
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

1994-10-13

A VLSI Implementation of a Parallel, Self-Organizing Learning A VLSI Implementation of a Parallel, Self-Organizing Learning

Model Model

Tony R. Martinez
martinez@cs.byu.edu

George L. Rudolph

Linton G. Salmon

Matthew G. Stout

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Stout, M., Rudolph, G., Martinez, T. R., and Salmon, L., "A VLSI Implementation of a Parallel Self-

Organizing Learning Model", Proceedings of the 12th International Conference on Pattern

Recognition, vol. 3, pp. 373-376, 1994.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Martinez, Tony R.; Rudolph, George L.; Salmon, Linton G.; and Stout, Matthew G., "A VLSI Implementation
of a Parallel, Self-Organizing Learning Model" (1994). Faculty Publications. 1167.
https://scholarsarchive.byu.edu/facpub/1167

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1167?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

A VLSI Implementation of a Parallel, Self-organizing
Learning Model

Matthew G. Stout
Linton G. Salmon

Department of
Electrical and Computer Engineering

Brigham Young University
Provo, UT 84602

A bst r act
This paper presents a VLSI implementation of the

Priority Adaptive Self-organizing Concurrent System
(PASOCS) learning model that is built using a multi-
chip module (MCM) substrate. Many current hard-
ware implementations of neural network learning mod-
els are direct implementations of classical neural net-
work structures-a large number of sample computing
nodes connected by a dense number of weighted links.
PASOCS is one of a class of ASOCS (Adaptive Self-
Organizing Concurrent System) connectionist models
whose overall goal is the same as classical neural net-
works models, but whose functional mechanisms differ
significantly. This model has potential application in
areas such as pattern recognition, ro botics, logical in-
ference, and dynamic control.

1 Introduction
Over the past few years, many companies and re-

searchers have announced hardware implementations
of neural networks [l, 2, 3,4]. The integrated circuits
(ICs) cited are representative of much current neural
network implementation research. They are direct im-
plementations of classical neural network structures-
a large number of simple computin nodes connected
by a dense number of weighted linksj4,5,6]. The node
function is typically a variation on sum-of-products
[7]. Early learning models and implementations sup-
port only static topologies in the sense that learn-
ing does not involve changes in the network topol-
ogy. More recent models support dynamic topologies
in learning, and therefore implementations should also
support this. The style of implementation presented
here accomplishes this goal.

The implementation described is based on the con-
nectionist architecture Adaptive Self-organizing Con-
current System (ASOCS) [8, 9, 10, 111. The primary
goal of an ASOCS is similar to the goals of many
decision-making connectionist systems-the system
attempts to learn an arbitrary set of input-to-output
vector mappings. However, an ASOCS differs from
many other connectionist systems in the manner that
this task is accomplished. ASOCS is essentially a rule-

George L. Rudolph
Tony R. Martinez

Department of Computer Science
Brigham Young University

Provo, UT 84602

based system. That is, an ASOCS learns by the intro-
duction, storage, and comparison of rules. The sys-
tem is able to learn by keeping itself consistent with
the rules and by dynamically changing its topology as
new rules are introduced. In this way, an ASOCS can
change its structure to suit a particular problem.

This paper presents an implementation of a version
of ASOCS called PASOCS (Priority ASOCS) [lo, 111
that is built on a multi-chip module (MCM) inter-
connection substrate. Although this implementation
is modeled specifically after the PASOCS model, the
general design of this MCM-based system is versa-
tile and can be modified to reflect other connectionist
models [lo, 11, 121. This model has potential appli-
cation in areas such as pattern recognition, robotics,
logical inference, and dynamic control.

Due to space considerations, background informa-
tion dealing with the PASOCS learning model is not
presented here but can be found in [ll, 131. The hard-
ware implementation is described in Section 2, and the
PASOCS MCM system, its test results, and ideas for
related research are presented in Section 3.

2 Implementation
The IC described in this section was fabricated in

2pm digital CMOS. It was designed using a VLSI lay-
out editor and simulated using an event-driven switch-
level simulator. The circuit was constructed using sim-
ple cells (NAND gates, NOR gates, inverters, etc.)
from standard cell libraries and no special purpose
cells were required.

