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DIGITAL NEURAL NETWORKS 
Tony R. Martinez 

Computer Science Dept., 230 TMCB 
Brigham Young University, Provo, Utah 84602 

Abstract; Demands for applications requiring massive 
parallelism in symbolic environments have given rebirth to 
research in models labeled as neural networks. These models 
are made up of many simple nodes which are highly intercon- 
nected such that computation takes place as data flows amongst 
the nodes of the network. To present, most models have pro- 
posed nodes based on simple analog functions, where inputs 
are multiplied by weights and summed, the total then option- 
ally being transformed by an arbitrary function at the node. 
Learning in these systems is accomplished by adjusting the 
weights on the input lines. This paper discusses the use of dig- 
ital (boolean) nodes as a primitive building block in connec- 
tionist systems. Digital nodes naturally engender new 
paradigms and mechanisms for learning and proceshing in 
connectionist networks. The digital nodes are used as the ba- 
sic building bloek of a class of models called ASOCS 
(Adaptive Self-organizing Concurrent Systems). These mod- 
els combine massive parallelism with the ability to adapt in a 
self-organizing fashion. Basic features of standard neural 
network learning algorithms and those proposed using digital 
nodes are compared and contrasted. The latter mechanisms 
can lead to vastly improved efficiency for many applications. 

Introduction 

Higher demands for both computing power and utility, 
coupled with the onset of new technologies, has caused a 
resurgence of research in the area of architectures inspired by 
nervous systems. This field of neural networks, or connec- 
tionist computing, comprises highly interconnected architec- 
tures of relatively simple computing nodes, which function in 
a parallel fashion. These models are also set apart by their 
ability to learn a given functionality through training, rather 
than the explicit programing required by the traditional von 
Neumann machine. The type of basic node used in a connec- 
tionist network has a strong influence on the mechanisms of 
learning and processing of the overall model. The majority 
of current neural network models use a standard atomic 
mechanism for the connections between and functioning of 
nodes. This mechanism is comprised of boolean signals be- 
tween nodes which are multiplied by real valued weights, and 
then summed at the nodes [2,3,8,9]. This value is then treated 
by higher level nonlinear functions and mechanisms which 
vary between models and which give them their unique char- 
acteristics. This paper discusses the differences incurred when 
the basic atomic mechanism described above is replaced by a 
purely digital technique. This leads to new ways of both pro- 
cessing and learning in connectionist networks which provide 
signifitant improvements for many applications. 

Neural Networks with Standa rd? Ides 

As mentioned above, the majority of current neural net- 
work models use an atomic mechanism entailing a linear mul- 
tiplication of the output of a node and a weighting factor. 
Figure 1 shows a rp.neric representation of this atomic mecha- 
nism. 

. . 
e 

X. o = F(a) 

Figure 1 - Representation of analog mechanism 

The model of a single node consists of xn inputs which are 
typically boolean or real values. The weights are typically 
real numbers and each xj is multiplied by its corresponding 0, 

before entering the actual node. At the node these values are 
summed together giving a real valued total. The above is the 
linear aspect of most nodes. The summed total may then be the 
parameter of some function f whose result is the activation (U )  

of the unit. For a simple linear unit thisfis just the identity 
function. Common nonlinear functions used to calculate the 
node activation include the threshold function, where the out- 
put is 1 if the summed total is greater than some threshold 
(otherwise it is 0), sigmoid function (also called the squashing 
function), and stochastic sigmoid functions. The output (0) of 
the unit is typically the same as the activation. However, the 
output may be some function F(a) of the current activation. 
The topologies into which many nodes combine to make a 
neural network include feedforward (where all communica- 
tion is in one direction), feedback (a feedforward net where 
some outputs are connected back to previous nodes), and bidi- 
rectional, where a connection between nodes carries input and 
output in both directions. Most current bidirectional networks 
are symmetric, in that the weight on a line is the same for in- 
puts going in either direction. 

