
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

1990-05-03 

Consistency and Generalization in Incrementally Trained Consistency and Generalization in Incrementally Trained 

Connectionist Networks Connectionist Networks 

Tony R. Martinez 
martinez@cs.byu.edu 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Computer Sciences Commons 

Original Publication Citation Original Publication Citation 
Martinez, T. R., "Consistency and Generalization of Incrementally Trained Connectionist Models", 

Proceedings of the International Symposium on Circuits and Systems, pp. 76-79, 199. 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Martinez, Tony R., "Consistency and Generalization in Incrementally Trained Connectionist Networks" 
(1990). Faculty Publications. 1189. 
https://scholarsarchive.byu.edu/facpub/1189 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1189?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


CONSISTENCY AND GENERALIZATION IN INCREMENTALLY TRAINED 
CONNECTIONIST NETWORKS 

Tony Martinez 
Computer Science Dept., Brigham Young University 

Provo, Utah 84602 

Abstract 

This paper discusses aspects of consistency and generalization in 
connectionist networks which learn through incremental training by 
examples or rules. Differences between training set learning and 
incremental rule or example learning are presented. Generalization, 
the ability to output reasonable mappings when presented with novel 
input patterns, is discussed in light of the above learning methods. 
In particular, the contrast between humming distance generalization 
and generalizing by high order combinations of critical variables is 
overviewed. Examples of detailed rules for an incremental learning 
model are presented for both consistency and generalization 
constraints. 

Introduction 
A basic component of neural network mechanisms is the ability 

to adaptively Zearn mappings [2,9]. Learning takes place as 
information is presented to the network. The system must learn the 
information such that it can generalize. Generalization is the ability 
for a system, when presented with input not encountered during 
learning, to still produce an output with good probability of being 
correct. The class of applications for which neural networks have 
most promise, are exactly those applications for which 
generalization is possible [SI. 

There is no constraint on how information is presented to a 
connectionist system during learning. Two possible mechanisms 
are examples or rules The distinction between rules and examples 
can be quite fine. Assume a conjunction of boolean inputs with 
subsequent boolean outputs: 

where W is the negation of W. Is this an example or a rule? In 
fact, it could be considered either. One potential differentiation 
between rules and examples is that rules may contain a smaller 
subset of the total possible inputs than an example. Assume an 
input space of the three boolean variables (A, B, C )  and a single 
output Z. Assume the following examples: 

A B C = > Z  
A B' C => Z 
A B C = > Z  
A B' C' => Z 

A B' C D => X Y 

Note the obvious correlation between A and Z. In each case Z is 
high if A is high regardless of the setting of the other variables. A 
rule representing this knowledge could be A => Z. In this case the 
variables B and C are considered as don't cure variables, whereas A 
could be considered as a critical variable. A rule is typically more 
general than an example because it contains less variables. One 
mechanism of generalization in leaming systems is to manipulate 
examples into more general rules. 

Two basic mechanism for doing generalization are hamming 
distance and critical variables. In a hamming distance mechanism, 
the system seeks to match the input to learned prototypes, matching 
with the prototype with which it has the least number of total 
mismatches. This prototype then drives the output. With critical 
variable generalization, the combination of a few variables drive the 
output while others are considered as don't cares. 

For example, assume the following examples, augmented from 
the example above, are given to a learning system. 

A B C = > Z  
A B' C => Z 
A B C = > Z  
A B' C' => Z 

A B ' C = > Z  

Let A' B C be the input to the system after learning of the above 
examples. Since there was no example given of A' B C the system 
must generalize or output a don't know. If a critical variable scheme 
is used, the system could use the correlation of A => Z and A' => 
2' as a rule with A as a critical variable. Thus, it would output Z .  
However, if a hamming distance scheme is used, then A' B C is 
different by only one variable from A B C => Z and by at least two 
variables from all other examples. Thus, the output would be Z. 

