primers had fluores-
cent labels ligated to either the forward or
reverse primer for visualization and fragment
size estimation by capillary electrophoresis on
an ABI3730 automated sequencing machine
along with ABI LIZ® molecular size standard.
We combined products from the singlet reac-
tions into 2 multiplex plates for fragment analy-
sis, the expected fragment lengths and dyes
allowing for reliable fragment discrimination
in the same run. The first multiplex combined
NED-labeled Bt05, PET-labeled Bt 26, VIC-
labeled Bt30, and PET-labeled Bt33. The
second multiplex combined PET-labeled Bt03,
6-FAM-labeled Bt04, and NED-labeled Bt12.
The raw size data were analyzed using Gene -
Scan© v.3.1 software. All putative hetero -

zygotes were amplified and analyzed a second
time.

RAPD Techniques

In a preliminary single population study of
this species, we screened Operon Technology
decamer primer sets A, F, K, and P (n = 80)
for polymorphisms and found 16 primers that
produced at least 1 strong repeatable variable
band. That set of primers was employed in
this study (Table 1). The amplification reactions
were done with a Perkin-Elmer GeneAmp
9600 PCR thermocycler, using Applied Biosys-
tems Amplitaq Gold® DNA polymerase and
reagents. We optimized the reaction protocol
for each of the primers, resulting in a general
reaction cocktail consisting of 2.5 μL 10X reac-
tion buffer, 2–3 μL magnesium chloride, 2 μL
dNTP mix (2.5 mM each dATP, dCTP, dGTP,
and dTTP), 1–2 μM primer, 0.5 U DNA poly-
merase, 50 ng DNA template, and deionized
water to a final reaction volume of 25 μL in a
0.2-mL reaction tube. The PCR profile was 45
cycles of 95 °C (1 minute), 34 or 36 °C (30 sec-
onds), a 7-minute ramp to 72 °C (2 minutes)
preceded by a polymerase activation cycle of
95 °C (10 minutes) and followed by a final
extension cycle of 72 °C for 30 minutes.

All RAPD reactions were run and screened
twice to ensure repeatability of bands, which
were then evaluated for polymorphism. We
separated the amplification products on 1.4%
ethidium bromide–stained agarose minigels at
75 V for 20–30 minutes and at 100 V for 1–1.5
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TABLE 1. Operon Technologies RAPD primers and band polymorphism profiles. In brackets are the values for poly-
morphic loci per primer that remained for use in the analysis after data pruning.

Primer Sequence (5�-3�) Bands (n) Polymorphic (n) % Polymorphic

A2 TGCCGAGCTG 6 3 50.00
A4 AATCGGGCTG 9 3 33.33
F3 CCTGATCACC 7 4 [3] 57.14 [42.85]
F4 GGTGATCAGG 12 5 [1] 41.67 [8.33]
F12 ACGGTACCAG 13 9 [3] 69.23 [23.08]
F13 GGCTGCAGAA 14 2 14.29
F16 GGAGTACTGG 8 4 [1] 50.00 [12.50]
K4 CCGCCCAAAC 7 6 [2] 85.71 [28.57]
K7 AGCGAGCAAG 10 1 [1] 10.00 [10.00]
K8 GAACACTGGG 7 1 14.29
P3 CTGATACGCC 13 5 [4] 38.46 [30.77]
P5 CCCCGGTAAC 12 6 [3] 50.00 [25.00]
P9 GTGGTCCGCA 11 6 [2] 54.55 [18.18]
P10 TCCCGCCTAC 8 3 37.50
P12 ACGGTACCAG 13 1 7.69
P17 TGACCCGCCT 15 1 [1] 6.67 [6.67]
Mean 10.31 3.75 [2.1] 38.78 [12.87]
sx– (0.73) (0.58) [0.34] (5.83) [3.41]



hours, with run times adjusted for band lengths
by primer. Each gel also contained 2 lanes
loaded with 5 μL of Minnesota Molecular Hi-
Lo™ DNA marker for fragment size estima-
tion. We visualized the separated products
with a GDS-8000 ChemiSystem® UV imaging
system, and we estimated band sizes using
UVP LabWorks 3.0 software (Fig. 1). All
strong repeatable bands were counted for
each primer, and polymorphic bands were
scored for presence (1) or absence (0). Data
pruning was applied to the polymorphic loci
for all populations following Lynch and Milli-
gan (1994): band frequency < 1 – (3/N).

