
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

1993-03-10 

Analysis of Weighted Fan-out/Fan-in Volume Holographic Analysis of Weighted Fan-out/Fan-in Volume Holographic 

Interconnections Interconnections 

Gregory P. Nordin 
nordin@byu.edu 

P. Asthana 

B. Keith Jenkins 

A. R. Tanguay 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Electrical and Computer Engineering Commons 

Original Publication Citation Original Publication Citation 
P. Asthana, G. P. Nordin, A. R. Tanguay, Jr., and B. Keith Jenkins, "Analysis of Weighted Fan-out/

Fan-in Volume Holographic Interconnections," Applied Optics Special Issue on Neural Networks 

32(8), pp. 1441-1469 (1993) 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Nordin, Gregory P.; Asthana, P.; Jenkins, B. Keith; and Tanguay, A. R., "Analysis of Weighted Fan-out/Fan-in 
Volume Holographic Interconnections" (1993). Faculty Publications. 1173. 
https://scholarsarchive.byu.edu/facpub/1173 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1173?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Analysis of weighted fan-out/fan-in volume
holographic optical interconnections

Praveen Asthana, Gregory P. Nordin, Armand R. Tanguay, Jr., and B. Keith Jenkins

The feasibility of employing volume holographic techniques for the implementation of highly multiplexed
weighted fan-out/fan-in interconnections is analyzed on the basis of interconnection fidelity, optical
throughput, and complexity of recording schedule or implementation hardware. These feasibility
criteria were quantitatively evaluated using the optical beam propagation method to numerically simulate
the diffraction characteristics of volume holographic interconnections recorded in a linear holographic
material. We find that conventional interconnection architectures (that are based on a single coherent
optical source) exhibit a direct trade-off between interconnection fidelity and optical throughput on the
one hand, and recording schedule or hardware complexity on the other. In order to circumvent this
trade-off we describe and analyze in detail an incoherent/coherent double angularly multiplexed
interconnection architecture that is based on the use of multiple-source array of individually coherent but
mutually incoherent sources. This architecture either minimizes or avoids several key sources of cross
talk, permits simultaneous recording of interconnection weights or weight updates, and provides
enhanced fidelity, interchannel isolation, and throughput performance.

1. Introduction

Volume holographic optical elements (VHOE's) have
often been suggested as the principal components of
an optical interconnection technology for applications
such as optical computing and telecommunications
that require a large number of interconnections.'- 6

Depending on the application, such interconnection
systems may also require varying degrees of intercon-
nection weighting, fan-out, fan-in, and channel inde-
pendence. In particular, interconnection systems
for artificial neural networks provide a specific appli-
cation for which all of these issues are important.

Artificial neural networks are composed of many
highly interconnected nonlinear computational ele-
ments (neuron units) that operate in parallel and are
arranged in architectural patterns that are motivated
to a certain extent by investigations of biological
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neural networks. The computational elements are
in most cases densely interconnected with weighted
connection pathways that can be reconfigured and
updated to permit either supervised or unsupervised
learning. Implementations of adaptive neural net-
works should optimally permit such pathway recon-
figuration and weight updates without excessively
compromising either hardware complexity or compu-
tational efficiency.

Typical artificial neural-network interconnection
topologies require a high degree of both fan-out and
fan-in at each neuron unit. A fully interconnected
topology for the case of a single-layer network is
illustrated schematically in Fig. 1, in which two
planes of neuron units are shown. In such a fully
connected network, the output of each neuron unit in
the input plane is fanned out to all of the neuron units
in the output plane. Similarly, each neuron unit in
the output plane receives the weighted fan-in of all of
the neuron-unit outputs from the input plane. The
fan-out/fan-in requirements of neural networks act
as a multiplier on the total number of interconnected
neuron units, resulting in an interconnection system
that must prove capable of supporting very large
numbers of independent pathways in a relatively
compact topology. For example, a fully connected
neural network having 105 neuron units in both the
input and output planes requires 1010 interconnec-
tions, as does a partially connected neural network
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Input Output

Fig. 1. Schematic representation of fan-out/fan-in interconnec-
tions between input and output planes of neuron units.

having 106 neuron units in both the input and output
planes with a fan-out and fan-in of 104.

The use of volume holographic optical elements has
been proposed as the basis of an interconnection
technology for neural networks precisely because it
has the potential to meet the critical requirements of
providing both large numbers of interconnections
and a weighted fan-out/fan-in topology.7 Even so,
the feasibility of using VHOE's for large-scale
weighted fan-out/fan-in interconnection applications
depends further on the fidelity with which the inter-
connection weights can be implemented and on the
optical throughput that can be achieved in the vol-
ume holographic interconnection system. The opti-
cal throughput is a measure of the fraction of the
total incident optical power that is diffracted into the
set of desired outputs; as such, it provides a quantita-
tive assessment of the overall interconnection system
efficiency. Important additional implementation is-
sues include the total number of required exposures,
the optical power incident on the holographic record-
ing medium per exposure, the complexity of the
implementation hardware, the required exposure
schedule (if any), and the total recording time for a
given interconnection complexity.

In this paper we quantitatively evaluate the perfor-
mance characteristics of two distinct volume holo-
graphic interconnection architectures in accordance
with these criteria. The first interconnection archi-
tecture is novel in that an array of individually
coherent but mutually incoherent optical sources is
used to generate a multiplicity of angularly multi-
plexed recording beams.Y4 We hereinafter refer to
this type of interconnection architecture as being
incoherent/coherent double angularly multiplexed.
The second interconnection architecture is based on
the use of a single coherent optical source during
recording, as has been widely discussed in the litera-
ture.3 15-' 9 This conventional architecture is re-
ferred to herein as a single-source architecture.

In our analysis we use the optical beam propaga-
tion method (BPM)4 ,20-23 to investigate the diffrac-

tion characteristics of weighted fan-out/fan-in inter-
connections in complex systems that involve both
large numbers of holographic gratings and multiple
readout beams, and that therefore do not lend them-
selves readily to analytical solutions. For our pur-
poses herein, we consider explicitly the case of linear
holographic materials in order to illustrate key differ-
ences in interconnection performance that are archi-
tecture dependent. Generalization of these results
to nonlinear holographic materials (for example, to
certain photorefractive media) is beyond the scope of
this paper.

Results are reported herein on the numerical simu-
lation of up to 10- (input node) to-10 (output node)
weighted fan-out/fan-in volume holographic intercon-
nections that incorporate between 10 and 190 individ-
ual holographic gratings multiplexed within the same
region of the volume holographic recording medium,
depending on the specific architectural configuration
considered. Such simulations require significant run
times, even when implemented with the highly effi-
cient BPM algorithm on a supercomputer. To the
best of our knowledge, the 10-to-10 case with fully
independent weights is one of the most complex
volume holographic interconnection systems that have
been analyzed to date.

Our simulations demonstrate that the novel
incoherent/coherent double angularly multiplexed
architecture exhibits both high interconnection fidel-
ity and high optical throughput efficiency even in the
presence of fully simultaneous recording. This com-
bination of desirable characteristics derives from the
elimination (or minimization) of several distinct
sources of interchannel cross talk and throughput
loss that are unavoidably present in the more widely
investigated single-source architecture. In addition,
the mutual incoherence of the readout beams in the
incoherent/coherent double angularly multiplexed
architecture provides naturally for linearity of summa-
tion in an intensity representation without an associ-
ated fan-in loss.

In order to compare the fidelity and throughput
performance of the incoherent/coherent double angu-
larly multiplexed architecture with an appropriate
benchmark, we analyzed the single-source architec-
ture (illustrated in Fig. 2) under directly comparable
holographic recording conditions. In particular, we
examined the cases of simultaneous, pagewise-
sequential, and fully sequential recording of the
desired weight updates. These three recording meth-
ods represent distinct trade-offs between interchan-
nel cross talk resulting from the presence of extrane-
ous gratings, on the one hand, and recording schedule
or hardware complexity on the other. The presence
of such extraneous gratings can cause significant
errors in the diffracted outputs that are fanned in to a
given interconnection node. For example, in the
10-to-10 single-source interconnection system that
we modeled, errors as large as 100% in the relative
diffracted outputs occur at the peak optical through-
put of 50% for the simultaneous recording method.
To the best of our knowledge, the analysis of the

1442 APPLIED OPTICS / Vol. 32, No. 8 / 10 March 1993



Training Plane

Volume 13
Hologram

Output Plane

Input Plane

Fig. 2. Schematic diagram of a single-source holographic intercon-
nection architecture in which diffraction gratings in a volume
hologram connect pixels in the input plane to pixels in the output
plane. Interconnection gratings are formed by recording the
interference between light from pixels in the training plane and
light from pixels in the input plane. L-L 3 are lenses; f-f3 are
focal lengths.

simultaneous recording method (as applied to the
single-source architecture) presented herein estab-
lishes the fidelity errors and throughput losses of this
technique quantitatively for the first time. Elimina-
tion of the extraneous gratings by using the fully
sequential recording method (at a substantial cost in
recording schedule or hardware complexity) reduces
the largest errors to 13% at an increased peak optical
throughput of 85%. These errors for the fully se-
quential recording case are significantly lower than
those described in Ref. 19, at least in part because the
relative phase relationships among the recording
beams are maintained on readout in our simulations.

In addition, we demonstrate that the severe fan-in
loss that unavoidably accompanies the collinear com-
bination of mutually incoherent beams of essentially
common wavelength,24 and that also applies to inco-
herent readout in the single-source architecture, is
one of several effects of beam degeneracy (defined in
Section 4.D).9,121 3,25 This same physical mechanism
is also primarily responsible for the residual errors
apparent in the fully sequential recording method at
peak throughput.

The remainder of this paper is organized as follows.
Specific aspects of volume holographic interconnec-
tion systems that are essential for the establishment
of a valid comparison metric are discussed in Section
2, including the choice of signal representations and
weights appropriate for photonic neural networks,
the implementation of weighted fan-out/fan-in inter-
connections in a single-source architecture, and the
associated sources of fidelity errors and throughput
losses. Section 3 details our modeling methodology
and assumptions, anticipating the discussion of the
simulation results obtained for the single-source
architecture that are provided in Section 4. We
present two distinct configurations of the incoher-
ent/coherent double angularly multiplexed architec-
ture and quantitatively analyze their performance
characteristics in Section 5. Finally, we compare the
relative advantages and disadvantages of each archi-
tectural configuration and summarize our results in
Section 6.

2. Preliminary Concepts

A. Basic Neural-Network Operation

In many neural networks the computational process
of a single network layer can be represented by

Yi = f(pi), (1)

N

Pi = 2 Wu xi, (2)
j=1

in which neuron units i and j are in the output and
input planes, respectively, yi is (proportional to) the
output of neuron unit i, x is (proportional to) the
output of neuron unit j, Wij is the weight of the
interconnection between neuron units i andj, N is the
number of neurons in the input plane, f is the
nonlinear threshold function of each neuron unit,
and pi is the activation potential.

In a neural network that incorporates learning, the
weights Wij are updated incrementally according to
an appropriate learning rule as training patterns are
presented to the network. A large class of learning
algorithms can be characterized by the following
weight-update rule:

(3)

in which AW0 = Wij(m) - Wij(m - 1) is the weight
update, a is the learning gain constant, and m is the
iteration index. Various learning rules can be formed
by suitably choosing the functional form of 8(m); for
example, in the case of Hebbian learning, im) is
chosen to be yL.26

B. Weighted Fan-Out/Fan-In Interconnections in a
Single-Source Architecture

The conventional single-source volume holographic
interconnection architecture as configured for pho-
tonic neural-network implementation is shown sche-
matically in Fig. 2. This architecture consists of a
holographic interconnection medium and three planes
of neuron units: a training plane, an input plane,
and an output plane. The two-dimensional (2-D)
arrays of neuron units or pixels (since in many
photonic neural-network implementations each pixel
corresponds to a single neuron unit) are placed on
these planes. In applications other than neural net-
works these pixels can represent generic connection
nodes. The arrays of pixels can be implemented
using, for example, 2-D spatial light modulators
(SLM's). Both the training- and input-plane SLM's
are illuminated by a single coherent source in the
configuration shown in Fig. 2.

A given weighted interconnection between a pixel
in the input plane and a pixel in the output plane is
physically realized as a single diffraction grating in
the holographic medium. Each grating is formed by
recording the interference pattern generated by coher-
ent superposition of light from a pixel in the input
plane and light from a pixel in the training plane.
For simplicity the pixels in both planes are typically
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assumed to act as point sources318 and lenses L, and
L2 function as collimating lenses. Light from each
pixel is thus incident as an angularly distinct colli-
mated beam (typically approximated as a plane
wave3"18) on the holographic medium. The light
from each pixel is assumed to fully illuminate the
aperture of the holographic medium to ensure the
potential for full connectivity.3"18

C. Signal Representation in a Single-Source Architecture

Depending on the computational algorithm, the opti-
cal signal from each input pixel (after collimation) can
be represented by a number of different physical
quantities, including intensity, amplitude, polariza-
tion, and wavelength. In the two most commonly
investigated approaches3 the signal is represented
either by the complex electric field or by the intensity
of the light transmitted or reflected by the pixel
(depending on the type of SLM).

In the amplitude representation the electric field of
the light from pixelj that is incident at the front face
of the hologram can be expressed (neglecting the
vector nature of the electric field) as xmPEo
exp(ikj r + ij - iot), in which x"P is the ampitude
transmissivity (or reflectivity) of'the jth pixel, E is
the magnitude of the electric field amplitude of the
readout beam, A> is the phase of the readout beam
(relative to an arbitrarily chosen coordinate system),
and t is the angular frequency. In this representa-
tion a given interconnection weight is proportional to
the amplitude diffraction efficiency of the correspond-
ing interconnection grating.