Note that neither of the two options can be said to be correct 
since we can only guess at the output of an input for which total 
information has not been given. Which method is most promising 
will depend on specific applications and research. Most current 
neural network schemes use hamming distance generalization. 
There is evidence that natural nervous systems have the ability to 
extract critical input from a large barrage of total inputs and act, 
while ignoring currently unimportant inputs. 

When differentiating between examples and rules, another 
potentially important feature is whether order of presentation is 
important. In the training set scheme, used typically with current 
example driven neural networks, all examples are equally important. 
The system seeks to average out the information of the many 
equivalent examples to derive a classification mapping. Rules may 
also be input in incremental fashion, where the order of input is 
important. Consider the natural training scheme of learning general 
rules, followed by refinement through learning exceptions to the 
general rules. In this case the general rules are still a valid default, 
but the specific case of the exception rule has higher priority than the 
general rule. This type of learning can be labeled as incremental. 

Incremental leaming schemes have the advantage of naturally 
encapsulating the common general to specific learning scheme. It 
also appears to be advantageous when the input examples (or rules) 
are more accurate. On the other hand, the training set scheme holds 
more promise when the input is noisy and has no natural priority of 
one example to the next. Both techniques have their place and 
hybrids may be advantageous. 

A learning system using incrementally input rules can be 
maintained consistent. By consistent it is meant that no two rules 
which can be simultaneously matched and which output opposite 
values should be in the same rule set. This means that rules must be 
modified in order to maintain consistency. If new rules are given 
precedence, then old rules which could match with the new rule and 
which give different output, are deleted or modified such that 
matching cannot take place. 

These rules can also be minimized such that the same 
information is represented by fewer rules or variables. This is also a 
type of generalization. For example, the deletion of don't care 
variables allows only critical variables to remain in rules, thus 
making critical variable generalization possible. 

Consistencv and Generalization in Incremental Svstems 

A class of new connectionist models which uses both 
incremental learning and critical variable generalization is ASOCS 
(Adaptive Self-organizing Concurrent Systems) [3,4,7]. ASOCS is 
a parallel adaptive system which functions in two modes: processing 
and learning. During processing, ASOCS functions like a parallel 
hardware circuit mapping boolean inputs to boolean outputs. 
During learning the systems accepts if-then rules in an incremental 
fashion and reconfigures the network so as to maintain consistency. 
ASOCS models guarantee learning of arbitrary boolean mappings, 
and learn any rules in time O(log(n)) where n is the number of nodes 
or rules in the network. There are a number of different ASOCS 

CH2868-8190/0000-0706$1.00 0 1990 IEEE 



learning algorithms and systems and discussion of their mechanisms 
is found elsewhere [3,5,6]. 

This paper discusses the basic knowledge input of an ASOCS 
system and how it is kept consistent at a high level, independent 
from a specific ASOCS implementation. 

The atomic input to the system is called an instance. An instance 
is made up of a vector of boolean inputs and a single boolean 
output. For example: 

A B' => Z 
B C D = > C '  
D E' => X 
An instance specifies what the system should output if the 

current input matches the instance. So, for the instance D E' => X, 
the system must output X as high if D is high and E is low, 
regardless of the setting of any other input variables. This instance 
says nothing about what X should be when D is not high or D in not 
low. 

The vector of input variables in and instance is called a variable- 
list. 

An instance whose output is negated is a negative instance. An 
instance with a non-negated output is apositive instance. Thus, an 
instance can have a positive or negative polarity. Two instances 
with the same polarity are concordant, while two instance with 
opposite polarity are discordant with respect to each other. 

Instances are input incrementally. The most recent instance is 
given precedence, although that is not the only possible strategy. 
The current totality of instances is called the instance set (IS). An 
instance set is maintained consistent. In a consistent set no two 
discordant instances can simultaneously be matched. 

Consistency between any two discordant instances is assured 
when there exists at least one discriminant variable for the two 
instances. A discriminant variable is an input variable which is 
negated in one of the instances and not negated in the other. 
Assume the following three instances. 

