
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

1988-01-01

Digital Neural Networks Digital Neural Networks

Tony R. Martinez
martinez@cs.byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Martinez, T. R., "Digital Neural Networks", Proceedings of the 1988 IEEE Systems Man and

Cybernetics Conference, pp. 681-684, 1988.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Martinez, Tony R., "Digital Neural Networks" (1988). Faculty Publications. 1198.
https://scholarsarchive.byu.edu/facpub/1198

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1198?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

DIGITAL NEURAL NETWORKS
Tony R. Martinez

Computer Science Dept., 230 TMCB
Brigham Young University, Provo, Utah 84602

Abstract; Demands for applications requiring massive
parallelism in symbolic environments have given rebirth to
research in models labeled as neural networks. These models
are made up of many simple nodes which are highly intercon-
nected such that computation takes place as data flows amongst
the nodes of the network. To present, most models have pro-
posed nodes based on simple analog functions, where inputs
are multiplied by weights and summed, the total then option-
ally being transformed by an arbitrary function at the node.
Learning in these systems is accomplished by adjusting the
weights on the input lines. This paper discusses the use of dig-
ital (boolean) nodes as a primitive building block in connec-
tionist systems. Digital nodes naturally engender new
paradigms and mechanisms for learning and proceshing in
connectionist networks. The digital nodes are used as the ba-
sic building bloek of a class of models called ASOCS
(Adaptive Self-organizing Concurrent Systems). These mod-
els combine massive parallelism with the ability to adapt in a
self-organizing fashion. Basic features of standard neural
network learning algorithms and those proposed using digital
nodes are compared and contrasted. The latter mechanisms
can lead to vastly improved efficiency for many applications.

Introduction

Higher demands for both computing power and utility,
coupled with the onset of new technologies, has caused a
resurgence of research in the area of architectures inspired by
nervous systems. This field of neural networks, or connec-
tionist computing, comprises highly interconnected architec-
tures of relatively simple computing nodes, which function in
a parallel fashion. These models are also set apart by their
ability to learn a given functionality through training, rather
than the explicit programing required by the traditional von
Neumann machine. The type of basic node used in a connec-
tionist network has a strong influence on the mechanisms of
learning and processing of the overall model. The majority
of current neural network models use a standard atomic
mechanism for the connections between and functioning of
nodes. This mechanism is comprised of boolean signals be-
tween nodes which are multiplied by real valued weights, and
then summed at the nodes [2,3,8,9]. This value is then treated
by higher level nonlinear functions and mechanisms which
vary between models and which give them their unique char-
acteristics. This paper discusses the differences incurred when
the basic atomic mechanism described above is replaced by a
purely digital technique. This leads to new ways of both pro-
cessing and learning in connectionist networks which provide
signifitant improvements for many applications.

Neural Networks with Standa rd? Ides

As mentioned above, the majority of current neural net-
work models use an atomic mechanism entailing a linear mul-
tiplication of the output of a node and a weighting factor.
Figure 1 shows a rp.neric representation of this atomic mecha-
nism.

. .
e

X. o = F(a)

Figure 1 - Representation of analog mechanism

The model of a single node consists of xn inputs which are
typically boolean or real values. The weights are typically
real numbers and each xj is multiplied by its corresponding 0,

before entering the actual node. At the node these values are
summed together giving a real valued total. The above is the
linear aspect of most nodes. The summed total may then be the
parameter of some function f whose result is the activation (U)

of the unit. For a simple linear unit thisfis just the identity
function. Common nonlinear functions used to calculate the
node activation include the threshold function, where the out-
put is 1 if the summed total is greater than some threshold
(otherwise it is 0), sigmoid function (also called the squashing
function), and stochastic sigmoid functions. The output (0) of
the unit is typically the same as the activation. However, the
output may be some function F(a) of the current activation.
The topologies into which many nodes combine to make a
neural network include feedforward (where all communica-
tion is in one direction), feedback (a feedforward net where
some outputs are connected back to previous nodes), and bidi-
rectional, where a connection between nodes carries input and
output in both directions. Most current bidirectional networks
are symmetric, in that the weight on a line is the same for in-
puts going in either direction.