In the intensity representation the output of pixelj
is expressed as xjIo, in which x; is the intensity
transmittance (or reflectance) of the SLM pixel and
Io = E'. In this case each weight is proportional to
the intensity diffraction efficiency of its correspond-
ing interconnection grating.

When readout is performed with beams from more
than one input pixel, the intensity detected within
each output pixel consists of a weighted sum of
diffracted signals. If an optical system is con-
structed such that the light beams from the input
pixels are mutually incoherent during readout, the
relative detected intensity (using the intensity repre-
sentation) within the ith output pixel pi is

N

p = EX Wijxj, (4)
j=1

in which Wij is an intensity weight (which is propor-
tional to the diffraction efficiency of grating j).17

The relationship expressed in Eq. (4) is the same as
that in Eq. (2), which defines how the activation
potentials are related to the inputs by the interconnec-
tion weights of the neural network. Thus readout
with mutually incoherent beams in conjunction with
an intensity representation leads to an optical system
that performs the desired neural interconnection
function of Eq. (2).

If the optical system is constructed such that the

light beams from the input-plane pixels are mutually
coherent (as is typically the case for a single-source
architecture), the diffracted signals detected in the
output plane can be written (assuming an intensity
representation) as

N 2

Pi=- j)12xpi( + (5)

in which bij is the phase of the ijth grating. Each
grating phase is set by the relative phases of the
recording beams used to form the grating and the
properties of the holographic recording medium.
If the argument of the exponential is constant for all i
and j, the diffracted outputs for a single-source
architecture using the intensity representation re-
duce to

N 2

P (Wix) / 2 .
J=1

(6)

This equation is valid only if two specific conditions
are met: (1) the readout beams must have the same
relative phases as were used during recording of the
interconnection gratings, and (2) the phase shift
induced by the holographic recording medium itself
must be constant for all recorded gratings.

Even with these assumptions, the square-root rela-
tionship embodied in Eq. (6) deviates substantially
from the desired interconnection function of Eq. (2).
The general effect of this deviation on neural-network
operation has not yet been established.

As a result, several authors have chosen an ampli-
tude representation for use in the single-source archi-
tecture, such that the diffracted outputs are given
by3 ' 2 7

N 2

Pi= IX W~%'Px~'p exp[i(4~i + ) (7)

in which W97'P is the amplitude weight (which is
proportional to the amplitude diffraction efficiency).
If the argument of the exponential in Eq. (7) is
constant for all i andj, the system yields the square of
the desired interconnection function, which may be
corrected either electronically or by adjusting the
nonlinear threshold function of each neuron unit.
This simplification is dependent, as is Eq. (6), on the
two conditions specified above. The first of these
conditions is contingent on the maintenance of rigid
optical phase stability in the system, which may be
difficult to realize in practice.

A primary advantage of readout with mutually
incoherent beams is the avoidance of the rigid phase-
stability requirements that are necessary for coher-
ently read out systems.3 24 28 However, a serious
disadvantage associated with the use of mutually
incoherent readout beams is the significant through-
put loss that is characteristic of all holographic
interconnection architectures in which the fan-in is
performed collinearly.24 Since single-source intercon-
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nection systems rely on collinear fan-in, they inher-
ently suffer from this throughput loss for readout
with mutually incoherent beams. In Section 5 we
discuss a method for using readout with mutually
incoherent beams without suffering an incoherent
fan-in loss.

A further consideration in the implementation of
photonic neural networks is that many neural algo-
rithms require the use of bipolar weights and bipolar
neuron-unit outputs. One method of achieving this
bipolarity for readout with mutually coherent beams
is to use an amplitude representation in which a 1800
phase shift in the phase of both the electric fields and
the diffraction gratings is used to represent negative
numbers.3' 27 While attractive in principle (requiring
only a single data channel per neuron unit), this
approach is difficult to implement in practice, in part
because the phases of the resultant diffracted outputs
must be detected as well as their amplitudes. An
alternative method of achieving bipolarity is to use an
intensity representation in conjunction with a dual-
rail concept in which each neuron has separate
positive and negative channels for both input and
output signals with associated weighted interconnec-
tions for each pair of channels.3 272930 Although
this method requires two data channels per neuron
unit, it is compatible with simple square-law detec-
tors and does not require mutually coherent readout
beams.

For our purposes herein, we consider only unipolar
weights and unipolar neural outputs since the dual-
rail method can be used to generalize to the fully
bipolar case. In addition, we choose to adopt the
intensity representation throughout in order to facili-
tate direct comparisons between mutually coherent
and mutually incoherent readout systems. In partic-
ular, the intensity representation is perhaps the most
natural representation for the incoherent/coherent
double angularly multiplexed interconnection archi-
tecture, yielding linear sum rules in the diffracted
outputs. In any case, this choice does not affect the
general conclusions drawn regarding interconnection
fidelity and optical throughput. For the various
cases of mutually coherent readout treated herein, we
assume that both conditions (1) and (2) specified
above [following Eq. (6)] are met.

D. Recording Methods in a Single-Source Architecture

For the single-source architecture shown in Fig. 2, in
which the light from each pixel is mutually coherent
with the light from all such pixels in a given plane,
there are several methods by which the desired
interconnection gratings may be recorded. All such
methods involve a sequence of exposures, and they
differ in the nature of each individual exposure. The
first method is simultaneous recording, in which
mutually coherent light beams from all the input and
training pixels are incident simultaneously on the
holographic medium during each exposure. By re-
cording the resultant interference pattern, the vol-
ume holographic medium forms gratings that con-

nect each neuron unit in the input plane with each
neuron unit in the output plane. These constitute
the desired interplanar connections that perform the
weighted fan-out/fan-in function. However, intra-
planar gratings that connect pairs of pixels within the
input plane (and within the training plane as well) are
formed as a result of the mutual coherence of the
sources. 6"17 These extraneous gratings (termed co-
herent-recording cross-talk gratings, or cross grat-
ings) introduce a serious source of cross talk into the
interconnection system that in turn leads to a loss of
both throughput and reconstruction fidelity.

In the pagewise-sequential recording method, a
single pixel in the input plane is connected simulta-
neously with all of its associated training pixels
during each exposure, which eliminates the coherent
cross-talk gratings within the input plane only. In
the fully sequential recording method, the remaining
coherent cross-talk gratings in the training plane are
eliminated by recording connections between a single
pixel in -the input plane and a single pixel in the
training plane during each exposure. In order to
achieve the reduction in coherent-recording cross talk
offered by these methods, however, an increase in the
recording schedule or hardware complexity must be
accommodated. In certain photorefractive media the
situation may be complicated further by the need for
a complex recording schedule to compensate for the
partial erasure of previously recorded interconnec-
tion gratings during the recording of later grat-
ings. 3' 3'

In a photonic neural-network implementation, the
interconnection weights can be either precomputed
(in a photonic or electronic computing system) and
stored in a permanent holographic medium for later
use or obtained adaptively using a suitable learning
algorithm and a dynamic holographic medium. For
the recording of precomputed weights it is clearly
advantageous to minimize the total number of expo-
sures, the total recording time, and the total exposure
energy. For a system in which N input nodes are
connected to N output nodes (referred to herein as an
N-to-N interconnection system) the minimum num-
ber of exposures required to record a set of fully
independent weights is equal to N, as can be derived
from degrees-of-freedom considerations.32 The as-
sumption of fully independent weights is equivalent
to the assumption that the weight matrix is of rank
N. If the full set of precomputed weights is recorded
pagewise sequentially, therefore, the minimum num-
ber of exposures can be achieved.

For adaptive computation of weights a set of train-
ing pairs is presented sequentially (one training pair
at a time) to the network. Each training pair con-
sists of an input image and its corresponding training
image, which are presented on the respective input
and training planes of Fig. 2. The mth input image
can be represented by the vector x(m), the components
x(m) of which are shown in the first term on the
right-hand side of Eq. (3). Similarly, the mth train-
ing image is represented by the vector 8(m). Ideally,
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the full input and training images for the mth
training pair [x(m), 8(m)] are presented simultaneously
on the input and training planes, respectively, such
that only one exposure is required for each training
pair. The outer product of the vectors x(m) and j(m) is
recorded in each such exposure, which thus corre-
sponds to the simultaneous recording case discussed
above. However, if a pagewise-sequential or fully
sequential recording strategy is necessary to avoid
the deleterious effects of coherent-recording cross
talk, then the number of exposures per training pair
becomes N and N2 , respectively, for an N-to-N inter-
connection system. If M training pairs are required
to fully train the network, the total number of
exposures for the simultaneous, pagewise-sequential,
and fully sequential recording methods are M, NM,
and N2M, respectively. If real-time adaptation is
not required and precomputation of weights is permit-
ted, then the minimum numbers of exposures re-
quired for the three recording methods are N, N, and
N2 , respectively.

The choice of recording method has significant
practical consequences for photonic neural-network
implementations (using the single-source interconnec-
tion architecture) in which adaptive computation of
the weights is desired. As an example, if the SLM
frame time is the temporal bottleneck of the system
(which represents perhaps a worst-case estimate, in
that the single-pixel access time may be considerably
shorter than the full SLM frame time for certain
SLM's), then the total amount of time required to
train the network scales linearly with the number of
required exposures. For large numbers of intercon-
nections (exactly the situation for which holographic
interconnections are presumably attractive) this could
result in impractically long training sessions. For
example, if N = 104, M = 103, the SLM's support a
10-ms update rate (such as for nonferroelectric liquid-
crystal-based SLM's), and the holographic-material
response time at the available power level is fast
enough to not provide an even stricter bound, then
the simultaneous, pagewise-sequential, and fully se-
quential recording methods would require 10 s, 105 s
(28 h), and 109 s (32 years), respectively, to record the
desired interconnections.

In the pagewise-sequential recording method, one
technique for avoiding prolonged training sessions
(and consequently inefficient use of available optical
power) is to focus the full incident beam on a given
pixel of the input SLM and to scan the beam pixel-by-
pixel during the recording of a given training pair.
If scanning all of the input-plane pixels can be
accomplished within the frame time of the SLM
(which corresponds to a 1-,us dwell time for the above
example), then pagewise-sequential recording can be
accomplished in the same total time as simultaneous
recording. The concept can also be applied to the
fully sequential recording method (which requires
100-ps dwell times for the example above). Decreases
in the total training time (with concomitant increases
in the efficiency of power and energy use) for both

recording methods are achieved at the cost of addi-
tional system complexity, particularly since in many
cases provision must also be made for simultaneous
readout of all input-plane pixels during posttraining
computation.

From the joint perspectives of recording schedule
and hardware complexity, simultaneous recording
may prove to be the most desirable recording method
(in the adaptive neural-network paradigm) because
the full parallelism of the optical architecture is used,
thereby achieving the greatest computational through-
put during training without resorting to additional
components that increase the system complexity.
However, simultaneous recording within the single-
source architecture is perhaps the least desirable
recording method from the perspective of interconnec-
tion fidelity resulting from the deleterious effects of
coherent-recording cross talk.

E. Sources of Fidelity Errors and Throughput Losses

In addition to coherent-recording cross talk, there are
at least two other sources of fidelity errors and
throughput losses that can be present in multiplexed
fan-out/collinear fan-in interconnections imple-
mented within the single-source architecture. The
first of these is grating-degeneracy cross talk. 6- 8 3334

This form of cross talk arises because of the particu-
lar geometric placement of the recording pixels used.
If the pixels are placed on regular grids, gratings with
degenerate wave vectors may be recorded. Desired
interconnections that have degenerate grating wave
vectors can have severely distorted weights during
reconstruction. This form of cross talk may be
alleviated by placing the pixels on fractal sampling
grids.34 The cost, however, is the need to subsample
the input, training, and output planes, which de-
creases the interconnection density of the system.

The second form of cross talk is beam-degeneracy
cross talk, which arises from degeneracies in the wave
vectors of beams diffracted from different grat-
ings.9 12 1325 This form of cross talk is inherent in
fan-out/fan-in volume holographic interconnection
systems in which the diffracted beams that constitute
a given fan-in exit collinearly from the holographic
medium; it is present regardless of the sampling grids
used for the input and training planes. In such
interconnection systems, beam-degeneracy cross talk
is also present even in the absence of cross gratings.
For readout with mutually coherent beams in the
single-source architecture, our simulation results in-
dicate that beam degeneracy is a significant source of
fidelity error only when the gratings are overmodu-
lated. Further simulation results indicate that beam
degeneracy is the primary physical mechanism respon-
sible for the incoherent fan-in loss observed in single-
source architectures when readout is performed with
mutually incoherent beams. 2 13 25

Related effects that can be attributed to beam
degeneracy have been observed for 2-to-1 beam com-
bining using a coupled-wave analysis.35 36 In addi-
tion, Lee et al. have estimated the magnitude of
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beam-degeneracy cross talk (identified therein as
third-order cross talk) insofar as it affects reconstruc-
tion fidelity in a limiting case.'7 Similarly, Slinger
mentions that beam degeneracy (identified therein as
one of several forms of multiple-grating interactions)
is a potential source of cross talk.'9

3. Modeling Methodology and Assumptions
In this section we describe our modeling methodology
and assumptions in detail. The motivation behind
our choice of modeling technique (the optical beam-
propagation method, or BPM) is discussed in Section
3.A, followed by a brief outline of the pertinent
features of the BPM algorithm in Section 3.B. In
Section 3.C we discuss the geometric dimensions of
the single-source interconnection architecture that
we modeled, the recording characteristics of the
holographic medium, and the method used to obtain
the weight matrices for the various cases.