(1) A B = > Z  
(2) B ' C  => Z' 
(3) A C => Z 
The first two instance are consistent since they contain the 

discriminant variable B. Since B can never be simultaneously high 
and low, these two instance can never simultaneously be matched. 
Instances 2 and 3 are consistent because they are concordant. 
However, instances 1 and 3 are inconsistent because they are 
discordant and contain no discriminant variable. 

If we assume that instance 3 is the most rec nt instance, then the 
system could have been made consistent bybeleting instance 1. 
However, that is overkill in this case. We would like to keep all the 
information from old instances except for that which is specifically 
contradicted. In this case, we need to add a discriminant variable to 
instance 1. By adding C' to the variable list of instance 1, the 
instance set becomes consistent, while still retaining all previous 
information except that specifically contradicted by the new instance. 
This mechanism of maintaining consistency is called discriminant 
variable addirion (DVA). 

We now overview how an instance set is maintained consistent 
when a new instance (NI) is introduced. All comparisons are 
pairwise between the NI and each old instance (01). To do this we 
must classify how a NI can match with a NI. This is shown by 
example. Assume the variable list (we currently ignore polarity) of 
the NI is 

A B ' D  
Assume the following variable lists of OI's. 
A Subset 
AB'  D Equal 
A B '  D E Superset 

B' E '  Overlap 
C G  Overlap 
A B'D'  Discriminated 

An 01 is subset if its variable-list is a subset of the variables 
of the NI. 

An 01 is equal if its variable-list is the same as that of the NI. 
An 01 is superset if it has more variables than the NI, but eveIy 

An 01 is overlap if there is no discriminant variable between the 

An 01 is discriminated if it contains at least one discriminant 

NI variable occurs in the OI's variable list. 

NI and the 01, and it is not subset, equal, or superset. 

variable (D in the example above) relative to the NI. 
Consistency: Discordant Instances 

Following are the modifications necessary for any 01 discordant 
to the NI in order to maintain a consistent instance set. A NI is 
broadcast to all of the 01. In each case, the view is taken from an 
01, how it matches with the NI, and what action should take place. 
In an actual ASOCS implementation, the logical modification to OI's 
is done in parallel in a self-organizing network. 
I. 01 Superset: 

NI: A B 
0 I : A B C  
Delete 01 

II. 01 Equal: 
NI: A B 
01 A B  
Delete NI 

III. 01 Subset: 
N I A B C  
01 A B  
DVA on 01: (In this case the 01 becomes A B C )  

IV. 01 Overlap: 
N X A B C  
011: C D 
O C D E  
DVA on 01 (Note that DVA can cause creation of multiple 

modifications. 011 becomes A' C D and B' C D). 

V. Discrminated: 
NI: A B' 
0 I : A B C  
No Change 

Minimization: Concordant Instances (Pairwise) 
An instance set is made minimal through deletion of redundant 

instances and variables. Complete minimality is not typically a goal 
due to its complexity. However, much minimizing can be done 
through pairwise comparison of the NI to OI's. This attains 
parsimony or partial minimization. 

Minimization aids generalization by deleting don't care variables 
and discovering critical variables. This does one type of 
generalization. The mechanism of generalization for inputs which 
do not match the minimized instance set is dependent on system 
implementation. Both hamming distance or critical variable 

707 



generalization can then be accomplished at the implementation level. 
This is discussed elsewhere [1,3,5]. 

There is one more important matching type between concordant 
instances for minimization. Assume the NI A B C and the OI's as 
follows: 

A B' one-difference subset 
A B C' one-difference equal 
A B C D  one-difference superset 
Two instances are one-diflerence if they are concordant, contain 

exactly one discriminant variable, and are otherwise subset, equal, 
or superset. In this case the variable is called a one-difference 
variable. 

