
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2007-07-31

Decentralized Control of Multiple UAVs for Perimeter and Target Decentralized Control of Multiple UAVs for Perimeter and Target

Surveillance Surveillance

Derek B. Kingston
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Kingston, Derek B., "Decentralized Control of Multiple UAVs for Perimeter and Target Surveillance" (2007).
Theses and Dissertations. 1174.
https://scholarsarchive.byu.edu/etd/1174

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F1174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1174?utm_source=scholarsarchive.byu.edu%2Fetd%2F1174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

DECENTRALIZED CONTROL OF MULTIPLE UAVS FOR

PERIMETER AND TARGET SURVEILLANCE

by

Derek Bastian Kingston

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

Brigham Young University

December 2007

Copyright c© 2007 Derek Bastian Kingston

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Derek Bastian Kingston

This dissertation has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Randal W. Beard, Chair

Date Timothy W. McLain

Date A. Lee Swindlehurst

Date Michael A. Goodrich

Date Jeffrey C. Humpherys

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Derek
Bastian Kingston in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and depart-
ment style requirements; (2) its illustrative materials including figures, tables, and
charts are in place; and (3) the final manuscript is satisfactory to the graduate com-
mittee and is ready for submission to the university library.

Date Randal W. Beard
Chair, Graduate Committee

Accepted for the Department

Michael J. Wirthlin
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

DECENTRALIZED CONTROL OF MULTIPLE UAVS FOR

PERIMETER AND TARGET SURVEILLANCE

Derek Bastian Kingston

Department of Electrical and Computer Engineering

Doctor of Philosophy

With the recent development of reliable autonomous technologies for small

unmanned air vehicles (UAVs), the algorithms utilizing teams of these vehicles are

becoming an increasingly important research area. Unfortunately, there is no unified

framework into which all (or even most) cooperative control problems fall. Five factors

that affect the development of cooperative control algorithms are objective coupling,

communication, completeness, robustness, and efficiency. We classify cooperative

control algorithms by these factors and then present three algorithms with application

to target and perimeter surveillance and a method for decentralized algorithm design.

The primary contributions of this research are the development and analy-

sis of decentralized algorithms for perimeter and target surveillance. We pose the

cooperative perimeter surveillance problem and offer a decentralized solution that

accounts for perimeter growth (expanding or contracting) and insertion/deletion of

team members. By identifying and sharing the critical coordination information and

by exploiting the known communication topology, only a small communication range

is required for accurate performance. Convergence of the algorithm to the optimal

configuration is proven to occur in finite-time. Simulation and hardware results are

presented that demonstrate the applicability of the solution.

For single target surveillance, a team of UAVs angularly spaced (i.e. in the

splay state configuration) provides the best coverage of the target in a wide variety

of circumstances. We propose a decentralized algorithm to achieve the splay state

configuration for a team of UAVs tracking a moving target and derive the allowable

bounds on target velocity to generate a feasible solution as well as show that, near

equilibrium, the overall system is exponentially stable. Monte Carlo simulations

indicate that the surveillance algorithm is asymptotically stable for arbitrary initial

conditions. We conclude with high fidelity simulation and actual flight tests to show

the applicability of the splay state controller to unmanned air systems.

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Professor Randy Beard for his guid-

ance throughout the implementation and writing of this document. In addition, many

others in the MAGICC lab have helped make this work possible including James Hall,

Sujit, Wei Ren, Ryan Holt, David Johansen, and Greg Aldredge. I also owe a debt

of gratitude to my wife, Sarah, for her support and patience.

This research was supported by NASA to Scientific Systems Company, Inc

and Brigham Young University under STTR contract number NNA04AA19C, by the

National Science Foundation under Information Technology Research Grant CCR-

0313056, and by the United States Air Force under AFOSR Award number FA9550-

04-1-0209.

Table of Contents

Acknowledgements xiii

List of Tables xix

List of Figures xxiii

1 Introduction 1

2 Assignment Methods for Coupled Multiple Target Tracking 5

2.1 Introduction . 5

2.2 Time-Dependent Assignment Method 6

2.2.1 Nomenclature . 7

2.2.2 Constraints . 8

2.2.3 Cost Function . 10

2.3 UAV Assignment Scenario . 10

2.4 CMTE Application . 13

2.4.1 Non-Timing Constraints . 14

2.4.2 Timing Constraints . 15

2.4.3 Cost Function . 16

2.5 Simulation Example . 17

2.6 Conclusions and Future Work . 18

3 Consensus: Input-to-State Stability 21

xv

3.1 Introduction . 21

3.2 Kalman Consensus . 23

3.3 Consensus Algorithms are Input-to-state Stable 25

3.4 Illustrative Example - Cooperative Timing 28

3.5 Conclusions . 34

4 Average Consensus and Message Passing 35

4.1 Introduction . 35

4.2 Definitions and Terminology . 36

4.3 Average-Consensus under Switching Topologies 38

4.4 Distributed Protocol . 40

4.5 Deadbeat Consensus . 45

4.5.1 Example Application . 49

4.6 Finite-Time Average-Consensus . 49

4.7 Conclusions . 54

5 Circle Surveillance 55

5.1 Introduction . 55

5.2 Problem Description . 57

5.2.1 UAV Modeling . 58

5.2.2 Orbit Dynamics . 62

5.3 Heading Calculation for Non-Moving Targets 63

5.4 Stability Analysis . 67

5.4.1 Ultimately Bounded . 68

5.4.2 Local Stability . 69

5.4.3 Global Stability . 74

5.5 Extension to Moving Targets . 75

xvi

5.6 Simulation and Hardware Results . 79

5.7 Conclusions and Future Work . 81

6 Perimeter Surveillance 83

6.1 Introduction . 83

6.2 Problem Formulation . 86

6.3 Linear Perimeter Surveillance . 88

6.4 Decentralized Solution . 92

6.4.1 Comparison with Centralized Algorithm 95

6.4.2 Comparison with Consensus Method 97

6.5 Changing Perimeters . 100

6.6 UAV Agents . 105

6.7 Simulation Results . 106

6.8 Flight Test Results . 107

6.9 Conclusions . 109

7 Conclusions and Future Work 111

7.1 Future Work . 112

Bibliography 119

xvii

xviii

List of Tables

4.1 Average Iterations to Consensus . 53

xix

xx

List of Figures

2.1 Region of detectability based on target heading 11

2.2 UAV sensor footprint . 12

2.3 Example CMTE scenario . 19

3.1 Cooperative control architecture with consensus in the loop 26

3.2 Consensus algorithm cascaded with a cooperative control algorithm . 28

3.3 Cooperative timing scenario with five agents involved 29

3.4 Graph topology for ISS simulation scenario 31

3.5 Cooperative timing reference ETA with zero communication noise . . 32

3.6 Cooperative timing actual ETA with zero communication noise 32

3.7 Cooperative timing reference ETA with communication noise 33

3.8 Cooperative timing actual ETA with communication noise 33

4.1 Simple average consensus network example that requires global infor-
mation to solve . 41

4.2 Example scenario where the network topology switches randomly be-
tween these three graphs . 43

4.3 Average consensus protocol results with large ε 43

4.4 Average consensus protocol results with small ε 44

4.5 Example network for average consensus using pairwise coordination . 45

4.6 Average consensus results for pairwise coordination 45

4.7 Balanced graph for which a simple averaging protocol does not achieve
average-consensus . 48

xxi

4.8 Perimeter surveillance using average-consensus to distribute the team
evenly along the perimeter . 50

4.9 Perimeter surveillance where deadbeat average-consensus occurs . . . 51

5.1 Trajectory for orbiting a moving target 58

5.2 Splay state configuration for 5 UAVs orbiting a moving target 59

5.3 Nomenclature for splay state controller 64

5.4 Vector field for single UAV tracking an orbit 65

5.5 Vector field for single UAV tracking an orbit modified for spacing error 67

5.6 Example splay state convergence for 3 UAVs 68

5.7 Example trajectories for 4 UAVs orbiting a moving target 78

5.8 Splay state configuration error for 4 UAVs orbiting a moving target . 79

5.9 Simulation results for 3 UAVs reaching the splay state 80

5.10 Hardware results for 2 UAVs reaching the splay state configuration . 81

6.1 Example scenario where 8 agents monitor a linear perimeter 89

6.2 Optimal information exchange pattern for perimeter surveillance . . . 91

6.3 Possible scenarios for agent escort . 95

6.4 Example behavior of perimeter surveillance algorithm 96

6.5 Comparison of the distributed perimeter surveillance algorithm to a
centralized algorithm . 98

6.6 Comparison of the distributed perimeter surveillance algorithm to a
consensus algorithm . 100

6.7 Perimeter surveillance team behavior for changing perimeters 104

6.8 Perimeter surveillance modified to account for data transfer time . . . 104

6.9 U-turn maneuver that satisfies the constrained turning radius of the
UAV . 105

6.10 Distributed Spread Simulation Results 108

6.11 Distributed Spread Experimental Results 109

xxii

6.12 Telemetry Plots of Experimental Results 110

xxiii

xxiv

Chapter 1

Introduction

With the recent development of reliable autonomous technologies for small un-

manned air vehicles (UAVs), the algorithms utilizing teams of these vehicles are be-

coming an increasingly important research area. In many cases, a team of small UAVs

can accomplish tasks in a more efficient manner than a larger, more capable single ve-

hicle. Of course, methods for cooperative control are used by a variety of autonomous

robotic agents with a myriad of potential applications including: chemical spill mon-

itoring [1]; forest fire fighting [2]; search and rescue; exploration (planet, mapping);

surveillance [3]; perimeter approximation [4]; manufacturing [5]; maintenance; infer-

ometry [6]; cooperative manipulation/transportation [7]; power systems [8]; sensor

networks [9]; cooperative target engagement [10]; radar spoofing [11]; and automated

highway systems [12]. It is our intent to investigate the key elements of cooperative

control systems and design algorithms that allow teams of UAVs to perform surveil-

lance tasks.

A cooperative control system consists of multiple (often dynamic) agents that

share a common objective. In most cases, the objective can only be attained through

the sharing of information, tasks, and/or resources. In the broadest sense, a particular

cooperative control problem can be categorized by the amount of cooperation needed

to fulfill the mission objectives. This “level of cooperation” is determined by a number

of factors such as:

1. Objective coupling. Many problems require multiple agents to satisfy the

objective, while other problems can be solved with a single agent, but are more

efficiently completed with a team. For example, the Cooperative Moving Tar-

get Engagement (CMTE) scenario requires one or more agents to track a target

1

while a separate agent attacks it [10] – a single agent cannot simultaneously fill

both roles and the mission can only be accomplished with a cooperative sys-

tem. On the other end of the spectrum is the search problem; a single vehicle

can search a large area alone, but a team of vehicles can improve the search

efficiency. It is the author’s assertion that objective coupling is the main factor

in determining when a particular cooperative control problem can be solved in

a decentralized manner. It also heavily influences the scaling of the algorithm

with respect to team size. If many agents are required to have tight coordina-

tion or high efficiency requirements, then algorithms will often scale with team

size making large teams impractical from a computational complexity stand

point.

2. Level of communication. A cooperative control problem has at its heart

the sharing of information to improve the performance of the team. The com-

munication capabilities and constraints of the team of agents play a large role

in determining how much cooperation can be achieved. The two extremes of

this element are complete communication where each team member has access

to the complete state of all the others; and pure sensory input where each

agent acts solely on the data collected locally, such as in a swarm [13]. The

level of communication in the system also influences the scalability of the solu-

tion. When agents only communicate locally, e.g. to a fixed size neighborhood,

adding more agents does not affect the complexity. A cooperative control so-

lution that requires the state of each agent to be known to all other agents

requires that bandwidth and computation scale with the size of the team.

3. Completeness. It is often important to be able to prove or ensure that a

cooperative control algorithm will complete the objective. Many algorithms

are based on Monte-Carlo simulations or hardware tests to verify performance,

while others can be shown analytically to reach the desired team behavior. In

other cases, the cooperative objective is only met in the statistical mean as

time evolves. It is important to understand the convergence properties of a

particular algorithm when judging its usefulness and applicability.

2

4. Robustness. An algorithm may be provably complete only under a very strict

set of operating conditions. In most practical situations, however, it should also

be tolerant of disturbances, noise, loss of communication, and agent failure.

The ability of an algorithm to deal with these uncertainties often make it

superior to a more efficient, but less robust algorithm.

5. Efficiency. In many cases, a team of agents is used simply to increase the

efficiency at which a problem is completed. Algorithms that utilize optimiza-

tion techniques to coordinate the team can achieve much greater performance

than algorithms that wander and rely on randomness to reach completeness.

This element is closely tied to the others; there seems to be a trade-off in many

problems between efficiency and robustness. Additionally, algorithms that are

highly efficient typically require more communication and are tightly coupled

leading to problems of team scaling.

There is no unified framework into which all (or even most) cooperative control

problems fall. For this reason, different cooperative control algorithms are difficult

to compare in a reasonable manner. Using the above list to categorize algorithms

and evaluate them in each area can lead to useful conclusions about the usefulness

and applicability of presented algorithms. We place a particular emphasis on the

robustness of an algorithm. The natural ability of an algorithm to deal with loss of

agents and disrupted communication is very valuable to the practical deployment of

an algorithm on a UAV team. The most common method of making a cooperative

control algorithm robust is to implement it in a decentralized way. In a decentralized

algorithm, agents make decisions based on neighbor interaction without relying on

central agent or single point of failure. We recognize, of course, that some algorithms

are either extremely inefficient or impossible to implement in a decentralized way,

but for problems that allow for a decentralized solution, that solution is often more

practical and useful than its centralized counterpart.

In this research, we present three algorithms with application to target surveil-

lance and a method for decentralized algorithm design. In Chapter 2, we present a

highly coupled target tracking and prosecution scenario solved by a centralized op-

3

timization. This algorithm serves as an example of a situation in which completing

the mission objectives in an efficient way is difficult without centralization. The

algorithm is efficient and complete, but requires full communication and scales ex-

ponentially with team size. Additionally, its robustness is poor since the solution

must be recomputed when disturbances are encountered. The desire to move to a

decentralized algorithm motivates Chapters 3 and 4 in which consensus methods are

explored. Chapter 3 proves that most consensus algorithms are input-to-state stable

and therefore can be put in cascade with a centralized algorithm to achieve decen-

tralization in some cases. Chapter 4 addresses the average-consensus problem and

postulates that when extra bandwidth is available, ad hoc networks may yield better

performance.

The main results of this document are contained in Chapters 5 and 6 where

we present decentralized algorithms for single target and perimeter surveillance, re-

spectively. Chapter 5 postulates a cooperative splay state controller and proves its

completeness. The splay state controller requires only immediate neighbor commu-

nication and is completely decentralized and robust. Hardware tests validate its ap-

plicability to real UAV systems. Chapter 6 develops a robust perimeter surveillance

algorithm that requires very little communication and is optimal in steady-state and

near optimal in the transition region. Additionally, the algorithm can be proven to

converge in finite-time and shows practicability through flight tests. We note that the

decoupled nature of these problems lend the basis for the decentralized algorithms,

but their value is apparent nonetheless.

4

Chapter 2

Assignment Methods for Coupled Multiple Target Tracking

2.1 Introduction

An important element of any autonomous team operation is the ability to

assign members of the team to specific roles or tasks. A typical assignment problem

involves assigning n tasks to n agents and can be solved efficiently using a linear

program [14]. Extensions to this method involve iteratively building up sequences of

these assignments to complete a mission [15, 16] or solving a dual maximal network

flow problem [14]. These methods benefit from the power of a linear program to

quickly solve large problems, but sacrifice the flexibility needed in some assignment

scenarios. For example, strict precedence of tasks is difficult to enforce and tasks that

require cooperation between agents can be hard to encode. In addition, some agents

may have windows of availability in which particular tasks can/cannot be assigned.

In an effort to address some of these concerns, Schumacher et al. [17, 18] devel-

oped a Mixed-Integer Linear Program (MILP) that enforces task timing precedence

and generates a complete team assignment tour. However, in order to do this, the

cost between consecutive tasks must be known a priori. Euclidean distance between

targets was used as the cost between tasks, but this simplification leads to subopti-

mal results since the actual cost between tasks can be significantly greater due to the

dynamic constraints of the agents.

Assignment problems with strict task precedence have also been addressed

by [19, 20] and [21]. In [19], a complete representation of the search space for UAV task

assignment is developed which can be searched directly or with a Genetic Algorithm.

Turra et al. [20] add the additional complication of moving targets to the strict task

precedence assignment problem and present a solution with a pipeline process that

5

performs the most computationally-intensive tasks off-line, creating an algorithm that

is implementable in real time. Finally, Alighanbari et al. [21] present a method to

construct tours of sequentiality constrained tasks which can be solved optimally for

small problems and with a Tabu search as the computation becomes intractable.

Unfortunately, none of these methods provide explicit methods to account for agent

availability windows or tasks that are constrained differently than a simple ordering in

time. Additionally, highly coupled tasks resist attempts to be decentralized, making

methods similar to [22] and [23] difficult to apply.

We present an assignment method that addresses task timing constraints,

agent dynamic constraints (implicitly), cooperative tasks, and agent availability time

windows in Section 2.2. Extending this method to find a tour of assignments is

discussed in Section 2.4 in connection with the application scenario described in Sec-

tion 2.3. Simulation results are shown in Section 2.5 and Section 2.6 gives conclusions

and directions for future work.

2.2 Time-Dependent Assignment Method

In many cooperative scenarios, the ability to assign cooperative tasks (i.e.

two or more agents are assigned subtasks at the same target) is critical to mission

performance. This assignment is often complicated by the fact that agents may have

windows in time when they can complete specific tasks. In a UAV scenario, these

windows are typically a product of the underlying dynamic constraints of the vehicle.

For example, if a coordinated task requires one agent to track a target while the

other attacks it, then one agent may need to adjust its path to wait for its partner. If

the path cannot be extended smoothly (e.g. UAV attack paths cannot be extended

without discontinuity in some cases [24]) then there are separate intervals in which the

task can be done with a period of infeasibility in between. A MILP formulation of the

problem allows these constraints to be addressed1. Once the problem nomenclature

1It has been brought to the author’s attention that the problem setup presented here bears
striking resemblance to models of air traffic network flow. See, for example, Ref. [25].

6

has been established, linear constraints are given that satisfy the requirements of

time-dependent task assignment.

2.2.1 Nomenclature

Let K be the number of tasks to be performed on each target, V be the number

of agents, and N be the number of targets. Also, let x
n (w)
v,k be a binary decision variable

indicating that agent v is to perform task k at target n starting in time window (w).

Note that the number of decision variables grows as the product of the numbers of

agents, targets, tasks, and windows. To allow for the case when there are more agents

than tasks to be done, let zv be a binary decision variable indicating that agent v is to

be assigned the null task (assumed to have zero cost). The case when there are more

tasks than agents must be addressed in an iterative manner and will be discussed in

Section 2.4. To enforce the timing between tasks and to optimize the total time of

the assignment, let tnk be the time that task k is started on target n.

To represent the cost associated with each of the decision variables, the win-

dows of time when agent v can accomplish task k at target n must be calculated. For

each (v, k, n), a set W n
v,k is formed where each element of W n

v,k contains a start time

(T
n bw
v,k) of window w and a stop time (T

n wc
v,k). This can be done in any manner suit-

able to the problem definition. It is this flexibility that gives this assignment method

its appeal – as long as the underlying path planning can be represented by windows

of task availability, this assignment algorithm can be used. Note that a worst-case

target prosecution time exists for each target and the maximum of those times is

the upper-bound on the final task completion time. Practically, an upper-bound on

target completion time will always exist due to fuel constraints. This maximum tar-

get completion time, T , allows the formation of timing inequalities that support task

precedence.

7

2.2.2 Constraints

A Mixed-Integer Linear Program is defined by linear constraints and the cost

function that describe the problem. Following [17], a set of constraints and associated

cost function to accomplish the assignment is presented below.

Non-Timing Constraints

1. Each agent gets exactly one task or goes to the sink

N∑
n=1

K∑

k=1

∑
w

x
n (w)
v,k + zv = 1 (2.1)

for v = 1 . . . V .

2. Any target that receives one task, receives all tasks

V∑
v=1

∑
w

x
n (w)
v,1 =

V∑
v=1

∑
w

x
n (w)
v,k (2.2)

for n = 1 . . . N , k = 2 . . . K .

3. Each target is serviced at most once (in combination with the above constraint,

this also ensures that each target receives each task at most once)

V∑
v=1

∑
w

x
n (w)
v,1 ≤ 1 (2.3)

for n = 1 . . . N .

Timing Constraints

1. Time to start task k at target n must be in window w of agent v if the cor-

responding decision has been made. Note that these inequalities are trivially

satisfied when x
n (w)
v,k is zero, but become tight restrictions on tnk when x

n (w)
v,k is

8

one

tnk ≥ T
n bw
v,k − (1− x

n (w)
v,k)2NT

tnk ≤ T
n wc
v,k + (1− x

n (w)
v,k)2NT (2.4)

for k = 1 . . . K, v = 1 . . . V , n = 1 . . . N , w ⊂ W n
v,k .

2. If precedence of tasks is required, then constraints similar to the following will

be needed. Here we constrain the tasks to occur in order 1 . . . K

tnk ≤ tnk+1 (2.5)

for n = 1 . . . N , k = 1 . . . K−1 .

To have agents cooperate in servicing a target simply requires defining the

relative timing of tasks. If, for example, two UAVs were to start two cooperative

tasks (say task 1 and 2) simultaneously, then the constraint tn1 = tn2 could be

added. Similarly, if a task must occur within some interval after a previous task

is performed, a constraint pair like (tn2 ≤ tn1 + α, tn2 ≥ tn1) is applied.

3. To ensure that as many targets as possible are serviced, we impose a missed

target penalty. Note that all tnk that are associated with targets that are missed

are equal to MT where M is the number of missed targets. This constraint also

eliminates the degenerate solution of assigning all agents to the null task

tnk ≥
(

N∑
m=1

{
1−

V∑
v=1

∑
w

x
m (w)
v,k

})
T

−
(

V∑
v=1

∑
w

x
n (w)
v,k

)
2NT

tnk ≤
(

N∑
m=1

{
1−

V∑
v=1

∑
w

x
m (w)
v,k

})
T (2.6)

+

(
V∑

v=1

∑
w

x
n (w)
v,k

)
2NT

for k = 1 . . . K, n = 1 . . . N .