A. Choice of Simulation Method

The analysis of the diffraction properties of a large
number of weighted gratings multiplexed in a volume
holographic material has been a difficult problem.
Several techniques have been used in the past to
analyze multiple-grating diffraction.'9 '36 2 Of these
techniques, coupled-wave theory has been the most
extensively used.19 36 40 Application of this method
often involves making a number of simplifying as-
sumptions so that analytical or numerical solutions
are more easily obtainable. Such assumptions in-
clude the use of a 2-D model (in which the gratings
and the incident and diffracted beams all lie in a
plane) and TE polarization of the beams. 9 36-39 With
these assumptions and the additional assumption of
no undesired cross gratings, analytical solutions have
been obtained for the cases of 1-to-N weighted fan-
outs,38N-to-1 weighted fan-ins,39 and N-to-N weighted
fan-out/fan-ins.' 9 In Ref. 19 the assumption was
further made that the weight matrix had a rank of
one, which is achieved in practice in a linear holo-
graphic medium by recording each x with the same
training vector, (i.e., only a single training pair is
recorded). For weight matrices having a higher rank
(which is the relevant situation for photonic neural-
network implementations) the system of coupled
differential equations obtained using coupled-wave
analysis has not yielded an analytical solution and
thus must be solved numerically.' 9 For example,
Slinger has numerically modeled a 5-to-5 interconnec-
tion system for pagewise-sequential and fully sequen-
tial recording of the desired interconnection gratings.' 9

However, numerical solutions for the simultaneous
recording case have not been presented in the litera-
ture to our knowledge.

Rather than obtaining numerical solutions based
on the results of a coupled-wave analysis, we used the
optical beam propagation method20 to numerically
model readout of a volume hologram in which multi-
ple interconnection gratings are stored. An advan-
tage of this approach is that fewer simplifying as-

sumptions are necessary to make the problem
computationally tractable. In coupled-wave analy-
sis, for example, only Bragg-matched interactions
between the readout (and diffracted) beams and the
recorded gratings are typically retained. In Ref. 19
this led to the assumption that all undesired cross
gratings for pagewise-sequential recording operate in
the Bragg regime. However, in many physical geom-
etries (depending on the incidence angles of the
writing beams and the thickness of the holographic
recording material) some or all of these cross gratings
may actually operate in the Raman-Nath diffraction
regime or have properties that are in the transition
regime between Raman-Nath and Bragg diffraction
(hereinafter referred to as the transition regime).
For example, the interconnection geometry that we
simulate (the dimensions of which are discussed in
Section 3.C.1) has cross gratings that operate in all
three of the possible diffraction regimes.

Coupled-wave theory could be used to model cross
gratings that operate in the Raman-Nath or transi-
tion diffraction regimes if multiple diffraction orders
for each cross grating are retained in the calculations.
However, BPM has proved to be a significantly faster
numerical technique for solving diffraction grating
problems involving many spectral orders when the
same number of orders are considered and the same
level of accuracy is required. 2 3

Restricting the analysis to only Bragg-matched
interactions using the coupled-wave approach also
neglects a further possible source of cross talk, namely,
diffraction from non-Bragg-matched interconnection
gratings. By way of contrast, diffraction from non-
Bragg-matched gratings is incorporated directly in
the BPM algorithm. Although the effects of such
non-Bragg-matched interconnection gratings are
small, we show in Section 4.E that diffraction from
such gratings is the limiting source of fidelity error as
the strength of the interconnections in a single-
source architecture approaches zero.

B. Optical Beam Propagation Method

The motivation for our choice of computational
method is discussed above; herein we give a brief
qualitative overview of the BPM algorithm. Refer-
ences 20-23 include discussions of the derivation
and/or the validity of BPM for various diffraction
problems. The BPM analysis discussed herein con-
siders two physical dimensions [the nominal propaga-
tion (z axis) and transverse (x axis) dimensions shown
in Fig. 3] and assumes TE polarization for conve-
nience.

The optical beam propagation method simplifies
the analysis of volume grating diffraction by replacing
the physically distributed modulation/diffraction
problem with a sequence of infinitesimally thin mod-
ulation layers separated by homogeneous regions in
which only diffraction occurs. If a sufficient number
of modulation layers are incorporated in the calcula-
tion, the system can closely approximate the charac-
teristics of a volume hologram. The calculation
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Fig. 3. Layout of the 2-D single-source architecture used in the
modeling studies: R is the beam splitter ratio.

methods of the separate modulation and propagation
steps are described briefly below.

In order to calculate the effect of the first modula-
tion layer on an incident beam of monochromatic
light, the optical (electric) field is multiplied by the
phase and/or the amplitude modulation incorporated
in that layer. Propagation to the next modulation
layer (which implements the process of diffraction)
proceeds by first Fourier transforming the optical
field to obtain its spectral components. Each spec-
tral component is then propagated to the next layer
using the appropriate transfer function (as discussed
below), at which point an inverse Fourier transform
is performed to obtain the modified electric-field
distribution. This series of steps (modulation, Fou-
rier transformation, propagation, and inverse Fou-
rier transformation) is repeated until propagation
through the multilayer structure is complete. The
use of a fast Fourier transform (FFT) algorithm to
perform the forward and inverse Fourier transforms
is responsible in large part for the efficiency of the
BPM algorithm.

Each of the spectral components obtained after
Fourier transformation of the modulated optical field
corresponds to a plane wave propagating at a distinct
angle Om (in which m is the index of the spectral
component) with respect to the z axis. Each plane-
wave component acquires a phase shift of tp(Om) after
propagation to the next modulation layer. This phase
shift can be expressed as

1(Om) = 2¶rndB cos Om/X,

Using the optical beam propagation method, we
numerically modeled 2-to-2, 3-to-3, 4-to-4, and 10-
to-10 interconnection systems to quantitatively inves-
tigate the reconstruction fidelity and optical through-
put of both single-source and incoherent/coherent
double angularly multiplexed architectures. Our
main limitation in running arbitrarily larger cases is
computational run time. For example, simiilation of
a 10-to-10 single-source architecture (which for the
simultaneous-recording method involves 190 multi-
plexed gratings) requires > 2.5 h to run on an Alliant
FX/2800 minisupercomputer (on a single processing
node).

C. Modeling Assumptions

1. Single-Source Architecture: Geometry and
Dimensions
A schematic diagram of the single-source architecture
used in our simulations is shown in Fig. 3. Both the
input and training pixel planes are illuminated by
beams from the same laser source. Thus light beams
from any two pixels in either or both planes are
mutually coherent. For simplicity each pixel is as-
sumed to act as a point source such that, after
collimation by lens L, or L2, light from each pixel can
be approximated as a plane wave. The directions of
the incident plane waves in relation to the holo-
graphic medium are shown schematically in Fig. 4.

To minimize cross talk resulting from direct over-
lap of the angular response peaks of the Bragg-regime
interconnection gratings, sufficient angular separa-
tion must exist between the diffraction peaks of the
various gratings.44 In the system that we model, the
angular sensitivities are separated by approximately
four to five angular Bragg peak widths (defined by the
full width at half-maximum [FWHM]) in order to
achieve good angular isolation of the interconnection
gratings. The effects of varying this design goal are
discussed in Section 4.E.2.

(8)

in which n is the refractive index, dB is the thickness
of the homogeneous buffer layer, and X is the free-
space wavelength of the readout beam. For single-
grating problems the BPM algorithm is often imple-
mented using a small-angle approximation, in which
the cosine term in Eq. (8) is approximated by 1 -
Om2/2 (see, for example, Ref. 23). In our calculations
we used Eq. (8) directly, with no small-angle approxi-
mation, to compute the phase of each spectral order
for propagation from layer to layer.43 This ensures
the accuracy of the relative phases of the orders when
many spectral orders are considered, which proves to
be critical when modeling diffraction from large num-
bers of gratings.

810
69

Incident
Plane Waves

Volume
Holographic

Medium

z

Fig. 4. Schematic representation of the plane waves generated by
the pixels in the input and training planes for a 10-to-10 single-
source architecture.
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To meet the angular-isolation design goal while
maintaining reasonable values for the various geomet-
ric parameters of the system, we made the following
design choices. The pixel spacings s and s in the
input and training planes, respectively, are both 257
[um. The focal length of each lens shown in Fig. 3 is
f = 2 f3 = 50 mm. The angular separation of
plane waves from adjacent pixels is therefore 0.290.
The angles at which the centers of the pixel planes are
offset from the normal direction of the volume holo-
graphic medium's front surface (the -z axis in Fig. 3)
are Oy = 5.9° and O = 8.80 for the training and input
planes, respectively. (For generality, 0ly and O are
not symmetric about normal incidence; other simula-
tions that we performed in which these angles are
symmetric yield the same results as discussed below.)
Unless otherwise noted, all angles are specified in air.
The wavelength of the recording and readout light
is 0.514 pm.

For our simulations the thickness of the holo-
graphic medium d is chosen as 4.5 mm; its refractive
index is assumed to be 2.52 (characteristic of single-
crystal bismuth silicon oxide, Bi12SiO20). Given this
thickness and the above recording geometry, the
angular Bragg widths of the interconnection gratings
range from 0.055° to 0.080° (FWHM). These values
correspond to the smallest (connecting xl to Plo) and
largest (connectingxl0 to Pi) interconnection gratings,
which have grating periods A of 1.7 and 2.5 pLm,
respectively.

As noted in Section 3.A, cross gratings exist in each
possible diffraction regime for the simultaneous and
pagewise-sequential recording methods. One rule of
thumb in determining whether a particular grating
operates in the Raman-Nath, Bragg, or transition
regimes is based on the value of the normalized
thickness Q calculated for that grating.45 The nor-
malized thickness is often defined as Q = 2TXd/nA2.46

If Q 1, Raman-Nath diffraction behavior is typi-
cally observed, whereas the Bragg diffraction regime
corresonds to Q 10. The transition regime occurs
for values of Q between 1 and 10. (For a more
detailed analysis, see Ref. 46.) Cross gratings formed
between adjacent pixels have Q values of 0.6 and
thus clearly operate in the Raman-Nath diffraction
regime. For pixel separations of four or more the
corresponding cross gratings have Q 10 (with the
largest having Q = 46). For comparison, the desired
interconnection gratings have typical Q values of
-1500.

The geometry of the single-source architecture is
assumed to be completely rigid such that optical
phase stability (see Section 2.C) is maintained during
recording and readout. The SLM pixels of the input
and training planes are assumed to be pure amplitude
modulators with no residual phase modulation.

2. Holographic-Medium Recording Characteristics
Next we define the recording characteristics of the
holographic medium used in our modeling and the

associated terminology. The medium itself is as-
sumed to be lossless, and the recorded diffraction
gratings are assumed to be sinusoidal phase gratings.
The material is taken to be linear in the sense that the
induced changes in the local refractive index distribu-
tion during recording are directly proportional to the
associated recording intensity distribution. The
available refractive index modulation range is as-
sumed to be unlimited; therefore effects that are
caused by a limited available modulation range in real
materials are not included. The effects of self-
diffraction among the recording beams, erasure, and
exposure scheduling are also neglected. Investiga-
tion of these effects not only on the optical through-
put but also on the reconstruction fidelity is an
important area for continuing research.

To illustrate the relationships among the recording
intensity, the induced refractive index modulation,
and the resultant grating strength for each grating,
we consider the simultaneous recording method, us-
ing a single training pair (x, ). Pixels. in the input
plane are identified with the indices j and j', while
pixels in the training plane are referred to with
indices i and i'. The intensity distribution in the
holographic medium can be written as

JoN N 8~i1/2 2

I(r) = (j)1/2 exp(ikj -r) + R expfiki r)

N N

Vl VJ= + i=1L

N N

+ 2 (8,)1/2 cos(Kij r)
i=l J=l

N N

+ 2FR E z (xjx,)'/2 cos(Kjj r)
j=lj'=j+i

1N N 1+ 2 1 i=1 cos(Kii ,* r) ,
in which r = xi + zz, R is the (intensity) beam splitter
ratio (see Fig. 3), and xj and 5i are the transmittances
of the jth and ith pixels of the input and training
planes, respectively. The wave vectors of the corre-
sponding plane waves are kj and ki, while K,, (the
grating wave vector that characterizes the intensity
distribution recorded as a variation in the refractive
index) is defined as k, - k,, in which p and v denote
the appropriate pixel index (i, ', j, or j'). For
simplicity, the phase of each beam is assumed to be
zero at the origin of the x-z coordinate system shown
in Figs. 3 and 4.

For the purposes of our analysis we neglect effects
that result from any change in the average refractive
index and consider only the induced variation in the
index. Thus the refractive index modulation An(r),
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caused by exposure to the intensity distribution
described in Eq. (9), can be written as

N N

An(r) = 2 E Anij cos(Kij * r)
i=1 j=1

N N

+ I I n cos(K1j
j=1 j'=j+l

r)

N N

i=1 i=i+l

in which the amplitude of the refractive-index modu-
lation for each desired interconnection grating is
given by

Ani = Cxjb,)112, (11)

while the amplitudes of the intraplanar cross gratings
of the input and training planes are described by

An.= Ci(Rxx)'/2, (12)

Ani = C1(8jbij/R)1/2, (13)

respectively. The proportionality constant Cl is de-
termined by 2IOCo//, in which C0 is related to the
sensitivity of the material and the length of exposure.
If we vary the beam splitter ratio R, the relative
magnitudes of the desired and cross gratings can be
varied. The importance of this ratio is discussed in
more detail in Section 4.B.

It is convenient to discuss the relative magnitudes
of the various gratings in terms of their grating
strength v rather than their refractive-index ampli-
tudes. The grating strength v for a given grating is
typically defined as

v = 2rrAnD/X, (14)

in which An is the amplitude of the grating's refrac-
tive-index modulation and D is the optical path length
in the holographic medium. The strengths of the
various types of gratings described by Eq. (10) can be
written as

vi;= (2rC 1D/X)(xjbj)'/ 2 , (15)

v>;, = (2'rrCD/X)(Rxjxj,)'/ 2, (16)

vii = (2rCD/)(8jbi/R)1/2 (17)

in which vij represents the grating strength of the ijth
interconnection grating and vyj and vii are the grating
strengths of input-plane and training-plane cross
gratings, respectively. The strength of each grating
is proportional to the square root of the product of the
writing intensities. Equations (15)-(17) are valid
only for recording with a single training pair (x, 8).
The relevant expressions for multiple training pairs
are discussed in Section 3.C.3.