Data Analysis

Microsatellite data were analyzed with
TFPGA (Miller 1997), FSTAT (Goudet 1995),
and Arlequin© (Excoffier et al. 2005) software

packages. In TFPGA, Hardy-Weinberg equilib-
rium was estimated, following Guo and Thomp-
son (1992), using an exact test employing a
Monte Carlo random generation of alternate
data distributions containing the same allele
frequencies. Significance was determined by
calculating the proportion of the random dis-
tributions that had conditional probabilities
less than or equal to the conditional probability
of the observed data. The Monte Carlo routine
was run with 10 batches of 1000 permutations
and 2000 dememorization steps. Population
differentiation was evaluated in TFPGA as 2
× 2 comparisons of genotype frequencies with
a similarly parameterized Monte Carlo simula-
tion. Genetic distance values and a phenogram
for microsatellite data were produced in
TFPGA following Nei’s (1978) unbiased mini-
mum distance method. In FSTAT, population

66 WESTERN NORTH AMERICAN NATURALIST [Volume 69

 

Fig. 1. Image of RAPD PCR products from 9 Peavine Mountain individuals for primer K4 visualized under ultraviolet
light and ethidium bromide staining. “L” indicates lanes loaded with Hi-LoTM molecular weight marker with 3 labeled
bands.



specific FIS was calculated using Weir and
Cockerham’s (1984) estimators of F-statistics.
Gene diversity in FSTAT was summarized as
the population mean of estimated heterozygos-
ity at individual loci following Nei (1973) and
adjusted for deviation from Hardy-Weinberg
equilibrium by substituting n for 2n in the

basic calculation following Nei (1978). Popula-
tion-specific descriptive statistics produced
with FSTAT were used to summarize the para-
meters A (average number of alleles per locus)
and P (proportion of polymorphic loci). Pair-
wise FST estimates and population-level gene -
tic evaluations were produced in Arlequin©
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TABLE 2. Allelic lengths in base pairs and frequencies per locus of the 7 species-specific microsatellite markers used
for the 4 study populations: Hot Springs, Truckee, Peavine, and Stillwater (from Ashley and Longland 2007).

Population________________________________________________________________
Locus Allele Hot Springs Truckee Peavine Stillwater

Bt03 108 0.000 0.000 0.000 0.097†

110 1.000 0.960 0.742 0.419
112 0.000 0.040 0.258 0.387
114 0.000 0.000 0.000 0.065†

126 0.000 0.000 0.000 0.032†

Allele count 5 1 2 2 5

Bt04 106‡ 0.000 0.000 0.008 0.387
108 0.017 0.000 0.023 0.000
110 0.983 1.000 0.969 0.597
114 0.000 0.000 0.000 0.016†

Allele count 4 2 1 3 3

Bt05 161‡ 0.000 0.040† 0.000 0.000
165 0.000 0.000 0.182† 0.000
167 1.000 0.960 0.432 0.581
171 0.000 0.000 0.167† 0.000
173 0.000 0.000 0.023 0.387
175 0.000 0.000 0.197 0.016
179 0.000 0.000 0.000 0.016†

Allele count 7 1 2 4 5

Bt12 248 1.000 1.000 0.924 0.516
258 0.000 0.000 0.000 0.064†

260 0.000 0.000 0.076 0.420
Allele count 3 1 1 2 3

Bt26 134‡ 0.000 0.000 0.038† 0.000
146 0.000 0.040 0.417 0.129
150 0.000 0.000 0.538† 0.000
152 0.000 0.000 0.000 0.081†