9

2.2.3 Cost Function

Reasonable cost functions for many assignment scenarios include minimizing

the final task completion time for all targets

J =
N∑

n=1

tnK (2.7)

or minimizing all task completion times for all targets

J =
N∑

n=1

K∑

k=1

tnk . (2.8)

2.3 UAV Assignment Scenario

One scenario which requires a high level of cooperation between team members

and has the additional complexity of nonlinear agent dynamics is the Cooperative

Moving Target Engagement (CMTE) scenario. CMTE requires that two or more

UAVs track a moving (ground) target with doppler radar while an additional UAV

launches a GPS-guided munition. The sensed target position and associated error

ellipse from each tracking UAV are fused to form a precise GPS location of the target

for the munition to follow. To reduce the error in the location of the moving target,

the UAVs tasked to perform the tracking must have different line-of-sight angles to

the target, preferably near orthogonal views. In addition, a moving target can only

be detected and tracked if the UAV has a line-of-sight view to the target within

some offset angle, γ, from the heading of the moving target, ψ. Figure 2.1 shows the

heading of the target and the associated regions in which UAVs can be located to

detect its motion.

Complicating matters further, each UAV has a sensor footprint in which tar-

gets must be located to be tracked. The footprint has minimum and maximum ranges

and bearings and, due to the configuration of the radar antenna array, is pointed out

the wing of the UAV. Figure 2.2 shows a UAV tracking a target and the associated

10

γ
ψ

Figure 2.1: Region of detectability based on target heading.

sensor footprint relative to the orientation of the UAV. The sensor can scan on either

side of the UAV, but not both at the same time.

A team of UAVs designated to track and prosecute an area of targets can

also be supported by an additional “off-board” team member who is located outside

of the area and has a powerful sensor with an assumed 360-degree sensor footprint

able to view the entire field. This assumption can be relaxed, but requires additional

timing constraints. For purposes of this assignment algorithm, the off-board vehicle

is assumed to travel circularly so that its line-of-sight to targets is approximately

fixed. UAVs inside the area can then cooperatively track a target with the off-board

vehicle or with an inside team member. Because the error in the position of the

moving target can be reduced by multiple separated line-of-sight angles to the target,

we restrict the difference in bearing angles of the UAVs to the target to be greater

than 45 degrees. This restriction partitions the detectability region of the target

further into regions that satisfy both the target detectability requirement and the

angle offset requirement. For fixed target heading and position and fixed off-board

11

Figure 2.2: UAV sensor footprint (dark gray region).

vehicle position, regions where a target can be cooperatively tracked can be identified

and used to develop path-planning routines of the UAVs to complete the mission.

While the bulk of the complexity in the CMTE scenario comes from the co-

operative tracking of targets, the attack on the target must also be considered. All

UAVs inside the area of interest can track targets and drop weapons. To be in posi-

tion to attack, a UAV must be headed toward the target and be within a maximum

and minimum range. Once the weapon is launched, the attacking UAV is free to be

reassigned to other tasks, but the UAVs tracking the target must track the target for

the duration of the weapon flight.

The CMTE scenario requires strict timing constraints between tasks and coop-

eration between team members. UAV dynamics impose constraints on path planning

techniques to get into tracking and attacking positions. This complexity makes the

CMTE scenario an ideal problem for studying time-dependent cooperative assignment

methods.

12

2.4 CMTE Application

To reduce the CMTE scenario to a more reasonable level, the following as-

sumptions and restrictions will be added.

1. Targets have constant heading. Admittedly, this is a poor assumption, but for

targets traveling along known roads, it may be justified. Allowing dramatic

target heading changes requires many more UAVs to be assigned to track the

target to ensure coverage over all possible headings.

2. Tracking of targets occurs along arcs of a circle centered at the target with radius

so as to place the target in the center of the sensor footprint (see Fig. 2.2). This

allows the path planning to be performed as if the target were stationary since

the sensor footprint is much larger than the distance traveled by the target

during a typical scenario.

3. Weapons are launched at a fixed distance from the target and an upper bound

on the flight time of the weapon is known so as to fix the amount of time after

an attack has occurred that the target must be tracked. This simply translates

to planning more time to track than will actually be needed for the weapon

launch and travel.

These restrictions and assumptions simplify the level of path planning needed to

accomplish a CMTE mission. Additional complexity could be added without changing

the method of assignment as long as the interface between the nonlinear path planning

and the assignment algorithm remains abstracted to the specification of windows of

availability of team agents.

Because the CMTE scenario hinges on the ability of UAVs to cooperatively

track a moving target, much of the assignment complexity is involved with determin-

ing which team members are assigned to track which target and with whom. To this

end, the basic time-dependent assignment algorithm developed in Section 2.2 is aug-

mented with additional decision variables to allow pairwise decisions. Let y
n (w)
u,v be a

binary decision variable indicating that UAVs u and v are assigned to cooperatively

13

track target n in time window w. This allows the path planning routines to calculate

windows of time when the pair of vehicles (u, v) can cooperatively track a target.

Following the nomenclature established above and in Section 2.2, let k = 1 be

designated the attack task and k = 2 be the track task, then the following constraints

are used to assign a team of UAVs in the CMTE scenario.

2.4.1 Non-Timing Constraints

1. Each agent gets exactly one task or goes to the sink. An agent can be assigned

to cooperatively track a target with the off-board vehicle (x
n (w)
v,2) or with another

inside team member (y
n (w)
u,v), but not both. At a higher level, an agent could be

assigned to attack (x
n (w)
v,1) or track, but not both

N∑
n=1

K∑

k=1

∑
w

x
n (w)
v,k +

N∑
n=1

V∑

u=1,u 6=v

∑
w

yn (w)
u,v + zv = 1 (2.9)

for v = 1 . . . V .

2. Any target that receives one task, receives all tasks. Since the track task occurs

in two different decision variables, the sum of both must equal the decision to

complete the attack task by another vehicle

V∑
v=1

∑
w

x
n (w)
v,1 =

V∑
v=1

∑
w

x
n (w)
v,2 +

V−1∑
u=1

V∑
v=u+1

∑
w

yn (w)
u,v (2.10)

for n = 1 . . . N .

3. Each target is serviced at most once (in combination with the above constraint,

this also ensures that each target receives each task at most once)

V∑
v=1

∑
w

x
n (w)
v,1 ≤ 1 (2.11)

for n = 1 . . . N .

14

2.4.2 Timing Constraints

The CMTE scenario requires that a target be continuously tracked for the

duration of the weapon flight after the weapon has been launched. Since it is assumed

that the weapon is launched from a specific distance from the target and the speed of

the munition is known, the path planning routines can return windows of time when

an agent (or pair of agents) can start tracking a target and continue for at least tα

where tα is the time from munition launch to impact. This also allows the compaction

of tn1 and tn2 to tn since we can constrain the tracking to begin when the weapon is

launched without changing the requirements of the scenario.

1. Time to prosecute target n must be in window w of agent v if the corresponding

decision has been made

tn ≥ T
n bw
v,k − (1− x

n (w)
v,k)2NT

tn ≤ T
n wc
v,k + (1− x

n (w)
v,k)2NT (2.12)

for k = 1 . . . K, v = 1 . . . V , n = 1 . . . N , w ⊂ W n
v,k

and

tn ≥ T n bw
u,v − (1− yn (w)

u,v)2NT

tn ≤ T n wc
u,v + (1− yn (w)

u,v)2NT (2.13)

for u = 1 . . . V−1, v = u+1 . . . V ,

n = 1 . . . N , w ⊂ W n
u,v .

2. Due to the reduction of timing variables to the representative target prosecution

time, no additional task timing constraints are needed.

3. Missed target penalty carries over from Section 2.2 to ensure that all UAVs are

not assigned to the null task. Note that only x
n (w)
v,1 needs to be examined due

to the coupling through constraint (2.10), which ensures that targets that are

not attacked will not be tracked either.

15

2.4.3 Cost Function

The CMTE scenario simply requires that all targets are prosecuted as quickly

as possible, so

J =
N∑

n=1

tn . (2.14)

The constraints given in Sections 2.4.1 and 2.4.2 in connection with the cost

function in 2.4.3 define a Mixed-Integer Linear Program suitable for assigning each

UAV in a team to one task in a CMTE scenario. The completion of the mission is when

all the tasks are completed, so the assignment algorithm must be iterated to produce

a tour of assignments. A completely optimal solution would require the optimization

of path planning and assignment to be coupled. By applying this assignment scheme,

a tour of assignments will be suboptimal, but the freedom allowed by separating the

path planning and the assignment is desirable. By augmenting the assignment method

with an additional set of complete target ordering constraints, heuristics can be used

to improve the iterative solution. Specifically, we use the solution to a Traveling

Salesman Problem with the targets as cities to guide the iteration, since the distance

between targets is a good indication of the spatial coupling of the scene.

The time windows calculated in the underlying path planning routines can

easily be shifted by the amount of time a vehicle has already committed to, so an

iteration can be used where the state (position and time committed) of the vehicles

is updated after each assignment stage is run. Once the assignment algorithm has

allocated a task to each vehicle in the team, the earliest target prosecution time is

selected. The target corresponding to that time is removed from the target list and

the vehicles assigned to the tasks pertaining to the prosecution of that target have

their states updated to reflect the time it will take to complete their respective tasks.

Vehicles associated with tasks related to the prosecution of other targets are not

updated. New time windows are computed with the updated positions and shifted by

the amount of time committed to earlier stages. The assignment algorithm is iterated

until all targets have been prosecuted.

16

Obtaining a solution to any MILP formulation is NP-hard. This assignment

algorithm is based on MILP and, so, is also NP-hard, resulting in extreme amounts

of computation needed for large problems. A number of different random CMTE

situations were simulated to estimate the computation required for various problem

sizes. It was found that problems in which the sum of the number of vehicles and

targets is less than or equal to 12 are solvable in less than a minute on a modern desk-

top computer (we used MATLAB and an open-source linear programming package,

GLPK). For many CMTE missions, small problem sizes are typical, involving 5 UAVs

and 3 to 4 targets. Larger problems will require a re-formulation of the assignment

algorithm or a partitioning of the team and target space into problems small enough

to be solved in a timely manner. Solving a CMTE mission in small stages has the ad-

ditional advantage that many of the assumptions used to simplify the path planning

(e.g. constant heading) will be invalidated for lengthy tours of target prosecution,

and hence, only a small number of targets will be prosecuted (and assigned) at each

stage.

2.5 Simulation Example

To illustrate the capability of the time-dependent cooperative assignment al-

gorithm presented in Section 2.4, a problem of size V = 5 and N = 3 was simulated.

UAVs and targets were randomly distributed over an area 110 km wide and 170 km

long with an additional off-board vehicle fixed directly north of the area of interest.

Figure 2.3(a) shows the initial positions of the targets and in-area UAVs. Each target

is shown with an associated detectability region (outlined in black) and cooperative

tracking region (solid wedge). Recall that the cooperative tracking region is the inter-

section of the detectability region with the line-of-sight angles greater than 45 degrees

different from the off-board vehicle line-of-sight. Task time availability windows are

computed based on computing minimum time trajectories to these regions.

The CMTE scenario is rich in timing complexity making visualization diffi-

cult without animation. Figures 2.3(a)-2.3(d) show the progression of the simulated

scenario at 4 distinct points in time. Figure 2.3(b) shows that UAV 1 is assigned to

17

track target 1 in cooperation with the off-board vehicle while UAV 5 attacks. The

sensor footprint of the tracking UAV is shown to validate that the UAV is in position

to track the target. Because UAV 1 is in the cooperative tracking region of target

1, no other UAVs are needed to track this target. This represents one iteration of

the assignment algorithm. During the next iteration, UAVs 2 and 3 are assigned to

cooperatively track target 2. Figure 2.3(c) shows the instant in time when UAV 4

releases a weapon to attack target 2. Note that the assignment algorithm correctly

assigned 2 UAVs to track this target due to the distance needed for UAV 2 or 3 to

reach a cooperative tracking region with sufficient room to track the weapon for the

entire weapon flight. Also note that UAV 3 extended its path to arrive at the correct

position and time to track the target. Since the algorithm ensures that the target

prosecution time falls in the availability time windows of each UAV, no vehicle will

be given requirements that violate underlying dynamic constraints. The final target

is attacked by UAV 4 with UAV 2 assigned to track in cooperation with the off-board

vehicle (Fig. 2.3(d)).

This CMTE mission needed 70 variables (67 binary, 3 continuous) and 81

constraints to describe the optimization and required slightly less than 0.2 seconds to

solve the MILP formulation. Current path planning routines are scripted in MATLAB

and, for this scenario, required about 10 seconds of computation. It is anticipated

that the path planning routines will require significantly less computation as code is

moved from MATLAB to C; additionally, for large problems, the optimization will

be the most time-intensive part.

2.6 Conclusions and Future Work

An assignment algorithm capable of dealing with agent availability time inter-

vals and explicit task precedence was presented. The flexibility allowed by abstracting

the agent path planning from the assignment algorithm allows for complex assignment

scenarios to be considered. The Cooperative Moving Target Engagement (CMTE)

scenario was presented as an example of a situation in which traditional assignment

algorithms are not sufficient. An assignment formulation for the CMTE scenario was

18

(a) Initial positions (b) First attack

(c) Second attack (d) Final attack

Figure 2.3: Simulated CMTE scenario.

presented, along with a discussion of issues related to task tours and computation

requirements.

Future work in this area involves finding heuristics to guide the selection of

target ordering as well as partitioning strategies to break large problems into compu-

tationally tractable ones. Tighter integration of the linear elements of path planning

and the assignment algorithm are also being investigated in an attempt to gain back

the optimality lost in the problem assumptions.

19

20

Chapter 3

Consensus: Input-to-State Stability

3.1 Introduction

Replacing large, expensive, monolithic vehicles with teams of networked vehi-

cles, promises less expensive, more capable systems. In addition, there are applica-

tions where a team of vehicles can accomplish objectives that would be impossible

for a single vehicle [26, 27, 10]. To a large extent, the ability of team members to

coordinate hinges on their agreement upon a set of information that we call the co-

ordination variable [28]. When this information is the same between team members,

centralized coordination algorithms (replicated on each agent) can be used to achieve

cooperation in a decentralized manner. Unfortunately, in most real-world applica-

tions, perfect synchronization is not possible necessitating algorithms that ensure

that team members eventually come to a consensus on the value of the coordination

variable. Many good approaches solve the consensus problem with varying levels of

assumed agent connectivity.

Distributed algorithms for reaching consensus have been a topic of study for

many years [29]. Many authors focus on networks of agents that are fully connected.

Since the basic consensus problem is trivial in that setting by simply having every

agent communicate their data with all others and vote on the outcome value, re-

searchers have focused on dealing with rogue agents in the network that either act

arbitrarily or maliciously (e.g. Byzantine Generals Problem [30]). One algorithm that

addresses distributed binary decision making (e.g. database commit) in environments

with likely changing connectivity is Paxos [31]. When a majority of agents collectively

make a decision, Paxos ensures that eventually all other agents will agree with that

decision when their connectivity is restored. While the connectively requirements are

21

certainly more relaxed than assuming full connectivity of the group, the problem of

ensuring that a majority of the agents are fully connected to make the initial decision

is still in question. It is this aspect of limited connectivity (i.e. agents can only talk

to their immediate neighbors and frequently leave the network) that recent literature

has begun to address.

Our primary interest in consensus is the construction of an algorithm that

accounts for frequent loss of agent connectivity and low bandwidth communication.

Many researchers restrict the connectivity of the team by assuming that agents only

send information to their immediate neighbors, never explicitly forwarding packages

through the network. Each agent updates its value with consistent rules to ensure that

by repeatedly receiving communication from neighbors, the entire group will converge

to a single value. One of the initial papers along these lines describes how birds and

fish could achieve flocking behavior (i.e. the group as a whole travels in the same di-

rection) through nearest-neighbor interaction [32]. In this work, agents updated their

heading to be the average of their neighbors’ headings where a fixed communication

topology was assumed. Numerous other researchers have investigated the role of the

group communication topology in reaching consensus using a linear update mecha-

nism in both continuous-time [33, 34] and discrete-time [35]. The primary result from

this research states that a group of agents can reach consensus if and only if the union

of the graph representing the connectivity of the agents achieves a spanning tree fre-

quently. These ideas were applied to leaderless vehicle formation control [36, 37, 38]

and distributed filtering [39, 40]. Notable publications extending consensus protocols

to account for delay and/or switching topologies are [41, 42, 43, 44, 45, 46]. In [47], a

consensus scheme motivated by the Kalman filter is presented and shown to guaran-

tee asymptotic consensus and explicitly account for relative agent reliability. In this

chapter we show that the Kalman consensus scheme and most other from recent lit-

erature are input-to-state stable (ISS) with respect to communication noise, and use

this fact to design cooperative timing strategies for unmanned air vehicles (UAVs).

UAV cooperative timing problems have been investigated recently in the con-

text of battlefield scenarios where the UAVs are required to converge to the boundary

22

of a radar detection area to maximize the element of surprise [48, 49, 50, 51, 52]. Co-

operative timing problems also arise in refueling scenarios, fire and hazardous material

monitoring, moving area of regard problems, and continuous surveillance problems. In

this chapter we will investigate a simplified cooperative timing problem that must be

accomplished in the presence of an unreliable, dynamically changing communication

topology.

In the case of cooperative timing problems, the coordination information is the

time-over-target for the whole team. We are particularly interested in the relationship

between the consensus algorithm and the cooperative control scheme. Specifically, if

the action of each UAV is based on the dynamically changing, local instantiation of

the perceived time-over-target, will the team cooperation objective still be achieved?

The main contribution of this chapter is to derive sufficient conditions for

the coordination scheme when it is used in connection with an asymptotically stable

consensus algorithm. Specifically, we wish to investigate overall system behavior when

a cooperative control scheme, designed to be stable when the coordination variable

is known a priori, is instead, given an estimate of the coordination variable by a

consensus scheme. The application of these ideas will be investigated in the context

of cooperative timing scenarios.

This chapter is organized as follows. An overview of the Kalman consensus

scheme is given in Section 3.2. The Kalman consensus scheme is shown to be input-

to-state stable (ISS) in Section 3.3 and this is used to derive a design principle for

distributed cooperation algorithms. These principles are applied to a cooperative

timing example in Section 3.4.

3.2 Kalman Consensus

In a companion paper, we present a Kalman-filter-inspired technique for con-

sensus seeking [47]. The purpose of the Kalman consensus scheme is to explicitly

account for relative agent reliability while at the same time obtaining consensus in

the presence of a dynamically changing communication topology. Some of the main

results are presented here to facilitate the analysis later of the stability properties of

23

Kalman consensus. As a matter of notation, we are considering asymptotic consensus

in the sense that consensus is said to be achieved asymptotically if ‖ξi(t)− ξj(t)‖ → 0

as t →∞ for each pair of agents (i, j), where ξi is the ith agent’s estimate of the co-

ordination variable whose value all agents must agree upon.

The following update equations describe the Kalman consensus scheme for the

ith agent:

Ṗi = −Pi

[∑
j

gij(t)(Pj + Ωij)
−1

]
Pi + Qi (3.1)

Kij = Pi(Pj + Ωij)
−1 (3.2)

ξ̇i =
n∑

j=1

gij(t)Kij ((ξj + νij)− ξi) (3.3)

where ξi is ith agent’s coordination variable and Pi the associated relative uncertainty

for ξi. gij(t) captures the connectivity between agent i and j, specifically, when

gij(t) = 1, agent i receives communication from agent j, otherwise gij(t) = 0. νij is

the noise on the communication channel from agent j to i (assumed to be zero-mean

Gaussian with covariance Ωij). Finally, Qi is the covariance associated with the zero-

mean Gaussian random variable which corrupts the state-space model in a typical

Kalman filter setting.

Theorem 1. Under switching interaction topologies, the Kalman consensus scheme

given in Equations (3.1)–(3.3) achieves asymptotic consensus if there exist infinitely

many consecutive uniformly bounded time intervals such that the union of the inter-

action graph across each interval has a spanning tree.

Theorem 1 is proven in [47], but deserves mention here to highlight the condi-

tions under which the Kalman consensus scheme achieves agreement between agents.

The central condition (from [53]) is that under dynamically switching communication

topologies, a spanning tree of the communication topology graph must be reached

infinitely many times. A spanning tree is the least restrictive graph arrangement

that includes all agents in a way that allows for consensus. Each time a spanning

24

tree is achieved, the consensus error is driven closer to zero, so if a spanning tree is

reached infinitely many times, then each agent’s estimate of the coordination variable

approaches the others’ asymptotically. The proof of Theorem 1 also shows that the

transition matrix in each interval in which a spanning tree is reached is indecompos-

able and aperiodic, meaning limn→∞ P n = 1yT , where y is a column vector [54]. Such

matrices are part of the stochastic, irreducible, and aperiodic (SIA) class of matrices.

SIA matrices are composed of all non-negative entries, have a row sum of 1 and are

essentially averaging matrices in the sense that a vector operated on by an SIA matrix

returns a new vector whose elements are composed of a weighted average of all the

entries of the original vector. It is this fact that allows us to conclude uniformity in

Section 3.3.

3.3 Consensus Algorithms are Input-to-state Stable

We are primarily interested in the application of consensus algorithms to co-

operative control problems. In this chapter we will explore a control architecture

where a consensus algorithm is in cascade with a coordination algorithm, as shown in

Figure 3.1. Our purpose in this section is to derive conditions on the consensus and

coordination algorithms that guarantee that the cooperation objective is achieved.

Toward that end, rewrite Equation (3.3) as

ξ̇i =
n∑

j=1

gij(t)Kij (ξj − ξi) +
n∑

j=1

gij(t)Kijνij. (3.4)

Defining the total consensus error vector x as xij = ξi − ξj and

x = (x11, x12, . . . , x1n, x21, . . . , xnn)T ,

we get the state-space model

ẋ = A(t)x + B(t)ν (3.5)

25

Communication
Network

Consensus
Algorithm

on Vehicle

Consensus
Algorithm

on Vehicle

Coordination
Algorithm

on Vehicle

Coordination
Algorithm

on Vehicle
Vehicle Vehicle

Figure 3.1: The control architecture consists of a consensus algorithm in cascade
with a coordination algorithm. The consensus algorithm receives information from
the communication network to produce a value of the coordination variable ξi. The
coordination algorithm uses the coordination variable ξi to produce a command the
the vehicle ui. We assume that the same consensus and coordination algorithms are
implemented on each vehicle.

where ν is a column vector created by stacking the communication noise terms νij,

and the elements of A(t) and B(t) are linear combinations of gijKij(t) and can be

easily constructed from Equation (3.4).

We now state the main technical result of the chapter.

Theorem 2. Under the hypothesis of Theorem 1, the Kalman consensus scheme given

by Equations (3.1), (3.2), and (3.5) is input-to-state stable.

