
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

1992-12-01 

Diffraction Properties of Stratified Volume Holographic Optical Diffraction Properties of Stratified Volume Holographic Optical 

Elements Elements 

Gregory P. Nordin 
nordin@byu.edu 

R. V. Johnson 

A. R. Tanguay 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Electrical and Computer Engineering Commons 

Original Publication Citation Original Publication Citation 
G. P. Nordin, R. V. Johnson, and A. R. Tanguay, Jr. "Diffraction Properties of Stratified Volume 

Holographic Optical Elements," J. Opt. Soc. Am. A, 9(12), pp. 226-2217 (1992) 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Nordin, Gregory P.; Johnson, R. V.; and Tanguay, A. R., "Diffraction Properties of Stratified Volume 
Holographic Optical Elements" (1992). Faculty Publications. 1180. 
https://scholarsarchive.byu.edu/facpub/1180 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1180?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1180&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


2206 J. Opt. Soc. Am. A/Vol. 9, No. 12/December 1992

Diffraction properties of stratified volume holographic
optical elements

Gregory P. Nordin,* Richard V Johnson, t and Armand R. Tanguay, Jr.

Optical Materials and Devices Laboratory and Center for Photonic Technology, University of Southern California,
Los Angeles, California 90089-0483

Received May 28, 1992; accepted July 13, 1992

We present a unified treatment of the diffraction properties of stratified volume holographic optical elements
(SVHOE's). We show that the relative phasing of the diffraction orders as they propagate from layer to layer
gives rise to a unique notched diffraction response of the +1 order (for the case of Bragg incidence) as a func-
tion of the normalized buffer-layer thickness, the grating spatial frequency, and the readout wavelength. For
certain combinations of these parameters Bragg diffraction behavior characteristic of volume holographic opti-
cal elements (VHOE's) is observed, whereas for other combinations pure Raman-Nath behavior periodically re-
curs. By using these same relative-phasing arguments, the principal features of the periodic angular sensitivity
of the +1 and -1 orders can be predicted. In addition to examining the fundamental aspects of SVHOE dif-
fraction behavior, we discuss several possible applications, including optical array generation, spatial frequency
filtering, and wavelength notch filtering. With the use of the SVHOE concept, holographic materials with
otherwise exemplary characteristics that are currently available only in thin-film form can be used in struc-
tures designed either to access unique SVHOE diffraction properties or to emulate conventional VHOE's.

1. INTRODUCTION

Volume holographic optical elements (VHOE's) are impor-
tant in many areas of optical information processing and
computing. Lately they have received wide attention as
potential interconnection media for optical neural net-
works, 7 in part because the angular selectivity of the
Bragg diffraction process allows large numbers of inter-
connection gratings to be multiplexed within the same
volume. Angular multiplexing of many independent
holograms typically requires relatively thick holographic
media.8 9 However, many currently used volume holo-
graphic materials, such as dichromated gelatin, silver
halide photographic emulsions, Polaroid's DMP-128, and
DuPont's OmnidexTM family of photopolymers, are avail-
able only as thin films with typical thicknesses of at most
tens of micrometers. In addition, some potential new
holographic media (such as multiple-quantum-well semi-
conductor structures) 0"' are restricted to thicknesses that
altogether preclude operation as traditional volume (i.e.,
Bragg) holographic optical elements.

Some of the restrictions imposed by the relatively lim-
ited thicknesses of these materials can be removed by
using stratified volume holographic optical elements
(SVHOE's).'2-"5 SVHOE's comprise a recently proposed
class of novel diffraction structures in which multiple
layers of a thin holographic material are interleaved with
optically homogeneous buffer layers (as shown in Fig. 1).
In this paper we consider the diffraction properties of
SVHOE structures in which the individual holographic
layers each operate within the Raman-Nath diffraction
regime. The thin holographic layers perform the function
of optical modulation (phase and/or amplitude), whereas
the buffer regions allow diffraction to occur between the
modulation layers. Although each modulation layer acts
individually as a thin grating, the incorporation of buffer

layers (diffraction-only regions) allows the SVHOE struc-
ture as a whole to emulate the properties of volume media
in which optical modulation occurs concurrently with the
diffraction process during propagation of a readout beam
through the medium. In addition, the physical separation
of the modulation and diffraction processes in SVHOE's
allows the SVHOE's to exhibit unique diffraction proper-
ties that are unavailable with the use of conventional thin
(single-layer) or bulk holographic media. By using these
unique properties, one can create novel devices for a
variety of applications such as array generation and wave-
length notch filtering. Depending on the desired applica-
tion, SVHOE's can be designed to function as traditional
VHOE's or as unique diffraction devices. We also note
that the SVHOE concept suggests the possibility of fabri-
cating volume computer-generated holograms (VCGH's) by
stacking layers of planar computer-generated holograms.
A further option is active (optical or electrical) control of
each modulation layer for appropriate modulation layer
media. 3",6

In this paper we first review previous work on systems
of stacked gratings and then discuss the fundamental dif-
fraction properties of SVHOE's and their physical origins.
We consider SVHOE's composed of multiple layers of thin
(in the Raman-Nath diffraction sense) holographic media
in which the physical separation of the layers is constant
for all layers. We treat the case in which a single un-
slanted sinusoidal phase grating is recorded in all the
layers by a pair of recording beams as shown in Fig. 1.
Using numerical modeling results and analytical ar-
guments, we show that periodic Bragg diffraction re-
sponses arise for both the +1 and -1 diffraction orders
and discuss their angular dependence. The dependence of
SVHOE diffraction properties on buffer-layer thickness,
number of modulation layers, total device thickness, and
total grating strength is derived and explained. In addi-
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Fig. 1. Schematic diagram of the SVHOE structure, in which
modulation layers composed of a thin holographic recording mate-
rial are interleaved with optically homogeneous buffer layers.