Each IC contains the functional hardware for one
node of a PASOCS. The nodes of the PASOCS are
connected together in a binary tree structure (the logic
network), and the root node is connected to a general
purpose logic analyzer that acts as a control unit. The
node can be described as a combinational logic block
with internal latches for information storage. Infor-
mation presented to the PASOCS is broadcast from
the control unit (CU) to the logic network (LN), and
information from the LN that must be sent to the CU
flows up from the bottom of the tree (the information
is gathered.)

1051-4651/94 $04.00 0 1994 IEEE
373

Table 1: The match function for one variable. The
abbreviations are as follows: d , the value of the envi-
ronment variable; SId, the data bit of the SI; SIC, the
careldon’t care bit of the SI.

Single-Variable
Match Fuumtion

The general operation of the PASOCS is asyn-
chronous, that is, a global clock is not used to drive
the system into sequential states. Rather, the clock
is replaced by a global mode (sub-mode) signal that
places the entire network into a particular mode of
operation. Thus, the mode signal is an asynchronous
signal that drives the system. Once the CU generates
this mode signal, it broadcasts information to the LN,
the nodes operate on the new information, and the re-
sults of these operations are gathered and eventually
reach the CU. After the CU has waited a sufficient
amount of time for information to be gathered, the
CU generates the next mode signal.

The operation of the system is divided illto three
general modes: initalization, execution, and learning.
In addition, the learning mode is divided into six sub-
modes. The functions of the modes and sub-modes
are summarized in this section.
2.1 Execution mode

The execution mode (ex) is the default mode of the
system. If the system is not involved in learning, then
it constantly updates its output in response to changes
in the environment state. The output of the system
consists of the right-hand side (RHS) of the winning
node’s stored instance (SI) and its corresponding pri-
ority. (The winning node is the node with the highest
priority whose SI matches the environment state.) If
the environment does not match the SI of any node,
then a priority of zero is received by the CU.

Each variable of the SI (and the new instance in
the learning sub-modes) consists of two bits: a “data”
bit and a “care/don’t care” bit. The data bit is the
actual value of the variable. However, if the value of
the careldon’t care bit is zero, then the variable is a
“don’t care”. The match output of every node during
ex for a single variable is summarized in Table 1.

This prototype has an instance size of four input
variables and one output variable. Therefore, the four-
variable match function is accomplished by using four
single-variable match functions as shown at the top of
Figure 1. In this figure, do-3 represent the four envi-
ronment variables, SIdO-3 the four SI data bit values,
and SIcO-3 the four SI careldon’t care bit values.

The four single-variable match functions and the
AND gate at the top of Figure 1 determine whether
the left-hand side (LHS) of the SI matches the envi-
ronment state. The priority is passed to the Priority

Single-Vsriable Singlavariable Single-Variable
Match Function Match Funcoon Match Fvnction

Winning
priority F- Priority Comparison Function From
Children

Winning Priority

Figure 1: Block diagram of execution mode.

NIcO NIdO SIcO SldO NIcl NIdl SIcl SIdl NIc2 NId2 Sic2 SId2 NIc3 NId3 SIc3 SI&

self delete winning priority IC, ADD-1

Figure 2: Block diagram of learning sub-mode 1.

Comparison Function only if a match occurs and the
node is not free-that is, if the node contains a SI.
Otherwise, the priority is masked to the value of zero.
The Priority Comparison Function compares the pri-
ority of the node with the priorities of its children,
and the winning (or highest) priority and correspond-
ing RHS is sent to its parent. This process is contin-
ued for each node until the CU receives the RHS and
priority of the LN’s winning node.
2.2 Learning sub-mode 1

In learning sub-mode 1 (U) , the relationship of the
SI to the new instance (the instance to be learned)
must be determined. The relationship is determined
with a three-level logic structure (shown at the top
of Figure 2) that operates only on single variables of
the new instance (NI) and SI. Figure 3 is a sequential
state-flow diagram that clarifies the process of deter-
mining the relationship between the LHSs of two in-
stances using single-variable comparisons. From the

374

SB.ESP

Subset Equal Superset Discr.