Following are types of mifimization possible for different 
matchings of 01 to NI. 
I. 01 Superset: 

NI: A B 
0 I : A B C  
Delete 01 

II. 01 Equal 
N I A B  
O I A B  
Delete NI 

III. 01 Subset: 
N I A B C  
01 A B  
Delete NI 

IV. 01 One-Difference Subset: 
NI: A B' C 
O I A B  
Rebroadcast the Modified NI without the one-difference variable 
(Note here that it is never necessary to rebroadcast an instance to 

the network. It can aid parsimony, but can increase learning time. 
In an actual system this is an implementation decision). 

V. 01 One-Difference Equal: 
NI: A B' 
O I A B  
Delete 01 & 

Rebroadcast NI modified by deleting the one-difference variable 

VI. 01 One-Difference Superset: 
NI: A B' 
0 I : A B C  
Delete the one-difference variable from the 01 & 
Optionally rebroadcast the modified 01 (see note above) 

Consistencv and Minimization in prioritv ASOCS 

Another scheme for maintaining a consistent instance set is to 
augment each instance with a priority [ 13. Assume each NI is given 
a priority 1 higher than previous instances. Then if a conflict ever 
occurs between instances, the instance with the highest priority sets 
the output. This obviates the need for DVA (discriminant variable 

addition), thus guaranteeing that the size of the instance set grows 
by at most one, when any NI is presented. 

Following is an overview of how OI's are modified in a priority 
instance system. Assume that the NI is always added with a higher 
priority unless specifically noted. 

Consistency: Discordant Instances 
I. 01 Superset: 

NI: A B 
0 I : A B C  
Delete 01 

II. 01 Equal: 
NI: A B  
01: A B 
Delete 01 

III. 01 Subset: 
NI: A B C 
01: A B 
No Change 

IV. 01 Overlap: 
N1:ABC 
011: C D 
OI2: D E 
No Change 

V. Discrminated: 
NI: A B' 
0 I : A B C  
No Change 

Minimization: Concordant Instances 
Definitions: 

output variable. Higher number signifies higher priority. 
PR(1) - returns integer priority of the instance (I) for the current 

Cont-Greater(O1) - retums true 
if there exists 

else false 
( I  I (I contradicts NI) & (PR(1) > PR(OI))] 

Cont-Greater returns true for a specific 01-NI pair, if there exists 
a different 01 (012) such that 012 matches the NI and has priority 
greater than 01. 

Following are types of minimization possible for different 
matchings of NI to 01. 
I. 01 Superset: 

NI: A B 
0 I : A B C  
Delete 01 

II. 01 Equal: 
NI: A B 
01: A B 
Delete 01 

708 



Ill. 01 Subset: 
NI: A B C 
01: A B  
if Cont-Greater(O1) then Add NI 

NI: A B C D => Z 
1.51: ... , A => Z ,  ... ,AB => Z ,..., ABC => Z ,... 
IS2: ... , A => Z, ... ,AB => Z ,... 
(In these examples ISn represent different instance sets. The 

left-most instances have lower priority. Typically the multiple 
instance sets shown give examples of each possibility when an if- 
then-else strategy is used for modification.) 

else Delete NI 

IV 

V 

01 One-Difference Superset: 
NI: A B' 
01: A B C 
Delete one-difference variable from 01 & Add NI 
NI: A B' => Z 
ISl:  ... , A => Z', ... ,ABC => Z ,..., AD => Z', ... 

0 1  One-Difference Equal: 
NI: A B' 
01: A B  
if Cont-Greater(O1) Add NI & Remove one-difference 

else Delete 01 & Rebroadcast NI modified by deleting 
variable from 01 

the one-difference variable 

NI: A B' => Z 
IS1: ... , A => Z ,  ... ,AB => Z, ..., AC => Z ,  ... 
IS2: ... , A => Z', ... ,AB => Z ,... 