The proof of this theorem requires the following two lemmas.

Lemma 3. Under the hypothesis of Theorem 1, if the communication error ν is zero,

then the consensus error x is uniformly stable.

Proof: As shown in [47], the transition matrix associated with the coordination

variable dynamics is SIA. When gij(t) = 1, the ith coordination variable is updated to

a weighted average of all agents’ coordination variables communicating with i. Since

a weighted average can never be greater (or smaller) than any one of the components

in the average, the updated ξi must be within [min(ξj), max(ξj)]. Since all agents

that receive communication with other agents use the same averaging scheme, ξi(t) ∈

26

[min(ξj(t0)), max(ξj(t0))] for all t and i. Then

‖x‖∞ ≤ ‖x(t0)‖∞ , for t ≥ t0.

Lemma 4. The norm of B(t) in Equation (3.5) is bounded.

Proof: Since B(t) is composed of linear combinations of Kij(t), if ‖Kij(t)‖ is

bounded for each (i, j), then ‖B(t)‖ will also be bounded. Referring to Equa-

tion (3.2) and recalling that Ωij > 0 and Pj(t) > 0, then ‖Kij‖ will be bounded

if ‖Pi(t)‖ is bounded. Using Equation (3.1) and noting that Pi > 0, Qi is bounded

and −Pi

[∑
j gij(t)(Pj + Ωij)

−1
]
Pi ≤ −Pi(Pi + Ωii)

−1Pi, we see that Pi is uniformly

bounded.

Proof of Theorem 2: By Lemma 3, the Kalman consensus error is uniformly

stable. By Theorem 1, ‖ξi − ξj‖ → 0 as t → ∞ for all (i, j). Since each element

of x → 0 then ‖x‖ → 0 as t → ∞ and we conclude uniform asymptotic stability.

Any linear system that is uniformly asymptotically stable is also uniformly exponen-

tially stable [55]. Additionally, linear uniformly exponentially stable systems with

‖B(t)‖ < β for finite β are bounded-input bounded-output stable [56]. Since the

Kalman consensus error governed by Equation (3.5) is a linear uniformly asymptoti-

cally stable system with ‖B(t)‖ bounded, it is ISS.

Corollary 5. If the continuous-time consensus schemes presented in [32, 53, 34, 44]

are augmented with communication noise, then the representation of these schemes

that is equivalent to Equation (3.5) is ISS.

Proof: The difference between each of these schemes and Equation (3.3) is that the

consensus gain Kij(t) is time invariant. Therefore from the proof of Theorem 2 it is

clear that they are ISS.

Referring to Figure 3.1 we see that the combination of the communication

network and the consensus scheme is an ISS system. The cascade combination of two

ISS systems is also ISS [57]. Therefore if the feedback loop containing the coordination

27

algorithm and the ith vehicle is ISS from the consensus error to the cooperation

objective, then the total system will be ISS from the communication noise to the

cooperation objective. This concept is shown schematically in Figure 3.2 and can be

summarized by the following Theorem.

Consensus
Scheme

Coordination
Scheme

Cooperation
Objective

Figure 3.2: The distributed cooperative control problem can be thought of as a cascade
connection between the consensus algorithm and the coordination algorithm. If both
are ISS, then the cascade system will be ISS.

Theorem 6. Consider a cascade interconnection between a coordination algorithm

and a consensus scheme that is ISS from the communication noise to the consensus

error. If a coordination scheme is ISS from the consensus error to the cooperation

objective then the interconnected system is ISS from the communication noise to the

cooperation objective.

The major implication of Theorem 6 is that communication noise cannot per-

manently disrupt overall team cooperation. If a coordination algorithm is ISS and

is driven by a consensus algorithm that is implemented over noisy communication

channels (communication via sensing, for example), then Theorem 6 states that the

error in the cooperation objective will be bounded and related to the power of the

noise in the communication. When there is significant communication noise, then the

cooperation objective will still be achieved, albeit loosely.

3.4 Illustrative Example - Cooperative Timing

Suppose that a team of UAVs, flying at distinct altitudes, is tasked to simul-

taneously visit a pre-specified location. For simplicity, also assume that paths have

been precomputed for each UAV as shown in Figure 3.3.

28

−30 −20 −10 0 10 20 30
−10

0

10

20

30

40

50

X position

Y
 p

os
iti

on

Figure 3.3: Cooperative timing scenario with five agents involved.

We will also assume that each UAV has autopilot functionality that maintains

the UAV on its pre-defined path, but that the velocity along the path can be adjusted

to meet the simultaneous arrival objective. We will assume that the velocity hold

autopilot has been designed such that

v̇i = vc
i − vi (3.6)

where vi is the velocity and vc
i the commanded velocity for the ith UAV. Let Li denote

the length of the path remaining to the target, then

L̇i = −vi.

Given Li and vi, the ith UAV can estimate its expected time-of-arrival (ETA) as

τi =
Li

vi

.

29

Differentiating, we obtain

τ̇i =
viL̇i − Liv̇i

v2
i

= −1− τi

(
vc

i − vi

vi

)
. (3.7)

The cooperation objective for this problem is that each UAV arrives at its destination

simultaneously, i.e. τi−τj = 0 for each (i, j). The coordination variable for this prob-

lem is chosen as the arrival time. Therefore ξi represents the ith UAVs understanding

of the team arrival time. Clearly, to satisfy the simultaneous arrival objective, the

team must come into consensus before the actual arrival time. As in many practi-

cal applications, we desire consensus in finite time, but consensus is only guaranteed

asymptotically. However, due to its exponential nature, a consensus algorithm will

still be useful in the presence of finite horizon requirements.

Let the commanded velocity to each UAV be

vc
i = vi +

vi

τi

(γτi − γξi − 1) , (3.8)

then Equation (3.7) reduces to

τ̇i = −γτi + γξi. (3.9)

Note that

(τ̇i − τ̇j) = −γτi + γξi + γτj − γξj

= −γ (τi − τj) + γ (ξi − ξj) ,

and that the system φ̇ = −γφ + γu is input-to-state stable. In fact we have that

|φ(t)| ≤ e−γ(t−t0)φ(t0) + sup
t0≤σ≤t

|u(σ)| .

30

Therefore, the combination of the consensus strategy given by Equations (3.1)–

(3.3) and the velocity controller given by Equation (3.8) is input-to-state stable with

the input being communication noise and the state consisting of both the consensus

discrepancy ξi − ξj and the UAV arrival discrepancy τi − τj.

The cooperative timing scenario was simulated with an unreliable switching

communication topology. The team is connected in the graph shown in Figure 3.4

where each link is only available 70 percent of the time. When an agent receives com-

1

2

3

4

5

Figure 3.4: Union of possible communication topologies where each link is only avail-
able to group agents 70 percent of the time.

munication it updates its estimate of ξi, the team estimated time-of-arrival (ETAteam),

using the Kalman consensus scheme of Section 3.2. In between consensus updates,

agents control their velocity using Equation (3.8) so that the actual time-of-arrival

matches the estimate from the consensus algorithm. Five agents were given a single

target at which to arrive simultaneously, as in Figure 3.3.

In the first case, communication noise ν was set to zero and each agent started

with approximately the same confidence in its estimate of the team ETA. The refer-

ence team ETA for each vehicle is shown in Figure 3.5 and the actual ETA of each

31

vehicle is shown in Figure 3.6. As can be seen, each agent in the team achieves agree-

ment using consensus, adjusts its ETA to match the team ETA, and arrives at the

target in approximately 20 seconds.

0 5 10 15 20
18

19

20

21

22

23

24

25

26

ETA
 team

 estimate (seconds)

Figure 3.5: Reference team ETA for each agent with no communication noise.

0 5 10 15 20
18

19

20

21

22

23

24

25

26
Actual ETA (seconds)

Figure 3.6: Actual ETA for each agent with no communication noise.

32

In the second case, significant communication noise is added. The reference

team ETA for each vehicle is shown in Figure 3.7 and the actual ETA of each vehicle

is shown in Figure 3.8. As can be seen, each agent in the team achieves approximate

agreement using consensus where the error in agreement is due to the communication

noise.

0 5 10 15 20
18

19

20

21

22

23

24

25

26

ETA
 team

 estimate (seconds)

Figure 3.7: Reference team ETA for each agent with communication noise.

0 5 10 15 20
18

19

20

21

22

23

24

25

26
Actual ETA (seconds)

Figure 3.8: Actual ETA for each agent with communication noise.

33

3.5 Conclusions

This chapter has shown that the Kalman consensus scheme presented in [47]

is input-to-state stable. A significant corollary is that most of the consensus schemes

presented in the current literature are also ISS. The input-to-state property of the

consensus scheme was used to show that if the consensus scheme is used in cascade

with a multiple vehicle coordination algorithm that is also ISS, then the fidelity of

the cooperation objective is directly related to the power level of the communication

noise.

34

Chapter 4

Average Consensus and Message Passing

4.1 Introduction

For teams of autonomous agents, the ability to cooperate in a decentralized

manner can enhance the overall effectiveness of the team. Central to decentralized co-

operation is the consensus problem which has been investigated recently by a number

of researchers [32, 33, 41, 35].

In general terms, the consensus problem for a group of agents is to ensure

that as time progresses each agent approaches a consistent understanding of their

shared information. In the general problem, the value to which the team converges

is arbitrary, the only requirement being that all agents eventually agree. Average-

consensus problems add the restriction of requiring that the final value (the group

decision) be the exact average of the agents’ initial values. The average-consensus

problem is a part of the family of χ-consensus problems [58] where the value that

the team is to converge is a function χ of the initial values of the team (e.g. max or

min). Recently average-consensus has been used as a basis for distributed Kalman

filters [39, 40].

In [41] Olfati-Saber and Murray propose a distributed, linear, continuous-time

protocol that ensures that average-consensus is achieved asymptotically if the inter-

action networks connecting the agents switch between balanced, strongly connected

graphs. This chapter will extend those results to the discrete-time domain as well as

relax the restriction of requiring the interaction topology to be strongly connected

at each instant. Our main result will be to show that if the interaction topology at

any instant is balanced and the union of the network graph is strongly connected

over every interval T , then average-consensus is still achieved asymptotically. Thus,

35

a network may at no instant be strongly connected, yet agents in a team can still

achieve average-consensus.

This chapter is outlined as follows. In Section 4.2 we introduce a formal

definition of average-consensus as well as notation that relates the communication

topology to consensus protocols. Our main results are presented in Section 4.3. Sec-

tion 4.4 investigates the practical issues in forming an average-consensus protocol in

the discrete-time framework and proposes two such protocols. The notion of dead-

beat consensus is introduced in Section 4.5 and Section 4.6 investigates trade-offs

between asymptotic and finite-time average-consensus protocols. Finally, conclusions

are offered in Section 4.7.

4.2 Definitions and Terminology

The information flow topology between agents on a team is most naturally

represented as a directed graph. For this reason, we introduce graph theoretic termi-

nology similar to [59].

Let A = [aij] be an n× n nonnegative matrix. The underlying directed graph

G associated with A has vertex set V (G) = {1, . . . , n} and a directed edge (i, j) from

node i to j if and only if aji 6= 0 (note: some authors use the transpose of A, i.e. there

is a directed edge (i, j) from i to j if and only if aij 6= 0). As we have defined the

relationship between a matrix and its underlying graph, the nodes sending information

to node i can be determined by the nonzero entries in row i. Nonzero entries in column

i indicate which nodes are receiving information from node i. Note that two matrices

with nonzero entries in the same locations have the same underlying graph. The

neighbors, Ni, of node i are all nodes that communicate to i, i.e. Ni = {j | aij 6= 0}.
By convention, we assume that each node can communicate with itself, so aii > 0 ∀i
and i ∈ Ni.

The graphs associated with matrices can be connected in a variety of ways.

Connectivity of the network can be roughly classified as follows:

• Fully Connected: Each node has as its neighbors all other nodes in the network.

36

• Strongly Connected: Each node has a path that follows the directed edges of

the graph to every other node in the network. A direct connection to all other

nodes is not necessary, but information flow from each node must reach all

other nodes.

• Spanning Tree: At least one node has a path that follows the directed edges

of the graph to every other node in the network.

Graphs can also be connected over time by considering the union of the communica-

tion links over an interval of time (i.e. the union contains all edges that were active

during that interval). A reversed graph is simply a graph with the direction of the

links reversed. Note that a reversed graph is associated with the transpose of the

original matrix.

Each node has an associated value xi ∈ R which represents the information

on which the team must come to agreement. The set of nodes {1, . . . , n} is said to

be in consensus if xi = xj for all i, j. When each xi = 1
n

∑
j xj[0] the team is said

to have reached average-consensus. A consensus protocol defines how a node should

update is value of xi based on the values of its neighbors. The simplest scheme is to

require that each node update its value xi to some weighted linear combination of its

neighbors values

xi[k+1] =
∑
j∈Ni

aijxj[k].

The dynamics of the information vector x = {x1, . . . , xn} can then be defined as

x[k+1] = A[k]x[k]

where the sign of each entry in A[k] is given by the communication topology at time

k, but the value aij for the nonzero elements is determined by the protocol.

Let ΦA(k, k0) = A[k]A[k−1] · · ·A[k0], then at each k the information vector

can be described by

x[k+1] = ΦA(k, 0)x[0].

37

Consensus is said to be reached asymptotically if

lim
k→∞

ΦA(k, 0) = 1yT (4.1)

where 1 is the vector of all ones, yi ≥ 0, and 1T y = 1. Notice that if Eq. (4.1)

is satisfied, then x → 1yT x[0] implying that each xi approaches the same convex

combination of the agents’ initial values. Equivalently, average-consensus is said to

be reached asymptotically if

lim
k→∞

ΦA(k, 0) =
1

n
11T . (4.2)

4.3 Average-Consensus under Switching Topologies

The results for linear consensus protocols under switching interaction topolo-

gies have been well studied [33, 35] with the main result being that the union of

the interaction graphs over every interval T must contain a spanning tree to reach

consensus. We will draw similar conclusions with respect to average-consensus. The-

orem 1 develops the conditions for each A[k] that allows Eq. (4.2) to be satisfied.

This requires the following two Lemmata.

Lemma 1 (Proposition 1 in [35]). Let x[k+1] = A[k]x[k] where A[k] = [aij ≥ 0],
∑

j aij = 1, aii > 0 for all k, and each nonzero entry aij is both uniformly upper and

lower bounded. If there exists T ≥ 0 such that for every interval [k, k+T] the union

of the interaction graph across the interval contains a spanning tree, then consensus

is asymptotically achieved (i.e. Eq. (4.1) is satisfied).

A similar result is implicit in [47]. Notice that each node has the ability to

choose the weight associated with the information from each of its neighbors to ensure

that its row sums to one. If the team is connected often enough (i.e. has a spanning

tree over every interval of length T), then Lemma 1 ensures that consensus is reached.

Lemma 1 requires that the row sums of A[k] be one and that a spanning tree

be achieved in every interval of length T for consensus to be reached. Now consider

the reversed dynamics x[k+1] = B[k]x[k] where each column sum is equal to one.

38

Lemma 2. Let x[k+1] = B[k]x[k] where B[k] = [bij ≥ 0],
∑

i bij = 1, bii > 0, and

each nonzero entry bij is both uniformly upper and lower bounded. Under switching

interaction topologies, if there exists T ≥ 0 such that for every interval [k, k+T] the

union of the reverse interaction graph across the interval contains a spanning tree,

then

lim
k→∞

ΦB(k, k0) = y1T

where yi ≥ 0 and yT1 = 1.

Proof: If the column sums of B[k] are equal to one and a spanning tree is achieved

in the reverse graph, then BT [k] has row sums of one and a spanning tree is achieved

in the regular graph. By application of Lemma 1 limk→∞ ΦBT (k, k0) = 1zT , so

limk→∞ ΦBT (k0, k) = 1yT

[limk→∞ ΦBT (k0, k)]T =
[
1yT

]T

limk→∞ ΦBT (k0, k)T = y1T

limk→∞ ΦB(k, k0) = y1T .

The fact that ΦBT (k, k0) = 1zT ⇒ ΦBT (k0, k) = 1yT can be seen by noting that each

BT [k] is row stochastic with positive diagonal entries and if the product BT [k]BT [k+1]

· · · BT [k+T] contains a spanning tree, then the product BT [k+T]BT [k+T−1] · · ·
BT [k] also contains a spanning tree. Wolfowitz [54] showed that infinite products of

SIA matrices (a superset of matrices that have a spanning tree and are row stochas-

tic with positive diagonal entries) converge to the form 1yT in any product order

(however, the value of y will be dependent on the actual order).

Theorem 1. Let x[k+1] = A[k]x[k] where A[k] = [aij ≥ 0],
∑

i aij = 1,
∑

j aij = 1,

aii > 0, and each nonzero entry aij is both uniformly upper and lower bounded. Under

switching interaction topologies, if there exists T ≥ 0 such that for every interval

[k, k+T] the union of the interaction graph across the interval is strongly connected,

then Eq. (4.2) is satisfied and average-consensus is reached asymptotically.

Proof: Since A[k] is strongly connected over each interval [k, k+T], then A[k] has a

spanning tree in both the regular graph and the reverse graph. Therefore, the matrix

39

A[k] satisfies all the conditions in Lemma 1 and Lemma 2. Consequently,

lim
k→∞

ΦA(k, k0) = 1yT

and

lim
k→∞

ΦA(k, k0) = z1T

so

lim
k→∞

ΦA(k, k0) =
1

n
11T .

4.4 Distributed Protocol

Careful examination of Theorem 1 will reveal that finding a distributed pro-

tocol to satisfy the hypotheses of the theorem will be difficult. Specifically, at each

instant in time, the row and column sums must be equal to one. In the general con-

sensus problem, only the row sums are required to be one. Since the neighbors of

agent i are determined completely by row i, then each agent simply chooses appro-

priate weights for each of its neighbors values ensuring that the weights sum to one.

In the average-consensus case, not only do the weights associated with the neighbors

of i need to sum to one, but all nodes for which i is a neighbor must weight the

information from i such that the column sum is equal to one. This section will in-

vestigate this subtlety and propose two protocols that achieve average-consensus in

a distributed manner.

To illustrate the difficulty of requiring both row and column sums to be one,

consider the network topology shown in Figure 4.1. The matrix

A =
1

3

1 1 1

0 2 1

2 0 1

40

1

2 3

Figure 4.1: Simple network over which the average-consensus problem can be solved,
but which requires global information to be available.

has as its underlying graph the topology shown in Figure 4.1 and has row and col-

umn sums equal to one. If the underlying network topology remains fixed, then by

Theorem 1, the system will achieve average-consensus asymptotically. In one sense,

the protocol is distributed since each agent only uses the information received from

its neighbors; however, the first agent weights all neighbors’ values equally, the sec-

ond agent weights its own value twice as much as its neighbors, and the third agent

weights its neighbors values twice as much as its own. In order to determine the

entries in A, some global knowledge of the network topology is required — i.e. there

is no simple rule that an agent can use to determine the weight it gives to information

from its neighbors without knowledge of the global topology.

An ideal protocol would be able to achieve average-consensus without using

global information. We will investigate two protocols that impose additional restric-

tions on the types of graphs involved, but that achieve average-consensus without

resorting to global information. The first is proposed in [41] and requires the defini-

tion of the graph Laplacian. Let L be defined element-wise as

`ij =

∑n
k=1,k 6=i αik, j = i

−αij, j 6= i

where αij = 1 if there is a communication link from node j to node i and αij = 0

otherwise (here A = [αij] is simply the adjacency matrix of a graph G). The protocol

41

is then defined in terms of the Laplacian

x[k+1] = (I − εL)x[k] (4.3)

where ε ∈ (0, 1/ maxi `ii). Notice that the row sums of L are all zero by construction,

so the row sums of A = I − εL are all one. If ε ∈ (0, 1/ maxi `ii), then A will also be

nonnegative and consensus will be guaranteed if the graph contains a spanning tree

in every interval T .

Olfati-Saber and Murray show in [41] that when a graph is balanced then the

column sums of L are zero. A balanced graph is one in which at each node the

out-degree equals the in-degree, i.e. each node sends information to as many as send

information to it. Notice that when G is balanced then L has column sums of zero,

and A has column sums of one. So, by Theorem 1, the protocol (4.3) will achieve

average-consensus if the network switches between instantaneously balanced networks

which are strongly connected over every interval T .

Protocol (4.3) is almost completely distributed since each node determines

the weight to associate with information from its neighbors without knowledge of the

graph topology; however, all nodes must have the same value of ε whose upper limit is

determined by the connectivity of the graph. Certainly, for a fixed number of agents

n, ε ∈ (0, 1/n] will ensure that A remain nonnegative and Theorem 1 will apply. This

requires a priori knowledge of the size of the team, especially since the larger the

value of ε the faster the rate of convergence (the second eigenvalue will be closer to

zero, see [41]). Setting ε = 1/N where N is an upper bound on the number of agents

on the team will ensure that average-consensus is achieved asymptotically.

To illustrate the applicability of this protocol consider a scenario where the

network topology switches randomly from between the graphs in Figure 4.2. The

convergence for two values of ε are shown in Figures 4.3 and 4.4. In this example,

the sum of the initial conditions is one. Notice that with both values of ε the value to

which the system converges is 1
4
, but the larger value of ε gives faster convergence.

42

1

2 3

4 1

2 3

4 1

2 3

4

Figure 4.2: Example scenario where the network topology switches randomly between
these three graphs.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.3: Protocol (4.3) with ε = 1
4 under switching topologies.

When every communication link is bi-directional (i.e. G is an undirected

graph), then the graph is trivially balanced. In this case, it is possible to develop a

protocol that can be implemented without a priori knowledge of team size. Assume

that agents have the ability to negotiate with each of their neighbors to isolate the

exchange of information to just one neighbor at a time. During this communication

event, both agents update their values to be the exact average of the values present.

For a two-agent communication event (i, j), the protocol matrix A will be the identity

matrix with the exception of aij = aji = aii = ajj = 1
2
. Notice that each A[k] retains

43

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.4: Protocol (4.3) with ε = 1
8 under switching topologies.

the characteristic of having row and column sums equal to one. Essentially, each

agent cycles through available communication channels to isolate a single neighbor at

a time and effectively change its in-degree and out-degree to one at each instant. If

over every interval T the union of these simple graphs is connected, then the conditions

in Theorem 1 are satisfied and average-consensus is achieved asymptotically.

An example of this protocol is shown in Figure 4.6. In this scenario, the

agents are connected in a static graph of the form {1 ↔ 2, 2 ↔ 3, 3 ↔ 4}. The

agents negotiate with their neighbors so that each agent only communicates with one

other agent at a time. For simulation purposes, this can be modeled as the system

switching randomly between the graphs in Figure 4.5. Observe that the final value is

the exact average of the agents’ initial conditions.