Con. ND/IG D / M S K D / M S K ND/MSK

Node Selection Sinal self-delere
From Parent

Combinational

Combinational
Logic

set free

Overlap

ND/MSK

Node Routing Signal
To Parent

Figure 3: A sequential view of the parallel relation-
ship comparison circuit (from U) that shows how the
relationship between two instances can be determined
using only single-variable comparisons. The abbrevia-
tions are as follows: SB, Subset; E, Equal; SP, Super-
set; D, Discriminated; 0, Overlap.

I Dis. I ND/ADD-I I D / M S K I D / M S K I ND/MSK I ND/ADD-I I

Table 2: The actions generated by the node. The
abbreviations are as follows: Discr., Discriminated;
Con., Concordant; Dis., Discordant; D , Delete node;
ND, Do not delete node; MSK, Mask priority to zero;
IG, Ignore NI; ADD-I, Add the NI with a priority one
higher than the highest priority of any inconsistent SI.

“Start” state, the four possible single-variable com-
parisons determine the path to the next state. For
example, if the first-order relationship is “SB” (sub-
set), then the path from “Start” to “SB” is followed.
All successive comparisons determine the path to the
next state. For example, if the next comparison re-
sults in “D” (discriminated), then the path to “D” is
followed. Every successive comparison will remain at
“D” .

The relationship between the SI and NI determines
whether the action signals MSK, IG, ADD-I, and self-
delete (shown in Figure 2) for each node are asserted,
as shown in Table 2. Once the values of these signals
are determined, each node compares its action and
priority with that of its children, resulting in a win-
ning action and corresponding priority for the entire
system.

The next mode or sub-mode of operation depends
on the winning action reported to the CU in 11. That
is, if the action IG is reported, then none of the follow-
ing learning sub-modes are performed. If the reported
action is ADD-I, or if a priority of zero is received
by the CU (M S K) , then the remaining learning sub-
modes are performed.

- 1

Combinational

SI Latches

Combinational

Logic

Node Selecuon lnformauon Node Roullog Jnfmuon
To Children From Clnldren

Figure 4: Block diagram of learning sub-modes 2-6.

2.3 Learning sub-modes 2-6
The function of the remaining sub-modes is to keep

the system minimal and consistent. This is done by
allocating a new node that contains the NI and corre-
sponding priority and by deleting redundant or con-
tradicting information from the system. After this is
done, the CU proceeds to the default mode (e x) or to
11 if additional learning is desired.

The block diagram of learning sub-modes 2-6 is
shown in Figure 4. In learning sub-mode 2 (l Z) , the
free latch is toggled to a high value if the self-delete
signal was asserted in 11, effectively deleting the node
from the system. In learning sub-mode 3 (U), the
NI is stored in the latches of every free node in the
system. In 14, each node sends its routing informa-
tion to its parent. At the end of this sub-mode, every
route latch in the system contains information that
determines a unique path from the root node down
through the tree. This unique path is guaranteed to
contain at least one free node that now has the NI and
its priority’stored in its latches. From the information
contained in the newly acquired routing information
and the present state of the free latch, the next state
of the free latch of each node is determined in learning
sub-mode 5 (l 5) . This state is temporarily stored in
the set free latch until its value is needed in learning
sub-mode 6 (16). Finally, in 16, the set free latch’s
value is used to update the free latch’s value. In other
words, a single free latch’s value is set to a low logic
level, effectively adding it to the tree.

3 System design, testing, and ongoing
research

Three of the ICs described in Section 2 have been
interconnected on a multi-chip module interconnec-
tion substrate (see Figure 5) in a three-node feasibil-
ity study, and this small PASOCS has been tested.
To test the system, various combinations of instances
were presented, and the system’s outputs were ob-
served.

375

Figure 5: The PASOCS MCM prototype. The dimen-
sions of the MCM are 2.5cm x 2.3cm.

The execution mode of the PASOCS operates as
predicted by the software simulation, but two func-
tions of the learning sub-modes (associated with over-
all network minimization and rule relationships) do
not operate as predicted. These problems can cause
the system to store invalid information and therefore
return incorrect information in the execution mode.
It should be noted that these are problems with the
specific implementation of the ICs and not with the
functionality of the PASOCS model or with the orig-
inal conceptual design of the ICs, described in more
detail in [13]. Despite these problems, most of the
functions of the three-node PASOCS are functioning
according to original design specifications. A detailed
report of the test results can be found in [13].