3. Holographic Weight Formation with Multiple
Training Pairs
We discuss herein the method used to generate the
weight matrices employed in our simulations. We
are interested in examining the achievable fidelity
and throughput of weighted fan-out/fan-in holo-
graphic interconnection systems that incorporate non-
singular weight matrices, since typical neural-
network systems presumably have relatively
independent weights.

One method of generating such a nonsingular
weight matrix is simply to assign a random number to
each weight. However, the desired interconnection
weights and associated grating strengths must be
consistent with the relative magnitudes of any cross
gratings that are present (i.e., for the simultaneous or
pagewise-sequential recording methods). This self-
consistency requirement derives from the fact that
the weights and grating strengths of the cross grat-
ings that are generated in an actual holographic
interconnection system are not independent of each
other; they are traceable instead to the set of training
pairs that were used to record the desired interconnec-
tion weights.

Rather than attempting to deduce a self-consistent
set of cross-grating strengths given a particular ran-
dom weight matrix, we use an alternative approach
for generating the weight matrix. In this approach
we first specify a set of M training pairs and then
calculate the corresponding grating strengths for
both the desired and cross gratings. This procedure
ensures that a set of mutually consistent magnitudes
result for all of the gratings applicable to each record-
ing method. For example, to obtain relatively inde-
pendent weights for the 10-to-10 interconnection
case, we used ten random training pairs [x(m), 8(m)] to
generate the interconnections. The components of
each vector, x(m) and 8(m), were taken to be random
variables uniformly distributed on the interval [0, 1].

In the remainder of this section we illustrate the
multiple-training-pair approach to weight-matrix for-
mation. The primary goal of this effort is to specify
the dependence of each weight on the corresponding
vector components of the training pairs used to form
the weight matrix. In order to achieve this goal we
must also determine the appropriate relationship
between the grating strength of a given grating
recorded in the single-source architecture and its
corresponding weight. At the outset, we note that
analytical expressions for the relationship between a
given grating strength and its associated weight have
been derived only for special cases. In particular, no
analytical expression has been derived for the case of
multiple training pairs (which corresponds to the case
of independent weights). In fact, this situation pro-
vides a key impetus for complex system simulations
using the optical beam propagation method. Howev-
er, in order to adequately assess the fidelity of a given
holographic interconnection system that incorpo-
rates independent weights, we must first determine a
trial weight matrix in order to compute expected

1450 APPLIED OPTICS / Vol. 32, No. 8 / 10 March 1993

Anji, cos(Kii, - r),



interconnection system outputs analytically for com-
parison with the simulation results.

As in Section 3.C.2, we base the following example
on an analysis of the simultaneous recording method.
We first compute the refractive index distribution
when multiple training pairs are used. The refrac-
tive index distribution is found by summing Eq. (10)
over the number of training pairs M with the assump-
tion of holographic medium linearity:

M N N

A\n(r) = , Y, E
M=1 i=1 j=1

N N

+E E
j= j=j+l

N N

+ E 
i=1 i'=i+l

in which

An(im) cos(Kij * r)

An(T) cos(Kjj, r)

(18)

(19)

(20)

(21)

An(m) = C [x(m)8(m)]l/2 ,ti L1 j t jI

An(m) = CJR jj, 2

An(m) = Cl[5 m) )/R]l/ 2 .

Equation (18) can be rewritten as

N N

An(r) = I Y, An(* cos(Kj * r)
i=1 j=1

N N

j=l j=j+l
N N+ I I
i=1 i'=i+l

in which each refractive-index amplitude is the sum
of the contributions from each training pair:

M

An(* = Y, An(') (23)
m=l

in which p and v denote the appropriate pixel indices.
Given the preceding relationships, we can immedi-
ately determine the dependence of the grating
strengths of the desired interconnection gratings and
also the input-plane and training-plane cross gratings
on the writing intensities of a given set of training
pairs, namely,

M

A = (2rrC 1D/X) [x~m)&im)]l/2, (24)
m=1

M

vj,) E [X(m)(')]l/2, (25)
m=1

M

v = (1/)(2rrCiD/X) E [m),mn)]1/2, (26)
m1

respectively.

The final step in determining the trial weight
matrix formed by the set of training pairs is to specify
the relationship between the grating strength of an
individual grating and its corresponding weight.
Recall that a weight is proportional to the intensity
diffraction efficiency of its associated grating (in the
intensity representation); i.e., it is a measure of the
fraction of a new input xj that is diffracted to and
summed at a pixel i in the output plane. As a
starting point we first examine an analytical expres-
sion for the relationship between the grating strength
of a given grating and its associated weight derived
under certain restrictive assumptions. As shown in
Ref. 19, by means of coupled-wave analysis each
weight Wij is proportional to (in our notation)

(27)

in a single-source architecture when (1) no cross
gratings are present, (2) readout is performed with
mutually coherent beams, and (3) only a single train-
ing pair is recorded (which results in a set of depen-
dent weights). Using Eq. (15), one can re-express
each weight in terms of the grating strength of its
corresponding grating for this restricted case:

WYj X vij . (28)

Since a corresponding analytical result is not avail-
able for the case of multiple training pairs (that result
in independent weights) in either the presence or
absence of cross gratings, it is not clear how to
generalize from the ideal single-training-pair case.
In order to generate an appropriate trial weight
matrix for the purposes of our analysis, we therefore
assume that the grating strengths deriving from
separate training pairs add linearly in so far as they
affect the corresponding diffraction efficiency. Thus
the elements of a particular trial weight matrix are
assumed to be related to the training pairs used to
form the weight matrix by

Wij [Y)] 2 oc(| [xjm) Im)]/2 (29)

Whether Relation (Rel.) (29) is an appropriate
choice for the relationship between a weight and its
associated grating strength depends on the accuracy
with which it predicts the diffracted outputs of an
actual system [given a set of inputs, as described in
Eq. (4)]. As shown in Section 4, Rel. (29) appears to
represent a remarkably good choice of a metric for
single-source architectures. In fact, Rel. (29) can be
taken as an approximate analytical expression of the
multiple-training-pair case on the basis of the rela-
tively small errors that result from the use of this
metric in simulations of the single-source architec-
ture without the effects of cross gratings. For differ-
ent architectures other relationships can be selected
that provide a better match to the physics of the
underlying diffraction process. One such choice is
discussed in Section 5.B for a particular configuration
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of the incoherent/coherent double angularly multi-
plexed architecture.

To facilitate direct comparisons, we use the same
trial weight matrix W for all of the 10-to-10 simula-
tions discussed below, including both the single-
source and incoherent/coherent double angularly
multiplexed architectures. In addition, the same
readout vector read is used for all cases. Each
component of Xread is a random variable uniformly
distributed over [0, 1].

4. Single-Source Interconnection Architecture:
Simulation Results

On the basis of the modeling technique and assump-
tions discussed in Section 3, we present herein the
results of our numerical simulations of the single-
source architecture. These results provide a bench-
mark against which to compare the performance of
the incoherent/coherent double angularly multi-
plexed architecture discussed in Section 5. Simula-
tion results for readout of the single-source architec-
ture with mutually coherent beams for simultaneous,
pagewise-sequential, and fully sequential recording
methods are discussed in Sections 4.A, 4.B, and 4.C,
respectively. For comparison, readout of the fully
sequential recording case with mutually incoherent
beams is addressed in Section 4.D, in which the effect
of beam degeneracy on optical throughput is exam-
ined. In Section 4.E the rms errors of the diffracted
outputs are directly compared for each case, and we
show comparable modeling results for a 4-to-4 inter-
connection system so that scaling trends can be
identified. In Section 4.F we summarize our find-
ings.

A. Simultaneous Recording and Readout with Mutually
Coherent Beams

As discussed in Section 3.C.3, the refractive-index
distribution for simultaneous recording in a single-
source architecture that uses multiple training pairs
is given by Eq. (22). The first term in Eq. (22)
represents the desired interconnection gratings, while
the second and third terms describe undesired cross
gratings connecting pixels within the input and train-
ing planes, respectively. As discussed in Section 2.E,
these extraneous gratings introduce a serious source
of cross talk into the interconnection system that
compromises the independence and isolation of each
interconnection pathway.

As a consequence of the extraneous interconnec-
tion paths provided by the cross gratings, the actual
output of the interconnection system p' differs from
the ideal output p [described by Eq. (6)] when the
system is read out with xread. This lack of reconstruc-
tion fidelity is illustrated in Fig. 5 for readout with
mutually coherent beams. The diffracted outputs
are shown in Fig. 5(a) for the R = 1 (unity beam ratio)
case as a function of the grating strength of the
largest desired interconnection grating recorded in
the holographic medium. The magnitude of each
diffracted output is defined as the fraction of the total
input power that is diffracted into that output.
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Fig. 5. Single-source architecture simulation results for the
simultaneous recording method: (a) diffracted outputs, (b) ratio
of each diffracted output to an arbitrarily chosen output, and
(c) percentage error of each ratio. Readout is performed with
mutually coherent beams. The horizontal axis represents the
grating strength of the largest interconnection grating recorded in
the holographic medium.

To examine the fidelity of the actual output vector
p' as compared with the desired output vector p, we
first show the ratios of the diffracted outputs (with
respect to an arbitrarily chosen output, in this case p4)
in Fig. 5(b). In an ideal interconnection network
each diffracted output ratio should be independent of
grating strength. The actual ratios vary dramati-
cally as a function of grating strength, indicating that
the reconstruction fidelity is grating-strength depen-
dent. As one possible measure of the error in each
component of the diffracted output p', we show in Fig.
5(c) the deviation of the ratios of Fig. 5(b) (including
the effects of cross coupling) from the corresponding
ratios calculated from the components of the ideal
output vector p normalized by the appropriate ideal
output-vector ratio. The percentage error ii is
defined as

Fi> = 100 (Pi -p - PilPi)
pi/pi, I

(30)
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in which pi' is a component of p'. As can be seen
from Fig. 5(c), the percentage errors again vary
dramatically as a function of grating strength. Since
there is no apparent correlation among the errors in
the individual outputs, the errors cannot be corrected
in any systematic fashion. Further simulations show
that the errors are both input-signal and weight-
matrix dependent.

The magnitudes of the output errors must be
evaluated in conjunction with the optical throughput,
which is shown as a function of grating strength in
Fig. 6. The throughput is defined, as above, as the
fraction of the total incident power that is diffracted
into all of the desired outputs. At the peak through-
put of nearly, 50% (in this case) the percentage errors
are as large as 100%. Backing off in throughput to
10% still results in up to 50% errors in the ratios.
To reduce the errors to less than 10%, the strength of
the interconnections must also be reduced so that the
throughput is less than 1.5%. As demonstrated by
these results, the simultaneous recording case is
characterized by significant inherent fidelity errors,
particularly for relatively high throughput. Exami-
nation of the pagewise-sequential and fully sequen-
tial results in Sections 4.B and 4.C indicates that
nearly all of this error is attributable to the cross
gratings.

B. Pagewise-Sequential Recording and Readout with
Mutually Coherent Beams
The primary motivation for using pagewise-sequen-
tial instead of simultaneous recording is to reduce the

0.0 0.2 0.4 0.6 0.8 1.0

Grating Strength (radians)

Fig. 6. Simulation results showing the optical throughput (i.e.,
the amount of incident power diffracted into the desired outputs)
for several combinations of recording and readout methods for the
single-source architecture. Clarification of the legend is as follows:
(1) simultaneous recording method with coherent readout (see Fig.
5), (2) pagewise-sequential recording method with a beam splitter
ratio of 100 and coherent readout, (3) pagewise-sequential record-
ing method with a beam splitter ratio of 1000 and coherent readout
(see Fig. 7), (4) fully sequential recording with coherent readout
(see Fig. 8), and (5) fully sequential recording with incoherent
readout (see Fig. 9). The horizontal scale is the same for all
single-source-architecture 10-to-10 simulation results, shown in
Figs. 5, 7-9, and 11.

deleterious effects of the undesired coherent-record-
ing cross-talk gratings. The validity of this argu-
ment for a single-source architecture can be exam-
ined by comparing the grating strengths of the desired
and cross gratings for the two recording methods.