To summarize, the Laplacian protocol of Eq. (4.3) can achieve average-consensus

if the interaction topology is balanced at each instant and is strongly connected over

every interval T . It requires that some knowledge of the maximum connectedness

or maximum number of agents be available a priori to determine the parameter ε.

44

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

Figure 4.5: Example scenario where the topology remains fixed (a path), but the
agents negotiate through one of the above graphs at each instant.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.6: Results of simple two-agent events to achieve average consensus.

A second protocol reduces available communication to allow only simple two-agent

interactions. This requires bi-directional communication between agents (more re-

strictive than balanced) but assumes no a priori knowledge of the network topologies

or team size.

4.5 Deadbeat Consensus

Discrete-time systems can exhibit finite-time convergence when the poles of

the system are all at zero — i.e. when a system

x[k+1] = Ax[k]

45

has nilpotent matrix A, then x[k] = 0 ∀k > dim(A), regardless of initial conditions.

This notion of “deadbeat” response motivates a similar investigation of consensus

systems. This section will consider the conditions under which consensus can be

reached in finite time.

Let P be a consensus protocol; specifically, let the interaction matrices gen-

erated by P have row sums equal to one. Note that if P solves either the general

consensus problem or the average-consensus problem, the row sums of the interac-

tion matrices will be one. At any time k, the value of the system given the initial

conditions at k = 0 is

x[k+1] = (A[k]A[k−1] · · ·A[1]A[0])x[0].

Theorem 2. Let P be a consensus protocol. If at some instant, `, the interaction

topology is a fully connected graph and P yields the interaction matrix at that instant

A[`] =
1

n
11T

then the team will be exactly in consensus for all k > `.

Proof: A group of agents is in consensus if xi = xj for every pair (i, j). Since

x[`+1] = A[`]x[`] =
1

n
11T x[`]

then each element i of x[`+1] is

xi[`+1] =
1

n

n∑
j=1

xj[`].

Therefore, the group has reached consensus at time (`+1). Because P ensures that

each interaction matrix after time ` has row sums equal to one, then for all k > `

the group remains in consensus (each node updates to a weighted sum of the same

value).

46

To show that the same conditions on A lead to deadbeat average-consensus,

notice that P has row and column sums equal to one at each instant so

n∑
i=1

xi[k] =
n∑

i=1

xi[0]

for all k ≥ 0. Recall that if a matrix A has row and column sums equal to one, then

1 is both a left and right eigenvector associated with eigenvalue 1, so

n∑
i=1

xi[k] = 1T x[k]

= 1T A[k]x[k−1]

= 1T x[k−1]

...

= 1T x[0]

=
n∑

i=1

xi[0].

Therefore, for each agent i at time `

xi[`+1] =
1

n

n∑
j=1

xj[`] =
1

n

n∑
j=1

xj[0].

which implies that the group has reached average-consensus.

Theorem 2 requires that at some instant the communication graph is fully

connected, i.e every agent can communicate with every other agent and that the

interaction matrix generated by the consensus protocol yields A = 1
n
11T . One con-

sequence of this is that deadbeat average-consensus is much more difficult to achieve

than regular deadbeat consensus. This is due to the fact that average-consensus pro-

tocols do not generally yield the proper interaction matrix when the communication

graph is fully connected.

The reader will note that even when a graph is fully connected neither pro-

tocol from Section 4.4 will yield the proper interaction matrix to achieve deadbeat

47

consensus. A consensus protocol of the form

xi[k+1] =
1

|Ni|
∑
j∈Ni

xj[k] (4.4)

will allow regular deadbeat consensus since whenever the network is fully connected,

each agent updates its value to the average of all the other agents. Unfortunately, such

a simple protocol does not lead to average-consensus in the general case. Consider

the balanced network shown in Figure 4.7 with interaction matrix

A =
1

6

3 0 3 0

2 2 0 2

0 3 3 0

0 3 0 3

which does not have column sums equal to one. In fact

lim
k→∞

Ak =
1

9

2 3 2 2

2 3 2 2

2 3 2 2

2 3 2 2

which shows that the protocol defined by Eq. (4.4) is not an average-consensus pro-

tocol. It is interesting to note that if the network topologies switch between balanced

3

1

2 4

Figure 4.7: Balanced graph for which a simple averaging protocol does not achieve
average-consensus.

48

regular graphs (graphs where all nodes that have any adjacent edge have the same de-

gree), then this protocol does achieve average-consensus (in the general and deadbeat

case).

4.5.1 Example Application

Consider a fixed perimeter which is to be monitored by a team of N agents

in a distributed manner (as in [60]). Let the consensus variable in the system be the

size of the segment an agent is to monitor. The initial state of the system is when the

first agent reaches the endpoint of the perimeter and initializes its consensus variable

to the length of the perimeter. We desire average-consensus so that asymptotically,

each agent monitors an equal part of the perimeter.

Using the protocol of Eq. (4.4) and noticing that the system will only switch

between balanced regular graphs (since agents meet along a line) deadbeat average-

consensus may be reached. Figure 4.8 shows a scenario where at no time are all

agents in communication, so average-consensus is achieved asymptotically. In con-

trast, Figure 4.9 shows a scenario where agents are launched in close proximity and

meet in a fully connected group near the beginning of the mission achieving deadbeat

average-consensus.

4.6 Finite-Time Average-Consensus

An average-consensus protocol will invariably require a strongly connected

network since each agent must be able to influence the group decision to reflect

its initial condition. Obviously, if each agent transmits its initial condition to its

neighbors and passes any communication received from others along, then if a strongly

connected network is available, eventually all agents will have the complete set of

initial conditions from which the average can be computed (clearly, this is not novel;

Lynch [29] classifies such an algorithm as trivial). Using this method, all agents will

have the information necessary to be in average-consensus after d steps where d is

the diameter of the graph. Indeed, it may seem that the restriction to a strongly

connected network eliminates any need for an asymptotic protocol. This section will

49

Figure 4.8: Perimeter surveillance using average-consensus to distribute the team
evenly along the perimeter.

investigate the trade-offs between an asymptotic protocol (such as (4.3)) and a simple

message passing protocol.

The main advantage of an asymptotic consensus protocol is the small amount

of bandwidth required — each agent needs only to send its current value. Additionally,

there is no need to identify individual agents or know the number of agents in the

team. On the other hand, a message passing protocol could keep track of which initial

conditions it has sent to each of its neighbors and effectively limit its bandwidth to

be the same as the asymptotic protocol, relying instead on repeated interaction to

transmit all initial conditions. At each instant, a node’s value would be the sample

average, i.e. the average of all initial conditions received so far. For large networks,

however, the amount of overhead and the complexity may be prohibitive. Perhaps

the main advantage of the message passing protocol is the ability to utilize any type

50

Figure 4.9: Perimeter surveillance where deadbeat average-consensus occurs.

of data (not simply continuous real numbers) in any functional way, i.e. agents are

not limited to average-consensus but they can come to agreement on any function of

the initial conditions.

The message passing protocol effectively emulates a fully connected graph at

k = 0 by transmitting the required information incrementally. The deadbeat nature

of the protocol makes it attractive, especially when speed of convergence is an issue.

An asymptotic protocol will be useful in very large networks and in situations

when the value at each node is driven by an external source (agent values are dynamic

rather than static) such as distributed Kalman filtering [39]. In many cases, however,

a simple message passing scheme may be more attractive due to its deadbeat nature

and its ability to handle any data type.

In an effort to quantify the performance of average-consensus as compared to

a message passing protocol, we performed a number of Monte-Carlo simulations. We

51

varied team size and available bandwidth to determine under which circumstances and

how quickly the average consensus and message passing algorithms would converge.

For different bandwidth sizes, the message passing protocol picked a random set of

the bandwidth size and passed those values to its neighbors at every time step. For

example, in the bandwidth size 2 case, the message passing protocol would pick 2

random values from its vector of known team values and pass those to its neighbors.

In the N bandwidth case, an agent would send all values that it has seen to its

neighbors. In every bandwidth case, the average-consensus protocol simply took

the average of its immediate neighbors and passed only one message to each of its

neighbors.

Each simulation consisted of 2000 iterations with a fixed team size and band-

width. Table 4.1 shows the results of the tests where each element of the table

corresponds to a specific team size/bandwidth test. Each cell contains the mean and

standard deviation for the number of iterations required to converge to within a small

amount of the final consensus value. The top numbers in a cell correspond to the

message passing protocol and the colored numbers correspond to the average consen-

sus algorithm. Note that for a fixed team size, the consensus algorithm performs the

same across all bandwidths. Since the consensus algorithm only passes its current

value to its neighbors, it is unable to exploit the additional bandwidth.

As can be seen in Table 4.1, the message passing protocol outperforms the

average consensus when there is unlimited bandwidth (i.e. bandwidth size N). In

that case, every agent communicates to its neighbors all the initial conditions of the

team that it has seen previously. Even for a large team size of 64 agents, the message

passing protocol converges an order of magnitude faster than the average-consensus

algorithm. As the available bandwidth goes down, however, the average-consensus

algorithm shines. Even with a small team size of 16 agents, at a bandwidth of 1 mes-

sage the average-consensus algorithm converges twice as fast as the message passing

protocol. We postulate that more information is contained in the value transmitted

by the consensus algorithm since it is a weighted average of its neighbors values. As

52

bandwidth increases, however, the message passing algorithm is able to increase the

information transmission to its neighbors.

We conclude that for bandwidths much less than the size of the team, the

average-consensus algorithm will on average converge faster than a message passing

protocol. When there is an abundance of available bandwidth on the order of the

team size, then the message passing protocol will be the best choice.

Table 4.1: Average Iterations to Consensus
Bandwidth

1 2 4 N
2

N

T
ea

m
S
iz

e

4
31.69 (17.95) 15.83 (8.348) 9.078 (4.011) 15.98 (8.371) 8.989 (3.92)
109.9 (17.62) 109.7 (17.83) 109.7 (18.38) 111.2 (18.2) 110.3 (18.24)

8
190.2 (91.81) 94.1 (45.86) 47.58 (23.05) 46.58 (22.1) 27.95 (12.23)
333.4 (44.37) 333.5 (44.77) 333.6 (44.51) 331.4 (43.28) 334.3 (46.01)

16
1052 (350.7) 542.9 (234.9) 272.3 (120.8) 134.4 (59.23) 75.5 (30.2)
837.4 (115.3) 837.9 (114) 841.8 (115.1) 837.9 (116.5) 839.4 (114.3)

32
3166 (148.6) 2545 (625.9) 1393 (556.8) 340.9 (145.4) 186.6 (67.65)
1862 (269.9) 1857 (263.4) 1853 (260.4) 1857 (268.7) 1856 (264.2)

64
6400 (0) 6388 (95.83) 5447 (1042) 721.2 (283.3) 410.6 (131.4)

3796 (517.8) 3824 (526.9) 3807 (526.1) 3811 (506.2) 3774 (515.3)

In practical scenarios with wireless radio modems, it will often be the case

that the overhead required to begin communication with an agent encourages larger

communication packets (due to the cost of switching between neighbors). If the team

is known to be moderate sized, the savings in convergence time may be substantial by

using a message passing protocol. Finally, we reiterate that consensus algorithms can

only come into agreement on continuous valued variables; a message passing scheme

allows any function of the initial conditions to be used, including discrete functions

such as voting protocols. For very limited communication bandwidth or very large

teams, consensus algorithms are a good choice.

53

4.7 Conclusions

This chapter has extended the average-consensus results of [41] to allow for

networks to switch between instantaneously balanced networks that are strongly con-

nected over every interval T . The discrete-time case has been dealt with explicitly and

two asymptotic protocols presented that achieve average-consensus under switching

topologies. The notion of deadbeat consensus was investigated with conclusion that

general consensus problems may best be solved using a message passing mechanism

rather than defining dynamics of the information variable if a strongly connected

network can be assumed.

54

Chapter 5

Circle Surveillance

5.1 Introduction

A primary use of unmanned air vehicle (UAV) systems is in surveillance and

reconnaissance missions [61, 62]. We investigate the use of a team of multiple UAVs

orbiting a target with application to target tracking and convoy support.

The payload of choice for most small UAVs is a camera. The objective of

our work is to develop a cooperative guidance strategy to distribute UAV agents

around an orbit spaced equally in angle. The equal angle spacing allows the team to

cooperatively overcome possible line-of-sight occlusions, i.e. equal spacing gives the

team the best chance to track a target in the presence of occlusions. We note that for

two UAVs carrying radar sensors, line-of-sight angles separated by 90 degrees provide

better statistical performance in the tracking problem [63] and when the team size

is greater than two, equal spacing has good performance. In a general surveillance

mission, the equal spacing of the sensors provides the best overall coverage of a target

and its surroundings.

The design of a spacing controller is strongly influenced by the capabilities of

the UAVs on the team. For instance, helicopters can hover at a specific location and

thereby maintain persistant coverage of a ground based target, however fixed-wing

aircraft must fly above the stall velocity, and may therefore not be able to maintain

persistent coverage. Furthermore, fixed-wing aircraft fly most efficiently at a fixed,

nominal airspeed. One approach to equal spacing is to adjust the local velocity of the

agents along the desired orbit. However, for small allowable velocity bounds, the con-

vergence to the equilibrium configuration may be sluggish. Additionally, maintaining

fixed-wing aircraft at their constant fuel efficient velocity is desirable from a mission

55

duration standpoint. In this chapter we develop a spacing controller that steers the

UAVs to the desired configuration while holding a constant airspeed.

Other researchers have studied the problem of spacing fixed-speed UAVs around

a possibly moving target. Paley et al. introduce the notion of the splay state con-

figuration and give an elegant control solution for fixed target problems [64]. Their

approach relies on invariant set arguments to show that the splay state configuration

is the stable equilibrium of the system. The main drawback of their work is the

inability to specify the orbit center. The splay state configuration is shown to be

stable around the collective center of mass not a specific target location which makes

tracking a moving target infeasible without modifications. Additionally, the control

signal exhibits slow transient response for large initial errors.

Paley’s splay state configuration work is extended by Klein and Morgansen

in [65] to moving targets. By choosing a control signal that preserves the invariant

sets introduced by Paley, they are able to design an algorithm to track a moving

target in the splay state configuration with 3 UAVs. Unfortunately, the method does

not currently extend to team sizes other than N = 3.

Frew and Lawrence [61] use vector field notions to steer a team of two UAVs

to an orbit centered on a moving target. A limit cycle is designed as the equilibrium

of the vector field dynamics and is modified to account for spacing errors. No formal

proof is offered in their method and only team sizes of N = 2 are considered.

The unique features of our approach are the ability to include an arbitrary

number of team members in a moving target scenario and the determination of bounds

on target velocity for which the algorithm satisfies the UAV’s kinematic constraints.

Additionally, the transient response is qualitatively better than other approaches. Of

note is that our algorithm is completely decentralized where agents base their actions

only on communication from immediate team members. This allows for dynamic

changes to the team to be accounted for without global communication or replan-

ning. A drawback to our approach is that global stability is not conclusively shown,

although Monte-Carlo simulations indicate that the splay state configuration is the

globally stable equilibrium of the system.

56

The aim of this chapter is to present a stable, decentralized spacing controller

for fixed-velocity UAVs tracking moving targets in the presence of wind. Section 5.2

formally defines the notion of equal spacing and describes the mathematical model

that we use for the UAVs. Section 5.3 establishes the heading design for a group

of UAVs monitoring a stationary target. In Section 5.4, we analyze the stability of

the system for the stationary target case. These results are extended to the moving

target/wind case in Section 5.5 and we conclude with simulation and hardware results

in Section 5.6. Concluding remarks are offered in Section 5.7.

5.2 Problem Description

In a variety of applications the ability for a team of UAVs to spread out in some

manner increases the efficiency of the team as a whole. For single target surveillance,

a team of UAVs spaced equally around an orbit centered on the target gives the

best line-of-sight coverage in the presence of occlusions. This chapter focuses on

constructing a desired heading for each UAV in the team to achieve equal spacing.

The desired heading is calculated based on the distance away from the desired orbit

and the spacing error from the splay state configuration.

Definition 1 (Splay State Configuration). A set of agents I, all of which are follow-

ing the same periodic trajectory, is said to have reached the splay state configuration

if for each agent i, the time difference of arrival to a specific point on the trajectory

between agent i and its two immediate neighbors is constant for all i ∈ I.

Definition 1 describes the splay state configuration as equally spaced in time

along a periodic trajectory. When agents pass a reference point (arbitrarily chosen)

on the trajectory at equal time intervals, the team has reached the splay state con-

figuration. For simple circular trajectories, the splay state configuration is achieved

when agents are equally spaced in angle around the circle perimeter. Note that equal

angular spacing matches the definition of the splay state configuration in [64]. Defi-

nition 1 extends the splay state notion to non-circular trajectories which occur when

the center of the desired orbit is changing in time due to wind or target motion.

57

Consider a circular trajectory with all agents traveling at constant speed V .

The time difference of arrival corresponds to the angle separation between neighbors.

When the angle between all agents is the same then the splay state configuration

has been reached, i.e. the agents are equally spaced in angle around the circle. Now

consider the trajectory shown in Figure 5.1, which is an example of a UAV orbiting

a moving target. Note that as the target speed increases, the ability for the UAV to

maintain an orbit around the target depends on its ability to make increasingly sharp

turns. Constraints on the turning radius of the UAV will lead to a threshold value

of target speed where feasible tracking is no longer possible (see Section 5.5). In a

Figure 5.1: For a UAV orbiting a moving target, the trajectory exhibits loops corre-
sponding to the times when the UAV and the target are moving in opposite directions
and long arcs when both are moving in the same direction.

moving reference frame (with the target in the center) the motion of the UAV traces

out a circle, but the splay state configuration does not correspond to equal spacing in

angle around that circle. Since the target is moving, a much greater amount of time

is spent on the part of the trajectory where the UAV and the target are moving in

the same direction. When the target and UAV are moving in opposite directions, the

UAV quickly travels around a large portion of the circle. Figure 5.2 shows the splay

state configuration for 5 UAVs when the target is moving at 75% of V in zero wind

conditions.

5.2.1 UAV Modeling

To maximize fuel efficiency each UAV maintains a constant airspeed. Addi-

tionally, we assume that all UAVs fly at a fixed altitude. A kinematic model for a

58

Figure 5.2: A target moving at 75% of UAV speed has a splay state configuration
with 5 vehicles that corresponds to the spacing in this figure. Note that at the bottom
of the orbit, the target and the UAV are moving in the same direction, so the UAV
slowly turns the corner. However, at the top of the orbit, the UAV and the target are
moving in opposite directions, so the UAV quickly moves around the arc.

constant airspeed, constant altitude UAV in wind, is given by

ṗN = Va cos ψ + Vw cos ψw

ṗE = Va sin ψ + Vw sin ψw

ψ̇ = g
Va

tan φ

φ̇ = u

(5.1)

where (pN , pE) are the (North, East) coordinates of the UAV in a flat earth model,

ψ is the heading of the UAV (with the ψ̇ equation given by the coordinated turn

assumption), φ is the roll angle, Va is the constant airspeed of the vehicle, Vw is the

magnitude of the wind vector and ψw is the heading of the wind vector (note that

this is not the meteorological definition of wind heading, i.e. ψw is the direction the

wind is blowing to as opposed to the direction the wind is blowing from). In addition

to these dynamics, a constraint on roll angle −φmax ≤ φ ≤ φmax is enforced so that

stall conditions are avoided.

59

We consider the motion of the UAV relative to a target position. Let

x = pN − qN

y = pE − qE

(5.2)

where (qN , qE) is the position of the target. The dynamics of (5.1) become

ẋ = Va cos ψ + Wx

ẏ = Va sin ψ + Wy

ψ̇ = g
Va

tan φ

φ̇ = u

(5.3)

where Wx = Vw cos ψw − q̇N and Wy = Vw sin ψw − q̇E. Target velocity and wind

are indistinguishable with respect to the relative motion of the UAV to the target.

This allows the control design to maintain constant airspeed and account for wind

disturbances and target motion with only regard to (Wx, Wy).

Model (5.3) can be reduced further by letting

u =
gVaω̇

g2 + V 2
a ω2

where ω is the heading rate of the UAV, i.e. ω = g
Va

tan φ. Model (5.3) then becomes

the kinematic unicycle model

ẋ = Va cos ψ + Wx

ẏ = Va sin ψ + Wy

ψ̇ = ω

(5.4)

where we constrain |ω| ≤ g
Va

tan(φmax) to ensure that |φ| ≤ φmax. The constraint on

ω can be thought of as a curvature constraint on the system kinematics from which

it follows that the UAV can be considered a Dubins-type vehicle. This model has

shown great value for design of UAV systems as it captures the essential navigational

60

kinematics of UAV motion while at the same time being of low enough order to allow

tractable analysis [62, 66, 67].

The heading design and analysis is performed at a level of abstraction greater

than the unicycle level by computing a desired heading ψd and using it as a feed-

forward term to the model (5.4). Feedback is then introduced at the control signal ω

while maintaining the saturation constraints on ω. Let

ω = ψ̇d + ν (5.5)

where ν is the feedback term driving ψ to ψd. This chapter shows that ψd can be

chosen so that a team of UAVs with individual dynamics

ẋ = Va cos ψd

ẏ = Va sin ψd
(5.6)

can reach the splay state configuration. Control gains in the calculation of ψd can

then be chosen to allow the saturation constraints on ω to be satisfied. Note that

ψd can be considered a sliding surface along which the specifications of the mission

are satisfied. If ψ reaches ψd in finite time via the feedback term ν, then the overall

system can be guaranteed to converge to the splay state configuration. Theoretically,

a sliding mode controller of the form

ν = βsign(ψ − ψd)

ensures that ψ reaches ψd in finite time, however in practice, a control law of the form

ν = βsat

(
ψ − ψd

ε

)

is used, where β is a positive control gain. We do not show the overall system stability

with this control strategy, but refer the reader to [68] where this choice of ν is shown

to ensure path convergence for an arbitrary path in the single UAV case.

61

5.2.2 Orbit Dynamics

We will be concerned with the behavior of UAV teams while orbiting a target

at a fixed radius Rnom. To analyze the stability of the orbit system, we make a change

of variables by letting

R =
√

x2 + y2

θ = tan−1
(

y
x

) (5.7)

where R is the distance of the UAV from the target and θ is the “clock angle” of the

UAV around the orbit.