The basic function of a single node, and typically of the 
entire network, is to classify a set of input pattems into a set of 
output states. A network is trained to perform a set of classifi- 
cations by use of a training set. A training set is composed of a 
list of input vectors, together with the desired output vector 
for each input vector, which the network should learn. An 
input vector is applied at the input of a network, and the 
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consequent output of the network is compared with the goal 
output. If they are the same, no change is made to the weights 
of the network, However, if the output is incorrect the 
weights of the network are adjusted in a fashion which will 
decreaie the magnitude of the previous error. Another input 
vector from the training set is then tested with possible weight 
adjustments, and the process of cycling through the training 
set continues until all pattems in the set can be classified with- 
out an error. (Alternatively, presentation of training pattems 
could continue until the error rate is within some set value.) 
This method of closing in on a desired goal through iterative 
changing of parameters is called convergence. One aspect of 
convergence algorithms with training sets is that after weights 
are adjusted to fit the current pattern, the network may then no 
longer correctly classify previous patterns already presented 
in the set. We call this phenomenon unlearning. This is par- 
tially why it is necessary to iterate many times through the 
training set before convergence to a correct network is at- 
tained. 

The adjustment of weights is typically controlled by an* 
equation of the form 

Am.. = CE o. ,  
IJ P 1 

where A a j  is the change in the weight on the line from node i 
to node j ,  c is a learning constant, Oi is the output from node i, 
and Ep is a measure of the error for the pattern p .  For a net- 
work with a single layer of adaptable weights, such as Rosen- 
blatt's simple perceptron or Widrow's Adaline [8,11], Ep is 
simply (tpj  - qj), where tpJ is the target output of node j and 
opj is the actual output after presentation of a training pattern. 
Convergence theorems have been proven for this class of net- 
works stating that if there is a solution for the training set, then 
this learning rule will converge to a correct network in finite 
time, if each pattern in the training set is repeated in finite 
time. The class of patterns which this class of network can 
classify are exactly the linearly separable classifications. For 
boolean inputs, the number of total possible boolean 
classifications grows as 22n,  where n is the number of inputs 
(or features). However, the number of linearly separable (LS) 
functions grows as 

P 
LS(P,n) = 2z------ ('-')! forP > n and2 

(P-1 -i)!i! for P I n ,  

where n is the number of inputs and P is the number of pat- 
terns to be classified [7]. Note that for a general classifier P is 
the total possible patterns, which equals 2 n  for the boolean 
case. In this case the exponential growth of the total possible 
functions far exceeds the growth for the LS functions, and the 
ratio of LS over possible functions quickly approaches 0 as n 
grows. 

Models to perform more or arbitrary mappings have been 
sought through use of multi-layer networks. Multiple layers 
of linear summing units do not help since any number of linear 
weight matrices can be combined into a single weight matrix. 
Thus, no additional functionality is gained through multi-layer 
linear units. A multi-layer network of units as described 

above, with a nonlinear f function can do any arbitrary classi- 
fication. However, learning algorithms with proven conver- 
gence theorems have not yet been found for this class of net- 
work. Recently, multi-layer learning algorithms have been 
put forth [2,9] where empirical results have shown promising 
potential. Back-Propagation, for example, uses a gradient de- 
scent algorithm on the squared sum error of the outputs. A 
differentiable sigmoid activation function is used at the nodes 
allowing derivation of a gradient descent algorithm where 
hidden nodes receive an error signal recursively from the 
nodes to which they output. It follows that this is a hillclimb- 
ing algorithm which can and does get stuck in incorrect local 
minima. These models have the disadvantage that after train- 
ing there is no guarantee that they have converged to a, correct 
function. Even with a learning scheme with proven finite time 
convergence, one cannot know when correct convergence is 
attained without cycling through the complete training set 
without errors. I call this the stochastic nature of the current 
models. 

Connectionisi models typically have two modes of opera- 
tion. The processing mode, where data transformation and 
pattern classifications are taking place, and the adaptation 
mode, where leaming takes place. One important aspect of 
proposed leaming algorithms is their local processing capa- 
bility. Each node (or weight) uses only local information and 
values received directly from the nodes to which they are 
:onnected to compute required changes. Thus, highly parallel 
implementations of these network6 h e  possible, where high- 
speed parallel execution can take pl' ce in both the processing 
and adaptation phases. 