Assuming M training pairs, the refractive-index
distribution for pagewise-sequential recording is

M N N

An(r) = E | _ An(T7) cos(Kij r)

N N

+ z An$,'lcos(Kip r) (31)

for a linear recording medium. Using Eq. (23), we
can rewrite this as

N N
An(r) = E E AnO') cos(K0-* r)

i=1 j=Li

N N

+ N E E An, ) cos(Kii, r).
i=1 i'=i+i

(32)

A comparison of Eq. (32) with Eq. (22) shows that the
input-plane cross-grating terms are, of course, absent.
For pagewise-sequential recording, however, an extra
factor of N multiplies the training-plane cross-grating
terms [the second summation on the right-hand side
of Eq. (32)], because for each training pair the training-
plane cross gratings are exposed N times, while each
desired grating is exposed only once. Thus over the
full set of M training pairs, each cross grating is
exposed MN times, while each desired interconnec-
tion grating receives only M exposures. The grating
strength of the desired interconnection gratings is
given by Eq. (24), while that of the training-plane
cross gratings is

M

v) = (N/ViR)(27rC1D/X) E [8(m)(n)]1/2.
m=1

(33)

This result calls into question the common asser-
tion that the training-plane cross gratings can be
made arbitrarily small relative to the interconnection
gratings simply by using a sufficiently large beam
splitter ratio R.19 3847 While this is true in principle
for each exposure, the beam splitter ratio must be
further increased to overcome the additional effects
of exposing the cross gratings N - 1 more times than
the desired gratings. According to Eq. (33), the
beam splitter ratio must be R = N2 just to achieve
parity in the grating strengths of the interconnection
and cross gratings. For even relatively small num-
bers of pixels, the beam splitter ratio therefore be-
comes very large; for example, if N = 100, R must be
at least 10,000. Although not directly addressed
herein, the use of large beam splitter ratios can result
in significant throughput trade-offs for implementa-
tion in certain types of holographic materials (such as
photorefractive single crystals), which are in turn
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caused by reductions in the grating modulation depth
during recording.' 2

Regardless of the practicality of pagewise-sequen-
tial recording, our modeling of a 10-to-10 single-
source architecture shows that if the beam splitter
ratio is made large enough to reduce the magnitudes
of the cross gratings relative to the interconnection
gratings, then the fidelity and throughput of the
interconnection system can be improved as compared
with the simultaneous-recording method. For exam-
ple, Fig. 7 shows the diffracted outputs, ratios, and
ratio percentage errors for readout with mutually
coherent beams. A beam splitter ratio of 1000 is
assumed, which adjusts the average strength of the
interconnection gratings to approximately three times
the strength of the cross-talk gratings. As seen in
Fig. 7(c), the percentage errors of the ratios show a
marked improvement over the simultaneous-record-
ing case. However, at the peak throughput of nearly
80% (see Fig. 6), the largest percentage errors in the
ratios are still 50%. At 10% throughput the largest
error is 15%. As shown in Section 4.C, the fidelity
can be further improved when the cross gratings are
eliminated entirely by using fully sequential record-
ing.
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Fig. 7. Same as Fig. 5 but for the pagewise-sequential recording
method with a beam splitter ratio R of 1000.

Because increasing the beam splitter ratio can
reduce the effects of the cross gratings for the page-
wise-sequential recording method, one might ask
whether increasing the beam splitter ratio for the
simultaneous-recording method in the single-source
architecture offers any benefits. As can be seen by
comparing Eqs. (24)-(26) for the grating strengths of
the interconnection cross gratings for the simulta-
neous-recording method, increasing the beam splitter
ratio reduces the relative magnitudes of the training-
plane cross gratings by a factor of FR [Eq. (26)] as
compared with the desired interconnection gratings
[Eq. (24)]. However, the relative magnitudes of the
input-plane cross gratings increase by a factor of VJ
[Eq. (25)]. The net result is that varying the beam
splitter ratio from unity always enhances one set of
cross gratings relative to the desired set of intercon-
nection gratings. Our simulations show that this
results in significantly reduced fidelity and through-
put performance. Thus a unity beam splitter ratio is
optimal for the simultaneous recording method.

C. Fully Sequential Recording and Readout with Mutually
Coherent Beams
Fully sequential recording with M training pairs
results in a refractive-index distribution in the holo-
graphic medium of

N N
An(r) = T Antm) cos(K- r),

i=1 j=1 U
(34)

in which there are no undesired cross gratings. The
corresponding grating strengths are given by Eq. (24).

Simulation results for readout with mutually coher-
ent beams are shown in Fig. 8. The beam splitter
ratio R is assumed to be unity during recording since
there are no cross gratings to minimize. Each dif-
fracted output [Fig. 8(a)] appears more sinusoidal in
nature as a function of grating strength than that for
either the pagewise-sequential or simultaneous record-
ing cases discussed above. However, the first peak
(and the following minimum) of each diffracted out-
put occurs at a different grating strength, with the
result that the reconstruction fidelity is somewhat
grating-strength dependent [as indicated in Fig. 8(b)].
This result is similar to the behavior noted in Fig. 5 of
Ref. 19 for a 5-to-5 interconnection, which was mod-
eled numerically using a coupled-wave approach.
The percentage error of the ratios, shown in Fig. 8(c),
shows a significant improvement over the pagewise-
sequential and simultaneous recording cases that is
attributable to elimination of the cross gratings.
At the peak throughput of > 85% (see Fig. 6) the
largest ratio percentage error is 15%. For 10%
throughput the largest error is only 3%.

Although the fidelity and throughput performance
are greatly improved when the cross gratings are
eliminated, the fully sequential recording method has
several serious difficulties for practical systems, in-
cluding large numbers of recording steps, inefficient
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Fig. 8. Single-source architecture simulation results for the
pagewise-sequential recording method for a beam splitter ratio, R,
of 1000: (a) diffracted outputs, (b) ratio of each diffracted output
to an arbitrarily chosen output, and (c) percentage error of each
ratio. Readout is performed with mutually coherent beams.

use of the illuminating beams, and complicated record-
ing schedules (see Section 2.D).

D. Readout with Mutually Incoherent Beams

To this point in the discussion we have considered
readout of single-source architectures with mutually
coherent beams only. In order to better understand
the innovations incorporated in the incoherent/
coherent double angularly multiplexed architecture
discussed in Section 5, we briefly discuss readout of
the single-source architecture with mutually incoher-
ent beams. For the purposes of the section we
consider the fully sequential recording method, such
that only the desired interconnection gratings are
present in the holographic medium.

Simulation results for the diffracted outputs in this
case are shown in Fig. 9. The reconstruction fidelity
is essentially the same as for readout with mutually
coherent beams (Fig. 8), even though the ideal out-
puts are expressed in this case by Eq. (4) instead of
Eq. (6). Since beam degeneracy is always present in
the single-source architecture, the low fidelity error

0)0
B

0
IL

Grating Strength (radians)
(c)

Fig. 9. Single-source architecture simulation results for the fully
sequential recording method: (a) diffracted outputs, (b) ratio of
each diffracted output to an arbitrarily chosen output, and (c)
percentage error of each ratio. Readout is performed with mutually
coherent beams.

results shown for both mutually incoherent and
coherent readout beams indicate that beam degener-
acy is not a significant source of fidelity error (at least,
not for grating strengths up to 0.4 rad, at which the
peak in throughput occurs). However, for readout
with mutually incoherent beams the peak through-
put drops to 10% (as shown in Fig. 6) because of
incoherent fan-in loss, which limits the maximum
throughput to 1/N for an N-to-N interconnection
system with collinear output summation.24

An understanding of the physical mechanism re-
sponsible for incoherent fan-in loss in a single-source
holographic interconnection system permits us to
design a system that avoids this loss (as discussed in
Section 5). The fan-in loss in a single-source archi-
tecture for readout with incoherent beams can be
explained by the beam degeneracy that is present in
the diffracted outputs. 9"0"13' 25 Beam degeneracy re-
fers to the k-vector degeneracies in beams diffracted
from different gratings in holographic interconnec-
tion systems that have collinear fan-in. This can be
understood by reference to Fig. 10(a), in which a
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Fig. 10. (a) Schematic diagram of the recording geometry of a
4-to-4 interconnection system; (b) schematic diagram of the read-
out geometry of the 4-to-4 interconnection system with a single
beam (X3) and the resulting outputs; (c) simulation results for
readout of the 4-to-4 interconnection system, in which the power
cross coupled by beam degeneracy from the desired outputs to the
X1', X2', and x4' beams can be significant.

4-to-4 interconnection system is represented schemat-
ically. As in Fig. 4, each collimated beam is repre-
sented by its k vector. When readout is performed
using all four input beams (xl-x4), four reconstructed
beams emerge collinearly in each of the four pi'
directions. Thus the four beams that are diffracted

in a given pi' direction have degenerate wave vectors;
i.e., they are degenerate beams.

To understand how this degeneracy leads to a
fan-in loss for readout with mutually incoherent
beams, consider readout of the 4-to-4 interconnection
system described above with a single input beam, X3.
As shown by the solid arrows in Fig. 10(b), diffracted
outputs are generated in each of the four output
directions (1'-P4') as well as the zero-order direction
X3'. However, each diffracted beam pi' is in turn
diffracted into the directions xl', x2', and X4' by the
gratings recorded among the training beams 81-84
and the other input beams x, x2, and X4 . These
interactions cause power to be coupled out of the
desired outputs Pi' and into the zero orders of xl, x2,
and X4 , generating the cross-coupled beams xl', x2',
and X4 '.

The magnitude of this effect can be illustrated by
modeling a 4-to-4 interconnection system (using the
BPM) in which asingle beam of unit intensity
[corresponding to X3 in Fig. 10(b)] is used for readout.
Uniform weights are assumed (Wij = 1 for all i andj),
and the geometry of the system used in the modeling
is the same as that described in Section 3.C.1. The
results of the BPM calculation are shown in Fig.
10(c), in which the diffraction efficiencies of all of the
diffracted beams are shown as a function of grating
strength. The diffraction efficiencies of the desired
outputs Pi' are indicated with solid curves, while the
zero-order and cross-coupled beams are represented
by the dotted and dashed curves, respectively. The
peak diffraction efficiency into the desired outputs pi'
occurs at 0.8 rad. The summed power in the four
desired outputs is only 24%, which is 1/4 (or 1/N) of
the maximum available power. The rest of the
power either remains in the zero order (X3') or is
diffracted into the cross-coupled beams (xl', x2', and
X4 '), each of which has approximately the same diffrac-
tion efficiency as the desired beams (at 0.8 rad).

It is clear that if the other three input beams (xl, x2,
and X4 ) are also incident and that if all of the incident
beams are mutually incoherent, then the summed
diffraction efficiency into the desired outputs is still
only 25% at best, because the light in each output
beam adds incoherently. The end result in this case
is analogous to that corresponding to the collinear
combination of N mutually incoherent quasi-mono-
chromatic beams of essentially identical wavelengths
usingN - 1 beam splitters; only 1/N of the power at
most can be diverted into the desired direction, while
the remaining power exits the system in the direction
of the original input beams.' 3

However, as illustrated in the simulation results of
Section 4.C, it is possible to achieve high optical
throughput in the single-source architecture if the
incident beams are mutually coherent and the proper
phase conditions are satisfied. Alternatively, if a
holographic interconnection system is designed such
that each detected output consists of angularly in-
stead of collinearly fanned-in beams, the throughput
loss that is due to the effects of beam degeneracy can
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be avoided even for readout with mutually incoherent
beams. The incoherent/coherent double angularly
multiplexed architecture discussed in Section 5 illus-
trates one method of achieving such angular fan-in at
each pixel in the output plane with consequent high
throughput for readout with mutually incoherent
beams.

E. Discussion

1. Comparison of Recording Methods Using an rms
Fidelity Error
The percentage-error ratio metric used above to
assess the reconstruction fidelity of the single-source
architecture under various recording conditions is
attractive in that it graphically illustrates the varia-
tion in fidelity among the individual diffracted outputs.
However, a lumped error measure is more convenient
for comparing not only different recording methods
for the single-source architecture but also for compar-
ing the reconstruction fidelity of different architec-
tures.

One possible error measure is given by19

E = 1- 2' =
[ N /j (,2 2 1/21 IPj 

in which 2 = p/I p is the unit vector in the direction of
p; 2' is defined similarly. The error measure e can
be interpreted as the rms error of the components of
the normalized diffracted output vector '. The
separate normalizations of the ideal and actual compo-
nents by I p I and I p' , respectively, permit a change in
the throughput that does not in turn bias the relative
fidelity of the components. The maximum value of
the rms error E is +/i since i2 and ' are unit vectors
having unipolar components.

The rs errors of the various recording methods
discussed in Sections 4.A-4.D for the 10-to-10 simula-
tions of the single-source architecture are shown in
Fig. 11 as a function of the grating strength of the
largest interconnection grating. For simultaneous
recording the rms error starts out relatively small at
essentially zero grating strength (and practically no
throughput, as shown in Fig. 6), and then becomes
large quite rapidly as the grating strength is increased.
Ifjust the cross gratings among the input-plane pixels
are removed using pagewise-sequential recording with
R = N2

= 100 (i.e., only the desired interconnection
gratings and thetraining-plane cross gratings are
present, with comparable grating strengths), neither
the fidelity nor the throughput improves significantly.
Decreasing the magnitudes of the training-plane cross
gratings relative to the desired interconnection grat-
ings (using pagewise-sequential recording with R =
1000) results in substantial improvement in both the
fidelity and the peak throughput.

Complete elimination of the cross gratings by using
sequential recording yields a further significant im-
provement in fidelity and a marginal increase in the
peak throughput, as shown in Fig. 6. The reconstruc-

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Grating Strength (radians)

Fig. 11. Simulation results showing the rms fidelity error [as
defined in Eq. (35)] for several combinations of recording and
readout methods for the single-source architecture. An explana-
tion of the legend is provided in Fig. 6.

tion fidelity that we obtain in the absence of cross
gratings is much higher than that shown by Slinger. 19
This difference can be understood as follows. Sling-
er's analysis considers both random complex weights
(i.e., each interconnection grating has a random
phase as well as a random amplitude) and random-
amplitude readout beams that have either a 0 or
1800 relative phase. The direct implication is'that
the readout beams do not have the same relative
phases as the recording beams that were used to
create the weights [i.e., the argument of the exponen-
tial in Eq. (7) is not constant for all i andj, such that
condition (1) discussed following Eq. (6) in Section 2.C
is violated]. The net result is poor reconstruction
fidelity.
- In our analysis of the single-source interconnection
architecture the readout beams have the same rela-
tive phases as the recording beams, which permits the
appropriate phasing conditions to be satisfied upon
reconstruction such that good fidelity results. This
same-relative-phase condition is consistent with the
implementation of unipolar weights and outputs, as
is discussed in Secti6n 2.C (recall that a dual-rail
strategy can be generalized to the bipolar case instead
of requiring the interconnection system to implement
bipolarity directly). A comparison of our results
with Slinger's indicates that (in the absence of cross
gratings) a single-source architecture can in fact yield
high reconstruction fidelity for an appropriate map-
ping of neural interconnection requirements to the
architecture.