In the static target, no wind case (i.e. Wx = Wy = 0), the dynamics of R and

θ can be calculated as follows. Let

χ , ψ − ψp (5.8)

be the difference between the actual heading, ψ, and the heading of the tangent vector

to the orbit, i.e. ψp = θ + π/2. Therefore Ṙ can be calculated as

Ṙ = d
dt

√
x2 + y2

= xẋ+yẏ√
x2+y2

= Va

R
[x cos ψ + y sin ψ] .

Since ψ = χ + θ + π/2, we obtain

Ṙ =
Va

R
[−x sin(χ + θ) + y cos(χ + θ)] .

Using the relations x
R

= cos θ and y
R

= sin θ we get that

Ṙ = −Va [cos θ sin(χ + θ)− sin θ cos(χ + θ)]

= −Va

{
sin χ cos2 θ + cos χ sin θ cos θ − cos χ sin θ cos θ + sin χ sin2 θ

}

⇒ Ṙ = −Va sin χ .

62

Similar arguments are used to derive the equation of motion for θ resulting in

Ṙ = −Va sin χ

θ̇ = Va
R cos χ .

(5.9)

In the case of a moving target and/or wind, the motion is abstracted by

calculating the path heading ψp, i.e. the heading which the UAV should be traveling

if directly on the path. By accounting for target motion and wind via the ψp term, the

radial orbit dynamics remain identical to those in (5.9) [68]. We show in Section 5.5

the calculation of ψp for moving targets.

To accommodate the multiple UAV splay state configuration, a spacing term

is defined. For the static target, no wind scenario, the separation of the ith agent

from the angular mean of its neighbors is

δθi =
1

2
((θi − θi−1)− (θi+1 − θi)) (5.10)

where a ring topology is assumed (i.e. addition is defined modulo N). The term δθi

captures how far away agent i is from being equally spaced between its two immediate

neighbors on the ring. When all agents are on the nominal radius with spacing terms

δθi equal to zero, then the team has achieved the splay state configuration. Although

the calculation of δθi is more complicated in the moving target case, the principle

is the same: δθi captures how far away from the splay state configuration agent i is

with regards to its immediate neighbors along the ring.

A visual representation of the notation used to describe the desired heading

calculation is shown in Figure 5.3 where di is the radial error from the nominal radius,

i.e. di , Ri −Rnom.

5.3 Heading Calculation for Non-Moving Targets

This section details the construction of a desired heading to achieve the splay

state configuration in the case of zero wind and a non-moving target. The basis of

the splay state configuration controller is the calculation of an appropriate heading

63

ψp
1δθ

1

δθ
2

δθ
3

d
2

Figure 5.3: Spacing error and radial error are combined to construct a desired heading
for each UAV. Radial error is determined by the distance from the desired orbit (di)
and spacing error is the distance from the angular center of an agent’s two immediate
neighbors (δθi).

command that steers the agents to the proper steady-state behavior. By creating

a desired heading for the UAV, a reliable, robust heading controller can be used to

track the heading commands. For a single UAV, a desired heading of the form

ψd = ψp + tan−1(kd) (5.11)

will draw the agent onto the path, where d is the distance from the path and ψp is

the heading along the path at d = 0 [68]. Using definition (5.8) equation (5.11) can

be reduced to

χ = tan−1(kd) . (5.12)

Note that when d is large, the commanded heading is almost perpendicular to the

heading along the path, effectively steering the UAV toward the path before begin-

ning to follow it. For a simple orbit maneuver, ψp is selected to be tangent to the

circle of interest along the ray connecting the agent and the target position. The

radial distance of the agent from the nominal orbit constitutes d and a heading field

constructed via (5.11) is shown in Figure 5.4. The gain k determines how aggressive

the field is in steering the agent to the desired path.

64

Figure 5.4: A single UAV orbiting a stationary target has a commanded heading
computed at each point given by (5.11). Note that when the agent is far from the
orbit, the heading steers it toward the target. As it gets near the desired trajectory,
the desired heading transitions to tangent to the nominal circular motion.

The constraint on ω is satisfied when

max |ω| = max |ψ̇d|+ β ≤ ωmax

where ωmax = g
Va

tan(φmax) and β is the maximum control allowed for the feedback

control term (see Equation (5.5)). Due to the relationship in Equation (5.11), the

term max |ψ̇d| can be bounded by

max |ψ̇d| < max |ψ̇p|+ max |χ̇| .

The term max |ψ̇p| can be determined using a priori knowledge or an estimate of

the path to be tracked (e.g. moving orbit, straight line, etc.); for stationary orbits,

|ψ̇p| = Va/Rnom. The term max |χ̇| directly depends on the strength of the field

65

through the gain k. Recalling that χ = tan−1(kd) gives

|χ̇| =
∣∣∣∣∣

kḋ

1 + (kd)2

∣∣∣∣∣ =

∣∣∣∣
−kVa sin χ

1 + (kd)2

∣∣∣∣ ≤ kVa

which when coupled with knowledge of ψ̇p, the gain k can be chosen so as not to

violate the UAV turn rate/roll angle constraints.

For a single UAV, a commanded heading of the form χ = tan−1(kd) guaran-

tees asymptotic convergence to an orbit at radius Rnom about the target. A simple

Lyapunov argument supports this assertion. Letting W = 1
2
χ2 and using (5.9) gives

Ẇ = χχ̇ =
−kVaχ sin χ

1 + (kd)2
. (5.13)

Since χ ∈ (−π/2, π/2) (χ is the output of an inverse tangent), the term χ sin χ is

always greater than zero for nonzero χ. Therefore, Ẇ < 0 and χ → 0 asymptotically.

By LaSalle’s invariance principle [69], it follows that d → 0. Again we note that a

complete proof for system (5.4) requires a sliding mode controller to guarantee that

ψ reaches ψd in finite time, however, this can be relaxed as in [68]. Qualitatively, the

commanded heading simply points the UAV directly toward the target if d is large

and transitions to tangent to the orbit when near Rnom.

To account for spacing, the single agent heading command (5.11) is augmented

as

ψd
i = ψp

i + tan−1(kdi − γδθi) (5.14)

where γ is a control gain weighting the value of spacing the UAVs to the value of

converging to Rnom. The spacing term effectively increases the radius of the orbit

when a UAV is too close to the agent in front of it and decreases the radius of the

orbit if it is behind. This allows agents to “catch up” when the spacing is not at the

desired state. An example of the heading field for an agent when δθ = π/2 is shown

in Figure 5.5. Notice the agent is drawn away from the nominal radius to allow the

agent in front to increase its angular separation.

66

Figure 5.5: A single UAV orbiting a stationary target with spacing error π/2 has
desired heading given by (5.14). Note that a positive spacing error will cause the agent
to effectively increase its radius, allowing the neighbor in front to gain distance and
increase their relative spacing.

By constructing δθi to be only a function of its immediate neighbors, the error

signal (heading field calculation) is local to each agent in the system. This allows the

implementation to be completely decentralized. The advantage to decentralization is

that the overall system will scale to any number of agents and be robust to insertion

and deletion of team members. When agents are tasked to leave the formation for

high priority assignments, the rest of the group can adjust to a new configuration

without any centralized planning. Similarly, if a new agent is added (e.g. returns

from a high priority task) the group will adjust through local interaction without any

global communication.

5.4 Stability Analysis

In the static target, no wind case, the splay state configuration coincides with

the team members being equally spaced around an orbit. This section investigates the

stability of the entire system when each agent follows the heading defined by (5.14).

Figure 5.6 shows the behavior exhibited by a team of three UAVs.

67

Figure 5.6: Three UAVs following the heading defined by (5.14) converge to the splay
state configuration along a non-moving orbit.

A complete Lyapunov argument (or other method) may be used to determine

the stability of the system to the splay state configuration. We have been unable to

find a Lyapunov function that shows the stability of the entire system. For this reason,

the convergence of the team of UAVs using (5.14) to the splay state configuration is

argued as follows. We first show that the radial error is bounded by a function

of the control gains k and γ. Near equilibrium, the overall system is shown to be

exponentially stable. Finally, Monte-Carlo simulations are used to investigate system

stability for initial conditions lying in the bounded region.

5.4.1 Ultimately Bounded

Lemma 7. The system of agents described by (5.6) when following heading (5.14) is

ultimately bounded in radial error di, i.e.

|di| ≤ Rδ (5.15)

where Rδ , γπ/k is less than Rnom.

68

Proof: For any agent, δθi is constrained to the region (−π, π), i.e. agent cannot have

an angular spacing error greater than π radians. If |di| > Rδ, then

sign(kidi − γδθi) = sign(di)

⇒ sign(χi) = sign(di)

⇒ sign(sin χi) = sign(di)

⇒ sign(−Va sin χi) = sign(−di)

⇒ sign(ḋi) = sign(−di)

⇒ diḋi < 0 .

Therefore, the Lyapunov function W = d2
i has a negative definite derivative whenever

di is outside the bound (5.15). When |di| > γπ/k, the kdi terms dominates the γδθi

term in (5.14) effectively steering the UAV to reduce radial error regardless of spacing

error. Therefore, |d| is decreasing when |d| > γπ/k and so all di are ultimately

bounded to the region (−Rδ, Rδ).

5.4.2 Local Stability

The splay state configuration in the no wind, non-moving target case corre-

sponds to all the UAVs traveling on the orbit equally spaced, i.e. di = 0 and δθi = 0

for all agents on the team. The change of variables introduced in Section 5.2.2 allows

analysis of the system dynamics where each UAV has equations of motion determined

by (5.9). Rewriting (5.9) using the definition of δθi in (5.10) to evaluate the error

signals for each agent, we obtain

ḋi = −Va sin χi

δ̇θi = Va
Ri

cos χi − 1
2

[
Va

Ri+1
cos χi+1 + Va

Ri−1
cos χi−1

]
.

(5.16)

In the calculation of the linearization of (5.16), it is helpful to compute the

partial derivatives of χi with respect to the system state variables di and δθi. Since

χi = tan−1 (kdi − γδθi), the partial derivatives evaluated at the equilibrium point

69

di = 0, δθi = 0 are calculated as

∂χi

∂di
= k

∂χi

∂d¬i
= 0

∂χi

∂δθi
= −γ

∂χi

∂δθ¬i
= 0

(5.17)

where ¬i represents any value in I not equal to i. The partial derivative of ḋi can be

calculated as

∂

∂∗
(
ḋi

)
=

∂

∂∗ (−Va sin χi) = −Va cos χi

(
∂

∂∗χi

)
. (5.18)

The matrix composing the partial derivatives of the system dynamics (5.16)

has the structure

F =

 A B

C D

 ,

∂
∂di

(ḋi)

∣∣∣∣ ∂
∂δθi

(ḋi)

∂
∂di

(δ̇θi)

∣∣∣∣ ∂
∂δθi

(δ̇θi)

 . (5.19)

Combining (5.18) with (5.17), the matrices A and B are calculated as A = −kVaIN

and B = γVaIN where IN is the N ×N identity matrix.

The linearization of the δθ dynamics reveals the ring structure inherent in

the spacing calculation used to construct the desired heading. The function δ̇θi is

composed of terms
Va

Ri

cos χi

which when linearized become

Va

R2
i

(
∂

∂∗Ri

)
cos χi − Va

Ri

sin χi

(
∂

∂∗χi

)
.

At the equilibrium, the only term that does not become zero is the term containing

∂Ri/∂di. Note that since Ri does not depend on δθi, the partial derivative with

70

respect to δθi will be zero. The linearized dynamics of δθi become

∂
∂di

(
δ̇θi

)
= −Va

Rnom
2

∂
∂di±1

(
δ̇θi

)
= 1

2
Va

Rnom
2

∂
∂δθi

(
δ̇θi,¬i

)
= 0 .

(5.20)

We conclude that the matrix D in (5.19) is simply the zero matrix of size N ×N and

matrix C is a circulant matrix

C =
1

2

Va

Rnom
2

−2 1 0 · · · 0 1

1 −2 1 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 1 −2

. (5.21)

Of particular note is the structure of C

C =
1

2

Va

Rnom
2 (−2IN + CN) (5.22)

where

CN =

0 1 0 · · · 0 1

1 0 1 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 1 0

(5.23)

is the adjacency matrix corresponding to the ring graph of size N . The eigenvalues of

F can be formulated in terms of the eigenvalues of C which are known using results

from algebraic graph theory [59].

Lemma 8. Consider the matrix

F =

 −kVaIN γVaIN

C 0N

 (5.24)

71

where C is given by (5.21), IN is the N × N identity matrix and 0N is an N × N

matrix of zeros. The eigenvalues of F are given by

λj = −1

2
kVa ±

√(
1

2
kVa

)2

+ γVaµj for j = 1 . . . N (5.25)

where

µj =
1

2

Va

Rnom
2

(
2 cos

(
2π

N
(j − 1)

)
− 2

)
(5.26)

is an eigenvalue of C.

Proof: We begin by showing that the eigenvalues of C are given by (5.26). From (5.22)

we conclude that

µj =
1

2

Va

Rnom
2 (−2 + γj)

where γj is an eigenvalue of CN . Results from algebraic graph theory show that the

eigenvalues of CN are

γj = 2 cos

(
2π

N
(j − 1)

)
for j = 1 . . . N .

Let λ be an eigenvalue of F and x its corresponding eigenvector. Partition x

into blocks corresponding with the blocks of F , i.e. x =
[
xT

d xT
δθ

]T
where both xd and

xδθ are of length N . The eigenvector relationship Fx = λx can be written

− kVaxd + γVaxδθ = λxd ⇒ γVaxδθ = (λ + kVa) xd (5.27)

and

Cxd = λxδθ . (5.28)

From (5.27) we see that

xδθ =
λ + kVa

γVa

xd (5.29)

which when applied to (5.28) yeilds

Cxd =

(
λ(λ + kVa)

γVa

)
xd .

72

Note that this is exactly the eigenvector relationship for the matrix C where Cx = µx

for

µ =

(
λ(λ + kVa)

γVa

)
.

Solving this for λ yields Equation (5.25).

Theorem 9. Consider the matrix F as defined in (5.24). All eigenvalues except for

λ = 0 of F are located in the open left half plane. Additionally, the eigenvectors

associated with λ = 0 and λ = −kVa span a subspace of R2N orthogonal to the

remaining 2N − 2 eigenvectors of F .

Proof: Equation (5.25) gives the relationship of the eigenvalues of F to the eigen-

values of C. Only a single eigenvalue of C is equal to zero, all other N − 1 values are

strictly less than zero. The zero eigenvalue in C maps to the eigenvalues λ = −kVa

and λ = 0 in F . The remaining eigenvalues of C (all strictly less than zero) have

discriminant strictly less than (1
2
kVa)

2 thus ensuring that each λ has real part in the

open left half plane.

The proof of Lemma 8 gives the relationship between the eigenvectors of C

and those of F via (5.29) where xd is the eigenvector of C corresponding to eigenvalue

µ =

(
λ(λ + kVa)

γVa

)
.

Since C is a symmetric matrix, its eigenvectors form an orthonormal basis of RN .

Note that C has constant row sums of zero, so the eigenvector associated with the

zero eigenvalue of C is the vector of all ones, 1. Due to the orthogonality of the

eigenvectors of C, 1T uj = 0 for all eigenvectors of C, uj 6= 1. Using (5.29), the

eigenvectors for λ = 0 and λ = −kVa are

x0 =

 1

k
γ
1

 , x−kVa =

 1

0

 . (5.30)

73

The inner product of these eigenvectors with all other eigenvectors of F can be written

as [
1T k

γ
1T

]
 uj

λ+kVa

γVa
uj

 = 0 and

[
1T 0T

]

 uj

λ+kVa

γVa
uj

 = 0 .

Corollary 10. The linearization of system (5.16) is exponentially stable.

Proof: Linearization of (5.16) yields the state equation ẋ = Fx where F is given

in equation (5.24), and whose solution is x(t) = eFtx0. By Theorem 9 all but one

eigenvalue is in the open left half plane, so any part of the initial condition x0 that

lies in the span of the eigenvectors associated with those eigenvalues exponentially

decays to zero. By definition of δθi, the constraint

N∑
i=1

δθi = 0 (5.31)

must hold for any state vector associated with the original system. The eigenvectors

associated with λ = 0 and λ = −kVa are given in (5.30). These eigenvectors form a

subspace orthogonal to all other eigenvectors in the linearized system. To lie in the

subspace spanned by the eigenvectors (5.30), all δθi must be equal. However, the only

vector δθ that satisfies the constraint (5.31) and is in this subspace is δθ = 0, which

is either along the eigenvector associated with λ = −kVa or in the subspace spanned

by the remaining eigenvectors of the system. In other words, it is impossible to have

an initial condition in the subspace spanned by the eigenvector associated with λ = 0.

Therefore, the initial condition x0 lies in the space spanned by eigenvectors whose

eigenvalues are in the open left half plane and the linearized system is exponentially

stable.

5.4.3 Global Stability

The system (5.16) is ultimately bounded to di ∈ (−Rδ, Rδ), δθi ∈ (−π, π) and

locally asymptotically stable. Monte-Carlo simulations are used to infer the stability

74

of the system in the remaining region between the ultimate bound and the equilibrium

path.

The Monte-Carlo simulations use the model (5.4) with desired heading given

by (5.14). For team sizes N = 2, 3, 4, 5, and 6, a set of 10,000 simulations with

random initial conditions in di and δθi were run to verify the stability of the system.

An error metric

e(t) =

√√√√
N∑

i=1

di(t)2 + δθi(t)2

captures the error from the splay state configuration at time t. The largest error at

t = 100 seconds over all 50,000 simulations was 2e−4 indicating that the actual region

of convergence is likely to be global.

5.5 Extension to Moving Targets

The ability for a UAV to orbit a target in the presence of wind or target motion

is crucial. Modifications to the static target, no wind case can be made to allow UAVs

to track moving targets.

To extend the approach of (5.14) to moving targets, the path heading term

ψp must be calculated to allow a UAV to remain on a moving orbit. Essentially, the

steady-state behavior of a UAV on the orbit is determined by ψp: while following ψp

at d = 0, a UAV should remain on the moving orbit.

Consider the behavior of a particle orbiting a constant speed target at fixed

radius Rn then

xp(t) = Rn cos(θ(t)) + Wxt

yp(t) = Rn sin(θ(t)) + Wyt
(5.32)

where Wx and Wy are the velocity of the orbit center. Differentiating (5.32) results

in the expression

ẋp = −Rnθ̇ sin θ + Wx

ẏp = Rnθ̇ cos θ + Wy .
(5.33)

75

The path heading is chosen as

ψp = tan−1

(
ẏp

ẋp

)
(5.34)

which is the direction of the vector that is tangent to the moving orbit. To ensure

that the UAV maintains constant airspeed, the magnitude of the tangent vector must

equal V . This constraint allows the calculation of θ̇ from (5.33) as

V 2
a = (ẋp)2 + (ẏp)2 =

(
−Rnθ̇ sin θ + Wx

)2

+
(
Rnθ̇ cos θ + Wy

)2

⇒ θ̇2 (R2
n) + θ̇ (2RnWy cos θ − 2RnWx sin θ) +

(
W 2

x + W 2
y − V 2

a

)
= 0

⇒ θ̇ = − 1
Rn

(Wy cos θ −Wx sin θ)±
1

Rn

√
(Wy cos θ −Wx sin θ)2 − (

W 2
x + W 2

y − V 2
a

)
.

(5.35)

The discriminant in (5.35) shows that when the magnitude of the velocity of the target

is greater than the speed of the UAV, a real solution does not exist. In practical terms,

this means that for the agent to properly maintain its orbit around the target, the

speed of the wind plus the speed of the target cannot exceed the speed of the UAV.

The turn rate constraint of the UAV must also be accounted for in determining

the allowable magnitude of motion that can be feasibly tracked. Disregarding the

other components of heading rate,

∣∣∣ψ̇p
∣∣∣ ≤ g

Va

tan(φmax) (5.36)

ensures that the path satisfies the turn rate constraints. The maximum value of ψ̇p

depends on Vw, the magnitude of the motion in the system (note V 2
w = W 2

x + W 2
y).

To ensure that the orbit can feasibly be followed with regard to the turn constraints

of the UAV, Vw must satisfy

(Vw + Va)
2

RnVa

≤ g

Va

tan(φmax) . (5.37)

76

Intuitively, a UAV can follow a moving target in wind if the magnitude of the wind

and target velocity are not too great to violate the velocity or turn rate constraints

of the UAV. For example, a UAV with maximum bank angle of 35 degrees, airspeed

of 15 meters per second and desired orbit of 100 meters can track a target with speed

less than 11.2 m/s.

With ψp determined by (5.34), a desired heading of (5.11) can be used for a

single UAV to follow a moving target in the presence of wind given that the turn

rate constraint of the UAV is satisfied. For multiple UAVs, the definition of the splay

state configuration is used to develop a spacing error term. Note that achieving equal

angle spacing around a moving orbit is impossible when the velocity of the UAVs is

held constant. For this reason, the actual time along the steady-state orbit between

neighbors is used to compute the error from the splay state configuration. Similar to

the static target case, the timing error is computed by assuming that all UAVs are

on the desired orbit (i.e. di = 0). Consider two agents on the orbit with clock angles

θi and θj. The time difference from agent i to agent j is given by Ti→j = t− t0 such

that θ(t) = θj where θ(t) is determined by solving the initial value problem

θ̇ = − 1
Rn

(Wy cos θ −Wx sin θ)±
1

Rn

√
(Wy cos θ −Wx sin θ)2 − (

W 2
x + W 2

y − V 2
a

)

θ(t0) = θi .

(5.38)

The timing error for a specific agent i can then be defined as

δti =
1

2

(
T(i−1)→i − Ti→(i+1)

)
. (5.39)

The δt term is used in exactly the same manner as the δθ term in the static target

case, i.e. a desired heading is calculated as

ψd
i = ψp

i + tan−1(kdi − γδti) . (5.40)

77

Many of the stability notions from the non-moving target case carry over to

the moving target case. A maximum δt exists since agents can only be of finite angle

apart. Therefore, for large errors in radial distance d, the kdi term will dominate the

heading calculation and force the system to be ultimately bounded. A linearization

of the system dynamics for the moving target case also shows many similarities to

static case. In particular the upper two blocks of the state matrix are identical to

the blocks in the static target linearization. We postulate that the lower blocks are

identical up to a positive scale factor, i.e. the circulant structure of the lower left block

is preserved which allows us to conclude linear stability via the same arguments as in

the static target case. Additionally, Monte-Carlo simulations are used to indicate that

the system converges to the splay state configuration in the moving target case. For

team sizes N = 2, 3, and 4, a set of 1,000 simulations with random initial conditions

in di, δti and Vw were run to verify the stability of the system. An error metric

e(t) =

√√√√
N∑

i=1

δti(t)2

captures the error from the splay state configuration at time t. The largest error at

t = 100 seconds over 3,000 simulations was 0.5 indicating that control (5.40) leads to

convergence to the splay state configuration. Figure 5.7 shows typical behavior of 4

UAVs orbiting a moving target. The timing error from the splay state configuration

for this scenario is shown in Figure 5.8.