154 0.000 0.000 0.000 0.371†

156 0.000 0.000 0.000 0.016†

158 0.000 0.000 0.000 0.016†

160‡ 0.017 0.000 0.008 0.032
162‡ 0.983 0.960 0.000 0.355

Allele count 9 2 1 4 7

Bt30 106‡ 0.000 0.000 0.000 0.016†

110 0.000 0.000 0.000 0.065†

112 1.000 1.000 0.940 0.919
114 0.000 0.000 0.060† 0.000

Allele count 4 1 1 2 3

Bt33 219 0.000 0.040 0.788 0.452
221 0.000 0.000 0.000 0.065†

223 0.000 0.000 0.212 0.129
225 1.000 0.960 0.000 0.355

Allele count 4 2 2 2 4
†Private alleles within the scope of the populations studied.
‡Allele lengths beyond the ranges reported by Ramakrishnan et al. (2006).



(Excoffier et al. 2005) from which the parame-
ters He (expected heterozygosity) and Ho
(observed heterozygosity) were summarized.

RAPD data were analyzed with TFPGA
(Miller 1997), Arlequin© (Excoffier et al. 2005),
and PopGene v1.31 (Yeh and Boyle 1997).
Population differentiation was evaluated in
TFPGA as described above with RAPD  pheno-
types rather than microsatellite genotypes.
Genetic distance values and a phenogram for
RAPD data were constructed in the same man-
ner as for microsatellites. As with the micro -
satellite data, pairwise FST estimates were gen-
erated using Arlequin© (Excoffier et al. 2005)
software.

Although TFPGA utilizes dominant marker
analyses following Lynch and Milligan (1994),
this software assumes Hardy-Weinberg equi-
librium by default, thereby overreporting
expected heterozygosity. We estimated q (esti -
mated frequency of the null allele) from RAPD
data following Lynch and Milligan (1994)
and employed their equation for estimating
expected heterozygosity:

PMm = 2pq(1 – FIS) ,

with the population level FIS values derived
from the analysis of microsatellite data with
FSTAT and p = 1 – q. Doing so allowed us to
estimate mean heterozygosity while making
an allowance for departure from Hardy-Wein-
berg equilibrium. Population-level gene diver-
sity values were generated from the RAPD
data with Popgene v1.31 (Yeh and Boyle 1997),
which can calculate the estimates without the
assumption of Hardy-Weinberg equilibrium.

Partitioning of variation by analysis of mol-
ecular variance (AMOVA) was conducted for
both marker types in Arlequin© (Excoffier et
al. 2005) with the RAPD phenotypes analyzed
as binary haplotypes, equivalent to RFLP data.
As heterozygosity cannot be determined with
RAPDs, variance partitioning was restricted

to among individuals within populations, and
among populations. Microsatellites, however,
can detect heterozygosity, allowing for parti-
tioning of variance among populations, within
populations, and within individuals. The micro-
satellite and RAPD distance matrices were
tested for significant correlation with a Mantel
test in TFPGA.

RESULTS

Molecular Polymorphisms

Microsatellite amplifications produced from
3 to 9 alleles per locus and from 1 to 5 alleles
per locus per population (Table 2; Ashley and
Longland 2007). All of the microsatellite loci
revealed polymorphisms in at least one of the
populations (Table 2). The RAPD primer set
yielded 165 strong repeatable bands (loci) of
which 60 (35.8%) were variable. Percent of
polymorphic bands per RAPD primer ranged
from 6.67 to 85.71 (x– = 38.8, sx– = 5.83; Table 1).
The frequency of homozygous null individuals
ranged from 0.033 to 0.870 across loci (x– =
0.414, sx– = 0.028). Not all of the markers were
polymorphic across populations. Hot Springs
had 16 fixed loci (26.6%), Truckee had 12 (20%),
Stillwater had 8 (13.33%), and Peavine had
only 4 (6%). Twenty-four (40.0%) of the 60 loci
were fixed in one or more populations, with an
average number of fixed populations per locus
of 1.333 (sx– = 0.105). There were, as well,
nearly twice as many null (26) as dominant (14)
allele fixations. Where loci were fixed for one or
more populations, the average proportion of
null alleles for the variable population(s) fell
between 0.05 and 0.95, with an average across
loci of 0.401 (sx– = 0.027). All of the loci were
polymorphic for at least one population, with a
dominant marker or null homozygote at a fre-
quency within the data-pruning parameter,
band frequency < 1 – (3/N), set forth by Lynch
and Milligan (1994). However, when that cri-
terion was extended to all loci for all popula-
tions, data pruning reduced the number of loci
suitable for analysis to 21. For the remaining set
of polymorphic loci, the percentage of poly-
morphic bands per RAPD primer ranged from
6.67 to 42.85 (x– = 12.9, sx– = 3.41; Table 1)