The basic function of a single node, and typically of the
entire network, is to classify a set of input pattems into a set of
output states. A network is trained to perform a set of classifi-
cations by use of a training set. A training set is composed of a
list of input vectors, together with the desired output vector
for each input vector, which the network should learn. An
input vector is applied at the input of a network, and the

681 CH2556-9/88/0000-0681 Sl.00@1988 IEEE

consequent output of the network is compared with the goal
output. If they are the same, no change is made to the weights
of the network, However, if the output is incorrect the
weights of the network are adjusted in a fashion which will
decreaie the magnitude of the previous error. Another input
vector from the training set is then tested with possible weight
adjustments, and the process of cycling through the training
set continues until all pattems in the set can be classified with-
out an error. (Alternatively, presentation of training pattems
could continue until the error rate is within some set value.)
This method of closing in on a desired goal through iterative
changing of parameters is called convergence. One aspect of
convergence algorithms with training sets is that after weights
are adjusted to fit the current pattern, the network may then no
longer correctly classify previous patterns already presented
in the set. We call this phenomenon unlearning. This is par-
tially why it is necessary to iterate many times through the
training set before convergence to a correct network is at-
tained.

The adjustment of weights is typically controlled by an*
equation of the form

Am.. = CE o. ,
IJ P 1

where A a j is the change in the weight on the line from node i
to node j , c is a learning constant, Oi is the output from node i,
and Ep is a measure of the error for the pattern p . For a net-
work with a single layer of adaptable weights, such as Rosen-
blatt's simple perceptron or Widrow's Adaline [8,11], Ep is
simply (tpj - qj), where tpJ is the target output of node j and
opj is the actual output after presentation of a training pattern.
Convergence theorems have been proven for this class of net-
works stating that if there is a solution for the training set, then
this learning rule will converge to a correct network in finite
time, if each pattern in the training set is repeated in finite
time. The class of patterns which this class of network can
classify are exactly the linearly separable classifications. For
boolean inputs, the number of total possible boolean
classifications grows as 22n, where n is the number of inputs
(or features). However, the number of linearly separable (LS)
functions grows as

P
LS(P,n) = 2z------ ('-')! forP > n and2

(P-1 -i)!i! for P I n ,

where n is the number of inputs and P is the number of pat-
terns to be classified [7]. Note that for a general classifier P is
the total possible patterns, which equals 2 n for the boolean
case. In this case the exponential growth of the total possible
functions far exceeds the growth for the LS functions, and the
ratio of LS over possible functions quickly approaches 0 as n
grows.

Models to perform more or arbitrary mappings have been
sought through use of multi-layer networks. Multiple layers
of linear summing units do not help since any number of linear
weight matrices can be combined into a single weight matrix.
Thus, no additional functionality is gained through multi-layer
linear units. A multi-layer network of units as described

above, with a nonlinear f function can do any arbitrary classi-
fication. However, learning algorithms with proven conver-
gence theorems have not yet been found for this class of net-
work. Recently, multi-layer learning algorithms have been
put forth [2,9] where empirical results have shown promising
potential. Back-Propagation, for example, uses a gradient de-
scent algorithm on the squared sum error of the outputs. A
differentiable sigmoid activation function is used at the nodes
allowing derivation of a gradient descent algorithm where
hidden nodes receive an error signal recursively from the
nodes to which they output. It follows that this is a hillclimb-
ing algorithm which can and does get stuck in incorrect local
minima. These models have the disadvantage that after train-
ing there is no guarantee that they have converged to a, correct
function. Even with a learning scheme with proven finite time
convergence, one cannot know when correct convergence is
attained without cycling through the complete training set
without errors. I call this the stochastic nature of the current
models.

Connectionisi models typically have two modes of opera-
tion. The processing mode, where data transformation and
pattern classifications are taking place, and the adaptation
mode, where leaming takes place. One important aspect of
proposed leaming algorithms is their local processing capa-
bility. Each node (or weight) uses only local information and
values received directly from the nodes to which they are
:onnected to compute required changes. Thus, highly parallel
implementations of these network6 h e possible, where high-
speed parallel execution can take pl' ce in both the processing
and adaptation phases.

Digital Nodes and Connectionist Networks a
As an alternative to the wei ht summing units, pro-

functions on their
inputs have been proposed [lo]. T le basic gate in this family

(DPLM) is the two
input single output implementation.

grammable gates which do direct boolean 4
of dynamic programmable logic modules 7

a The inputs and outputs are all boole n and the node can be set
to any one of the 16 boolean functio ' s of 2 inputs. A threshold
gate can compute the 14 linearly sexarable boolean functions
of two inputs, but not the exclusiv' -or and the equivalence
function. A network of threshold e nits, however
any arbitrary boolean
the DPLM is not found in
network of threshold units is
of learning it engenders.
changing the function

682

input lines. Because of this, gradient seeking iterative algo-
rithms which make smrdl changes on weights are not natural.