Figure 5.7: Trajectories of 4 UAVs orbiting a moving target trace out routes similar
to those in this figure.

78

0 20 40 60 80 100 120
-4

-3

-2

-1

0

1

2

3

4

5

δt
 (

se
co

nd
s)

time (seconds)

Figure 5.8: Error from the splay state configuration for 4 UAVs tracking a moving
target is driven to zero using (5.40).

5.6 Simulation and Hardware Results

The splay state controller is based upon choosing a heading that draws the

UAVs to the splay state configuration. The design of the heading command is accom-

plished by assuming a simple kinematic model given by (5.4). To validate the design,

the splay state controller is tested in high-fidelity simulation. Each UAV is sim-

ulated with full 6 degree-of-freedom dynamics model with aerodynamic parameters

that match the small UAVs flown at BYU [70]. Additionally, the human interface and

autopilot code are emulated to match actual flight conditions as closely as possible.

Trajectories of three UAVs that loiter at fixed locations and are then com-

manded to reach the splay state configuration are shown in Figure 5.9. The radial

error of the agents is approximately one meter and the spacing error about three de-

grees. These errors are due mainly to the update rate of the team — each UAV only

communicates to its neighbors when a new GPS packet is received, at approximately

1 Hertz.

Actual flight tests of the algorithm are also used to validate the algorithm

design and its performance. A team of small UAVs is assembled and programmed to

reach the splay state configuration for a fixed orbit around a stationary point. Each

79

Figure 5.9: High fidelity simulation results of the splay state controller indicate that
the method can be effective in actual implementation.

UAV is equipped with an autopilot and navigation sensors to follow the desired head-

ing determined by the cooperative splay state controller. The team communicates

via wireless modem to other team members and to a ground station where a human

operator monitors the status and behavior of the team.

A primary difficulty when flight testing small UAVs in groups is the use of the

available communication bandwidth. In our architecture, all UAVs share the same

channel and are polled successively by the ground station software to ensure that

packets do not collide causing interference for the entire team. The disadvantage to

this architecture is that the ground station must request and then wait for a response

before polling the next team member. When packets are dropped due to interference

or loss of line-of-sight, agents can remain without communication for long periods of

time. During experiments, UAVs were frequently out of communication for periods up

to five seconds. The infrequent communication naturally degrades the performance

of the algorithm since each agent relies on knowledge of the states of its neighbors.

Despite complications arising from bandwidth constraints, hardware results

indicate that the algorithm can still reach the splay state configuration as can be

seen in Figure 5.10. Telemetry packets transmitted from the two UAVs were collected

80

-250 -200 -150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

150

200

East Position (meters)

N
or

th
 P

os
iti

on
 (

m
et

er
s)

Figure 5.10: Flight test results for two UAVs using the cooperative splay state con-
troller. Notice that one UAV (blue dots) orbits a larger radius while the second (red
squares) orbits a smaller radius so that their relative spacing converges to the splay
state configuration.

and gaps in the data filled by spline interpolation. Using this data, it was verified

that the radial error was on the order of 4 meters and the error from the splay state

configuration about 5 degrees. Considering the coarse update rate, wind conditions,

differences between airframes and sensor inaccuracies, we consider these very positive

results validating the splay state controller.

5.7 Conclusions and Future Work

This chapter has developed a decentralized splay state controller for a team

of UAVs monitoring a target. In the static case (i.e. non-moving target and no

wind), the controller spaces UAVs equally around an orbit centered on the target.

The decentralized nature of the control strategy allows the the team to be robust

to insertion, deletion and re-assignment of team members. The controller is shown

81

to be linearly stable in the static target case and Monte-Carlo simulations indicate

global stability in all cases. By defining an appropriate measure of spacing around the

orbit, the splay state configuration can be reached for moving targets in the presence

of wind. High fidelity simulation results and flight test experiments show that the

controller is practical and robust.

There are still many open questions in regards to the convergence of a team

of UAVs to the splay state configuration. Monte-Carlo simulations indicate that the

region between the ultimate bound and the equilibrium is stable, but a formal proof of

this assertion remains an open problem. Additionally, the design of the commanded

heading is based on a low-order UAV model. Extending the analysis to the model (5.1)

and finding an appropriate control u, rather than relying on a sliding mode inner-loop

control, is also an important extension.

82

Chapter 6

Perimeter Surveillance

6.1 Introduction

Perimeter surveillance algorithms form the basis for effective monitoring in a

number of applications including monitoring oil spills [71], contaminant clouds [72],

algae bloom [73], forest fires [2, 74], and border security [75, 3]. The literature in

this area can roughly be decomposed into two main groups: sensor technology used

for perimeter detection; and algorithms used to gather data along the perimeter

effectively.

Sensors that have been investigated for small fixed border scenarios, such as

warehouse surveillance, include cameras [76], ultrasound [77], and radar [78]. In

Ref. [76], the authors discuss algorithms that use image data from multiple cameras

to determine a perimeter breach. Peralta [77] uses a chain of ultrasound sensors with

a simple detection scheme to identify border crossings. Research has also been done

using existing airport radar equipment to identify when people or vehicles come too

close to runways [78]. For spill monitoring and other dynamic perimeter scenarios,

surveillance vehicles are equipped with chemical concentration sensors [1], infrared

cameras [74], or standard optical cameras [71].

Our aim is to develop algorithms that operate on small UAVs which offer some

distinct advantages over larger UAVs. Small UAVs can be man portable and hand

launchable, removing the need for traditional runways and allowing teams to be eas-

ily and rapidly deployed even in rough terrain. As a relatively inexpensive platform,

large numbers of small UAVs can be deployed to increase the rate at which informa-

tion is gathered. These advantages create unique requirements for the cooperation

algorithms that control teams of small UAVs. Algorithms must be robust to loss of

83

agents since small UAVs are more susceptible to weather conditions and are more

fragile than larger UAVs. The communication packages onboard small UAVs are of-

ten low-power, requiring that communication constraints be explicitly addressed in

the cooperation strategies. Finally, the computational burden should stay constant

regardless of team size, i.e. the cooperation algorithm should scale well for large

teams. Since a cooperation algorithm that is robust, addresses communication con-

straints and is scalable to large teams will work on both large and small UAVs, we

focus our efforts on developing such an algorithm.

We are particularly interested in monitoring borders that are of unknown

shape and size and possibly changing in time such as would be encountered in a

forest fire or chemical spill monitoring scenario. Additionally, we do not exclude large

borders where communication range will limit the possible interaction of the team.

We will assume that UAV agents have the proper sensor suite to detect changes in

the perimeter and track the edge of the perimeter. We will not focus on the necessary

sensor technology to do this, but rather on the algorithms that will allow a team

of agents to monitor a perimeter in a decentralized fashion. Perimeter surveillance

using multiple UAVs has the advantage of operating in a wide variety of circumstances

such as changing perimeters (spill monitoring, forest fire surveillance) or very large

perimeters (border patrol).

A number of researchers have investigated similar problems of monitoring and

tracking changing perimeters with autonomous vehicles. The MDARS project [79]

is a joint effort between the Army and Navy that networks multiple ground robots

to cooperatively monitor a fixed perimeter near critical storage facilities. A team of

robots are equipped with coarse obstacle detection sensors and a high precision narrow

field of view sensor to find and track objects that have breached the perimeter [3].

The entire team of vehicles communicates to a central location where sensor data is

fused and waypoint commands are issued [75]. Our work differs from MDARS in that

we do not require team agents to be in constant communication with a centralized

controller; rather, agents are frequently outside of the communication range of the

other team members and must monitor the perimeter in a decentralized manner.

84

Information gathered by the team is then carried by the team to a base location

where the state of the perimeter is displayed and human operators make decisions.

Teams of unmanned water vehicles have been proposed as a way to track algae

bloom and oil spills. Bertozzie et al. in Ref. [80] present an algorithm for monitoring

a perimeter with multiple agents when each is equipped with a concentration sensor.

When the sensor detects the presence of the chemical, the vehicle turns in one direc-

tion; in the absence of chemical detection, the vehicle turns in the opposite direction.

In this way, an agent weaves around the perimeter of the spill while communicating

the perimeter crossing points to form a complete picture of the perimeter. A simple

spacing law adjusts the speed of the vehicles to allow the team to spread out along the

perimeter. The algorithm has been shown to work in hardware testbed experiments

with virtual perimeters [81].

Clark and Fierro propose a similar method for oil spill perimeter tracking using

multiple vehicles [71]. A fleet of vehicles is deployed and will search the region and

communicate to team members when the perimeter is located. Agents will approach

the perimeter and begin to track it in a predetermined direction. Spacing of the

vehicles is accomplished by adjusting linear velocity. Hardware experiments using a

camera sensor on wheeled robots is shown to validate the algorithm. In both this

approach and the one proposed by Bertozzi et al. [80], neither the efficiency nor the

convergence of the algorithms are shown analytically. In addition, neither explicitly

address the problem of limited communication range.

Susca, Martinez and Bullo address the issue of approximating a changing bor-

der with a set of interpolation points [4]. As the team agents traverse the perimeter,

they update the points that describe the perimeter to best fit a polygon to the shape

of the perimeter. Their algorithm is shown to converge and relies only on communi-

cation between immediate neighbors.

In this chapter, we will present an algorithm for perimeter surveillance that:

(1) is completely decentralized, (2) is provably convergent to the optimal behavior

in finite time, (3) explicitly accounts for communication range limitations, and (4)

allows for changing perimeters. The primary advantages to a decentralized approach

85

are scalability and inherent system robustness. Since agents only make decisions based

on neighbor interactions, the required communication bandwidth and computation

is fixed irrespective of the total number of agents on the team. Decentralization

is inherently robust since each agent makes decisions with its available information

without a need to receive directions from a central location. This eliminates single

points of failure and allows a system to adapt naturally to changes in team size.

Agents can be inserted and deleted from the team at any time and the system will

adjust since each agent will maneuver to find its new neighbors. This allows agents

to leave the team for high priority tasks, such as following a perimeter breach, or in

case of accident or refueling.

In addition to being fully decentralized, our approach is optimal at steady-

state and has finite time convergence. Additionally, our approach requires very little

communication bandwidth and accounts for UAV kinematic constraints. The algo-

rithm is limited to constant velocity vehicles that travel along the border and due to

its decentralized nature, any global information that may be available is not exploited.

For missions where robustness is valued more than efficiency, our approach is a nat-

ural fit. Since it guarantees optimality in steady-state and finite time convergence,

only missions that have strict efficiency requirements would not be well-suited.

The perimeter surveillance problem is posed in Sections 6.2 and 6.3. Sec-

tion 6.4 presents our solution using a coordination variable [34] approach and com-

pares it to both averaging and centralized solutions. The method is extended to

changing perimeters in Section 6.5 and to account for constrained UAV turning ra-

dius in Section 6.6. Simulation and hardware results are presented in Section 6.7

and 6.8. Finally, Section 6.9 gives our conclusions.

6.2 Problem Formulation

The objective of the cooperative perimeter surveillance problem is to coopera-

tively gather information about the state of the perimeter and to transmit that data

to a central base station with as little delay and at the highest rate possible. There

are a number of factors that complicate the perimeter surveillance problem including:

86

1. Perimeter topology

2. Communication constraints

3. Team logistics

4. UAV capability.

Perimeter Topology. A perimeter may be static, such as a well-defined

border, or changing in time, such as a chemical spill or forest fire. A perimeter can be

composed of a web of segments and nodes that must be monitored, such as a set of

city streets or a network of paths in the mountains, although we do require the graph

representing the perimeter to be strongly connected. An area surveillance problem

can sometimes be posed as a perimeter surveillance problem by constructing a path

that covers the area using, for example, a zamboni pattern, and then monitoring that

path as a perimeter. The perimeter location need not be known a priori, but when

this is the case we assume that the UAVs have the sensor capacity to detect and

follow the perimeter autonomously.

Communication Constraints. Small, inexpensive UAVs often have limited

communication bandwidth and short communication range. In scenarios where the

perimeter is very large or terrain causes line-of-sight problems, agents may frequently

be out of communication range of the base station and neighboring UAVs. Addition-

ally, the gathered data may require significant time to transmit when a UAV is in

communication range of its neighbors (e.g. complete video footage).

Team Logistics. UAVs have limited flight time and must be periodically

refueled. In many cases, a UAV may be re-tasked to investigate a perimeter breach.

Hardware failures and hazardous flying conditions may unexpectedly remove a UAV

from involvement. A perimeter surveillance solution should be robust to failures and

allow for interruptions such as reassignment and refueling.

UAV Capability. The maneuverability of the UAV agents also effects the

monitoring of a perimeter. We assume that the UAVs are equipped with an autopilot

similar to the one described in Ref. [70]. The autopilot maintains constant altitude

and each UAV on the team is given a unique altitude assignment. The autopilot has

been tuned so that the closed-loop system exhibits a first-order response to roll and

87

airspeed commands. Under these assumptions, the kinematic equations of motion for

a single UAV can be written as

ṗN = V cos ψ + wN

ṗE = V sin ψ + wE

ψ̇ =
g

V
tan φ (6.1)

V̇ = αV (V c − V)

φ̇ = αφ(φ
c − φ),

where p = (pN , pE)T is the inertial position of the UAV, ψ, φ, and V are the head-

ing, roll angle, and airspeed, g is the gravitational constant, w = (wN , wE)T is the

windspeed, and V c and φc are the airspeed and roll angle commands given to the

autopilot. The first order response of the autopilot to airspeed and roll angle com-

mands are quantified by the parameters αV and αφ. In addition to these kinematics,

a constraint on roll angle −φmax ≤ φ ≤ φmax is enforced to ensure the safety of the

UAV. The presence of wind and the roll angle constraint impair the maneuverability

of the agents.

Developing a perimeter surveillance algorithm that accounts for these compli-

cations and efficiently gathers data about the perimeter state is not trivial. We reduce

the general problem to a more manageable, but still applicable, problem and present

the team behavior that efficiently solves that problem in Section 6.3. Section 6.4

then introduces and proves the convergence of an algorithm for reaching the desired

behavior while accounting for most of the complications.

6.3 Linear Perimeter Surveillance

We reduce the general perimeter surveillance problem of Section 6.2 to the

linear surveillance problem by assuming that the perimeter to be monitored is home-

omorphic to a line and can therefore be represented as a single path between two

points. This assumption eliminates perimeters that are circular or that are connected

in a web-like structure. However, an arbitrary connected perimeter can be reduced to

88

a linear perimeter by constructing a single tour that traverses all segments of the orig-

inal perimeter. In practice, a surveillance mission will have a base of operations where

information about the perimeter is analyzed by human operators and team agents

are refueled and relaunched. Circular perimeters can be treated as linear perimeters

with both endpoints at the base of operations.

A linear perimeter imposes a natural order to the team where each agent has

at most two immediate neighbors along the perimeter. By requiring that neighbors

physically meet to transmit information, any size of communication range is allowed.

In practice, the sensor footprint limitations will require UAVs to physically meet their

neighbors regardless of whether they can communicate at larger distances. Therefore

we assume that UAVs must meet to exchange information. Agent meeting times

can be extended by loiter patterns to facilitate the transmission of large amounts of

data. Loss or reassignment of team agents are quickly noticed by the change in the

neighborhood of affected agents.

Team planning is accomplished by considering agents as point masses that

move at uniform constant velocity along the perimeter (see Figure 6.1). Correspond-

ing UAV agents follow their reference points along the perimeter as described in

Section 6.6. We assume that point agents can reverse direction instantaneously and

that they always do so at the end of the perimeter. Communication between point

agents is only allowed when they are “touching”, i.e. when they occupy the same

physical location. One way to visualize the problem is to imagine beads sliding along

a wire.

1

2

3

4

5

6

7

8

Figure 6.1: Example scenario where 8 agents monitor a linear perimeter.

The performance of a particular monitoring algorithm can be measured by

the latency associated with information about points along the perimeter. Let P

89

be the length of the perimeter and let the perimeter be defined as a line along the

x-axis beginning at x = 0 and continuing until x = P . Since we assume that the

point agents travel at uniform velocity of V and data transmission only occurs when

the agent is in immediate physical proximity, the soonest information about point

x0 is available to a recipient at the base of operations (x = 0) is in x0/V seconds.

The minimum latency profile is obtained when an agent starts at the far end of the

perimeter and travels to the base of operations, at which time it transmits all the

perimeter information.

Note that adding more agents cannot decrease the latency of the gathered

information as seen at the base of operations since information can only travel as fast

as a single agent. However, increasing the number of agents on the team increases

the refresh rate of the perimeter state. Intuitively, spacing agents equally so that the

refresh rate is constant will yield the most efficient method for perimeter monitoring.

This configuration can be achieved by tasking each agent to travel to the end of

the perimeter and then monitor the entire perimeter as it returns to the base while

launching agents at 2P/N intervals where N is the number of agents on the team.

As agents monitor the perimeter while traveling to the base of operations they pass

agents traveling to the end of the perimeter to begin monitoring. These meetings

occur at equally spaced intervals of length P/N . Rather than have agents traverse

the entire perimeter equally spaced, each can be responsible for a segment of length

P/N and pass the information it gathers to its neighbors, thus achieving the same

overall latency profile and refresh rate.

Consider the behavior of a team of four agents as shown in Figure 6.2. The

agents are uniformly distributed along the perimeter (Figure 6.2(a)) and each agent

meets its neighbors at the end of its segments (Figures 6.2(b) and 6.2(c)). This

oscillatory behavior of the agents requires that the team be synchronized not only in

space (equally distributed), but also in time (meet neighbors at the end of segments).

By examining the behavior illustrated in Figure 6.2 it can be seen that infor-

mation gathered at neighbor meeting locations travels to all other locations along the

90

1

2

3

4

(a) Agents are uniformly
spaced along the perimeter.

1

2

3

4

(b) Neighbors meet and ex-
change perimeter state infor-
mation.

1

2

3

4

(c) Perimeter state is carried
to all points along the perime-
ter.

Figure 6.2: Information exchange pattern that allows information about the state of
the perimeter to be available at any point along the perimeter.

perimeter in the shortest time possible. This can be seen by noting that after two

agents meet and gather information about the perimeter at their meeting place, each

will take this information at speed V to any other place along their respective seg-

ments. This information is passed to their respective neighbors who carry it further

along the perimeter, again at speed V . Therefore, the information gathered at the

neighbor meeting locations is carried to all other points along the perimeter at the

highest possible speed.

Definition 2 (Low-Latency Exchange Configuration). Consider a team of N agents

monitoring a linear perimeter of length P defined as a line along the x-axis from x = 0

to x = P . Order the agents from the left end of the perimeter as 1 . . . N . Consider

two sets of team agent locations on the perimeter:

1. Agent i ∈ 1 . . . N is located at bi + 1
2
(−1)icP/N

2. Agent i ∈ 1 . . . N is located at bi− 1
2
(−1)icP/N

where b·c returns the largest integer less than or equal to its argument. The low-

latency exchange configuration is the behavior realized by the team when oscillating

between these two team locations at speed V .

The difference between the two sets of positions in Definition 2 is the sign of

the 1
2
(−1)i term. The first set of team locations places agent 1 at x = 0 and all other

agents in pairs at 2P/N equal intervals along the perimeter (see Figure 6.2(c)). The

next set of agents starts by pairing agent 1 and 2 at position x = P/N and spacing

the remaining pairs at 2P/N intervals (see Figure 6.2(b)). Note that for each agent

i, the pair of positions in Definition 2 defines the endpoints of the segment on which

it remains while in the low-latency exchange configuration.

91

As indicated earlier, the low-latency exchange configuration is the ideal be-

havior for a team of agents monitoring a linear perimeter and it will be the desired

steady-state behavior of the decentralized algorithm presented in Section 6.4. In ad-

dition to converging to the low-latency exchange configuration, the algorithm will

address deletion and insertion of team members and variable length perimeters.

6.4 Decentralized Solution

This section derives a decentralized algorithm to reach the low-latency ex-

change configuration defined in Definition 2. One way to approach such a problem

is to determine the coordination variables [28] or minimum amount of information

necessary to achieve cooperation. For this problem, three critical pieces of informa-

tion are: (1) the perimeter length, (2) the number of agents on the left side of the

perimeter relative to a given agent, and (3) the number of agents on the right side

of the perimeter relative to a given agent. When each agent has correct coordination

variables, then each will be able to compute the perimeter segment for which it is

responsible. The first step in the decentralized solution is to ensure that when each

agent has the proper values, that coordination will be achieved.

To be precise, let each agent maintain a vector containing the coordination

variables. For each agent i ∈ 1 . . . N , let

ξi =

PRi

PLi

NRi

NLi

be the coordination vector where PRi
is the length of the perimeter to the right of

agent i, PLi
is the length of the perimeter to the left of agent i, and NRi

and NLi

are the number of agents to the right and left of agent i respectively. We adopt the

convention that x = 0 is the left border of the perimeter and x = P is the right

border. An agent i can then calculate the segment for which it is responsible by

calculating the perimeter length P = PRi
+PLi

, the team size N = NRi
+NLi

+1 and

92

its relative order on the team n = NRi
+1. By using the definition of the low-latency

exchange configuration, the segment for which agent i is responsible is defined by the

endpoints at bn ± 1
2
(−1)ncP/N . We say that each agent has correct coordination

variables when for each i ∈ 1 . . . N , PRi
+ PLi

matches the true perimeter length and

NRi
+ NLi

+ 1 matches the actual number of agents on the team.

Consider an algorithm where each agent assumes responsibility for a portion

of the perimeter and escorts any of its intruding neighbors to their shared segment

border. The following algorithm ensures that if each agent has correct coordination

variable values (i.e. each agents knows the length of the perimeter, the total number

of agents on the team, and its position in the team), then the low-latency exchange

configuration will reached.

Algorithm 1: Neighbor Escort

if agent i rendezvous with neighbor j then
Calculate team size N = NRi

+ NLi
+ 1.

Calculate perimeter length P = PRi
+ PLi

.
Calculate relative index n = NLi

+ 1.
Calculate segment endpoints s = bn± 1

2
(−1)ncP/N .

Calculate shared border position p = si ∩ sj.
Travel with neighbor j to shared border p.
Set direction to monitor own segment.

else if reached perimeter endpoint then
Reverse direction.

else
Continue in current direction.