Molecular Diversity

Microsatellite diversity, a measure of hetero-
zygosity, was more unevenly distributed than
diversity of RAPDs in these populations. Mean
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TABLE 3. Estimated mean (sx–) microsatellite diversity
(Nei 1973, 1978) and relative rank for both markers for 4
northern Nevada cheatgrass populations.

Population Microsatellite RAPD Rank

Hot Springs 0.009 (0.006) 0.312 (0.158) 4,4
Truckee 0.046 (0.016) 0.353 (0.140) 3,2
Stillwater 0.551 (0.073) 0.331 (0.174) 1,3
Peavine 0.330 (0.092) 0.404 (0.108) 2,1
Across populations 0.234 (0.051) 0.363 (0.022)



microsatellite diversity across populations was
0.234 (sx– = 0.051), ranging from 0.009 to
0.551 within populations (Table 3). Hot
Springs and Truckee populations had very low
diversity (x– = 0.028, sx– = 0.009), while Still-
water and Peavine were considerably more
diverse (x– = 0.441, sx– = 0.064). RAPDs
revealed relatively higher mean diversity (x– =
0.363, sx– = 0.22), with higher values for Hot
Springs, Truckee, and Peavine and lower val-
ues for Stillwater (Table 3), compared to
microsatellites. Hot Springs was the only pop-

ulation that retained its diversity rank for both
markers (Table 3). Microsatellite measures of
the parameters A, P, He, and Ho varied in a
fashion similar to microsatellite diversity mea-
sures for the 4 populations (Table 4).

Phenotypic (RAPD) and genotypic (micro -
satellite) distributions were dissimilar as well.
Virtually all the individuals (180 of 184, 97.8%)
had unique RAPD phenotypes, with 1 pheno-
type shared by 2 individuals from Hot Springs
and 1 phenotype shared by 2 individuals from
Peavine Mountain. We found 49 separate
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TABLE 4. Estimated means (sx–) of the microsatellite parameters A (average number of alleles per locus), P (proportion of
polymorphic loci), He (expected heterozygosity), and Ho (observed heterozygosity).

A P He Ho

Hot Springs 1.286 (0.184) 0.286 (0.184) 0.018 (0.014) 0.000 (0.000)
Truckee 1.571 (0.202) 0.571 (0.202) 0.006 (0.004) 0.000 (0.000)
Stillwater 2.857 (0.459) 1.000 (0.000) 0.352 (0.088) 0.022 (0.009)
Peavine 4.143 (0.553) 1.000 (0.000) 0.547 (0.073) 0.060 (0.026)

Fig. 2. UPGMA Nei (1978) minimum distance method phenograms created in TFPGA software (Miller 1997) from
microsatellite data (a) and RAPD data (b) for 4 cheatgrass populations in northern Nevada.



micro satellite genotypes; however, Hot
Springs and Truckee were almost uniform with
only 5 genotypes between them, and 1 geno-
type was common to 94.1% of the 2 popula-
tions combined. Stillwater had 14 genotypes,
with a range of 1–6 individuals per genotype;
one of these genotypes was shared by 9 indi-
viduals and was identical to the dominant
Hot Springs / Truckee genotype. Peavine had
31 genotypes, with a range of 1–10 individuals
per genotype. Estimated mean (sx–) heterozy-
gosity for RAPD data following Lynch and
Milligan (1994) was relatively low: Hot
Springs, x– = 0.00 (0.00), Truckee, x– = 0.00
(0.00), Stillwater, x– = 0.032 (0.005), and Peav-
ine, x– = 0.027 (0.002). All populations were
significantly out of Hardy-Weinberg equilib-
rium for both marker systems (P < 0.0001), as
can be expected in a predominantly selfing
species.