tion, we show further novel SVHOE diffraction behavior

as a function of the normalized buffer-layer thickness Qb,

defined as

Qb = 27rAodb/(nA2), (1)
in which AO is the free-space wavelength of the readout
beam, db is the buffer-layer thickness, n is the refractive
index of the buffer layers, and A is the grating period of
the grating recorded in the modulation layers. We show
that at Bragg incidence the first diffraction order exhibits
a novel periodic dependence on the normalized buffer-
layer thickness Qb, which we explain in terms of the rela-
tive phasing of the diffracted orders as they propagate
from layer to layer. We then show how this behavior leads
to a notched diffraction response of the first order as a
function of both the readout wavelength and the grating
spatial frequency. Possible applications of the novel
SVHOE diffraction behavior discussed in this paper in-
clude optical array generation' 3 and wavelength notch
filtering."

The numerical analyses of SVHOE diffraction proper-
ties discussed in Sections 3 and 4 were performed by
using the optical beam propagation method (BPM).'7 A
discussion of this method and its application to grating
diffraction problems can be found in Refs. 18 and 19.
Throughout the paper we assume that the usual small-
angle approximations are valid and so limit the analysis to
paraxial propagation.

2. REVIEW OF PREVIOUS WORK

The physical separation of the diffraction and modulation
processes as embodied in the SVHOE structure was origi-
nally suggested to several of us'3 by the algorithmic sepa-
ration of those processes in the optical beam propagation
method, which is a numerical modeling tool used to
analyze optical propagation through various types of
media.. 7 2 As indicated by application of BPM to
diffraction-grating problems, the demonstration of
pronounced Bragg diffraction behavior requires surpris-

ingly few modulation layers.' 9 Johnson and Tanguay
showed (using BPM) that the SVHOE +1 order exhibits a
periodic angular sensitivity and verified this behavior ex-
perimentally. 3 The notched diffraction response of the
+1 order as a function of the normalized buffer-layer
thickness was first discussed in Ref. 15. We present in
this paper a unified treatment of these phenomena and
their origins as well as new results on the behavior of the
-1 order.

Stacks of more than one holographic layer have been
proposed previously in several contexts, including optical
memories in which each layer stores a page of informa-
tion.2 2 25 In this particular application, a readout tech-
nique is required that minimizes interlayer interactions
such that each layer can be addressed independently.
In the absence of such techniques, several studies sug-
gest severe information readout difficulties.2 6 29 In the
SVHOE concept, it is precisely the interlayer interactions
and their consequent effects on diffraction behavior that
give SVHOE's the ability to emulate VHOE diffraction
and that are also responsible for novel SVHOE properties.

Another earlier proposal concerning the use of multiple
layers of gratings was made by De Bitetto,30 who consid-
ered what he termed a "pile-of-gratings" (formed by stack-
ing sheets of inexpensive plastic gratings) to increase the
diffraction efficiency of a diffracted image beam. His
analysis considered only incoherent addition of the inten-
sities of the diffracted orders from each layer, which he
justified by arguing that the phase relationship between
orders in his system was destroyed by various nonunifor-
mities and lack of grating alignment from layer to layer.
These arguments do not hold for the SVHOE concept dis-
cussed in this paper. We are concerned herein only with
coherent addition of the diffracted orders from each modu-
lation layer.

Structures composed of two sequential thin grating lay-
ers, which in some sense are the simplest case of the
SVHOE concept, have been studied extensively in the lit-
erature.3 '4 Studies have been made of two-layer struc-
tures in which both layers are fixed gratings, one layer is a
fixed grating and the other is an acoustic grating, or both
layers are acoustic gratings. Both bulk and surface
acoustic waves (SAW's) have been used.

The earliest investigation of two-layer grating struc-
tures was performed in 1960 by Hargrove,3 ' who reported
preliminary experimental studies of diffraction by spa-
tially separated bulk acoustic waves. His results were
subsequently explained by using thin-grating diffraction
theory applied to two sequentially arranged gratings.3 2

For readout at normal incidence with a collimated readout
beam, he found that the first-order diffraction efficiency
varied sinusoidally (with period Qb/r) as a function of
the normalized separation of the ultrasonic gratings Qb.

Malysh et al.
34 demonstrated a similar periodic dependence

of the first-order diffraction efficiency on grating separa-
tion for readout at normal incidence. The gratings that
they investigated were formed by the film-air and film-
substrate interfaces of a thin film deposited upon a corru-
gated substrate. In this paper we show a novel periodic
notched diffraction response of the first diffraction order
as a function of the normalized buffer-layer thickness Qb

(with period Qb/21r) for readout at Bragg incidence for
SVHOE's with arbitrary numbers of layers.

Nordin et al.
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Zel'dovich et al.42 have considered two-layer structures
in which each layer is composed of a fixed grating. They
showed analytically that the first diffraction order varies
periodically as a function of readout-beam incidence angle,
which also has been demonstrated experimentally.4 3 A
major motivation for their work was the achievement of
higher diffraction efficiencies with the use of two-layer
gratings than can be achieved in single-layer gratings.
This is of interest for holographic recording applications
in which large diffraction efficiencies are desired. Other
diffraction orders (besides the first) also have been found
to exhibit a periodic angular response. This has resulted
in the proposal of using both two- and four-layer grating
structures as optical analog-to-digital converters.4 4 43

Kujawinska48 recently theoretically examined optical
readout of a series of sequentially arranged quasi-periodic
gratings illuminated by quasi-spherical wave fronts. His
treatment, however, is essentially a restatement of the al-
gorithm embodied in the optical BPM.'7 Kujawinska has
applied this methodology to Talbot and grating-shearing
interferometers4 6 that incorporate two grating layers.