For every consecutive pair of agents, there is a single position where their

segments border each other. When each agent has a knowledge of the length of the

perimeter and its order in the team, then the endpoints of its responsible segment

are computed. The endpoint shared with a neighbor is the shared border position to

which both will travel together in the first phase of Algorithm 1. In other words, each

agent escorts its neighbors to the position at which they should have met had they

been in perfect synchronization. Note that agents only reverse direction at perimeter

endpoints and when they finish escorting neighbor agents, so each agent is guaranteed

to meet its neighbors.

93

Theorem 11. Let the perimeter length P and number of agents N be fixed. If all

agents have correct coordination values, then Algorithm 1 ensures that the low-latency

exchange configuration is achieved after time 2T has passed where T = V/P corre-

sponds to the time required for one agent to travel the length of the perimeter.

Proof: Team agents can initially be positioned anywhere along the perimeter and

can be traveling either to the left or right (recall that constant uniform velocity is

assumed). Since each agent has correct coordination variables, then each can calculate

the segment along the perimeter for which it is responsible. Agents are guaranteed

to meet both neighbors since Algorithm 1 only commands agents to reverse direction

at a perimeter (not segment) endpoint or when concluding a neighbor escort.

For N agents monitoring a border of length P , order the segments of size P/N

from the left edge of the perimeter as 1, . . . , N and label each agent so that agent

i is responsible for segment i. Consider first the actions of agent 1. Once agent 1

has escorted its right neighbor to their shared border, then no agent to the right

of agent 1 will ever travel along segment 1 again. This can be seen by noting that

after agents 1 and 2 split at their shared boundary both will travel the length of one

segment to get to the opposite end of their respective segments. If agent 2 meets

agent 3 along the way, then agents 2 and 3 will continue to their shared border before

agent 2 reverses direction, as in Figure 6.3. Therefore, agent 2 will travel at least one

segment length away from the boundary between segments 1 and 2. Since both travel

at a uniform constant velocity, then agent 1 will arrive back at the border between

segments 1 and 2 at the same time or before agent 2, but never after. Now consider

agent 2 after it has been escorted by agent 1 to their shared boundary. Since by this

time agent 2 never ventures into segment 1, the border between agents 1 and 2 can

be regarded as a fixed perimeter endpoint for agent 2. The same analysis now holds

if we consider agent 2 the leftmost agent in a set of N − 1 agents. Observe that the

same argument holds starting with the rightmost agent and considering all agents

to the left. Therefore, there is a time τ after which all agents are only found on

their respective segments. This implies that the low-latency exchange configuration

of Section 6.3 has been reached.

94

1

2

(a) Agents 1 and 2 separate at their shared
border.

1

2

3

(b) Agent 2 encounters agent 3 earlier than
expected and escorts it to their shared border
before reversing direction.

1

2

(c) Agents 1 and 2 separate at their shared
border.

1

2

3

(d) Agent 2 encounters agent 3 later than ex-
pected and escorts it to their shared border
before continuing on to meet agent 1.

Figure 6.3: Possible cases for rendezvous of agent 1 with its neighbor.

The worst case situation occurs when all agents are stacked infinitesimally

close at one end of the perimeter and are traveling toward the other. Once T has

passed all agents are at the opposite end of the perimeter where they meet both

neighbors. Each pair will travel to their shared borders which for the farthest pair

will require a travel time less than T . Therefore, the steady-state behavior will be

achieved before time 2T .

Figure 6.4 shows two simple scenarios with 8 agents spreading out over a

fixed perimeter where each agent begins with correct coordination variables. The

positions of agents along the perimeter is indicated vertically with the time axis shown

horizontally. The lattice structure indicates that the desired steady-state behavior has

been reached since agents turn around at precisely their desired neighbor rendezvous

locations. Note that the agents require very few meetings with each other to converge

to the proper configuration.

6.4.1 Comparison with Centralized Algorithm

To understand the characteristics of Algorithm 1, it is useful to compare its

performance with other methods of perimeter surveillance. A centralized method for

reaching the low-latency exchange configuration is to compare the initial positions of

the team with all possible team locations in the low-latency exchange configuration

and find the one that requires the shortest convergence time.

95

1

2

3

4

5

6

7

8

(a) Initial positions and directions for a group of
8 agents in scenario A.

1

2

3

4

5

6

7

8

(b) Initial positions and directions for a group of
8 agents in scenario B.

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(c) Position of agents along the perimeter over
time for scenario A.

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(d) Position of agents along the perimeter over
time for scenario B.

Figure 6.4: Team behavior in two scenarios for point agents whose behavior is gov-
erned by Algorithm 1. The position of agents along the perimeter is indicated vertically
with the time axis shown horizontally. The lattice structure indicates that the desired
steady-state behavior has been reached.

Let Q be the set of team positions during the desired steady-state operation

where an element q ∈ Q consists of N positions, qi corresponding to the position of

agent i in the low-latency exchange configuration. Note that the set of all team con-

figurations that satisfy the low-latency exchange configuration can be parameterized

by the position of the first agent

qi = (i− 1)
P

N
+

(
P
N
− q1

)
if i is even

q1 otherwise .
(6.2)

Therefore, if the position of the first agent is known in the low latency configuration,

then for a perimeter of length P , q1 is on the interval [0, P
N

] and all other positions

can be calculated using Equation (6.2). The centralized method is to command the

96

team located at pi, i = 1 . . . N to converge to q∗ where

q∗ = arg min
q∈Q

max
i=1...N

|pi − qi| . (6.3)

In other words, the optimal solution is to pick the low-latency team configuration

that is closest to the current position of the team. During the transition from the

initial position to the nearest low-latency configuration position q∗, agents reach their

correct position and loiter there until the remaining team members have reached their

respective positions.

In the worst case scenario where all agents are located at one end of the

perimeter, the centralized algorithm converges in time T , twice as fast as the decen-

tralized method. Figure 6.5 shows a comparison of the centralized algorithm and

Algorithm 1. Note that the centralized algorithm requires agents to wait or loiter at

the proper location until all agents have reached q∗. This is indicated by the straight

lines in Figure 6.5.

Monte-Carlo simulations indicate that the centralized algorithm reaches the

low-latency exchange configuration on average 0.67T seconds faster than the decen-

tralized method (standard deviation of 0.17T seconds). The maximum time difference

between the centralized algorithm and Algorithm 1 was 0.998T seconds corresponding

to the theoretical worst case difference. The centralized algorithm requires complete

knowledge of the state of the team and explicit cooperation of all team members. The

value of Algorithm 1 is that its performance is comparable to the optimal solution in

speed, but is implemented in a decentralized, robust way.

6.4.2 Comparison with Consensus Method

The second method to which we compare Algorithm 1 is a distributed consen-

sus algorithm modified for perimeter surveillance. The standard consensus problem

for a group of agents is to ensure that as time progresses each agent approaches a

consistent understanding of their shared information. For example, one method of

coming into consensus is for each agent to repeatedly average its associated variable

97

1

2

3

4

5

6

7

8

(a) Initial positions and directions for a group of
8 agents.

1

2

3

4

5

6

7

8

(b) Initial positions and directions for a group of
8 agents.

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(c) Position of agents along the perimeter over
time when using the centralized algorithm (6.3).

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(d) Position of agents along the perimeter over
time when using Algorithm 1.

Figure 6.5: Team behavior in a comparison of Algorithm 1 and the centralized algo-
rithm (6.3). The position of agents along the perimeter is indicated vertically with the
time axis shown horizontally. The lattice structure indicates that the desired steady-
state behavior has been reached. Straight lines indicate that an agent is maintaining
its current position along the perimeter. Note that the centralized algorithm requires
agents to wait for the rest of the team to settle into the optimal starting configuration
while Algorithm 1 reaches the low-latency exchange configuration after some interaction
time.

with those communicated from its immediate neighbors. If the interaction graph

among the team contains a spanning tree, then the coordination variable of each

agent will asymptotically approach a constant shared value and the team is said to

asymptotically reach consensus [82].

Adapting a consensus method to the perimeter surveillance problem involves

defining the value associated for each agent and a strategy for updating those values.

Let the length of the segment for which an agent is responsible be the value associated

with that agent. Consider the rendezvous of two agents on the perimeter. When

agents meet, they communicate the length of their respective segments and average

to find the midpoint of their shared segment. Both travel together to the midpoint

98

of their shared segment [83] and seperate with an updated value for how much of

the perimeter each is responsible for. For every pair of agents, their shared segment

is defined by endpoints determined by the locations where each agent met its other

neighbor.

The difficulty with this method is that the value to which the team will con-

verge must be P/N where P is the length of the perimeter; otherwise, agents would

be continuously overlapping or neglecting part of the perimeter. A specialization of

the general consensus problem to the average consensus problem can be made which

ensures that the team will converge to the exact average of the initial values. The only

remaining difficulty is initializing the system so that the segment lengths associated

with the team of agents sum to P . We do this by assuming that agents are launched

with a value of zero with the exception of the first agent who travels to the end of

the perimeter and initializes its value to P . This approach has three consequences.

First, although the algorithm can account for arbitrary perimeter length, the perime-

ter must remain fixed. Second, loss of an agent during the mission will remove its

segment length from the knowledge of the team. In each case, the prerequisites for

average consensus would be violated and the team would fail to converge to the true

value of P/N . Finally, convergence is, in general, asymptotic in nature rather than

in finite time as Algorithm 1 guarantees. Figure 6.6 shows the performance of the

average consensus algorithm compared to Algorithm 1. In addition to the above lim-

itations of fixed perimeter length and asymptotic convergence, the consensus method

seems to exhibit poor transient response.

Algorithm 1 relies only on interactions of an agent with its immediate neighbors

on the perimeter and yet it converges to the low-latency exchange configuration in

finite time. In Section 6.5 we show that the decentralized nature of the algorithm

allows the team to accommodate loss or reassignment of agents. In the event of

a perimeter breach, an agent can be assigned to follow the intruder while the rest

of the team reconfigures to monitor the border in its absence. Since the algorithm

converges in finite time, the loss in perimeter coverage is quickly compensated. This

99

1

2

3

4

5

6

7

8

(a) Initial positions and directions for a group of
8 agents.

1

2

3

4

5

6

7

8

(b) Initial positions and directions for a group of
8 agents.

0 1T 2T 3T 4T 5T 6T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(c) Position of agents along the perimeter over
time when using the centralized algorithm (6.3).

0 1T 2T 3T 4T 5T 6T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(d) Position of agents along the perimeter over
time when using Algorithm 1.

Figure 6.6: Team behavior in a comparison of Algorithm 1 and a consensus
method (6.3). The position of agents along the perimeter is indicated vertically with the
time axis shown horizontally. The lattice structure indicates that the desired steady-
state behavior has been reached. Note that the consensus method converges asymp-
totically while Algorithm 1 reaches the low-latency exchange configuration in finite
time.

same natural reconfiguration behavior is desirable in the event of refueling and agent

loss due to hazardous conditions.

6.5 Changing Perimeters

Theorem 11 ensures finite time convergence to the low-latency exchange con-

figuration of Section 6.3 when the correct values of the coordination variables are

known by each agent. By allowing each agent to update its instantiation of the coor-

dination variables, Algorithm 1 can be modified to ensure each member of the team

will obtain the correct values. This will allow the team to naturally compensate for

agent reassignment or loss and perimeter growth.

Each agent maintains local instantiations of the coordination variables that

track the perimeter distance and the number of agents to its left and to its right.

100

These coordination variables are updated when meeting with another agent on the

team by querying the neighbor about the portion of the perimeter which it has most

recently traveled. If the perimeter and number of agents is fixed, then the coordination

variables will eventually be consistent among the team since agents are guaranteed

to meet both neighbors. Once the coordination variables are correct, Theorem 11

ensures that the desired steady-state behavior will be achieved. Note that the same

method used to update the coordination variables can also be used to detect changes

in the perimeter or insertion/deletion of team members.

Algorithm 2: Variable Neighbor Escort

if agent i (left) rendezvous with neighbor j (right) then
Update perimeter length and team size:

PRi
= PRj

PLj
= PLi

NRi
= NRj

+ 1
NLj

= NLi
+ 1.

Calculate team size N = NRi
+ NLi

+ 1.
Calculate perimeter length P = PRi

+ PLi
.

Calculate relative index n = NLi
+ 1.

Calculate segment endpoints s = bn± 1
2
(−1)ncP/N .

Calculate shared border position p = si ∩ sj.
Travel with neighbor j to shared border p.
Set direction to monitor own segment.

else if reached left perimeter endpoint then
Reset perimeter length to the left PLi

= 0.
Reset team size to the left NLi

= 0.
Reverse direction.

else if reached right perimeter endpoint then
Reset perimeter length to the right PRi

= 0.
Reset team size to the right NRi

= 0.
Reverse direction.

else
Continue in current direction.

Algorithm 2 operates in the same manner as Algorithm 1, with the additional

steps of communicating and updating the coordination variables. For example, con-

sider two agents starting from opposite ends of the perimeter, each without knowledge

of the other. Let agent 1 start at x = 0 and agent 2 start at x = P , but let the launch

time of agent 2 be delayed with respect the launch of agent 1. As each agent pro-

101

gresses along the perimeter, it keeps track of the distance traveled from launch. When

the two agents finally meet, agent 1 updates NR1 to be equal to one plus the number

of agents to the right of agent 2 and PR1 equal to PR2 communicated from agent 2;

similarly, agent 2 updates NL2 and PL2 from the communication from agent 1. At

this point, the coordination variables are correct and Theorem 11 ensures that the

low-latency exchange configuration will be reached in finite time.

Theorem 12. Let the perimeter length P and number of agents N be fixed. Algo-

rithm 2 ensures that the low-latency exchange configuration is achieved in finite time

for arbitrary initial conditions of position, direction, and coordination variables of

each agent on the team.

Proof: We first prove that all agents on the team converge to the correct coordination

variables in finite time when using Algorithm 2. Since an agent only changes direction

at perimeter endpoints or when completing a meeting with its neighbors, all agents

are guaranteed to meet their neighbors along the perimeter.

Order the N agents from the left edge of the perimeter as 1, . . . , N and consider

the actions of agent 1. Agent 1 is guaranteed to visit the left endpoint of the perimeter

either after an escort from agent 2 or immediately due to initial conditions. Once

agent 1 has visited the perimeter endpoint, both NL1 and PL1 are correct due to

the section of Algorithm 2 that resets those variables at endpoint rendezvous. Now

consider the meeting of agent 1 and agent 2. At this point, agent 2 updates NL2 and

PL2 through communication with agent 1 and thereby obtains correct values for those

coordination variables. Note that repeated meetings between agent 1 and 2 will not

change the correctness of their coordination variables since N and P are fixed. Now

consider agent 2 as the left most agent in a team of N − 1 agents and note that its

right neighbor is ensured to obtain correct left coordination variables. Clearly, the

same holds from the right end of the perimeter. Since only one neighbor meeting

is required after the endmost agent has obtained correct coordination variables and

the team size is reduced at each stage and meetings are guaranteed to occur in finite

time, the entire team obtains correct coordination variables in finite time.

102

During the transient period when the team is learning the correct coordination

variables, the calculation of the shared segment border is incorrect relative to the low-

latency configuration, but consistent among the agents involved in the rendezvous.

This can be seen by noting that after both agents have communicated and updated

their coordination variables with the other, they each have the same understanding of

P and N and can consistently calculate their shared border position. So while they are

escorting each other to the (ultimately) wrong position, they are still guaranteed to

continue in the correct directions to ensure that each agent meets both its neighbors.

Once the coordination variables are correct for each agent on the team, ap-

plication of Theorem 11 ensures that the low-latency exchange configuration will be

met in finite time.

Algorithm 2 is successful because each agent has finite memory. Since the

local instantiations of the coordination variables are updated with the most recent

information gathered, past information does not affect team behavior. In addition to

enabling the team to come to correct values of the coordination variables, this finite

memory property allows the team to adapt to step changes in perimeter and team

size. Since Algorithm 2 operates under arbitrary initial conditions, a step change in

perimeter or team size would be analyzed by simply considering new initial conditions

of the team at the time of the step change. Figure 6.7 shows agents tracking a

perimeter with a step change in size and a perimeter with sinusoidal growth. The

algorithm accommodates step changes in perimeter size, but also allows good tracking

for other types of perimeter growth. Note that agents do not have any knowledge a

priori of the perimeter length or number of agents on the team. The coordination

variables of each agent are updated through repeated interactions with other team

members.

Algorithm 1 can also be extended to account for long communication events.

In a perimeter imaging scenario, agents survey the perimeter segment for which they

are responsible and when each meets its neighbor it must transmit large amounts of

data. In this case, agent meetings cannot be instantaneous, rather a fixed amount of

time is allotted for agents to loiter at the meeting location to allow longer commu-

103

0 1T 2T 3T 4T 5T 6T 7T 8T
0

0.2

0.4

0.6

0.8

P

1.2

1.4

1.6

1.8

2P

(a) Positions of agents over time for step change
in perimeter length.

0 1T 2T 3T 4T 5T 6T 7T 8T
0

0.2

0.4

0.6

0.8

P

1.2

1.4

(b) Positions of agents over time for sinusoidal
perimeter growth.

Figure 6.7: Team behavior of agents tracking changing perimeters using Algorithm 2
to continuously update the coordination variables. Agents learn the size of the perime-
ter and number of agents on the team through repeated interaction with other team
members.

nication events. After an agent finishes escorting its neighbor, both loiter together

for a pre-determined amount of time. Figure 6.8 shows a scenario involving long

communication events.

0 1T 2T 3T 4T 5T 6T 7T 8T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

Figure 6.8: Example scenario where Algorithm 1 is modified to account for long
rendezvous timing.

104

6.6 UAV Agents

Algorithm 1 developed the motion of the reference points for a team of UAVs

to follow to achieve the low-latency exchange configuration. In practice, the reference

point generalization is only followed when agents are involved in a rendezvous with

another agent. Between meetings, the center of the constant airspeed UAV is consid-

ered the point along the perimeter. However, since a UAV has a constrained turning

radius, it cannot precisely follow a reference point that can instantaneously turn

around. The purpose of this section is to investigate the application of Algorithm 1

when the dynamics of the UAVs are considered.

In Section 6.3 agents are modeled as points that could communicate only when

touching. Now consider UAVs flying at constant velocity with nominal turning radius

R. A maneuver for reversing direction with constrained turning radius is shown in

Figure 6.9 where the UAV follows arcs along minimum turn radius circles to complete

the path direction reversal.

∆

Figure 6.9: U-turn maneuver that satisfies the constrained turning radius of the UAV.

105

The distance required to travel around the U-turn trajectory in Figure 6.9 is

∆ = 7
3
πR where R is the nominal turning radius of the UAV. To allow the reference

point to follow the pattern dictated by Algorithm 1, both UAVs must be able to

communicate far enough in advance to begin their U-turn maneuvers so that they

complete the maneuver in time to continue following their reference point. Since

each requires a distance of 7
3
πR to turn around, the minimum communication radius

allowed must be 14
3
πR so that both can be aware of an imminent rendezvous.

Other methods of rendezvous can be implemented to allow for shorter commu-

nication range. For example, the U-turn maneuver could be implemented by having

both UAVs circle the point of rendezvous before continuing on in the prescribed di-

rection. This is implemented by having the reference points wait at the rendezvous

similar to the behavior of the agents that have long communication events. In other

words, when UAVs meet, they loiter the rendezvous point for a specified amount of

time before continuing with the algorithm and data gathering.

A method for reducing the amount of turning around by the team is for neigh-

bors to switch roles at rendezvous. This allows both to continue in their current

directions while still maintaining the integrity of the algorithm. When two agents

meet, they can negotiate which direction is of higher utility and swap roles if neces-

sary. This would allow UAVs to move down the perimeter toward the base station

for refueling without disrupting the perimeter surveillance pattern of the team.

6.7 Simulation Results

To verify the feasibility of implementing Algorithm 1 on a team of UAVs, a high

fidelity simulation is performed. Each UAV is simulated with full 6 degree-of-freedom

dynamics model with aerodynamic parameters that match the small UAVs flown

at BYU [70]. The simulation scenario involved three UAVs monitoring a changing

perimeter composed of 4 waypoints with a total length of 1.46 km. Each UAV is

equipped with autopilot software that enables accurate waypoint tracking [70] with a

turning radius of approximately 50 meters. The communication model allows UAVs

to communicate only to adjacent neighbors who are inside the communication range

106

of approximately 370 meters, the minimum distance necessary to perform the U-turn

maneuver.

The simulation scenario starts with only two of the three UAVs being launched.

Each agent starts without knowledge of the number of agents on the team or the

perimeter length. Even though the perimeter is defined by predetermined waypoints,

we require the UAVs to initially treat the perimeter length as unknown. After about

400 seconds, a step change in the perimeter length occurred by adding an additional

waypoint, followed by another change a short time later. At approximately 900

seconds in simulation time, the third UAV was launched. Before the simulation

terminated, the team experienced two more changes in the perimeter length, one at

each end.

Figure 6.10 shows the simulation results by plotting the normalized position

of each UAV along the length of the perimeter. Note that in the regions where the

team should already be locked into the ideal configuration, some position overlap is

still observed. This is caused by the inability of the UAVs to perform the U-turn

maneuver precisely, and results in a disturbance to the system. However, the overall

behavior of the team is as expected, with the agents reaching the desired steady-state

behavior quickly and reacting appropriately to step changes in both the perimeter

length and team size.

It should be noted that even though the UAVs cannot turn around instanta-

neously, the position plot in Figure 6.10 shows the reference point being followed by

the UAV. When the UAV is not implementing a U-turn, the reference point is the

center of the UAV; during U-turn maneuvers, the reference point continues along the

path to the agreed upon rendezvous point and reverses direction.

6.8 Flight Test Results

The decentralized cooperative-surveillance algorithm was further validated by

hardware flight tests using the experimental testbed described in Ref. [70]. Figure 6.11

displays the normalized position of two UAVs along the perimeter while Figure 6.12

shows the inertial position plots that were generated from the actual telemetry files

107

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.25

0.5

0.75

1

1.25

P
er

im
et

er
 P

os
iti

on

(n
or

m
al

iz
ed

 u
ni

ts
)

Time (seconds)

Figure 6.10: Simulation results showing the normalized position of each UAS along
the perimeter. Changes to the perimeter length occurred at approximately 400, 700,
1100, and 1600 seconds. The third agent was introduced at approximately 950 seconds.
The sharp peaks are a result of the coordination variables being reset.

of the UAVs. Figure 6.12 demonstrates the algorithm by showing (a) the initial

condition for the two agents, (b) the first rendezvous, (c) the turn-around at the shared

border, (d) the first meeting of the perimeter endpoints, (e) the second rendezvous,

and (f) the second meeting of the perimeter endpoints.