VI. 01 One-Difference Subset: 
NI: A B' C 
01: A B 
if Cont-Greater(O1) Add NI 

eke Rebroadcast the Modified NI without the one-difference 
variable and then, 

else continue with modified broadcast 
if Cont-Greater(O1) then just add original NI 

NI: A B' C => Z 
IS1: ... , A => Z ,  ... ,AB => Z, ..., AC => Z ,  ... 
1.52: ... , A => Z,  ... ,AB => Z ,..., BC = > Z ,... 
IS3: ... , A => Z ,  ... ,AB => Z ,... 

Simultaneity 
The question arises of whether the NI can be simultaneously 

tested against all 01's or do different actions require an ordering. 
The answer is they can be done simultaneously. However, for 
minimization, improved parsimony can be attained if the consistency 
modifications are done first, followed by minimization. For 
example: 

NI: A B C => Z 
IS1: ... , A => Z ,  ... ,AB => Z ,..., ABC => Z ,... 
If ABC => Z had not initially been deleted by consistency, the 

N I  ABC => Z could not have been deleted by the 01 AB => Z 
because cont-greater would still return true. Note that consistency is 
maintained either way. 

We also noted that rebroadcast of a modified instance is 
optional. It can lead to improved parsimony at the cost of greater 
time complexity. Assume the following NI and IS. 

NI: A B  C'=>Z 
IS1: ... , A => Z ,  ... ,AB => Z ,..., BC => Z ,... 
NI: A B' => Z 
IS1: ... , A => Z, ... ,AB => Z, ..., AC => Z ,  ... 
The NI can be minimized to A => Z by one-difference equal 

with AB => Z. If the A => Z is then rebroadcast, both Ac => Z 
and A => Z will be deleted. Without rebroadcast, the system would 
have remained consistent, but less parsimonious. 

Conclusion 
This paper has discussed concepts of learning and generalization 

in connectionist systems. In particular, it has pointed out that there 
are a number of mechanisms for fulfilling these goals, each having 
advantages for specific classes of applications. Potential schemes 
for maintaining consistency and minimization for incremental 
systems were presented for two different rule models. Ongoing 
research seeks to improve speed of learning and accuracy of 
generalization in connectionist learning systems. 

Bibliomaphp 

1. 

2. 

3. 

4. 

5 .  

6. 

7 .  

8. 

9. 

Hughes, B. Prioritized Rule Systems, M.S. Thesis, C. S. 
Dept., BYU, 1989. 

Kohonen, T., Self-organization and associative memory, 
Springer Verlag, New York, (1984). 

Martinez, T. R., Adaptive Self-organizing Logic Networks, 
Ph.D. Dissertation, Technical Report - CSD 860093, 
University of California, Los Angeles, CA (May 1986). 

Martinez T. R., Models of Parallel Adaptive Logic, 
Proceedings of the 1987 IEEE Systems Man and Cybernetics 
Conference, pp. 290-296, (October, 1987). 

Martinez, T. R. and J. J. Vidal, Adaptive Parallel Logic 
Networks, Journal of Parallel and Distributed Computing, 

Martinez, T. R., Digital Neural Networks, Proceedings of the 
1988 IEEE Systems Man and Cybernetics Conference, pp. 

Martinez, T. R., Adaptive Self-organizing Concurrent 
Systems, in Progress in Neural Networks, Ablex Publishing, 
1989. 

Martinez, T. R., Neural Network Applicability: Classifying 
the Problem Space, Proceedings of the IASTED International 
Symposium on Expert Systems and Neural Networks, pp. 41- 
44, August, 1989. 

Rumelhart, D. and McClelland, J., Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition, 
Vol. I, MIT Press, (1986). 

Vol. 5, NO. 1, pp. 26-58, (1988). 

681-684, (August, 1988). 

709 


	Consistency and Generalization in Incrementally Trained Connectionist Networks
	Original Publication Citation
	BYU ScholarsArchive Citation

	Consistency and generalization in incrementally trained connectionist networks - Circuits and Systems, 1990., IEEE International Symposium on