Yakimovich49 has discussed the diffraction efficiency
and angular selectivity properties of thick (i.e., Bragg
regime) modulation layers interleaved with homogeneous
buffer layers. His analysis is based on a coupled-wave ap-
proach in which only the 0 and +1 orders are retained.
Because we treat the case in which the modulation layers
are composed of thin (Raman-Nath) gratings, all signifi-
cant forward-propagating orders are retained in our nu-
merical calculations (typically up to at least the 8th
orders). As will be seen below, observation of notched
first-order diffraction behavior as a function of the nor-
malized buffer-layer thickness requires consideration of
the higher orders.

Multiple layers of gratings composed of conducting wires
or grids have been examined by several authors, princi-
pally as antireflection elements or high-reflectivity mir-
rors for the far-IR to microwave wavelength regions.50 42

These applications require that the grating period be of
the order of or smaller than the wavelength, of the illumi-
nating beam, and only zeroth-order (both forward-
propagated and reflected) components are typically
considered in the analysis of such systems. In this paper
we are concerned only with cases in which the grating
period is significantly larger than the wavelength of the
illuminating beam such that traditional grating diffrac-
tion properties are obtained for each modulation layer.

3. SVHOE ANGULAR SENSITIVITY

A. +1 Diffraction Order
A key distinguishing feature of volume compared with
thin holograms is the dependence of the diffraction effi-
ciency of the first order on the incidence angle of the
readout beam.5 3 In this section we describe the corre-
sponding angular properties of SVHOE diffraction and
the physical origin of these properties. We concentrate
initially on the properties of the first diffraction order as
a function of readout beam incidence angle, as shown in
Fig. 2. Note that as the incidence angle of the readout
beam is changed the diffracted orders rotate with the inci-
dent beam such that they maintain the same angular posi-
tion with respect to the zeroth order. For purposes of our

discussion, positive angles are defined by rotation counter-
clockwise about an axis extending perpendicularly out of
the plane of Fig. 2. Plane-wave readout illumination is
assumed, and all angles are measured within the medium.

The buffer-layer thickness, total thickness, and number
of modulation layers play a key role in determining the
angular sensitivity of SVHOE diffraction behavior. We
investigate the effects of these parameters by considering
two sets of SVHOE's as shown in Fig. 3 in which either
the interlayer separation (case A) or the total thickness
(case B) is held constant as the number of layers is in-
creased. A total grating strength of 2.1 rad is assumed
for each SVHOE. The grating strength v is defined as

v = 2AnDmod/Ao, (2)

in which An is the amplitude of the sinusoidal refractive-

-1 Order

Negative
Incidence

Angle

00

Positive
Incidence

/1 QOrder

+1 Order

Angie
i -ngie SVHOE

Fig. 2. Definition of the readout beam incidence angle 0o rela-
tive to the SVHOE surface normal.

Case A

Constant Buffer Layer
Thickness (= 150 ,um)

Case B

Constant Total Thickness
(= 1500 m)

N=2

N=5

N = 11

Fig. 3. Relative buffer-layer thicknesses and total thicknesses of
two sets of SVHOE's. The SVHOE's in case A all have the same
buffer-layer thickness (150 ,um), whereas the SVHOE's in case B
have the same total thickness (1500 ,um). The angular sensitivi-
ties of the first diffraction orders for these' sets of SVHOE's are
compared in Figs. 4 and 5. Note that the 11-layer SVHOE has
the same buffer-layer thickness and total thickness in both cases.
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......... I.... I.... I.- , I .... I....I....I.... tion layers is 3.4, and the grating period A is 3.0 m. The

2 Modulation Layers Bragg angle O [Ao/(2nA)] is thus 2.5'. In case A (con-
Buffer Thickness =150 gm stant buffer-layer thickness) db = 150 Aum, whereas in

case B (constant total thickness) the total thickness is
1500 Am.

Figures 4 and 5 show the angular sensitivities of the
SVHOE's for cases A and B, respectively. When the
buffer-layer thickness is held constant (Fig. 4), the addi-
tion of layers decreases the angular width of the diffrac-
tion peaks because of the increase of the total SVHOE
thickness. (For more than three or four modulation
layers, the FWHM of each diffraction peak is essentially
the same as for a VHOE of comparable thickness, namely,
-\A/Dr, in which Dt is the total SVHOE or VHOE thick-

o *~~....5... \\ ..... |\/,,, 1t l,,...... ...... ,
0 1 2 3 4 ness.) The angular position of each peak, however, re-

ReadouIncidence Angle (degrees) mains the same, indicating that the peak position depends
Readout Beam Incidence Angle (degrees) on the buffer-layer thickness and not on the total thick-

(a) ness or the number of layers.3 For the two-layer SVHOE

0 ......... ~~~~~~~~~[Fig. 4(a)], the diffraction response is nearly sinusoidal.
The peak diffraction efficiency is 58%, which is well above

5BuffterhickneLsasyers150 the thin-grating result of 32% (at v = 2.1 rad).43 The dif-

8 - fraction behavior of the five-layer SVHOE illustrated in

1.0

a)

a)

C. _

0
._

0cf
Q 

Readout Beam Incidence Angle (degrees)

(b)

1 2

Readout Beam Incidence

(c)

0.8

0.6

0.4

0.2

0.0

a)

_0
+

~ n g l e ( d e g r e e s ) C .).0
Cc

Fig. 4. First-order diffraction efficiency as a function of readout
beam incidence angle for the 2-, 5-, and 11-layer [(a), (b), and (c),
respectively] SVHOE's of case A.

index modulation and Dmod is the total thickness of the
modulation layers (i.e., Dmod = Ndmod, in which N is the
number of modulation layers and dmod is the thickness of
an individual layer). The readout wavelength is chosen as
0.89 m. The refractive index of the buffer and modula-

0 51 2 3 4

Readout Beam Incidence Angle (degrees)

(a)

0 1 2 3 4

Readout Beam Incidence Angle (degrees)

5

(b)

Fig. 5. First-order diffraction efficiency as a function of readout
beam incidence angle for the two- and five-layer [(a) and (b), re-
spectively] SVHOE's of case B. The angular response of the
case B 11-layer SVHOE is the same as that shown in Fig. 4(c).