A class of models which have the DPLM as the atomic unit
have been proposed, with the name of Adaptive SelfOrganiz-
ing Concurrent Systems (ASOCS) [SI. Very briefly, an
ASOCS model consists of an arbitrary network of DPLMs,
each with two inputs and one output which can connect to
multiple nodes allowing both feedforward and feedback
mechanisms. During execution the DPLMs process boolean
input into boolean outputs. Each DPLM is shadowed by a
control unit which is active during the adaptation phase, and
which can change the function of its corresponding DPLM.
Thus the total network is made up of the DPLM plane (shown
on top and in lighter shade) and the control plane.

The input to the system is incremental in time, and differs
slightly from the training set mechanism. The input is actually
a rule, called an instance, which states that if a given conjunc-
tion of boolean input variables is true, then a specified output
variable should be set. Examples of instances are shown be-
low.

x x x +ZZ X l x2 + =1 2 4 5

_ _ - -
x4 z2 + z3

Note that the antecedent of the instance need only contain those
input variables that are deemed critical, rather than having to
specify all possible inputs of an environmental state. Thus the
instance X I xz + z1 states that if x1 and xz are on then Z I should
come on regardless of all other input variables.

Instances are input incrementally and the totality of in-
stances is called the instance set. A new instance may contra-
dict all or a portion of a previous instance, in which case the
new overrides the contradicted portion. The new instance is
broadcast to the control plane of an ASOCS model, and each
control unit is able to make local decisions 04 how to change
the function of its corresponding DPLM and how it connects
to other nodes. After this adaptation phase the system will
correctly fulfill the modified instance set and a new instance
can be entered. There is no time at which learning can no
longer take place, since new instances can arbitrarily be input
at any time in the life cycle of the model. Features of the
learning mechanism are discussed in the next section as they
are compared with standard gradient following schemes. De-
tailed presentation of ASOCS models is found elsewhere [4,6].

ComDarison of Standard and Digital Models

It cannot be stressed too highly that the real differences be-
ing discussed in this paper are not so much the potential func-
tional variances of summed weight nodes versus pro-
grammable boolean gates, but rather the differences in the

68

types of learning mechanisms they naturally engender. In this
section, critical features of the learning mechanisms of the two
models are compared and contrasted.

A first question is what kind of mappings, or classifica-
tions, can a model potentially accomplish. (For simplicity we
assume boolean inputs and outputs). We saw that the purely
linear model and the models with only one layer of weights
can only solve the linearly separable classifications, regardless
of the learning mechanism used. Multi-layer networks with
nonlinearities can solve all arbitrary mappings. However,
they are still constrained- by their learning algorithms. This is
partially due to the gradient %descent mechanism which for
certain functions can always end up in local minima. As op-
posed to the single layer case, this is not a deficiency of the
network itself, but of the mechanism of learning. The same
topology may or may not solve a given function depending on
the initial setting of weights, order of training, or other pa-
rameters. Some seek to escape the local minima through sim-
ulated annealing or other stochastic mechanisms [2], but con-
vergence to a correct network remains a probabilistic en-
deavor.

In contrast, the ASOCS model is not only capable of arbi-
trary mappings, but the learning mechanism, which does not
depend on a gradient following scheme, guarantees an imme-
diate and correct mapping at all times after the input of a new
instance.

A second critical feature is the time necessary to converge
to a solution. In the weight changing algorithms the training
set is continuously cycled through until a solution is found.
Many cycles are typically required before convergence. This
occurs for two basic reasons. First, each change in weights
typically only modifies the network to come closer to the solu-
tion of the current pattern. It might take many cycles of just
one pattern to reach its solution. This effect can be mitigated
in large degree through more complex weight adjustment
schemes. However, the second problem is not so easily reme-
died. This, as stated above, is unlearning, which is the ten-
dency of weight change for one pattern to cause the model to
no longer discriminate earlier patterns. Unlearning worsens
if one attempts larger weight changes to remedy the first
problem of gradual convergence. This all leads to extreme
learning times. As an example, training of the simple 2 input
XOR function is reported in [91 as taking 558 sweeps through
the 4 input patterns.