Population Differentiation

All populations were significantly differen-
tiated with RAPD markers (P < 0.0001). The
analysis of microsatellite data grouped Hot
Springs and Truckee tightly (i.e., nondifferen-

tiation), with Peavine and Stillwater forming a
group while still being significantly differen -
tiated from each other and the Hot Springs–
Truckee complex (Fig. 2), as is also evident
from pairwise FST (Table 5) and distance
 measures (Table 6). RAPDs and microsatellites
both produced UPGMA phenograms in which
Stillwater and Peavine were grouped and Hot
Springs and Truckee were grouped (Fig. 2).
We compared the 2 distance matrices with a
Mantel test and found a positive correlation
(r = 0.954) that was nearly significant (Z =
0.1039, 999 permutations, P = 0.075). AMOVAs
on microsatellites and RAPDs partitioned the
majority of the variation within populations
rather than among populations (Table 7). A
small amount of microsatellite variance was
partitioned within individuals, as we found
heterozygotes at Stillwater and Peavine
(Table 7).

In the full set of polymorphic RAPD loci,
we found none that had bands that were uni-
formly expressed in one population while being
totally absent in the others. Nor did we find a
population that was fixed for the homozygous
null for a locus that was fixed for the dominant
band in the remaining populations. Had either
of these 2 conditions been met, we would
have found a diagnostic population-specific
marker. However, we did find one locus, P3
allele 5 (~585 bp), with bands present only in
the Peavine population but at an intermediate
frequency (0.64). With microsatellites, we
found 3 rare (frequency < 0.05) private alleles,
one each in the Truckee, Stillwater, and
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TABLE 5. Matrix of pairwise FST values obtained from microsatellite and RAPD data for 4 northern Nevada cheatgrass
populations. Microsatellite values are above the diagonal and RAPD values are below the diagonal.

Hot Springs Truckee Stillwater Peavine

Hot Springs 0.0236 0.5212*** 0.5679***
Truckee 0.1056*** 0.4152*** 0.5042***
Stillwater 0.2034*** 0.2313*** 0.2514***
Peavine 0.2281*** 0.1904*** 0.1557***

*** P ( 0.0001) based on 10,000 permutations

TABLE 6. Matrix of genetic Nei’s (1978) unbiased minimum distance measures obtained from microsatellite and
RAPD data for 4 northern Nevada cheatgrass populations. Microsatellite measures are above the diagonal and RAPD
measures are below the diagonal.

Hot Springs Truckee Stillwater Peavine

Hot Springs 0.0001 0.1815 0.2490
Truckee 0.0234 0.1783 0.2479
Stillwater 0.0610 0.0735 0.1304
Peavine 0.0895 0.0873 0.0557

TABLE 7. Results of AMOVA analyses partitioning vari-
ance proportions in 4 northern Nevada cheatgrass popula-
tions as assessed with microsatellite (7 loci) and RAPD
data (21 loci). All results were significant at P < 0.05.

Among Within Within
Marker system populations populations individuals

RAPD 0.194 0.806 N/A
Microsatellite 0.454 0.503 0.043



Peavine populations (Table 2; Ashley and
Longland 2007).