1.0

a)

.O

CD

0

._

0
a)

C0

~5

0.8

0.6

0.4

0.2

O.c

1.,

a)
'2 0.
0

_ tf

>1 0.'

.)
0.

C0
coc0

0.

6

4

2

0.

I

0.8

0.6

a)
(D

0
+

aC
a)
.,-

C0

0

0.4

0.2

11 Modulation Layers
. Buffer Thickness = 150 pm

... 11.1.:I- --- - - ., ., . . . . . . . . . . . . . . . . . . . I

Nordin et al.

, .u

b

, I
0,

O.
. - - - L.- .



2210 J. Opt. Soc. Am. A/Vol. 9, No. 12/December 1992

Fig. 4(b) shows that relatively few modulation layers are
required for one to obtain nearly the same peak diffraction
efficiency as a comparable Bragg grating, which is 75%.
As the number of layers increases, the peak diffraction
efficiency asymptotically approaches that of a grating re-
corded in a conventional volume medium [see Fig. 4(c) for
the 11-layer case].

Figure 5(a) shows the angular response of the two-layer
SVHOE representing case B. The angular period of the
diffraction peaks is one tenth that of the two-layer
SVHOE of case A because of the factor-of-10 difference in
modulation-layer separation. As is shown in Fig. 5(b), the
effect of increasing the number of modulation layers from
two to five (while keeping the total thickness the same) is
to suppress three of every four peaks observed in the
angular response of the two-layer SVHOE. In general,
the result of adding modulation layers when the total
SVHOE thickness is held constant is to suppress N - 2 of
every N - 1 two-layer diffraction peaks. 3 The diffrac-
tion peak occurring at Bragg incidence is of course always
retained, as can be seen by comparing Figs. 5(a), 5(b), and
4(c). A final point is that in case B the peak diffraction
efficiency of the five-layer SVHOE [Fig. 5(b)] is smaller
than that of the two-layer SVHOE [Fig. 5(a)]. Increasing
the number of layers in this case has actually decreased
the peak diffraction efficiency. The reason for this be-
havior will become apparent after our discussion of the
angular sensitivity of the -1 order.

The angular position of each diffraction peak may be
easily derived by considering the relative phases of the
zeroth and first orders after propagation between modula-
tion layers (see Fig. 6). In a distributed bulk grating, a
Bragg first-order diffraction peak occurs when the zeroth
and first orders maintain the same relative optical phase
throughout the medium as they are modulated by the peri-
odic refractive-index distribution (this condition occurs at
Bragg incidence). We therefore expect SVHOE's to ex-
hibit similar Bragg-type diffraction when the zeroth and
first orders have the same relative phase at each modula-
tion layer.

We can express this condition as follows. Let 4 be the
phase difference between the zeroth and first orders after
propagation between two modulation layers. This phase
difference may be written as

01= 27rndb(cos 01 - COS 00VA0 C.

irndb,(0o - 02 )/Ao, (3) *

in which (as shown in Fig. 6) 0o is the incident angle and LC
01 is the angle at which the +1 order is diffracted. Both .0=
61 and 00 are assumed to be small. For the relative phases cc
of the +1 and 0 orders to be the same at each modulation _ .0

layer, 0k must be an integer multiple of 2 . Using this co
condition in expression (3) and recognizing that the angle -o
of the first diffraction order can be written as 01 = 0
00 - AO/(nA) (using the small-angle approximation), we
solve for 0 and obtain the incidence angles at which Bragg iL
responses are expected:

Oo = Ao/(2nA) + llA/db

= B + l1A0p,

in which 11 = 0, _1, ±2 ... and AO, = A/db.

(4)

According to Eq. (4), SVHOE diffraction peaks occur at
angular intervals of A0 centered about the Bragg angle.
When we examine Figs. 4 and 5, this is exactly the behav-
ior that we observe in the BPM calculations. For the
SVHOE's of case A with A = 3.0 ,m and db = 150 Am, the
predicted peak separation of 1.15° from Eq. (4) matches
the observed separation seen in Figs. 4(a)-4(c). Similarly,
in Figs. 5(a) and 5(b) the predicted and observed peak sepa-
rations are also the same (0.12° and 0.46, respectively).
The angular sensitivity characteristics of SVHOE's with
thin modulation layers are summarized in Fig. 7.

As is noted in Ref. 13, the periodic angular response of an
SVHOE in which a single grating is recorded can be used
to generate a one-dimensional (1-D) array of equal ampli-
tude beams that are evenly separated in angle by simply

db

0 Order

00p +1 Order

SVHOE
Modulation

Layers
Fig. 6. Propagation of the zeroth and first orders between
SVHOE layers, with an incidence angle of Oo. The first order
propagates at an angle 01 with respect to the surface normal of
the SVHOE.

Readout Beam Incidence Angle (radians)
Fig. 7. Summary of SVHOE +1-order angular diffraction
behavior.
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illuminating an SVHOE with a focused uniform readout
beam. The actual number of beams that are produced is
given by db/(nAF), in which F is the f-number of the
illuminating beam. Large numbers of equal-amplitude
beams can be generated by making the buffer-layer thick-
ness large and the grating period and the f-number suffi-
ciently small. [Note, however, that the smallest-f-number
readout beam that can be used for a given grating period
is =1/(20B) because the zeroth order and +1 orders overlap
for smaller f-numbers.] A two-dimensional array of uni-
form beams can be generated by cascading two SVHOE's
such that the respective grating wave vectors in the
SVHOE's are orthogonal. For example, two of the two-
layer SVHOE's in case B above can be used to generate
an array of 175 X 175 beams if the readout beam is fo-
cused to F/1.7 and the grating period is 1.5 Am instead
of 3.0 gm.

