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A VLSI Implementation of a Parallel, Self-organizing 
Learning Model 

Matthew G. Stout 
Linton G. Salmon 

Department of 
Electrical and Computer Engineering 

Brigham Young University 
Provo, UT 84602 

A bst r act 
This paper presents a VLSI implementation of the 

Priority Adaptive Self-organizing Concurrent System 
(PASOCS) learning model that is  built using a multi- 
chip module (MCM) substrate. Many current hard- 
ware implementations of neural network learning mod- 
els are direct implementations of classical neural net- 
work structures-a large number of sample computing 
nodes connected by  a dense number of weighted links. 
PASOCS is one of a class of ASOCS (Adaptive Self- 
Organizing Concurrent System) connectionist models 
whose overall goal is  the same as classical neural net- 
works models, but whose functional mechanisms differ 
significantly. This model has potential application in 
areas such as pattern recognition, ro botics, logical in- 
ference, and dynamic control. 

1 Introduction 
Over the past few years, many companies and re- 

searchers have announced hardware implementations 
of neural networks [l, 2, 3,4]. The integrated circuits 
(ICs) cited are representative of much current neural 
network implementation research. They are direct im- 
plementations of classical neural network structures- 
a large number of simple computin nodes connected 
by a dense number of weighted linksj4,5,6]. The node 
function is typically a variation on sum-of-products 
[7]. Early learning models and implementations sup- 
port only static topologies in the sense that learn- 
ing does not involve changes in the network topol- 
ogy. More recent models support dynamic topologies 
in learning, and therefore implementations should also 
support this. The style of implementation presented 
here accomplishes this goal. 

The implementation described is based on the con- 
nectionist architecture Adaptive Self-organizing Con- 
current System (ASOCS) [8, 9, 10, 111. The primary 
goal of an ASOCS is similar to the goals of many 
decision-making connectionist systems-the system 
attempts to  learn an arbitrary set of input-to-output 
vector mappings. However, an ASOCS differs from 
many other connectionist systems in the manner that 
this task is accomplished. ASOCS is essentially a rule- 
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based system. That is, an ASOCS learns by the intro- 
duction, storage, and comparison of rules. The sys- 
tem is able to learn by keeping itself consistent with 
the rules and by dynamically changing its topology as 
new rules are introduced. In this way, an ASOCS can 
change its structure to  suit a particular problem. 

This paper presents an implementation of a version 
of ASOCS called PASOCS (Priority ASOCS) [lo, 111 
that is built on a multi-chip module (MCM) inter- 
connection substrate. Although this implementation 
is modeled specifically after the PASOCS model, the 
general design of this MCM-based system is versa- 
tile and can be modified to  reflect other connectionist 
models [lo, 11, 121. This model has potential appli- 
cation in areas such as pattern recognition, robotics, 
logical inference, and dynamic control. 

Due to space considerations, background informa- 
tion dealing with the PASOCS learning model is not 
presented here but can be found in [ll, 131. The hard- 
ware implementation is described in Section 2, and the 
PASOCS MCM system, its test results, and ideas for 
related research are presented in Section 3. 

2 Implementation 
The IC described in this section was fabricated in 

2pm digital CMOS. It was designed using a VLSI lay- 
out editor and simulated using an event-driven switch- 
level simulator. The circuit was constructed using sim- 
ple cells (NAND gates, NOR gates, inverters, etc.) 
from standard cell libraries and no special purpose 
cells were required. 

Each IC contains the functional hardware for one 
node of a PASOCS. The nodes of the PASOCS are 
connected together in a binary tree structure (the logic 
network), and the root node is connected to  a general 
purpose logic analyzer that acts as a control unit. The 
node can be described as a combinational logic block 
with internal latches for information storage. Infor- 
mation presented to the PASOCS is broadcast from 
the control unit (CU) to  the logic network (LN), and 
information from the LN that must be sent to the CU 
flows up from the bottom of the tree (the information 
is gathered.) 
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Table 1: The match function for one variable. The 
abbreviations are as follows: d ,  the value of the envi- 
ronment variable; SId, the data bit of the SI; SIC, the 
careldon’t care bit of the SI. 

Single-Variable 
Match Fuumtion 

The general operation of the PASOCS is asyn- 
chronous, that  is, a global clock is not used to drive 
the system into sequential states. Rather, the clock 
is replaced by a global mode (sub-mode) signal that 
places the entire network into a particular mode of 
operation. Thus, the mode signal is an asynchronous 
signal that drives the system. Once the CU generates 
this mode signal, it broadcasts information to the LN, 
the nodes operate on the new information, and the re- 
sults of these operations are gathered and eventually 
reach the CU. After the CU has waited a sufficient 
amount of time for information to be gathered, the 
CU generates the next mode signal. 