2. Effects of Sidelobe Overlap on Reconstruction
Fidelity
A curious feature of the simulation results shown in
Fig. 11 is that the fidelity error for each recording
method does not go to zero with decreasing grating
strength. Furthermore, the asymptotic value of the
fidelity error near zero grating strength is the same
for each recording method. This indicates that the
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limiting value of the error is independent of the
presence or absence of cross gratings.

The cause of this somewhat counterintuitive behav-
ior appears to be diffraction from non-Bragg-matched
interconnection gratings.48 The physical mecha-
nism for this effect is illustrated in Fig. 12, in which
the +1-order diffraction efficiency of two sinusoidal
phase gratings is shown as a function of the incidence
angle of a plane-wave readout beam. The gratings
are assumed to have the same grating period, but
their fringes are oriented at different slant angles
relative to the front face of the holographic medium.
If a readout beam is incident at 01 (Bragg matched to
grating GI), it is diffracted by both G1 (through G1's
mainlobe response) and grating G2 (through G2's
sidelobe response at 01). Since G1 and G2 have the
same grating period, the light beams diffracted from
both gratings are collinear upon exiting the holo-
graphic medium. Hence the overall diffraction re-
sponse at incidence angle 01 is composed of a small
contribution from G2 as well as the main contribution
from G1. Upon coherent addition of the two contri-
butions the net diffraction efficiency in general differs
from what it would be in the absence of G2. If G1
implements a weighted interconnection, this differ-
ence results in a small error in the weight of the
grating. We refer to the source of this error as
sidelobe overlap.

In the single-source architecture illustrated in Figs.
3 and 4, there are multiple sets of gratings that have
the same grating period but different slant angles
because of the existence of multiple pairs of writing
beams originating from the pixels of the input and
training planes that have equal angular separations.
For example, the grating written by beams xl and 1
(Fig. 4) has the same grating period (but a different
slant angle) as the grating written by beams x2 and 82.
As a result of the presence of sidelobe overlap among

81

Grating G1
that have the same grating period and slightly dGrating G2

2

C

angles. Although the main lobes of the angular responses are well
separated, the sidelobes and the main lobes overlap.

various sets of gratings, one would expect the weights
of the affected gratings to exhibit a small residual
error upon reconstruction. This variation in the
recorded weights should be present even as the
grating strength goes to zero because both the main
Bragg response of a particular grating and the overlap-
ping sidelobes of the other gratings scale in propor-
tion to each other as a function of grating strength.

One method of testing the assertion that sidelobe
overlap affects the reconstruction fidelity as described
above is to vary the thickness of the holographic
medium such that the degree of sidelobe overlap
among the various interconnection gratings is changed
(since the angular width of the diffraction response of
each grating is inversely proportional to the thick-
ness49). If sidelobe overlap is present, one would
expect the limiting value of the rms fidelity error to
generally increase with decreasing thickness, and vice
versa. This behavior is exactly what we observe in
our simulations.

For the simultaneous and pagewise-sequential cases
shown in Fig. 11, the effect of sidelobe overlap is
apparent only at small grating strengths because the
cross gratings are the main source of fidelity error at
larger grating strengths. For the fully sequential
recording case with coherent readout, sidelobe over-
lap appears to be the dominant source of reconstruc-
tion error up to 0.25 rad. As borne out by other
simulation results, the reconstruction fidelity in this
regime can be further improved simply by increasing
the thickness of the holographic medium.

3. Scaling Trends
To examine how our modeling results scale with the
number of nodes in the interconnection system, we
also simulated a 4-to-4 single-source interconnection
architecture having a 4 x 4 weight matrix that is a
subset of the 10 x 10 weight matrix used above. The
corresponding four input beams from Xread are used to
read out the interconnection system. Simulation
results for the rms fidelity error of the normalized
output vectors and the throughput for the 4-to-4 case
are shown in Figs. 13(a) and 13(b), respectively, for
the simultaneous, pagewise-sequential, and fully se-
quential recording methods.

The overall performance characteristics noticed in
the 10-to-10 simulations are also present in the 4-to-4
results, in that the rms fidelity errors and through-
puts for the various cases show no identifiable trends
for scale-up from the 4-to-4 case to the 10-to-10 case.
As a specific example, the simulation results for the
relative behaviors of the pagewise-sequential and
simultaneous recording methods in the 4-to-4 case
are similar to the 10-to-10 results (see Fig. 13). The
rms fidelity error for the simultaneous recording
method in both cases increases rapidly as the grating
strength increases from zero. When the input-plane
cross gratings are removed (i.e., when pagewise-
sequential recording is used with R = 16 for the
4-to-4 case and R = 100 for the 10-to-10 case), neither
the fidelity nor the throughput improves significantly
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. . .. , | . 4-to-4 case shows a significant drop in the rms fidelity
error at 1.2 rad (which happens to correspond to
50% throughput). This result is weight-matrix and
,input-vector dependent and cannot be relied on to

occur in general. Similar comments apply to the
/< \ ' //' . \..observed drop in fidelity error for the R = 16 pagewise-

sequential recording case that occurs at grating
/1 \ ly \ .., \ strengths in excess of 0.85 rad. Despite these differ-

ences, the general trends do not appear to be weight-
.'. \ Y V / / . . matrix and input-vector dependent.

0.5 1.0 /V of 'Furthermore, as the grating strength goes to zero
\'>ct' " ~~~~the fidelity error for the 4-to-4 case [Fig. 13(a)] is the

_I,%,~. r.-. same for all of the recording methods, as in the
0.5 1.0. . . 1.5 2.0 2.5 10-to-10 cases. However, the actual value of the

Grating Strength (radians) error is somewhat smaller for the 10-to-10 results
(a) than for the 4-to-4 simulations. This difference is

probably caused by the increased number of overlap-
. . .... ,. . ping sidelobes that affect a particular weighted inter-

-Sim., Coh. connection in the 10-to-10 case. As the number of
PWS (R = 16), Coh.

-. ..~PWS ( = 160), Coh. overlapping sidelobes increases, their effect on the
, - A F Seq., Coh. interconnection fidelity may tend to decrease because

.,....F Seq., Incoh. the sign of each sidelobe's contribution to the weighted
interconnection can be either positive or negative,

V' /'^. 'a t .,' :/ depending on which particular sidelobe is accessed for
the off-Bragg grating. The contributions of a large

y / g \ < . ; number of sidelobes may therefore tend to average to
zero. The implication is that the limiting fidelity
error that is due to sidelobe overlap should decrease as
the number of nodes in the interconnection architec-

,-. ture increases (at least until some other limiting
0.5 1.0 1.5 2.0 ° 2 phenomenon is reached). This should result in bet-*.5 1. 5 2.0 2.5 ter fidelity performance for the sequential recording

Grating Strength (radians) method for throughputs at which the fidelity is
(b) limited by sidelobe overlap.

Fig.13. Simulation results for a4-to-4 single-source architecture.
Shown are (a) the rms fidelity error for various recording and
readout combinations and (b) the optical throughput for the
various recording and readout combinations. Clarification of the
legend [in (b), from top to bottom] is as follows: simultaneous
recording method with coherent readout, pagewise-sequential re-
cording method with a beam splitter ratio of 16 and coherent
readout, pagewise-sequential recording method with a beam split-
ter ratio of 160 and coherent readout, fully sequential recording
with coherent readout, and fully sequential recording with incoher-
ent readout.

in either case. Increasing the strength of the desired
interconnections to approximately three times the
training-plane cross gratings (i.e., when pagewise-
sequential recording is used with R = 160 for the
4-to-4 case) reduces the fidelity error and significantly
increases the peak throughput, just as in the 1O-to-1O
case. In fact, the rms fidelity error is nearly the
same for both simulations at a grating strength
corresponding to the peak throughput in each case.
At the current level of simulation complexity it is not
yet clear whether this apparent insensitivity to the
dimensions of the interconnection system is general-
izable.

In addition to these similarities, there are a few
interesting differences among these particular 4-to-4
and 10-to-10 cases. For simultaneous recording the

F. Single-Source Architecture Simulation Results:
Conclusions

Our simulation results show that, as expected, the
coherent-recording cross-talk gratings for simulta-
neous recording in a single-source architecture cause
a significant degradation in reconstruction fidelity for
reasonable throughputs. Pagewise-sequential re-
cording shows better fidelity and peak-throughput
performance than simultaneous recording if the beam
splitter ratio can be made large enough to overcome
the undesired strengthening of the training-plane
cross gratings, which is caused by the larger number
of exposures that they receive relative to the desired
interconnection gratings. Sequential recording yields
both high reconstruction fidelity and high optical
throughput, but at the cost of N2 - 1 more recording
steps than for the case of simultaneous recording.

Based on the considerations discussed in this pa-
per, an attractive method of implementing a single-
source architecture is to employ simultaneous record-
ing in a geometry that clearly separates the range of
spatial frequencies obtained for the desired intercon-
nection gratings from those obtained for the cross
gratings; and to use a holographic material that is
sensitive to the former range of spatial frequencies
and insensitive to the latter.17 "9 Of course this
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assumes that high throughput is required in the
resultant interconnection system. No special re-
quirements are placed on the spatial-frequency sensi-
tivity of the holographic medium if low throughputs
are permissible. In this regime the simultaneous
recording method yields the same fidelity perfor-
mance as the other recording methods, all of which
are limited by the amount of angular sidelobe overlap
that is present.

Even if a single-source architecture is implemented
as described above, it has at least one remaining
characteristic that detracts from its potential use in
implementations of large-scale weighted fan-out/
fan-in interconnection systems. As mentioned in
Section 2.E, the density of pixels on the input and
training planes is limited to a certain degree by
grating degeneracy.33 34

5. Incoherent/Coherent Double Angularly Multiplexed
Interconnection Architecture

In this section we discuss the operation of the
incoherent/coherent double angularly multiplexed
architecture that we have proposed and investigated
recently8-14 and compare its relative merits to those of
single-source architectures. Two configurations of
the incoherent/coherent double angularly multi-
plexed architecture are presented: first, the full-
aperture configuration8-14 and second, the subholo-
gram configuration. 1112 145 0 Both configurations
permit simultaneous recording of each training pair
with significantly reduced coherent-recording cross
talk as compared with the single-source architecture.
In addition, readout is performed with mutually
incoherent beams such that, during operation, each
diffracted output is described by the usual neural-
network summation of Eq. (4) rather than the modi-
fied summation of Eq. (6). This is accomplished
without sacrificing the high throughput efficiency
that is typically associated only with fully coherent
systems, because both configurations avoid the pres-
ence of beam degeneracy. Furthermore, while grat-
ing degeneracy is present in the full-aperture configu-
ration of the architecture, it can potentially be
eliminated by using the subhologram configuration
and therefore does not require subsampling of the
input and training planes.

The full-aperture configuration of the inco-
herent/coherent double angularly multiplexed archi-
tecture is described in Section 5.A, and simulation
results are discussed in Section 5.B. Operation of
the subhologram configuration of the architecture is
discussed in Section 5.C, and simulation results
follow in Section 5.D. Section 5.E provides a compar-
ison of the two configurations.

A. Full-Aperture Configuration of the Incoherent/Coherent
Double Angularly Multiplexed Architecture: Operation

A schematic diagram for one layer of the full-aperture
configuration of the incoherent/coherent double an-
gularly multiplexed architecture is shown in Fig.
14(a). The architecture has three key components:

Source
Array Beam

Splitter
(R-1)

To output SLM
or next layer

A L

5

(a)
Source
Array

S,
Volume

Holographic
Medium

(b)

Source
Array

S,

Volume
Holographic

Medium

El: Output
Plane

(c)
Fig. 14. Schematic diagram of the full-aperture configuration of
the incoherent/coherent double angularly multiplexed architec-
ture showing (a) general layout, (b) recording, and (c) reconstruction.
Ml and M2 are mirrors; L-L 5 are lenses; BS2 is a second beam
splitter.

(1) a 2-D array of individually coherent but mutually
incoherent sources; (2) optoelectronic neuron-unit
arrays that integrate the functions of light detection,
neuron-unit nonlinear response, and optical modula-
tion for each pixel (these arrays are denoted as SLM1
and SLM2); and (3) the volume holographic intercon-
nection medium. In this section, we briefly review
the interconnection method used in the architecture.
Additional details are provided in Refs. 12 and 13.

The process of recording a set of interconnections is
illustrated in Fig. 14(b). Assume for the moment
that a single pair of training vectors [x(m), (m)] is to be
recorded. Light from each source Sj is split into two
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optical paths. In the upper path each beam is colli-
mated and illuminates the full aperture of the train-
ing plane (SLMI). Each beam therefore reads out
the training vector 8(m) that is present on SLM1 (each
of these beams is referred to herein as a (m) beam).
The collimated beams deriving from the full set of
sources propagate at different angles through the
training plane. In the lower path the source array is
imaged onto the input plane (SLM2) such that light
from each source illuminates only one corresponding
pixel. A collimating lens converts the beams emerg-
ing from the pixels of SLM2 to a set of angularly
distinct collimated beams that illuminate the full
aperture of the volume holographic medium.