C. Overlap of the +1- and-1-Order Angular Sensitivities
The periodicity of both the +1- and -1-order diffraction
responses is a key difference between SVHOE and VHOE
diffraction properties and leads to further novel SVHOE
behavior. For example, because the angular separation of

C
a)

0al

0

:
0s

B. -1 Diffraction Order
For purposes of this paper, the labeling of the +1 and -1
orders as shown in Fig. 2 is maintained for all incidence
angles. This scheme becomes somewhat artificial for
conventional volume holographic optical elements when
negative incidence angles are examined because the
Bragg diffracted order is typically referred to as the +1
order rather than the -1 order. For example, consider
the angular response of a grating recorded in a VHOE
with the same thickness and other physical parameters as
the SVHOE's of case B discussed above. As is shown in
Fig. 8, we obtain the expected diffraction peak at Bragg
incidence (2.50) for the +1 order. There is naturally also
a diffraction peak at -0B for what has been labeled the -1
order, which is a mirror image (about normal incidence) of
the first-order diffraction response at +OB.

Although seemingly trivial, the question of labeling is
important in the context of SVHOE's because both +1- and
-1-order diffraction peaks can occur within any given
range of incidence angles, regardless of whether positive
or negative incidence angles are considered. This is illus-
trated in Fig. 9, in which we show the angular response (at
both positive and negative incidence angles) of the +1 and
-1 orders of the 11-layer SVHOE examined previously
[see Fig. 4(c)]. Both +1- and -1-order angular responses
occur within the angular range shown in Fig. 9. The
-1-order diffraction behavior has the same physical char-
acteristics and origins as noted above for the +1 order, ex-
cept that the -1-order peaks are centered about -0B; i.e.,
-1-order diffraction peaks occur at incidence angles of

00 = 6B + -l Ap,

1.

0.

0.

0.

0

-4 -2 0 2 4

Readout Beam Incidence Angle (degrees)

Fig. 8. Angular diffraction sensitivity of the +1 (solid curve)
and -1 (dashed curve) orders of a 1500-gm-thick volume holo-
gram. The grating recorded in the material has a period of
3.0 Am. The material is assumed to have the same refractive
index (3.4) as the SVHOE's in cases A and B.

1.0

0.8

a)

C
0

0

co

0

0.6

0.4

0.2

-4 -2 0 2 4

Readout Beam Incidence Angle (degrees)
Fig. 9. Angular sensitivity of the +1 order (solid curve) and -1
order (dashed curve) of the 1500-,um-thick 11-layer SVHOE in
cases A and B.

(5)

in which lil = 0, ±1, ±2,.... The +1- and -1-order dif-
fraction responses are of course simply mirror images of
each other about normal incidence (for unslanted gratings).

One implication of this periodic -1-order behavior is
that an array generator based on the illumination of an
SVHOE with a focused beam also generates a set of
-1-order beams in addition to the set of +1-order beams
as discussed at the end of Subsection 3.A. This is shown
schematically in Fig. 10 for a 1-D SVHOE-based array gen-
erator. A single SVHOE used to produce a 1-D array of
beams thus produces two such arrays, and a pair of cas-
caded SVHOE's used to generate a 2-D array produces four
arrays of beams.

Incident
Uncollimated Beam

SVHOE

B a

-1 Order
Beams

-* 0 Order

..~-'-~ +1 Order
Beams

Fig. 10. Schematic diagram showing an SVHOE operating as a
1-D array generator for readout with an uncollimated beam.
Two 1-D arrays of beams are generated, one associated with the
+1 order and the other associated with the -1 order.

t.8_

.61

-1 Order +1 Order

J:

____ - - - ................................. I ...
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SVHOE ±1-order response peaks is dependent on the
buffer-layer thickness db, values of db can be chosen for a
given grating period that cause the +1- and -1-order dif-
fraction peaks to occur at the same incidence angles.
Exact overlap of the +1- and -1-order angular sensitivi-
ties occurs when an integer number of peak separations,
AO,, fits exactly in the angular range between 0

B and
+OB. We express this condition as

p = 20B/A0p, (6)

in which p is an integer greater than zero. By substitut-
ing the definitions of B and A0p into Eq. (6), one may re-
write Eq. (6) as

P= Qb/(27r), (7)

in which Qb is the normalized buffer-layer thickness de-
fined in Eq. (1). According to Eq. (7), overlap of the +1-
and -1-order angular sensitivities occurs at integer values
of the normalized buffer-layer thickness divided by 2wl. In
the remainder of this section we discuss the implications
of this result for the angular sensitivity of SVHOE's. In
Subsection 4.A we show how this angular overlap plays a
role in the notched +1-order diffraction behavior exhibited
by SVHOE's for readout at Bragg incidence. This curious
behavior includes the occurrence of Raman-Nath dif-
fraction efficiencies for all the diffraction orders of
SVHOE's having integer values of Qb/21r.