In ASOCS, an instance need only be presented to the sys-
tem one time. Adaptation takes place and convergence is
guaranteed. Also, the network continues to correctly dis-
criminate all instances previously presented. Only the portion
of the instance set directly contradicted by the new instance is
no longer fulfilled. Since adaptation does not cause the un-
learning situation discussed above, there is no need to specify a
training set a priori. Instance are entered at any time during
the execute-adapt life cycle of the model. Due to its dis-
tributed and self-organizing learning scheme, the ASOCS
model is also able to accomplish the adaptation necessary after
an instance input in time linear with the depth of the network.

'3

Thus, the relative speed of learning actually increases as the
network gets larger.

One of the important claims we hope to fulfill in connec-
tionist computing is that of generalization. This is the phe-
nomenon that after training of a network, it will with high
probability respond correctly to input pattems which it has not
been trained with. In weight summing algorithms, similar in-
put vectors typically generate similar outputs. The general-
ization is then in terms of the similarity of inputs; (an example
measure is that of hamming distance). However, this is but
one type of generalization. Correct generalization depends on
the specific application. In the ASOCS scheme, generalization
is attained through the use of instances, which are rules that
only specify the critical input variables, rather than the entire
input vector. One of the apparent powers of natural nervous
systems is the ability to discriminate the current important in-
puts from the massive barrage of total inputs. If one puts his
hand to a hot stove, immediate retraction should take place re-
gardless of the many other impinging input variables. In-
stances allow a natural mechanism to specify critical variables
for specific situations, and generalization takes place in that
many possible input vectors impinging during processing can
match the single rule which has specified the critical variables.

Although, the scope of this paper does not allow a
comprehensive study, other criteria worthy of comparison
and consideration include number of required nodes, fault
tolerance, sequential mechanisms, and ease of implementation.
In fact, the availability of a maturing field of digital VLSI was
the initial motivations for starting this work. Fabrication of
initial ASOCS test chips is currently underway [I].

Conclusion

This paper has sought to compare and contrast some of the
critical features of learning mechanisms engendered for con-
nectionist architectures by the use of weight summing nodes
versus programmable boolean gates. The compared features
include limits on learning, speed of learning, and generaliza-
tion. This paper is not meant to criticize any type of models or
learning mechanisms. Indeed, it is becoming increasingly ap-
parent that different types of connectionist models and leam-
ing schemes are needed depending on the target application. A
tremendous amount of research and effort is put into study of
models with weight summing nodes. Although this is positive,
it is the hope of this author that we can continue to stretch our
creative energies and search more of the vast space of potential
computing mechanisms in the goal to achieve revolutionary
technologies.

Biblio graphv

1. Chang, J. and J. J. Vidal, "Inferencing in Hardware," Pro-
ceedings of the MCC-University Research Symposium,
Austin, TX, (July 1987).

2. Hinton, G., Sejnowski, T, and D. Ackley, "Boltzmann Ma-
chines: Constraint Satisfaction Networks that Learn,"

Tech. Rep CMU-CS-84-119, C@J, Pittsburgh, PA.
(1 984).

3. Hopfield. J. J., and D. W. Tank, "'Neural' Computation of
Decisions in Optfmization Problems," Biological Cyber-
netics, (52), pp. 141-152, (1985).

4. Martinez, T. R., "Adaptive Self-organizing Logic Net-
works," Ph.D. Dissertation, Technical Report - CSD
860093, University of California, Los Angeles, CA (May
1986).

5. Martinez T. R., "Models of Parallel Adaptive Logic," Pro-
ceedings of the 1987 IEEE Systems Man and Cybernetics
Conference, pp. 290-296, (October, 1987).

6. Martinez, T. R. and J. J. Vidal, "Adaptive Parallel Logic
Networks," Journal of Parallel and Distributed Computing,
Vol. 5, (1988).

7. Nilsson, N., Learning Machines, McGraw-Hill, (1965).

8 Rosenblatt, F. Principles of Neurodynamics, SEartan
Books, Washington, D.C., (1962).

3. Rumelhart, D. and McClelland, J., Parallel Distributed
Processing:, Vol. I, pp. 318-362, MIT Press, (1986).

10. Verstraete, R. A., "Assignment of Functional
Responsibility in Perceptrons," Ph.D. Dissertation, Com-
puter Science Department, University of California, Los
Angeles, CA, (June 1986).

11. Widrow, B ., "Generalization and Information Storage in
Networks of Adaline 'Neurons'," Pro'ceedings of the Con-
ference on Self-organizing Systems, pp. 435-462, (1962).

684

	Digital Neural Networks
	Original Publication Citation
	BYU ScholarsArchive Citation

	Digital Neural Networks - Systems, Man, and Cybernetics, 1988. Proceedings of the 1988 IEEE International Conference on