As a result of the individually coherent but mutu-
ally incoherent nature of the sources in the source
array, interconnection gratings are formed only be-
tween each xjm) and the corresponding 8(m) beam with
which it is mutually coherent. This permits the
simultaneous recording of a set of angularly multi-
plexed holograms in which each hologram is formed
by the interference of an angularly distinct reference
beam x(m) with a second angularly distinct beam (from
source Sj) bearing the image 8(m). The full set of
image-bearing beams {[8(m)]J that derives from all of
the sources in the source array {SjJ and that encodes
the contents of SLM1 is also angularly multiplexed.
Hence we describe this architecture as double angu-
larly multiplexed. 13

Similar to the case of simultaneous recording in a
single-source architecture, the incoherent/coherent
double angularly multiplexed architecture requires
only one exposure to record each training pair
[x(m), WI)], which is accomplished by turning on all of
the sources in the source array simultaneously.
Since mutually incoherent beams are used to read out
the pixels of SLM2, no coherent-recording cross-talk
gratings among the input-plane pixels are formed.
Similarly, cross gratings among the separate beams
encoded with Wm) do not occur. The only cross
gratings that can form in the holographic medium
result from overlaps among adjacent diffracted compo-
nents 6i within each Win) beam in the Fresnel regime.
Depending on the size of the pixels and the distance
between SLM1 and the holographic medium, these
cross gratings connect any single pixel only to those in
some local neighborhood of the pixel. The effects of
such local cross talk can be minimized by adjusting
the beam splitter ratio R. This interconnection sys-
tem therefore permits simultaneous recording of
each training pair while minimizing the effects of
coherent-recording cross talk.

As illustrated in Fig. 14(c), readout is performed
using the lower optical path (with all of the sources
turned on simultaneously). The volume holographic
optical element, or VHOE, performs the requisite set
of weighted fan-outs, while the imaging lens following
the VHOE performs an optical fan-in operation by
imaging the diffracted beams onto the pixels of the
output plane. The angularly distinct set of colli-
mated beams that illuminated SLM1 during recording

is therefore reconstructed by the VHOE; after pass-
ing through the lens, the beams form a real image in
the output plane, which is conjugate to the SLM1
plane. The net result is that a fan-in of angularly
distinct incoherent beams is performed at each node
in the output plane. As long as the angular spread is
sufficiently large, an incoherent fan-in can be per-
formed without incurring the usual fan-in loss associ-
ated with a collinear incoherent fan-in. If we use
appropriate optical elements (depending on the partic-
ular neural-network model being implemented), the
output plane shown in Fig. 14(c) may be coincident
with the input side of SLM1 itself [as shown in Fig.
14(a)], with SLM2, with the input SLM of the next
layer, or with any combination thereof.

B. Full-Aperture Configuration of the Incoherent/Coherent
Double Angularly Multiplexed Architecture: Simulation

The optical beam propagation method was used to
analyze the fidelity and throughput performance of
the full-aperture configuration of the incoher-
ent/coherent double angularly multiplexed architec-
ture by simulating a 10-to-10 interconnection system
in which the same weight matrix was recorded as
above for the single-source architecture and in which
the same input vector read was used for readout.
In all such simulations, readout was performed using
mutually incoherent beams.

To facilitate direct comparison with the single-
source architecture simulations, we assume that the
same holographic medium characteristics (linear ma-
terial with a thickness of 4.5 mm and a refractive
index of 2.52) and the same operating wavelength
(0.514 ttm) are used. The separation of the sources
in the source array is the same as the pixel separation
in SLM1 and SLM2, which is 257 plm. Instead of
using two lenses to image the source array onto SLM2
[lenses L1 and L2 in Fig. 14(a)], we use a single lens
only, which is separated by twice its focal length from
both the source array and SLM2. The focal lengths
of lenses L4 and L3 are assumed to be 50 mm. The
separation between SLM1 and the holographic me-
dium is also assumed to be 50 mm. The beam
splitter ratio R is unity.

Given the above parameters, light passing through
each pixel of SLM1 spreads approximately 200 jlm
laterally in propagating to the holographic medium
because of diffraction. Since this is less than one
pixel width, we assume for simplicity that geometrical
optics adequately describes the propagation of light
from SLM1 to the holographic medium. Our model
thus does not consider the effects of any diffraction-
induced local-neighborhood cross gratings that may
be present. Instead, each beam that reads out SLM,
[referred to as a Win) beam above] is assumed to
propagate essentially unchanged to the holographic
medium, forming an exact (rather than an approxi-
mate) image of SLM1 on its front face. The interfer-
ence of each W) beam with light from its associated
X.m) pixel in SLM2 therefore results in ten (for a
10-to-10 interconnection) distinct grating regions in
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the holographic medium. In each distinct region the
resulting interconnection grating pattern has a differ-
ent amplitude, proportional to [Xjm)8(m)]1/ 2 for a single
training pair, while the grating periods and slant
angles are the same for all ten regions that derive
from source Sj.

For the parameters assumed above for the source
and pixel separations, for the focal length of L4, and
for the separation between SLM1 and the holographic
medium, each 8(m) beam is shifted by one pixel from
angularly adjacent 8(m) beams on the face of the
hologram. The net result is 19 separate regions in
the holographic medium, with between 1 and 10
gratings multiplexed in each region. The 2-D formu-
lation of the BPM discussed in Section 3.3 was used to
simulate readout of each distinct region.

Simulation results for the diffracted outputs of the
full-aperture configuration of the incoherent/coherent
double angularly multiplexed architecture are shown
in Fig. 15 as a function of the grating strength of the
largest interconnection grating. The rms fidelity
error and throughput are shown in Fig. 16; despite
readout by a set of mutually incoherent beams, the
peak throughput is nearly 95%.

As in our fidelity analysis of the single-source
architecture, the functional dependence of each weight
on its corresponding grating strength determines the
ideal input/output proportionality factor that must
be known for comparison with the actual input/output
characteristics of the system. For holographic inter-
connection systems the ideal input/output relation-
ship is based on the underlying physics of the diffrac-
tion process used in the system.

For example, direct application of the weight rela-
tionship expressed in Rel. (29) for a single-source
architecture to the fidelity analysis of the full-
aperture configuration of the incoherent/coherent
double angularly multiplexed architecture suggests
the presence of significant fidelity errors, as illus-
trated in Figs. 15(c) and 16(a). Although the percent-
age errors in Fig. 15(c) are small for low throughput,
they become quite large (up to 85%) at the peak
throughput. Similar behavior is observed for the
rms fidelity error in Fig. 16(a) (solid curve).

The reason for the apparent lack of fidelity is that
Rel. (29) does not adequately describe the physics
behind the diffraction process used in the full-
aperture configuration. In this case each grating in
a given region of the holographic material is com-
pletely independent of the other interconnection grat-
ings in that region, except for effects such as angular
sidelobe overlap. We therefore assume that the dif-
fraction efficiency of any particular grating is given by
sin2(vij/2), in which vij is the strength of this grating.4 9

On this basis the corresponding weight relationship
for the full-aperture configuration of the architecture
(for multiple training pairs) is

c sin2 [Vi41 )/2], (36)

in which v ) is given by Eq. (24).
Comparison of the diffracted outputs obtained from
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Fig. 15. Simulation results for the 10-to-10 incoherent/coherent
double angularly multiplexed architecture (full-aperture configura-
tion) for readout with mutually incoherent beams. Shown as
functions of the grating strength of the largest grating are (a) the
diffracted outputs, (b) the ratios of the diffracted outputs, (c) the
percentage error using Rel. (28) for the dependence of each weight
on grating strength, and (d) the percentage error using Rel. (36) for
the dependence of each weight on grating strength.

the BPM simulations to the ideal outputs calculated
using Rel. (36) [as shown in Figs. 15(d) and 16(a)]
yields much better measured fidelity performance.
The actual diffracted outputs from the holographic
medium are of course not changed; rather, the metric
against which they are compared is related more
closely to the underlying diffraction behavior of the
interconnection system. The weight definition of
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Fig. 16. Simulation results for the 10-to-10 incoherent/coherent
double angularly multiplexed architecture (full-aperture configura-
tion). Shown are (a) the rms fidelity error for two different
functional dependencies of the weights on the grating strength and
(b) the optical throughput.

Rel. (36) as compared with that of Rel. (29) implies a
different functional form for the weight-update rela-
tionship in an adaptive system. The effect of this
altered functional form on the performance of learn-
ing algorithms is currently unknown. We conjec-
ture that, given a physical implementation with
limited dynamic range for each weight, the soft-
limiting characteristic provided by the sin2 function
may prove to be in some respects preferable to a
hard-clipping saturation characteristic.

As shown in Fig. 15(d), the percentage errors of the
ratios of the diffracted outputs obtained using the
sin2 weight relationship are very close to zero for
throughputs up to and including the peak throughput
of 95%. This result shows that the principal source
of error in this configuration indeed derives from the
metric rather than from some source of cross talk.
The comparison of the two metrics is illustrated
clearly in Fig. 16(a), in which the rms fidelity errors
are plotted on a log scale. The rms fidelity error for
the sin2 metric is relatively flat between 0 and 4 rad of

grating strength (at which the peak throughput oc-
curs) and does not go to zero as v -- 0. The principal
reason for the nonzero fidelity error throughout this
region appears to be overlap of the angular sidelobes
of the gratings multiplexed in each region of the
hologram. Increasing the number of interconnec-
tion nodes in the incoherent/coherent double angu-
larly multiplexed architecture should lower this level
of error by averaging out the contributions of an
increased number of sidelobes, as discussed in Section
4.E.3.

For the 10-to-10 interconnection system analyzed,
the rms fidelity error shown in Fig. 16(a) with a
weight relationship given by Rel. (36) is dramatically
smaller than for the sequentially recorded single-
source architecture using either mutually coherent or
incoherent readout beams. For example, at the grat-
ing strengths corresponding to peak throughput, the
error for the incoherent/coherent double angularly
multiplexed architecture is more than an order of
magnitude lower than that for the sequentially re-
corded case of the single-source architecture.

For completeness we applied the weight relation-
ship of Rel. (36) to the fidelity analysis of the single-
source architecture and found that the fidelity errors
were essentially the same as shown in Fig. 11. This
result is not surprising, because in the single-source
architecture the grating strength of each individual
grating is small (0.4 rad for the largest interconnec-
tion grating at the peak throughput), and Rel. (36)
reduces to Rel. (29) for small v().

In certain volume holographic media, such as pho-
torefractive crystals, the presence of many overlap-
ping incoherent beams in the full-aperture configura-
tion of the incoherent/coherent double angularly
multiplexed architecture results in a small modula-
tion depth for each pair of recording beams, which in
turn significantly reduces the achievable optical
throughput.' 2 This problem may be avoided by us-
ing the subhologram configuration of the incoherent-
coherent double angularly multiplexed architecture,
which is discussed in Section 5.C.

Furthermore, as mentioned in the beginning of
Section 5, the full-aperture configuration of the inco-
herent-coherent double angularly multiplexed archi-
tecture is additionally subject to the effects of grating
degeneracy. By modifying the architecture slightly
to realize the subhologram configuration, we can
potentially avoid this source of cross talk without
using fractal sampling grids. The trade-off, how-
ever, is permitting the presence of additional cross
gratings. As discussed below, these can in turn be
minimized by adjusting the beam splitter ratio.

C. Subhologram Configuration of the
Incoherent/Coherent Double Angularly Multiplexed
Architecture: Operation

As shown in Fig. 17, the subhologram configuration
of the double angularly multiplexed architecture can
be created by inserting an additional lens (L6) be-
tween SLM, and the holographic medium. The lens
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Fig. 17. Schematic diagram of the subhologram configuration of
the incoherent/coherent double angularly multiplexed architec-
ture.

is positioned at a distance of one focal length from the
medium such that it performs a Fourier transform of
the beams emerging from SLM, (this corresponds to
reimaging the source array onto the medium). In
addition, lens L3 is adjusted to image SLM2 onto the
medium, which also effectively reimages the source
array instead of collimating the light from each pixel
in SLM2 as in the full-aperture configuration of the
architecture.

The optical system is designed such that the images
of the source array through the upper and lower
paths of the architecture are in registry at the
holographic medium so that spatially distinct holo-
grams (i.e., subholograms) are formed across the face
of the medium (as shown schematically in Fig. 18).
To understand the nature of each subhologram, let us
focus on only one source Si that is imaged onto the
hologram through both paths. The image of Sj
through the upper path contains the Fourier trans-
form of the image of 8m) that is on SLM1, while the
image of Sj through the lower path has an intensity
proportional to xjm). The interference between the
two beams creates weighted interconnections be-
tween the jth pixel in the input plane and all of the
training-plane pixels. However, interference among

Subholograms

X{1 1'>l 58} X6{} I

Holographic Material

Fig. 18. Schematic diagram of a subhologram array. Each sub-
hologram is shown as spatially separate in this case.

the components of the Fourier transform of 8(m)
causes cross gratings that form intraplanar connec-
tions among the training-plane pixels. By adjusting
the beam splitter ratio R, we can decrease the magni-
tude of these cross gratings relative to the desired
interconnection gratings.

Each of the subholograms connects a single pixel in
the input plane to all of the pixels in the training
plane and thus performs a 1-to-N weighted fan-out
upon reconstruction. As in the full-aperture config-
uration of the architecture, an imaging lens is used
after the holographic medium [shown as L5 in Fig.
14(a)] to perform the fan-in to each node in the output
plane. The subholograms in general will at least
partially overlap within the volume holographic me-
dium, depending on the focal lengths of the lenses and
the spacings of the pixels and of the sources.
However, this spatial overlap does not cause addi-
tional cross gratings to form during simultaneous
exposure of the set of subholograms because the
sources are mutually incoherent. During recording,
all of the sources are turned on simultaneously such
that the recording of M training pairs requires only M
exposures, just as in the full-aperture configuration
of the architecture. Full illumination of both SLM
apertures is accomplished with the entire source
array on, which provides efficient power transfer to
the holographic medium during each exposure.

In Section 5.D we discuss simulation results and
scaling trends for the subhologram configuration of
the double angularly multiplexed architecture.