We illustrate several of the effects of +1-order angular
sensitivity overlap in Figs. 11(a) and 11(b). Here we show
both the +1- and the -1-order angular sensitivities of a
five-layer SVHOE in which'Qb/27r is 4.0 and 4.5, respec-
tively. The total grating strength is 2.0 rad. When
Qb/2ir is an integer [Fig. 11(a)], the +1 and -1 orders have
identical angular sensitivities. In the presence of large
grating strengths, competition occurs between the +1 and
-1 orders for energy from the zeroth order at what would
otherwise be Bragg diffraction peaks for each order. The
consequence is reduced diffraction efficiency in both the
+1- and the -1-order peaks relative to cases in which
the 1-order diffraction peaks are separated. This is il-
lustrated by comparing Figs. 11(a) and 11(b). If SVHOE's
are used to replace a thin grating to achieve higher dif-
fraction efficiency in applications in which a large grating
strength is required, attention must be paid to the choice
of buffer-layer thickness and grating period such that
overlap of the +1- and -1-order diffraction responses does
not occur. Otherwise, the peak diffraction efficiency can
be reduced rather than enhanced. This is illustrated by
comparing the two- and five-layer SVHOE diffraction re-
sponses shown in Figs. 5(a) and 5(b). The reason for the
reduced diffraction efficiency of the five-layer SVHOE
(as noted above) is that partial overlap of the 1-order
angular sensitivities is present (Qb/27r is 10.9-nearly
an integer).

The relationship between the incidence angles at which
+1- and -1-order SVHOE diffraction peaks occur and the
normalized buffer-layer thickness is further illustrated in
Fig. 12. The horizontal axis represents the normalized
incidence angle, defined as a 3o/ 2

0B, whereas the ver-
tical axis represents the normalized buffer-layer thickness
Qb divided by 2r. The solid curves indicate the position of
the +1-order diffraction peaks as a function of these two

parameters, whereas the -1-order peak positions are indi-
cated by dashed curves. As expected, there is a diffrac-
tion peak at Bragg incidence (a = 1/2) for the +1 order
and at _OB (a = -1/2) for the -1 order for all values of
the normalized buffer-layer thickness. At integer values
of Qb/27r, the angular positions of the +1 and the -1
orders coincide.

As discussed above, the peak positions of the ±1 orders
are independent of the number of SVHOE modulation
layers at constant buffer-layer thickness. Figure 12
therefore holds for all SVHOE's, regardless of whether
they have two or one hundred layers. For example, the
angular peak positions shown in Figs. 11(a) and 11(b) for a
five-layer SVHOE are predicted exactly by Fig. 12 at the
appropriate normalized buffer-layer thicknesses. Note
also that the period of the diffraction behavior observed by
Hargrove et al.32 for a two-layer structure is easily seen in
Fig. 12; namely, at normal incidence the +1-order peaks
occur at intervals of 2(Qb/27r) as a function of the normal-
ized buffer-layer thickness.

A further interesting result is that for a given SVHOE
the fractional part of Qb/27r indicates the relative angular
position of any -1-order peak between its two adjacent
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Fig. 11. Angular sensitivity of the ±1 orders for a five-layer
SVHOE for (a) Qb/27r = 4.0 and (b) Qb/2,r = 4.5.
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Fig. 12. Positions of SVHOE +1-order and -1-order diffraction
peaks (solid and dashed curves, respectively) as a function of the
normalized incidence angle a and the normalized buffer-layer
thickness Qb/27r. At integer values of Qb/2ir, the +1-order dif-
fraction peaks occur at the same incidence angles.

+1-order peaks (and vice versa). For example, as is seen
in Fig. 11(b), each -1-order peak is exactly halfway be-
tween its adjacent +1-order peaks when Qb/2.n- = 4.5.
Similarly, the integer part of (Qb/2r + 1) gives the num-
ber of +1- and -1-order diffraction peaks in the angular
interval between ±OB. Thus knowing the normalized
buffer-layer thickness of a particular SVHOE immedi-
ately gives insight into the relative angular spacing and
number of +1-order diffraction peaks that occur for read-
out at incidence angles between the positive and negative
Bragg angles.

D. VHOE Emulation
The behavior of SVHOE +1- and -1-order angular sensi-
tivity is useful for explaining many of the novel diffrac-
tion effects exhibited by SVHOE's as well as the regimes
in which SVHOE's can emulate the properties of conven-
tional VHOE's. As we pointed out in Section 1, SVHOE
emulation of VHOE characteristics offers the opportunity
of using thin holographic materials in applications that re-
quire diffraction properties normally available only with
relatively thick holographic media. Possible benefits in-
clude substituting appropriate thin holographic media in
applications for which no suitable thick holographic
medium exists and using novel materials such as multiple-
quantum-well compound semiconductors to fabricate
VHOE's having unique material properties.

As we discussed above, a VHOE in which a single grating
is recorded yields a +1-order diffraction response only at
Bragg incidence. An SVHOE having the same total thick-
ness can emulate a VHOE's +1-order diffraction response
over an arbitrary angular range centered about the Bragg
angle for that grating. The extent of the angular range is
dependent on the normalized buffer-layer thickness of the
SVHOE (and therefore on the number of modulation layers
because the total thickness is fixed). For example, the
+1-order angular sensitivity shown in Fig. 4(c) for an
11-layer SVHOE (Qb/27r = 4.36) exhibits excellent emula-
tion of the +1-order VHOE diffraction response shown in
Fig. 8 over an angular range of at least 1 deg centered

about the Bragg angle. Decreasing Qb (while increasing
the number of layers to keep the total thickness constant)
increases the angular emulation range.

The situation becomes more complicated when an
SVHOE is used to emulate a VHOE in which multiple
gratings are recorded. For emulation over a particular
angular range, the buffer-layer thickness must be chosen
such that no extraneous +1-order response from any of
the desired gratings occur within this range. In addition,
if the desired grating strength is large enough to cause
competition between overlapping +1- and -1-order diffrac-
tion peaks, the buffer-layer thickness must further satisfy
the condition that no -1-order response from any of the
gratings overlaps with desired +1-order responses within
the angular emulation range. Otherwise, competition be-
tween +1- and -1-order diffraction responses can occur
such that the fidelity of the diffracted beams is compro-
mised. The necessity of excluding extraneous +1-order
diffraction responses and avoiding fidelity errors caused
by -1-order overlap are critical design requirements in
the use of SVHOE's as substitutes for traditional VHOE's.