Digital Nodes and Connectionist Networks a 
As an alternative to the wei ht summing units, pro- 

functions on their 
inputs have been proposed [lo]. T le basic gate in this family 

(DPLM) is the two 
input single output implementation. 

grammable gates which do direct boolean 4 
of dynamic programmable logic modules 7 

a The inputs and outputs are all boole n and the node can be set 
to any one of the 16 boolean functio ' s  of 2 inputs. A threshold 
gate can compute the 14 linearly sexarable boolean functions 
of two inputs, but not the exclusiv' -or and the equivalence 
function. A network of threshold e nits, however 
any arbitrary boolean 
the DPLM is not found in 
network of threshold units is 
of learning it engenders. 
changing the function 
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input lines. Because of this, gradient seeking iterative algo- 
rithms which make smrdl changes on weights are not natural. 

A class of models which have the DPLM as the atomic unit 
have been proposed, with the name of Adaptive SelfOrganiz- 
ing Concurrent Systems (ASOCS) [SI. Very briefly, an 
ASOCS model consists of an arbitrary network of DPLMs, 
each with two inputs and one output which can connect to 
multiple nodes allowing both feedforward and feedback 
mechanisms. During execution the DPLMs process boolean 
input into boolean outputs. Each DPLM is shadowed by a 
control unit which is active during the adaptation phase, and 
which can change the function of its corresponding DPLM. 
Thus the total network is made up of the DPLM plane (shown 
on top and in lighter shade) and the control plane. 

The input to the system is incremental in time, and differs 
slightly from the training set mechanism. The input is actually 
a rule, called an instance, which states that if a given conjunc- 
tion of boolean input variables is true, then a specified output 
variable should be set. Examples of instances are shown be- 
low. 

x x x  +ZZ X l  x2 + =1 2 4 5  

_ _  - - 
x4 z2 + z3 

Note that the antecedent of the instance need only contain those 
input variables that are deemed critical, rather than having to 
specify all possible inputs of an environmental state. Thus the 
instance X I  xz + z1 states that if x1 and xz are on then Z I  should 
come on regardless of all other input variables. 

Instances are input incrementally and the totality of in- 
stances is called the instance set. A new instance may contra- 
dict all or a portion of a previous instance, in which case the 
new overrides the contradicted portion. The new instance is 
broadcast to the control plane of an ASOCS model, and each 
control unit is able to make local decisions 04 how to change 
the function of its corresponding DPLM and how it connects 
to other nodes. After this adaptation phase the system will 
correctly fulfill the modified instance set and a new instance 
can be entered. There is no time at which learning can no 
longer take place, since new instances can arbitrarily be input 
at any time in the life cycle of the model. Features of the 
learning mechanism are discussed in the next section as they 
are compared with standard gradient following schemes. De- 
tailed presentation of ASOCS models is found elsewhere [4,6]. 

ComDarison of Standard and Digital Models 

It cannot be stressed too highly that the real differences be- 
ing discussed in this paper are not so much the potential func- 
tional variances of summed weight nodes versus pro- 
grammable boolean gates, but rather the differences in the 
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types of learning mechanisms they naturally engender. In this 
section, critical features of the learning mechanisms of the two 
models are compared and contrasted. 

A first question is what kind of mappings, or classifica- 
tions, can a model potentially accomplish. (For simplicity we 
assume boolean inputs and outputs). We saw that the purely 
linear model and the models with only one layer of weights 
can only solve the linearly separable classifications, regardless 
of the learning mechanism used. Multi-layer networks with 
nonlinearities can solve all arbitrary mappings. However, 
they are still constrained- by their learning algorithms. This is 
partially due to the gradient %descent mechanism which for 
certain functions can always end up in local minima. As op- 
posed to the single layer case, this is not a deficiency of the 
network itself, but of the mechanism of learning. The same 
topology may or may not solve a given function depending on 
the initial setting of weights, order of training, or other pa- 
rameters. Some seek to escape the local minima through sim- 
ulated annealing or other stochastic mechanisms [2], but con- 
vergence to a correct network remains a probabilistic en- 
deavor. 