DISCUSSION

Molecular Polymorphisms

We found the combination of microsatellite
and polymorphic RAPD loci to be effective for
assessing both genetic diversity and popula-
tion differentiation in cheatgrass. The number
of RAPD fixations per population correlated
inversely to genetic diversity ranking (i.e., more
fixations with low molecular diversity and
fewer with high diversity). The low number of
populations per fixed locus (1.333, sx– = 0.105)
indicates a broad distribution of fixations
among populations. Such fixed loci, especially
nulls, provide a ready method of identifying
immigration and, more rarely, mutation events
at primer binding sites. Such events can be
inferred when a band appears where none had
been present before (fixed null locus) or a null
appears when none had appeared before
(fixed dominant locus). We feel that RAPD
markers will be useful in assessing additional
cheatgrass populations across the Great Basin
and Intermountain West. From such assess-
ments, we expect not only to develop a better
understanding of the range of cheatgrass pop-
ulation diversity but also perhaps identify
population-specific markers. Such markers may
prove useful in future management efforts if
populations bearing these markers possess
traits such as pathogen or herbicide resistance
and the trait and marker are linked—a direc-
tion for further research. Similar work has
been done with microsatellites where resis-
tance to the head smut pathogen Ustillago bul-
lata in a population was closely linked to a
particular microsatellite genotype (Ramakrish-
nan et al. 2004).

Diversity and Differentiation

All populations had some degree of genetic
differentiation (Table 3), and as expected with
predominantly self-pollinators, all populations
were out of Hardy–Weinberg equilibrium (P
< 0.0001). RAPDs revealed considerably
more overall genetic variation in both the Hot
Springs and Truckee populations than was
estimated with microsatellites (Table 3). This
is similar to the case of AFLPs revealing varia-
tion in cheatgrass populations with low micro -
satellite diversity (Ramakrishnan et al. 2004).

Conversely, in a multiple marker study of
barley (Hordeum vulgaris) accessions, RAPDs
produced lower diversity indices than micro -
satellites did, whereas AFLPs had higher
diversity than both other markers (Russell et
al. 1997). RAPD diversity indices for cheat-
grass were within the range of those reported
for isozymes (Novak et al. 1991) and AFLPs
(Ramakrishnan et al. 2004). However, the
ranges of microsatellite allele sizes we found
exceeded those for 4 of the microsatellite loci
reported in Ramakrishnan et al. (2006). For one
locus, Bt26, we found both shorter and longer
allele lengths than previously reported. For
Bt04, Bt05, and Bt30 we found new shorter
allele lengths. Not surprisingly, the relative
ranking of RAPD diversity measures among
the 4 populations varied from those derived
from microsatellites with the exception of Hot
Springs, as these are different marker systems
and many more RAPD loci were analyzed than
microsatellite loci (Table 3).

The partitioning of genetic variation within
populations of cheatgrass varies from study to
study. Pyke and Novak (1992), using protein
electrophoresis, reported that for introduced
cheatgrass populations in North America, 52.2%
of genetic variation was partitioned within pop-
ulations, more than half of the total variation
and twice as much as they found for native
populations, 25.1%. Ramakrishnan et al. (2004)
found much more diversity partitioned within
populations for AFLP markers (44.2%) than
for microsatellites (16.7%). Similarly, our study
found more within-population diversity for
RAPDs than for microsatellites, but in both
cases more than half of the total variation was
partitioned within populations (Table 7). The
presence of heterozygotes partitions a small
amount of the total variation within individu-
als but does not make up the difference of
within-population variability between micro -
satellites and RAPDs (Table 7). The very large
proportion of within-population variability we
found with RAPDs is likely due in part to the
large number of loci (21) we examined. This is
the first study using microsatellites together
with RAPDs that corroborates the high within-
population variability found in naturalized pop-
ulations examined with AFLPs and allozymes.

The near absence of intraspecific and inter-
population differentiation at Hot Springs and
Truckee as evaluated with microsatellites may
be tied to the genetic makeup of the founding
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population(s) or it could be an artifact of past
bottleneck event(s), analogous to a founder
event where initial variation is reduced by
incomplete sampling followed by fixation at
some loci caused by genetic drift and predom-
inant selfing. The lower microsatellite varia-
tion at Hot Springs relative to Truckee may be
the result of one or both scenarios. The Hot
Springs population is relatively new (circa
1994), as it only became widespread in 1995
(founder event). Then the population crashed
in 2000 only to rebound in 2002 (bottleneck).
By virtue of proximity, the Truckee population
was a likely source for some if not all of the
microsatellite variation in the new Hot Springs
population. A bottleneck event shortly after
establishment would only serve to reduce over-
all variation at Hot Springs.