4. NORMALIZED BUFFER-LAYER
THICKNESS EFFECTS AT BRAGG INCIDENCE

Examination of SVHOE diffraction properties as a func-
tion of the normalized buffer-layer thickness Qb leads to
the observation of further novel SVHOE diffraction be-
havior.5 In Subsection 4.A we show that the diffraction
efficiency of the +1 order is periodic as a function of
Qb/

21T for readout at Bragg incidence and discuss the
origins of this behavior. In Subsection 4.B we show how
this behavior can be utilized to perform various notch-
filtering functions. The following discussion assumes
that the readout beam is incident at the Bragg angle.

A. Periodic +1-Order Diffraction Behavior as a Function
of Qb/2qr
To illustrate the periodic dependence of the diffraction ef-
ficiency of the +1 order on the normalized buffer-layer
thickness, we show in Fig. 13 the first-order diffraction
efficiency of a five-layer SVHOE as a function of Qb/27r

1.0

0.8

06

W 5 Layers
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*o04.I v = 1.0 raad t|t16 0.4 v=2.Orad a ,
co - v=3.0Orad

0.0 0.5 1.0 1.5 2.0 2.5

Normalized Buffer Thickness, Qd2n'

Fig. 13. First-order diffraction efficiency as a function of the
normalized buffer-layer thickness Qb/

2 1r for a five-layer SVHOE
parameterized by the grating strength v.
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for several values of the total grating strength. At zero
buffer-layer thickness, the diffraction efficiency corre-
sponds to the limiting case of Raman-Nath diffraction at
each grating strength (i.e., all the modulation layers are
immediately adjacent to one another, and the SVHOE is
thin enough that it operates in the Raman-Nath diffrac-
tion regime). As the normalized buffer-layer thickness
increases from zero, the diffraction efficiency rapidly in-
creases to nearly the values expected for a Bragg grating
(recall that a five-layer SVHOE does not quite yield the
same diffraction efficiency as a Bragg grating). However,
as Qb continues to increase, the diffraction efficiency again
becomes the same as a Raman-Nath grating at Qb/27r =
1.0. This behavior periodically repeats itself as the nor-
malized buffer-layer thickness increases.

Note that instances of Raman-Nath diffraction effi-
ciency occur at integer values of Qb/2qr, which according to
Fig. 12 corresponds to -1-order diffraction peaks being
tuned through the +1-order response that always occurs
at Bragg incidence. Monitoring the other diffraction
orders (including the zeroth order) reveals that they also
exhibit Raman-Nath diffraction efficiencies for integer
values of Qb/2ir. We note, however, that, despite the ap-
pearance of Raman-Nath diffraction efficiencies, the as-
sociated Raman-Nath property of insensitivity to the
incidence angle of the readout beam is not present.

An alternative view of the curious occurrence of Raman-
Nath diffraction efficiencies is shown in Fig. 14, in which
the first-order diffraction efficiency is displayed as a func-
tion of total grating strength for Qb/27r equal to 0.5 (i.e.,
centered in a Bragg-regime region) and to 1.0 (i.e., at an
occurrence of Raman-Nath diffraction efficiency). At
Qb/2ir = 0.5 the dependence of the diffraction efficiency
on grating strength is close to the bulk grating result of
sin2 (v/2),54 which it asymptotically approaches as the num-
ber of layers increases. At Qb/27r = 1.0, the diffraction
efficiency is exactly the same as for a grating operating in
the Raman-Nath regime, namely, J(v), 55 in which J is
the first-order Bessel function of the first kind.

We can understand why Raman-Nath diffraction effi-
ciencies occur at integer values of Qb/21ir by considering
the relative phases of all the diffraction orders as they
propagate from modulation layer to modulation layer.
Let m be the relative phase difference between the 0th
and mth diffraction orders after propagation between two
SVHOE layers. This relative phase difference divided by
2T can be written as [see Eq. (3)]

0./27r = ndb(0o2 - O02)/(2Ao)
= m(a - m/2)Qb/2rr,

(8)

(9)

in which Om is the angle at which the mth diffraction order
propagates (as shown in Fig. 15) and a is the normalized
incidence angle defined above. Equation (9) is derived by
realizing that Om can be expressed as m = 00 - mA/A.
Note that when a = 1/2 (Bragg incidence) and Qb/27r is an
integer the relative phase difference qkm is an integer times
2ir for every diffraction order. Thus the relative phase of
all the diffraction orders is the same at each modulation
layer. Propagation through the buffer regions therefore
has no effect on the readout of the grating. The net result
is that the grating recorded in the SVHOE appears to be a

thin grating as experienced by the readout beam, and
Raman-Nath diffraction efficiencies obtain for all the dif-
fraction orders.

When one compares Figs. 13 and 14 it is apparent that
the depth of each notch in Fig. 13 is simply the difference
between the diffraction efficiency curves shown in Fig. 14
at the appropriate grating strength. Note that at a grating
strength of 3.83 rad (i.e., at the first Raman-Nath diffrac-
tion null) the diffraction efficiency i the center of the
notches should therefore go to zero. Figure 16 shows the
first-order diffraction efficiency as a function of Qb/27r at
this grating strength for SVHOE's having two, five, and
twenty-one modulation layers. In addition to there being
zero diffraction efficiency at the bottom of each notch, this
figure shows how the notch width narrows as the number
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Fig. 14. First-order diffraction efficiency as a function of grat-
ing strength for a five-layer SVHOE for different values of the
normalized buffer-layer thickness Qb/2ir.
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Fig. 16. First-order diffraction efficiency as a function of the
normalized buffer-layer thickness Qb/27r for different numbers of
modulation layers. The total grating strength in each case is
chosen as 3.83 rad, which results in zero diffraction efficiency at
the center of each notch.

layers increases. For more than two or three layers, the
FWHM of the notches is approximated quite well by
1/(N - 1) in units of Qb/2r.