D. Subhologram Configuration of the
Incoherent/Coherent Double Angularly Multiplexed
Architecture: Simulation

In order to determine the relationship between an
individual weight and the strength of its associated
grating within the subhologram configuration of the
incoherent-coherent double angularly multiplexed
architecture, we use the fact that each spatially
segregated subhologram implements an independent
1-to-N fan-out. As discussed in Section 3.B, an
analytical solution for the diffraction efficiency of a
1-to-N weighted fan-out has been obtained using
coupled-wave theory under the assumption that no
cross gratings are present.3 The net result is that
the weights and grating strengths for the subholo-
gram configuration of the incoherent/coherent dou-
ble angularly multiplexed architecture are related by
(in our notation)

Wij C [VW)], (37)

which is the same as Rel. (29) for the single-source
architecture. The fidelity analysis presented in this
section is based on the use of Rel. (37) to compute the
ideal input/output characteristics of the subholo-
gram configuration.

For the simulations discussed in this section, the
weight matrix and the readout vector used are the
same as those described in Section 3.C.3. Also, the
parameters of the optical components are chosen to
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be the same as for the full-aperture configuration of
the architecture, except that the focal length of L4 is
25 mm, that of L3 is 100 mm, and that of L6 is 50 mm.
For the purposes of our modeling, the resultant
subholograms ( 500 p'm in diameter, set on 500-pRm
centers) are considered to be fully separated, and the
pixels in the training plane are treated as point
sources. The optical beam propagation method was
used to model the readout of each subhologram.

Simulation results are shown in Figs. 19 and 20.
In Fig. 19 the individual diffracted outputs are com-
puted for a beam splitter ratio R of 100. The
horizontal axis, as above, refers to the grating strength
of the largest interconnection grating in the holo-
graphic medium. The ratio percentage errors in Fig.
19(c) are not much different than those shown in Fig.
8(c) for sequential recording in the single-source
architecture. For example, at the peak throughput
of over 95% [as shown in Fig. 20(b)] the largest ratio
error for the subhologram configuration of the
incoherent/coherent double angularly multiplexed
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Fig. 19. Simulation results for the 10-t6-10 incoherent/coherent
double angularly multiplexed architecture (subhologram configura-
tion) for readout with mutually incoherent beams. Shown as
functions of the grating strength of the largest grating are (a) the
diffracted outputs, (b) the ratios of the diffracted outputs, and
(c) the percentage error of each ratio.
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Fig. 20. (a) The rms fidelity error and (b) the throughput for
various beam splitter ratios in the 10-to-10 incoherent-coherent
double angularly multiplexed architecture (subhologram con-
figuration). When R = 100, the fidelity error and throughput
approach the case for which there are no cross gratings. Readout
is performed with mutually incoherent beams.

architecture (with R = 100) is 25%; at 10% through-
put, the largest ratio error is only 4%.

The rms fidelity error for the subhologram configu-
ration is shown in Fig. 20(a) for several values of the
beam splitter ratio, and the corresponding through-
puts are shown in Fig. 20(b). When the beam split-
ter ratio is unity (i.e., when the cross gratings have
the same relative amplitudes as the desired intercon-
nection gratings), the cross gratings cause large fidel-
ity errors except in the limit of low throughput
(similar to the results obtained for the single-source
architecture). As the relative magnitudes of the
cross gratings decrease with increasing beam splitter
ratios, the fidelity and throughput both improve.
For comparison, a case is also shown for which no
cross gratings are present. In all cases, the fidelity
error asymptotically approaches zero with decreasing
grating strength because angular sidelobe overlap
that might affect the desired interconnections does
not occur in the subhologram configuration.
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In order to examine how these results scale with
the number of interconnection nodes in the training
and input planes, we simulated a 4-to-4 interconnec-
tion system using the same weight matrix and read-
out vector as in the single-source architecture 4-to-4
simulations. The fidelity error and throughput re-
sults are shown in Fig. 21 for the same beam splitter
ratios as shown in Fig. 20. For R = 100 neither the
fidelity nor the throughput seems to differ signifi-
cantly between the 10-to-10 and the 4-to-4 results.
For the case R = 1, however, substantial improve-
ment in both fidelity and throughput is observed in
scaling up to the 10-to-10 interconnection system
from the 4-to-4 system (except at small grating
strengths).

E. Discussion of the Incoherent/Coherent Double
Angularly Multiplexed Architecture Configurations

Our simulations demonstrate the ability of the
incoherent/coherent double angularly multiplexed
architecture to obtain high optical throughput (at
least for linear holographic materials) when mutually

Grating Strength (radians)
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0.0' 1 2 ' ...I
0 1 2 3

Grating Strength (radians)
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Fig. 21. (a) The rms fidelity error and (b) the throughput for
various beam splitter ratios in the 4-to-4 incoherent/coherent
double angularly multiplexed architecture (subhologram configura-
tion). Comparison with Fig. 20 indicates how fidelity and through-
put variations scale with the number of interconnection nodes.

incoherent beams are used during readout of the
holographic interconnections. By avoiding beam de-
generacy in both configurations of the architecture,
we can circumvent the usual incoherent fan-in loss
found in the single-source architecture.

Our simulation results (presented in Section 5.B)
further demonstrate that high reconstruction fidelity
is achievable in the full-aperture configuration of the
incoherent/coherent double angularly multiplexed
architecture for a fidelity metric based on the diffrac-
tion properties of its interconnection system. As
noted above, grating degeneracy is present in the
full-aperture configuration such that fractal sam-
pling grids may be required in certain applications.
By contrast, the subhologram configuration of the
architecture avoids the presence of grating degener-
acy, which may permit an increased interconnection
density for a given physical system volume relative to
both the full-aperture configuration of the incoher-
ent/coherent double angularly multiplexed architec-
ture and the single-source architecture. However,
the subhologram configuration involves a fundamen-
tal trade-off between reconstruction fidelity and the
beam splitter ratio resulting from the presence of
cross gratings that are not present in the full-
aperture configuration.

An important aspect of the subhologram configura-
tion is the incorporation of both spatial and angular
multiplexing in the holographic medium to obtain
independence of the interconnection gratings. In
the limiting case of complete spatial separation of the
subholograms, only spatial multiplexing is used.
In this case, a thin holographic material could in
principle be used in the interconnection system.
However, since large numbers of interconnections
(108-100) are anticipated for photonic neural net-
works, space-bandwidth limitations will in general
necessitate some degree of subhologram overlap in
order for compact system implementations to be
realized. In this case, the independence of the inter-
connection gratings with nonnegligible subhologram
overlap necessitates angular (or wavelength) multi-
plexing to achieve Bragg isolation, which in turn
requires the use of a thick holographic medium.
The set of overlapping subhologram configurations
spans the continuum between the full-aperture and
full-subhologram configurations and as such may
yield an optimum compromise between these two
extremes. In fact, the optimal degree of subholo-
gram overlap may well prove to be material depen-
dent.

6. Comparison of Holographic Interconnection
Techniques

In this section we compare and contrast the full-
aperture and subhologram configurations of the
incoherent/coherent double angularly multiplexed
architecture with the single-source architecture con-
figured using different recording methods.

The fidelity and throughput performance of the
single-source architecture and of both configurations
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of the incoherent/coherent double angularly multi-
plexed architecture are summarized in Fig. 22, in
which the rms fidelity errors for the 10-to-10 simula-
tions are shown as a function of optical throughput
instead of grating strength. For each curve in the
figure the right-hand end point represents the peak
throughput achieved in the simulation for the partic-
ular interconnection architecture and recording
method to which that curve corresponds.

As a result of the effects of cross gratings, use of the
simultaneous recording method in the single-source
architecture yields both poor reconstruction fidelity
and a peak throughput of 50% (for the case simulated).
For a beam splitter ratio of 100 (the same as shown
for the subhologram configuration of the inco-
herent/coherent double angularly multiplexed archi-
tecture) the pagewise-sequential recording method
does not yield significant performance improvement.
As mentioned in Section 4.B, a serious drawback for
the use of this recording method is that the beam
splitter ratio required for a given level of fidelity error
increases quadratically with the number of nodes in
the interconnection system. When all of the cross
gratings are eliminated in the single-source architec-
ture by using a sequential recording technique, both
high throughput and good reconstruction fidelity are
achievable.

As the pagewise-sequential and fully sequential
recording methods within the single-source architec-
ture require a significantly larger number of exposure
steps per training pair and greater hardware complex-
ity than the simultaneous recording method, they are
potentially less attractive options for implementation
of large-scale adaptive neural-network systems.
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Fig. 22. Rms error as a function of the throughput for the
single-source interconnection architecture (parameterized by re-
cording method) and for the two configurations of the inco-
herent/coherent double angularly multiplexed architecture. In
all cases, the single-source architecture is read out with mutually
coherent beams and the incoherent/coherent double angularly
multiplexed architecture is read out with mutually incoherent
beams. The curve for the full-aperture configuration of the
incoherent/coherent double angularly multiplexed architecture
lies almost directly on the horizontal axis.

Alternatively, simultaneous recording in a single-
source architecture suffers from a lack of reconstruc-
tion fidelity for significant optical throughput. If
low throughput is tolerable in a given computational
architecture, or if the effects of the cross gratings can
be minimized by using the spatial-frequency-sensi-
tive properties of a particular holographic material, a
single-source architecture with mutually coherent
readout beams and an appropriate fractal sampling
grid becomes a viable option.

As illustrated in Fig. 22, both configurations of the
incoherent/coherent double angularly multiplexed
architecture can achieve both high fidelity and high
optical throughput while using simultaneous record-
ing (with a large enough beam splitter ratio in the
case of the subhologram configuration). High opti-
cal throughput proves to be obtainable (in a linear
holographic medium) despite the use of mutually
incoherent readout beams because each configuration
avoids the presence of beam degeneracy.

In addition to providing for linear summation of
the diffracted output intensities, readout with mutu-
ally incoherent beams in the incoherent/coherent
double angularly multiplexed architecture avoids (dur-
ing operation, not training) the rigid optical phase
stability requirements needed in a single-source archi-
tecture that is read out with mutually coherent
beams. This feature reduces the degree of vibration
isolation required and hence increases the practical-
ity of operating a trained photonic neural network in
an industrial or field environment.

A further advantage of the incoherent/coherent
double angularly multiplexed architecture is that the
interconnection gratings in the volume holographic
medium can be copied into a second volume holo-
graphic recording medium in a single recording step.5'
For example, the full set of interconnections that are
learned in a primary adaptive system can easily be
reproduced in any number of secondary permanent
holographic media for operational use. In contrast,
direct single-step copying of an interconnection pat-
tern within the single-source architecture is not
possible without sacrificing either interconnection
fidelity or optical throughput. Instead, it appears
that at least N (if not N2) exposure steps are required
for duplication of an N-to-N interconnection system
within a single-source architecture.

As mentioned in Section 5.E, greater interconnec-
tion densities may be achievable if grating degeneracy
(and hence the use of fractal sampling grids) can be
avoided. Of the interconnection techniques dis-
cussed herein, only the subhologram configuration of
the incoherent/coherent double angularly multi-
plexed architecture offers the potential of avoiding
the presence of grating degeneracy.

In this paper we have quantitatively evaluated the
performance characteristics of the incoherent/
coherent double angularly multiplexed architecture
(based on the use of an array of individually coherent
but mutually incoherent sources) for highly multi-
plexed volume holographic interconnection ap-
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plications. In addition, we have quantitatively eval-
uated the directly comparable performance character-
istics of conventional single-source architectures.
As discussed below, there are several clear directions
for continuing research.

7. Future Research Directions

In this study we have performed a detailed compari-
son of a number of holographic interconnection archi-
tectures that can be used to implement weighted
interconnections with a high degree of fan-out and
fan-in. For the most part, this comparison has been
made on the basis of interconnection pathway indepen-
dence (lack of cross talk) and insertion loss (optical
throughput efficiency). For the neural-network ap-
plication in particular, it would be of considerable
interest to determine the appropriate levels of inter-
channel isolation and insertion loss permissible in the
context of particular learning models without compro-
mising overall system performance. In other words,
to what degree are certain neural-network models
sensitive (or insensitive) to these effects, if we rely to a
greater or lesser extent on the learning capacity of the
network to obviate the necessity for ideal interconnec-
tion behavior? Preliminary experimental and theo-
retical studies suggest the ability of some learning
algorithms to overcome a certain degree of cross talk
in the interconnection system,52 53 but a more compre-
hensive study of this issue is necessary.

The simulation studies presented herein should be
expanded to evaluate the additional limitations im-
posed by the effects of self-diffraction among the
recording beams, grating erasure, exposure schedul-
ing, finite pixel size, and finite range of grating-
strength modulation on both reconstruction fidelity
and throughput, particularly as the number of inter-
connections is increased. Significantly increasing
the number of interconnection nodes considered in
this analysis will enable scaling trends for the relative
errors of each architecture to be further identified
and compared. Inclusion of the grating recording
characteristics of photorefractive media in the holo-
graphic-recording model will permit the effects of
material nonlinearities to be determined and the
utility of these materials for the implementation of
adaptive photonic neural networks to be evaluated.
Furthermore, extension of the BPM simulations to
three dimensions will permit verification of the trends
observed using a two-dimensional model and will also
permit direct investigation of grating-degeneracy ef-
fects.

In addition to further modeling studies, previous
laboratory work that has confirmed the basic features
of the incoherent/coherent double angularly multi-
plexed architectures can be expanded to include a
more detailed study of various implementation is-
sues, particularly as applied to photorefractive media.
Such issues include the quantitative comparison of
experimentally determined fidelity errors and optical
throughput losses with simulation results; the effects
of scale-up in the number of nodes on interconnection

performance; the effects of subhologram overlap and
the beam splitter ratio on reconstruction fidelity and
throughput; and continued device development that
will permit the eventual integration of mutually
compatible source arrays, neuron-unit arrays, and
volume holographic media into a practical system.
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