So, why is there so much RAPD variation at
Hot Springs and Truckee? Even though cheat-
grass is a predominant selfer, we have found
direct evidence of outcrossing in 2 populations,
Stillwater and Peavine (Ashley and Longland
2007). Assuming that Hot Springs and Truckee
had the same source population and that
micro satellite diversity was low and fixed for a
majority of the loci, outcrossing in that popula-
tion, however frequent, is masked by the initial
conditions (i.e., lack of allelic diversity). Many
individuals that were products of outcrossing
may have been homozygous at a particular
microsatellite locus, yet they may have had
alleles that were not identical by descent (silent
heterozygosity). Those same individuals, how-
ever, inherited the remaining genetic variation
of their parents (beyond microsatellite loci)
and likely reorganized that variation through
occasional outcrossing, crossovers, consolida-
tions, and subsequent self-pollinations. In a
population where predominant selfing is punc-
tuated by outcrossing and where new gene
variants are contributed by mutation and dis-
persal, a significant degree of intraspecific var -
iation could build up across generations to the
point where 2 highly similar populations by
one metric (microsatellites) are divergent by
another metric (RAPDs). We suspect that the
individuality of the RAPD phenotypes we found
is evidence of such past outcrossing events.
Because they observed rare microsatellite geno-
types in their recent cheatgrass study, Ramakr-
ishnan et al. (2006) acknowledged the possibil-
ity of past outcrossing events. Such genetic
variation may or may not have direct ecologi-

cal or managerial importance, as both marker
systems are effectively neutral. However, it may
be imprudent to assume that low variation for
one marker system extends to the genome as a
whole. By employing more than one marker
system, investigators may be able to more accu-
rately evaluate population variation.

Although we have compared the results
obtained from these 2 data types, it is impor-
tant to point out the differences that exist
between these marker systems. RAPDs are
CG rich (≥50%) by design, and the primers
we used averaged 63.8% (sx– = 1.3), while the
microsatellite primers only averaged 51.2% (sx–
= 2.9). Additionally, the microsatellite stretches
themselves are mostly CA and CT repeat units,
with the rest being GT, AG, and AGG units,
richer in C (4 of 7 at 50% each) than in G (2 of
7 at 50% and 54%). These differences likely
lead to the sampling of different portions of the
cheatgrass genome. These likely different areas
of sampling may themselves be prone to dif-
ferent mutation rates, as some may contain
genes under selection or highly conserved
stretches of sequence subject to DNA repair
mechanisms. Mutation mechanisms may also
play a part in the differences between these 2
markers. Microsatellite alleles are determined
by fragment length, which can mutate by slip-
page during replication, by addition or sub-
traction of a repeat unit, with rates as high as
5 × 10–3 per allele per generation (Huang et
al. 1992). RAPDs, on the other hand, are more
susceptible to spontaneous mutations that can
eliminate or create a priming site for amplifi-
cation of an allele. However, spontaneous
mutations typically occur at a much slower
rate, from 1 × 10–4 to 1 × 10–6 allele per
generation (Hartl and Clark 1989). Addition-
ally, insertions and duplications may create or
eliminate RAPD alleles.

The results of this study support the merits
of using multiple markers for assessing genetic
diversity, as it seems “no one size fits all.” Each
molecular marker brings to the table its own
set of strengths and weaknesses. If one must
rely on a single marker system, there are poten-
tial trade-offs relative to the study itself: data
type, resolution, comparability, and cost (Haig
1998, Parker et al. 1998, Sunnucks 2000).
Applying multiple markers when feasible elim-
inates some of those trade-offs and offers poten-
tially better resolution of population genetic
parameters, especially when one marker falls
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short (e.g., widespread fixation). The results of
this study justify a broader survey of cheat-
grass populations with these markers, both
across and outside of the Great Basin and
spanning multiple habitat types. Beyond
cheatgrass, these markers may prove useful in
surveying other closely related species such as
red brome (Bromus rubens), another exotic and
invasive annual grass that is rapidly expanding
its range in the southwestern United States
(Hunter 1991, Salo 2005).
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