In addition to the research reported here, ASOCS
models other than PASOCS are also being investi-
gated. These and other more classical neural network
models can benefit from the results presented in this
paper. Current research seeks to extend the general
ideas presented here to other models.

Other related research seeks high-density intercon-
nect technologies that can be exploited to create larger
neural network systems [13, 141. MCM interconnec-
tion and packaging techniques offer a promising solu-
tion to the high interconnect and processing element
densities required for such hardware implementations.
The MCM for this prototype was fabricated in the
Integrated Microelectronics Laboratory at Brigham
Young University. Other models that can benefit from
MCM characteristics are also being investigated.

4 Conclusion
This paper described a VLSI implementation of a

connectionist system that was built using an MCM
interconnection substrate. The IC differs significantly
from many other commercially available ICs and re-
search projects dealing with connectionist architec-
tures. Many of these are modeled after the classi-
cal “weighted connection” neural systems. However,
this IC is modeled after PASOCS

different approach to implementation.

Adaptive
Self-organizing Concurrent

Acknowledgements
This research was supported in part by the En-

dowed Chair of Engineering, occupied by Dr. Linton
G. Salmon, and by grants from the National Science
Foundation and Novell, Inc.

References
[l] Intel Corporation. 801 70” Electrically Train-

able Analog Neural Network, Jun 1991.
[2] American NeuraLogix, Inc. NLX420 Neural Pro-

cessor Slice, Feb 1992.
[3] M. Wright. Neural-network IC architectures de-

fine suitable applications. EDN, pages 84-90, Jul
1991.

An ana-
log VLSI implementation of hopfield’s neural net-
work. IEEE Macro, pages 47-55, Dec 1989.

[5] D. Hammerstrom, T. Leen, and E. Means.
Dynamics and VLSI implementation of self-
organizing networks. In Advanced Neural Com-
puters, pages 185-92. North-Holland, 1990.

[6] U. Ramacher. Hardware concepts for neural net-
works. In Advanced Neural Computers, pages
209-18. North-Holland, 1990.

[7] D. E. Rumelhart, J . L. McClelland, and the PDP
Research Group. Explorations in Parallel Dis-
tributed Processing: A Handbook of Models, Pro-
grams, and Exercises. MIT Press, 1988.

[8] T. R. Martinez and D. M. Campbell. A self-
adjusting dynamic logic module. Journal of Par-
allel and Distributed Computing, 11(4):303-13,
1991.

A self-
organizing binary decision tree for incrementally
defined rule based systems. IEEE Transactions
on Systems, Man, and Cybernetics, 21(5):1231-
7, Sep/Oct 1991.

[lo] T. R. Martinez. Consistency and generalization
of incrementally trained connectionist models. In
International Symposium on Circuits and Sys-
tems, pages 706-9, 1990.

[ll] T. R. Martinez, D. M. Campbell, and B. W.
Hughes. Priority ASOCS. Journal of Artificial
Neural Networks, 1(3), 1994.

[12] G. Rudolph and T.R. Martinez. An efficient static
topology for modeling ASOCS. Artificial Neural
Networks, pages 729-34, 1991.

[13] M. G. Stout. Multi-chip module design for neural
networks. Master’s thesis, Brigham Young Uni-
versity, 1994.

[14] M. G. Stout, G. L. Rudolph, L. G. Salmon, and
T. R. Martinez. A multi-chip module implemen-
tation of a neural network. In Proceedings of the
IEEE Multi- Chip Module Conference, pages 20-5,
1994.

[4] M. Verleysen and P. G. A. Jespers.

[9] T. R. Martinez and D. M. Campbell.

376

	A VLSI Implementation of a Parallel, Self-Organizing Learning Model
	Original Publication Citation
	BYU ScholarsArchive Citation

	A Vlsi Implementation Of A Parallel, Self-organizing Learning Model - Pattern Recognition, 1994. Vol. 3 - Conference C: Computer Vision & Image Processing., Proceedings