B. SVHOE Notch Filtering
The availability of notched SVHOE diffraction behavior
suggests the potential of performing various notch-
filtering functions if the physical quantity to be filtered
can be mapped to this behavior. Because the normalized
buffer-layer thickness Qb is a function of buffer-layer
thickness, grating period, and readout wavelength, the
first diffraction order exhibits notched diffraction be-
havior as a function of any of these parameters when
the others are held constant and Bragg incidence is
maintained.

1. Wavelength Notch Filtering
As an example, consider the diffraction response of a
21-layer SVHOE as a function of readout wavelength as
shown in Fig. 17. The readout beam is assumed to be
Bragg incident at each wavelength. For simplicity, the
refractive-index modulation is taken as a constant for all
wavelengths; it is set such that the grating strength is
3.83 rad at a wavelength of 0.80 Am. The other SVHOE
parameters are chosen such that Qb/ 2 7r is an integer at
this wavelength. As is seen in Fig. 17, the diffraction effi-
ciency of the +1 order shows a distinctly notched behavior
as a function of the wavelength of the incident readout
beam. Note that the notch centered at a wavelength of
0.80 Am has zero diffraction efficiency at the center of the
notch. This suggests the possibility of using an SVHOE
as a narrow-band wavelength notch filter. In Fig. 17 the
notch widths (FWHM) are 4 nm. In general, the spectral
width of each notch is given by Ak/(N - 1), in which AX is
the spectral separation of the notches and is equal to
nA 2 /db. By increasing the buffer-layer thickness of the
SVHOE in Fig. 17 by a factor of 13 and increasing the
number of layers to 61, one can decrease the spectral width
of the notches to 0.1 nm.

Another intriguing possibility is the construction of an

SVHOE-based tunable wavelength notch filter by varying
any of the parameters on which the normalized buffer-
layer thickness depends, including the refractive index of
the buffer layers. For example, it may be possible to fab-
ricate an electrically tunable SVHOE-based wavelength
notch filter by incorporating an electro-optic material
(such as a liquid crystal) in the buffer-layer regions of
the SVHOE.

Several other features of the diffraction behavior shown
in Fig. 17 deserve mention. First, even though we have
assumed that the refractive-index modulation is constant
for all wavelengths, the grating strength itself is inversely
proportional to the wavelength of the readout beam. This
grating strength dispersion manifests itself as a slowly
varying envelope that sets the overall shape of the diffrac-
tion response seen in Fig. 17. (By overall shape we mean
the general shape of the curve without the notches and the
ringing that occurs at some of the notch edges.) Second,
there is significant ringing at the edges of the two leftmost
notches. This is due to overmodulation of the grating
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(i.e., v > ir) and is not a numerical artifact of the BPM
simulation used to obtain the curve.

2. Grating Spatial Frequency Notched Diffraction Response
A further example of the notched diffraction response of
the + 1 order is illustrated in Fig. 18. Here the diffraction
efficiency of a five-layer SVHOE is shown as a function of
the grating spatial frequency for several values of the total
grating strength. Bragg incidence is assumed at each
grating spatial frequency. The readout wavelength, re-
fractive index, and buffer-layer thickness are chosen such
that Qb/2r = 1 at 400 cycles/mm. Note that, when the
total grating strength is 3.83 rad, specific grating spatial
frequencies exist that result in complete extinction of the
diffracted first order for readout at Bragg incidence.
However, this does not imply that the readout beam propa-
gates through the SVHOE undisturbed. Rather, the
SVHOE acts as a thin grating with a grating strength of
3.83 rad and therefore diffracts light into higher orders
(with some of the light remaining in the zeroth order).

The notches in diffraction efficiency occur at grating
spatial frequencies of (n/Adb)" 2 (in which 1s is an integer
greater than zero), whereas the FWHM of each notch is
nA/(2ADt). Note that changing the buffer-layer thickness
db changes the notch positions. An intriguing possibility
thus exists for an SVHOE to be constructed by using
modulation layers having an optically or electrically con-
trolled grating strength or recording sensitivity. By
turning on and off various sets of modulation layers, one
can change the effective buffer-layer thickness such that
the position of the grating spatial frequency notches can
be varied.'3' 6 This permits a novel tailoring of the SVHOE
grating spatial frequency sensitivity. The use of electri-
cally or optically controlled modulation layers is a further
SVHOE design flexibility that can be utilized to change
other SVHOE diffraction properties (such as the angular
sensitivity of the 1 orders) in addition to the grating spa-
tial frequency dependence of the +1 order.

5. SUMMARY

We have discussed the dependence of the periodic +1-order
SVHOE angular sensitivity on buffer-layer thickness,
number of layers, and total SVHOE thickness. This be-
havior can be explained by examining the relative phases
of the zeroth order and the respective +1 or -1 order at
each modulation layer. We have shown that at Bragg inci-
dence a novel periodic notched diffraction behavior of the
first order occurs as a function of the normalized buffer-
layer thickness. Notches occur at integer values of the
normalized thickness parameter Qb/27r (corresponding to
exact overlap of the 1-order angular sensitivities). At
integer values of Qb/

2
r, the diffraction efficiency of each

order becomes the same as a single thin grating of equiva-
lent total grating strength because of the relative phasing
of the diffraction orders as they propagate between the
modulation layers. A possible application of this phe-
nomenon is narrow-band wavelength notch filtering.
Utilizing the SVHOE concept, one can assemble thin
holographic materials into structures designed to access
unique SVHOE diffraction properties. Such structures
can be used either as the basis for novel devices as de-
scribed herein or to emulate VHOE properties over par-
ticular parameter ranges.
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