The algorithm was initiated at approximately 50 seconds, after the two agents

had passed each other. The first UAV (blue), having traveled a greater distance than

its neighbor, turned around immediately while the second agent (red) traveled to

the shared border before turning around. At this point the agents had reached the

steady-state configuration. As seen in Figure 6.11, there was some overlap in position

between the two agents. This is a result of the inability of the UAVs to complete

a precise U-turn maneuver. It should also be noted that the shared-border position

of the two agents appears to be around 60% of the perimeter length instead of the

theoretically predicted 50%. This deviation was caused by wind pushing the second

agent, thereby enabling Agent 2 to cover more distance than Agent 1. Wind speeds

during the flight tests were estimated at 35% of the airspeed of the UAVs. Despite the

108

0 100 200 300 400 500 600
0

0.25

0.5

0.75

1

P
er

im
et

er
 P

os
iti

on

(n
or

m
al

iz
ed

 u
ni

ts
)

Time (seconds)

Figure 6.11: Experimental results showing the normalized position of each UAS along
the perimeter. The decentralized cooperative-surveillance algorithm was started at
approximately 50 seconds.

disturbance of the wind, the agents were still able to effectively distribute themselves

evenly along the perimeter.

6.9 Conclusions

This chapter has presented a decentralized algorithm for perimeter surveillance

that converges in finite time. By sharing information regarding the perimeter length

and number of team members, each agent obtains a consistent set of coordination

variables that allows the decentralized algorithm to operate effectively. Advantages of

the algorithm include the ability to monitor changing perimeters, account for dynamic

insertion and deletion of team members, and the ability to operate with a small

communication range in a decentralized manner. Simulation and flight tests were

performed to validate the effectiveness of the algorithm.

109

(a) Initial Conditions (b) First Rendezvous

(c) Turn Around at Border (d) Meet Endpoints

(e) Second Rendezvous (f) Meet Endpoints Again

Figure 6.12: Various plots generated from the actual telemetry files of the UASs
collected during the experimental flight tests. These demonstrated the functionality of
the distributed spread algorithm, where (a) are the initial conditions, (b) is the first
rendezvous, (c) is the turn-around at the shared border, (d) is the first meeting of the
perimeter endpoints, (e) is the second rendezvous, and (f) is the second meeting of the
perimeter endpoints.

110

Chapter 7

Conclusions and Future Work

There is no unified framework into which all (or even most) cooperative control

problems fall. For this reason, different cooperative control algorithms are difficult

to compare in a reasonable manner. The natural ability of an algorithm to deal with

loss of agents and disrupted communication is invaluable to the practical deployment

of an algorithm on a UAV team. We presented two algorithms that are provably

complete and yet retain robustness to loss of agents.

For single target surveillance scenarios, a cooperative splay state controller

was developed. The splay state controller requires only immediate neighbor com-

munication and is completely decentralized and robust. Hardware tests validate its

applicability to real UAV systems.

Perimeter surveillance was investigated and an algorithm to coordinate a team

of UAVs designed. The robust perimeter surveillance algorithm requires very little

communication and is optimal in steady-state and near optimal in the transition

region. Additionally, the algorithm can be proven to converge in finite-time and

shows practicability through flight tests.

In contrast to these algorithms we showed a centralized algorithm for coop-

erative target prosecution. This algorithm requires centralization due to the tight

coupling of the tasks and the desired efficiency. Unfortunately, the computational

complexity scales exponentially with the size of the team, and so can be burdensome

to implement.

One possible method to convert centralized algorithms to decentralized ones

are consensus methods. We prove that most consensus algorithms are input-to-state

stable and therefore can be put in cascade with a centralized algorithm to achieve

111

decentralization in some cases. Additionally, we addressed the average-consensus

problem and postulated that when extra bandwidth is available, ad hoc networks

may yield better performance.

The key elements of cooperative control are objective coupling, level of com-

munication, completeness, robustness, and efficiency. For loosely coupled problems,

robust decentralized algorithms can be designed to satisfy all of these elements and

are practical cooperative control solutions.

7.1 Future Work

There are a number of directions for future research for each of the topics

covered. The tradeoffs between ad hoc networking and consensus schemes should be

more deeply investigated to determine how each scales with team size and at what

point the performance of one is provably better.

Proof of convergence of the splay state controller of Chapter 5 or reformula-

tion to allow further analytical results is warranted in the single target surveillance

scenario. Currently, only local stability can be shown analytically with Monte Carlo

simulation used to imply global stability.

Future work in perimeter surveillance is in evaluating the performance of Al-

gorithm 2 under changing perimeter conditions. Specifically, a metric for perimeter

coverage could be developed and used to show the performance of the algorithm

in a worst-case changing perimeter situation. This could be formulated in a game-

theoretic framework, pitting the perimeter growth against the coverage of algorithm

evaluated by the developed metric. Further development of the perimeter surveil-

lance algorithm is also needed to extend the surveillance algorithm to accommodate

circular and networked perimeters. The effect of wind on the team behavior during

the operation is also a topic of interest.

112

Bibliography

[1] D. Marthaler and A. L. Bertozzi, “Tracking environmental level sets with au-
tonomous vehicles,” in Recent Developments in Cooperative Control and Opti-
mization. Kluwer Academic Publishers, 2004. 1, 83

[2] D. W. Casbeer, S.-M. Li, R. W. Beard, T. W. McLain, and R. K. Mehra, “For-
est fire monitoring using multiple small UAVs,” in Proceedings of the American
Control Conference, 2005. 1, 83

[3] H. R. Everett, “Robotic security systems,” IEEE Instrumentation & Measure-
ment Magazine, vol. 6, no. 4, pp. 30–34, Dec. 2003. 1, 83, 84

[4] S. Susca, S. Martinez, and F. Bullo, “Monitoring environmental boundaries with
a robotic sensor network,” IEEE Transactions on Control Systems Technology,
(accepted for publication). 1, 85

[5] V. V. Prabhu, “Stable fault adaptation in distributed control of heterarchical
manufacturing job shops,” IEEE Transactions on Robotics and Automation, Feb.
2003. 1

[6] P. K. C. Wang, J. Yee, C. Y. Xia, M. Mokuno, and F. Y. Hadaegh, “Coopera-
tive control of a magnetically levitated inferometer: Experimental study,” IEEE
Transactions on Control Systems Technology, July 2005. 1

[7] B. M. Braun, G. P. Starr, J. E. Wood, and R. Lumia, “A framework for im-
plementing cooperative motion on industrial controllers,” IEEE Transactions on
Robotics and Automation, June 2004. 1

[8] K. Yamaji, M. Sato, K. Kato, M. Goto, and T. Kawai, “Cooperative control be-
tween large capacity hvdc system and thermal power plant,” IEEE Transactions
on Power Systems, May 1999. 1

[9] P. Ögren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile sen-
sor networks: Adaptive gradient climbing in a distributed environment,” IEEE
Transactions on Automatic Control, Aug. 2004. 1

[10] D. B. Kingston and C. J. Schumacher, “Time-dependent cooperative assign-
ment,” in Proceedings of the American Control Conference, 2005. 1, 2, 21

[11] D. H. A. Maithripala and S. Jayasuriya, “Radar deception through phantom
track generation,” in Proceedings of the American Control Conference, 2005. 1

113

[12] P. Varaiya, “Smart cars on smart roads: Problems of control,” IEEE Transac-
tions on Automatic Control, vol. 38, pp. 195–207, Feb. 1993. 1

[13] V. Gazi and K. M. Passino, “Stability analysis of swarms,” IEEE Transactions
on Automatic Control, vol. 48, no. 4, pp. 692–697, Apr. 2003. 2

[14] D. G. Luenberger, Linear and Nonlinear Programming. Addison-Wesley, 1984.
5

[15] C. Schumacher, P. Chandler, and S. Rasmussen, “Task allocation for wide area
search munitions via iterative network flow,” in Proceedings of the AIAA Guid-
ance, Navigation, and Control Conference, 2002. 5

[16] C. Schumacher, P. Chandler, S. Rasmussen, and D. Walker, “Task allocation
for wide area search munitions with variable path length,” in Proceedings of the
American Control Conference, 2003. 5

[17] C. Schumacher, P. Chandler, M. Pachter, and L. Pachter, “UAV task assigment
with timing constraints,” in Proceedings of the AIAA Guidance, Navigation, and
Control Conference, 2003. 5, 8

[18] ——, “UAV task assignment with timing constraints via mixed-integer linear
programming,” in Proceedings of the AIAA 3rd Unmanned Unlimited Systems
Conference, 2004. 5

[19] S. J. Rasmussen, J. W. Mitchell, A. G. Sparks, T. Shima, and P. R. Chandler,
“Use of state-space search to improve the performance of assignment algorithms
for autonomous UAVs,” in Proceedings of the IEEE Conference on Decision and
Control, 2004. 5

[20] D. Turra, L. Pollini, and M. Innocenti, “Real-time UAVs task allocation with
moving targets,” in Proceedings of the AIAA Guidance, Navigation, and Control
Conference, 2004. 5

[21] M. Alighanbari, Y. Kuwata, and J. P. How, “Coordination and control of multiple
UAVs with timing constraints and loitering,” in Proceedings of the American
Control Conference, 2003. 5, 6

[22] J. Cortes, S. Martinez, and F. Bullo, “Coordinated deployment of mobile sensing
networks with limited-range interactions,” in Proceedings of the IEEE Conference
on Decision and Control, 2004. 6

[23] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing in a
stochastic time-varying environment,” in Proceedings of the IEEE Conference
on Decision and Control, 2004. 6

[24] C. Schumacher, P. Chandler, S. Rasmussen, and D. Walker, “Path elongation for
UAV task assignment,” in Proceedings of the AIAA Guidance, Navigation, and
Control Conference, 2003. 6

114

[25] D. Bertsimas and S. S. Patterson, “The traffic flow management rerouting prob-
lem in air traffic control: A dynamic network flow approach,” Transportation
Science, vol. 34, pp. 239–255, 2000. 6

[26] A. Robertson, G. Inalhan, and J. P. How, “Formation control strategies for a
separated spacecraft interferometer,” in Proceedings of the American Control
Conference, June 1999. 21

[27] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architecture for
formation control,” IEEE Transactions on Control Systems Technology, vol. 9,
no. 6, pp. 777–790, Nov. 2001. 21

[28] T. W. McLain and R. W. Beard, “Coordination variables, coordination func-
tions, and cooperative timing missions,” in Proceedings of the American Control
Conference, 2003. 21, 92

[29] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.
21, 49

[30] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” in
Advances in Ultra-Dependable Distributed Systems, N. Suri, C. J. Walter, and
M. M. Hugue, Eds. IEEE Computer Society Press, 1995. 21

[31] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Sys-
tems, vol. 16, pp. 133–169, May 1998. 21

[32] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 988–1001, June 2003. 22, 27, 35

[33] W. Ren and R. W. Beard, “Consensus of information under dynamically chang-
ing interaction topologies,” in Proceedings of the American Control Conference,
2004. 22, 35, 38

[34] W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and con-
sensus building in multiple vehicle systems,” in Proceedings of the Block Island
Workshop on Cooperative Control. Springer-Verlag Series: Lecture Notes in
Control and Information Sciences, 2004. 22, 27, 86

[35] L. Moreau, “Stability of multiagent systems with time-dependent communication
links,” in IEEE Transactions on Automatic Control, 2005. 22, 35, 38

[36] Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups of mobile
autonomous agents,” in Proceedings of the IEEE Conference on Decision and
Control, Dec. 2003, pp. 1006–1011. 22

[37] ——, “Local control strategies for groups of mobile autonomous agents,” IEEE
Transactions on Automatic Control, pp. 622–629, 2004. 22

115

[38] L. Moreau, “Leaderless coordination via bidirectional and unidirectional time-
dependent communication,” in Proceedings of the IEEE Conference on Decision
and Control, Dec. 2003, pp. 3070–3075. 22

[39] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Approximate distributed
Kalman filtering in sensor networks with quantifiable performance,” in Proceed-
ings of the International Conference on Information Processing in Sensor Net-
works, 2005. 22, 35, 51

[40] R. Olfati-Saber, “Distibuted Kalman filter with embedded consensus filters,” in
Proceedings of the IEEE Conference on Decision and Control, 2005. 22, 35

[41] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Transactions on Automatic
Control, vol. 49, no. 9, pp. 1520–1533, Sept. 2004. 22, 35, 41, 42, 54

[42] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle
formations,” in IFAC World Congress, Barcelona, Spain, 2002. 22

[43] ——, “Graph Laplacians and stabilization of vehicle formations,” in IFAC World
Congress, Barcelona, Spain, 2002. 22

[44] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks of dynamic
agents,” in Proceedings of the American Control Conference, June 2003, pp. 951–
956. 22, 27

[45] R. O. Saber and R. M. Murray, “Agreement problems in networks with directed
graphs and switching topology,” in Proceedings of the IEEE Conference on De-
cision and Control, Dec. 2003, pp. 4126–4132. 22

[46] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle
formations,” IEEE Transactions on Automatic Control, Sept. 2004. 22

[47] W. Ren, R. W. Beard, and D. B. Kingston, “Multi-agent Kalman consensus with
relative uncertainty,” in Proceedings of the American Control Conference, 2005.
22, 23, 24, 26, 34, 38

[48] P. Chandler, S. Rasumussen, and M. Pachter, “UAV cooperative path planning,”
in Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2000.
23

[49] T. W. McLain and R. W. Beard, “Coordination variables, coordination func-
tions, and cooperative timing missions,” AIAA Journal of Guidance, Control,
and Dynamics, vol. 28, no. 1, pp. 150–161, Jan. 2005. 23

[50] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-task alloca-
tion and path planning for cooperating UAVs,” in Cooperative Control: Models,
Applications and Algorithms. Conference on Coordination, Control and Opti-
mization, Nov. 2001, pp. 1–19. 23

116

[51] R. W. Beard, T. W. McLain, M. Goodrich, and E. P. Anderson, “Coordinated
target assignment and intercept for unmanned air vehicles,” IEEE Transactions
on Robotics and Automation, vol. 18, no. 6, pp. 911–922, Dec. 2002. 23

[52] T. McLain and R. Beard, “Cooperative rendezvous of multiple unmanned air
vehicles,” in Proceedings of the AIAA Guidance, Navigation, and Control Con-
ference, 2000. 23

[53] W. Ren and R. W. Beard, “Consensus of information under dynamically chang-
ing interaction topologies,” in Proceedings of the American Control Conference,
2004. 24, 27

[54] J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic matrices,” Pro-
ceedings of the American Mathematical Society, vol. 15, pp. 733–736, 1963. 25,
39

[55] W. J. Rugh, Linear System Theory. Prentice Hall, 1996, Theorem 6.13, p. 106.
27

[56] ——, Linear System Theory. Prentice Hall, 1996, Lemma 12.4, p. 206. 27

[57] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002, Lemma 4.7, p.
180. 27

[58] J. Cortés, “Distributed algorithms for reaching consensus on general functions,”
Automatica, (submitted). 35

[59] C. Godsil and G. Royle, Algebraic Graph Theory. Springer-Verlag New York,
Inc., 2001. 36, 71

[60] D. B. Kingston, R. S. Holt, R. W. Beard, T. W. McLain, and D. W. Casbeer,
“Decentralized perimeter surveillance using a team of UAVs,” in Proceedings of
the AIAA Guidance, Navigation, and Control Conference, 2005. 49

[61] E. W. Frew and D. A. Lawrence, “Cooperative stand-off tracking of moving
targets by a team of autonomous aircraft,” in Proceedings of the AIAA Guidance,
Navigation, and Control Conference, 2005. 55, 56

[62] Z. Tang and U. Ozguner, “Motion planning for multitarget surveillance with
mobile sensor agents,” IEEE Transactions on Robotics and Automation, Oct.
2005. 55, 61

[63] G. Gu, P. R. Chandler, C. Schumacher, A. Sparks, and M. Pachter, “Optimal
cooperative sensing using a team of UAVs,” IEEE Transactions on Aerospace
and Electronic Systems, Oct. 2006. 55

[64] R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar collective
motion: All-to-all communication,” IEEE Transactions on Automatic Control,
June 2007. 56, 57

117

[65] D. J. Klein and K. A. Morgansen, “Controlled collective motion for trajectory
tracking,” in Proceedings of the American Control Conference, 2006. 56

[66] G. Yang and V. Kapila, “Optimal path planning for unmanned air vehicles with
kinematic and tactical constraints,” in Proceedings of the IEEE Conference on
Decision and Control, 2002. 61

[67] P. R. Chandler, M. Pachter, and S. Rasmussen, “UAV cooperative control,” in
Proceedings of the American Control Conference, 2001. 61

[68] S. R. Griffiths, “Vector field approach for curved path following for miniature
aerial vehicles,” in Proceedings of the AIAA Guidance, Navigation, and Control
Conference, 2006. 61, 63, 64, 66

[69] H. K. Khalil, Nonlinear Systems. Prentice Hall, 1996, Theorem 4.4, p. 128. 66

[70] R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson,
T. McLain, and M. Goodrich, “Autonomous vehicle technologies for small fixed
wing UAVs,” AIAA Journal of Aerospace Computing, Information, and Com-
munication, vol. 2, no. 1, pp. 92–108, Jan. 2005. 79, 87, 106, 107

[71] J. Clark and R. Fierro, “Cooperative hybrid control of robotic sensors for perime-
ter detection and tracking,” in Proceedings of the American Control Conference,
2005. 83, 85

[72] B. A. White, A. Tsourdos, I. Ashokoraj, S. Subchan, and R. Zbikowski, “Con-
taminant cloud boundary monitoring using UAV sensor swarms,” AIAA Journal
of Guidance, Control, and Dynamics, (submitted). 83

[73] A. L. Bertozzi, M. Kemp, and D. Marthaler, “Determining environmental bound-
aries: Asynchronous communication and physical scales,” in Proceedings of the
Block Island Workshop on Cooperative Control. Springer-Verlag Series: Lecture
Notes in Control and Information Sciences, 2004. 83

[74] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. McLain, S.-M. Li, and
R. Mehra, “Cooperative forest fire surveillance using a team of small unmanned
air vehicles,” International Journal of System Sciences, vol. 36, no. 6, pp. 351–
360, May 2006. 83

[75] R. T. Laird, H. R. Everett, G. A. Gilbreath, T. A. Heath-Pastore, and
R. S. Inderieden, “MDARS multiple robot host architecture,” in Association of
Unmanned Vehicle Systems, 22nd Annual Technical Symposium and Exhibition,
1995. [Online]. Available: http://www.nosc.mil/robots/land/mdars/auvsmrha.
html. 83, 84

[76] S. Young, M. Forshaw, and M. Hodgetts, “Image comparison methods for perime-
ter surveillance,” in Proceedings of the International Conference on Image Pro-
cessing and Its Applications, 1999. 83

118

http://www.nosc.mil/robots/land/mdars/auvsmrha.html
http://www.nosc.mil/robots/land/mdars/auvsmrha.html

[77] J. O. Peralta and M. T. C. de Peralta, “Security PIDS with physical sensors,
real-time pattern recognition, and continuous patrol,” IEEE Transactions on
Systems, Man and Cybernetics, Part C, vol. 32, pp. 340–346, Nov. 2002. 83

[78] A. S. Barry and J. Czechanski, “Ground surveillance radar for perimeter intru-
sion detection,” in Proceedings of the Digital Avionics Systems Conference, 2000.
83

[79] Space and Naval Warfare Systems Command, “Mobile detection assessment and
response system (MDARS).” [Online]. Available: http://www.nosc.mil/robots/
land/mdars/mdars.html. 84

[80] M. Kemp, A. L. Bertozzi, and D. Marthaler, “Multi-UUV perimeter surveil-
lance,” in Proceedings of the IEEE/OES Autonomous Underwater Vehicles Con-
ference, 2004. 85

[81] C. H. Hsieh, Z. Jin, D. Marthaler, B. Q. Nguyen, D. J. Tung, A. L. Bertozzi,
and R. M. Murray, “Experimental validation of an algorithm for cooperative
boundary tracking,” in Proceedings of the American Control Conference, 2005.
85

[82] W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems under
dynamically changing interaction topologies,” IEEE Transactions on Automatic
Control, vol. 5, no. 5, pp. 655–661, May 2005. 98

[83] D. B. Kingston and R. W. Beard, “Discrete-time average-consensus under switch-
ing network topologies,” in Proceedings of the American Control Conference,
2006. 99

119

http://www.nosc.mil/robots/land/mdars/mdars.html
http://www.nosc.mil/robots/land/mdars/mdars.html

	Decentralized Control of Multiple UAVs for Perimeter and Target Surveillance
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Assignment Methods for Coupled Multiple Target Tracking
	2.1 Introduction
	2.2 Time-Dependent Assignment Method
	2.2.1 Nomenclature
	2.2.2 Constraints
	2.2.3 Cost Function

	2.3 UAV Assignment Scenario
	2.4 CMTE Application
	2.4.1 Non-Timing Constraints
	2.4.2 Timing Constraints
	2.4.3 Cost Function

	2.5 Simulation Example
	2.6 Conclusions and Future Work

	3 Consensus: Input-to-State Stability
	3.1 Introduction
	3.2 Kalman Consensus
	3.3 Consensus Algorithms are Input-to-state Stable
	3.4 Illustrative Example - Cooperative Timing
	3.5 Conclusions

	4 Average Consensus and Message Passing
	4.1 Introduction
	4.2 Definitions and Terminology
	4.3 Average-Consensus under Switching Topologies
	4.4 Distributed Protocol
	4.5 Deadbeat Consensus
	4.5.1 Example Application

	4.6 Finite-Time Average-Consensus
	4.7 Conclusions

	5 Circle Surveillance
	5.1 Introduction
	5.2 Problem Description
	5.2.1 UAV Modeling
	5.2.2 Orbit Dynamics

	5.3 Heading Calculation for Non-Moving Targets
	5.4 Stability Analysis
	5.4.1 Ultimately Bounded
	5.4.2 Local Stability
	5.4.3 Global Stability

	5.5 Extension to Moving Targets
	5.6 Simulation and Hardware Results
	5.7 Conclusions and Future Work

	6 Perimeter Surveillance
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Linear Perimeter Surveillance
	6.4 Decentralized Solution
	6.4.1 Comparison with Centralized Algorithm
	6.4.2 Comparison with Consensus Method

	6.5 Changing Perimeters
	6.6 UAV Agents
	6.7 Simulation Results
	6.8 Flight Test Results
	6.9 Conclusions

	7 Conclusions and Future Work
	7.1 Future Work

	Bibliography