In contrast, the ASOCS model is not only capable of arbi- 
trary mappings, but the learning mechanism, which does not 
depend on a gradient following scheme, guarantees an imme- 
diate and correct mapping at all times after the input of a new 
instance. 

A second critical feature is the time necessary to converge 
to a solution. In the weight changing algorithms the training 
set is continuously cycled through until a solution is found. 
Many cycles are typically required before convergence. This 
occurs for two basic reasons. First, each change in weights 
typically only modifies the network to come closer to the solu- 
tion of the current pattern. It might take many cycles of just 
one pattern to reach its solution. This effect can be mitigated 
in large degree through more complex weight adjustment 
schemes. However, the second problem is not so easily reme- 
died. This, as stated above, is unlearning, which is the ten- 
dency of weight change for one pattern to cause the model to 
no longer discriminate earlier patterns. Unlearning worsens 
if one attempts larger weight changes to remedy the first 
problem of gradual convergence. This all leads to extreme 
learning times. As an example, training of the simple 2 input 
XOR function is reported in [91 as taking 558 sweeps through 
the 4 input patterns. 

In ASOCS, an instance need only be presented to the sys- 
tem one time. Adaptation takes place and convergence is 
guaranteed. Also, the network continues to correctly dis- 
criminate all instances previously presented. Only the portion 
of the instance set directly contradicted by the new instance is 
no longer fulfilled. Since adaptation does not cause the un- 
learning situation discussed above, there is no need to specify a 
training set a priori. Instance are entered at any time during 
the execute-adapt life cycle of the model. Due to its dis- 
tributed and self-organizing learning scheme, the ASOCS 
model is also able to accomplish the adaptation necessary after 
an instance input in time linear with the depth of the network. 
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Thus, the relative speed of learning actually increases as the 
network gets larger. 

One of the important claims we hope to fulfill in connec- 
tionist computing is that of generalization. This is the phe- 
nomenon that after training of a network, it will with high 
probability respond correctly to input pattems which it has not 
been trained with. In weight summing algorithms, similar in- 
put vectors typically generate similar outputs. The general- 
ization is then in terms of the similarity of inputs; (an example 
measure is that of hamming distance). However, this is but 
one type of generalization. Correct generalization depends on 
the specific application. In the ASOCS scheme, generalization 
is attained through the use of instances, which are rules that 
only specify the critical input variables, rather than the entire 
input vector. One of the apparent powers of natural nervous 
systems is the ability to discriminate the current important in- 
puts from the massive barrage of total inputs. If one puts his 
hand to a hot stove, immediate retraction should take place re- 
gardless of the many other impinging input variables. In- 
stances allow a natural mechanism to specify critical variables 
for specific situations, and generalization takes place in that 
many possible input vectors impinging during processing can 
match the single rule which has specified the critical variables. 

Although, the scope of this paper does not allow a 
comprehensive study, other criteria worthy of comparison 
and consideration include number of required nodes, fault 
tolerance, sequential mechanisms, and ease of implementation. 
In fact, the availability of a maturing field of digital VLSI was 
the initial motivations for starting this work. Fabrication of 
initial ASOCS test chips is currently underway [I]. 

Conclusion 

This paper has sought to compare and contrast some of the 
critical features of learning mechanisms engendered for con- 
nectionist architectures by the use of weight summing nodes 
versus programmable boolean gates. The compared features 
include limits on learning, speed of learning, and generaliza- 
tion. This paper is not meant to criticize any type of models or 
learning mechanisms. Indeed, it is becoming increasingly ap- 
parent that different types of connectionist models and leam- 
ing schemes are needed depending on the target application. A 
tremendous amount of research and effort is put into study of 
models with weight summing nodes. Although this is positive, 
it is the hope of this author that we can continue to stretch our 
creative energies and search more of the vast space of potential 
computing mechanisms in the goal to achieve revolutionary 
technologies. 
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