The operation of the system is divided illto three 
general modes: initalization, execution, and learning. 
In addition, the learning mode is divided into six sub- 
modes. The functions of the modes and sub-modes 
are summarized in this section. 
2.1 Execution mode 

The execution mode (ex) is the default mode of the 
system. If the system is not involved in learning, then 
it constantly updates its output in response to changes 
in the environment state. The output of the system 
consists of the right-hand side (RHS) of the winning 
node’s stored instance (SI) and its corresponding pri- 
ority. (The winning node is the node with the highest 
priority whose SI matches the environment state.) If 
the environment does not match the SI of any node, 
then a priority of zero is received by the CU. 

Each variable of the SI (and the new instance in 
the learning sub-modes) consists of two bits: a “data” 
bit and a “care/don’t care” bit. The data bit is the 
actual value of the variable. However, if the value of 
the careldon’t care bit is zero, then the variable is a 
“don’t care”. The match output of every node during 
ex for a single variable is summarized in Table 1. 

This prototype has an instance size of four input 
variables and one output variable. Therefore, the four- 
variable match function is accomplished by using four 
single-variable match functions as shown at the top of 
Figure 1. In this figure, do-3 represent the four envi- 
ronment variables, SIdO-3 the four SI data bit values, 
and SIcO-3 the four SI careldon’t care bit values. 

The four single-variable match functions and the 
AND gate at the top of Figure 1 determine whether 
the left-hand side (LHS) of the SI matches the envi- 
ronment state. The priority is passed to the Priority 

Single-Vsriable Singlavariable Single-Variable 
Match Function Match Funcoon Match Fvnction 

Winning 
priority F- Priority Comparison Function From 
Children 

Winning Priority 

Figure 1: Block diagram of execution mode. 

NIcO NIdO SIcO SldO NIcl NIdl SIcl SIdl NIc2 NId2 Sic2  SId2 NIc3 NId3 SIc3 SI& 

self delete winning priority IC, ADD-1 

Figure 2:  Block diagram of learning sub-mode 1. 

Comparison Function only if a match occurs and the 
node is not free-that is, if the node contains a SI. 
Otherwise, the priority is masked to the value of zero. 
The Priority Comparison Function compares the pri- 
ority of the node with the priorities of its children, 
and the winning (or highest) priority and correspond- 
ing RHS is sent to its parent. This process is contin- 
ued for each node until the CU receives the RHS and 
priority of the LN’s winning node. 
2.2 Learning sub-mode 1 

In learning sub-mode 1 ( U ) ,  the relationship of the 
SI to the new instance (the instance to  be learned) 
must be determined. The relationship is determined 
with a three-level logic structure (shown at the top 
of Figure 2) that operates only on single variables of 
the new instance (NI) and SI. Figure 3 is a sequential 
state-flow diagram that clarifies the process of deter- 
mining the relationship between the LHSs of two in- 
stances using single-variable comparisons. From the 
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SB.ESP 

Subset Equal Superset Discr. 

Con. ND/IG D / M S K  D / M S K  ND/MSK 

Node Selection Sinal self-delere 
From Parent 

Combinational 

Combinational 
Logic 

set free 

Overlap 

ND/MSK 

Node Routing Signal 
To Parent 

Figure 3: A sequential view of the parallel relation- 
ship comparison circuit (from U )  that shows how the 
relationship between two instances can be determined 
using only single-variable comparisons. The abbrevia- 
tions are as follows: SB, Subset; E, Equal; SP, Super- 
set; D, Discriminated; 0, Overlap. 

I Dis. I ND/ADD-I I D / M S K  I D / M S K  I ND/MSK I ND/ADD-I I 

Table 2: The actions generated by the node. The 
abbreviations are as follows: Discr., Discriminated; 
Con., Concordant; Dis., Discordant; D ,  Delete node; 
ND,  Do not delete node; MSK, Mask priority to zero; 
IG,  Ignore NI; ADD-I,  Add the NI with a priority one 
higher than the highest priority of any inconsistent SI. 

“Start” state, the four possible single-variable com- 
parisons determine the path to the next state. For 
example, if the first-order relationship is “SB” (sub- 
set), then the path from “Start” to “SB” is followed. 
All successive comparisons determine the path to the 
next state. For example, if the next comparison re- 
sults in “D” (discriminated), then the path to “D” is 
followed. Every successive comparison will remain at 
“D” . 

The relationship between the SI and NI determines 
whether the action signals MSK, IG, ADD-I,  and self- 
delete (shown in Figure 2) for each node are asserted, 
as shown in Table 2. Once the values of these signals 
are determined, each node compares its action and 
priority with that of its children, resulting in a win- 
ning action and corresponding priority for the entire 
system. 

The next mode or sub-mode of operation depends 
on the winning action reported to the CU in 11. That 
is, if the action IG is reported, then none of the follow- 
ing learning sub-modes are performed. If the reported 
action is ADD-I, or if a priority of zero is received 
by the CU ( M S K ) ,  then the remaining learning sub- 
modes are performed. 

- 1  

Combinational 

SI Latches 

Combinational 

Logic 

Node Selecuon lnformauon Node Roullog Jnfmuon 
To Children From Clnldren 

Figure 4: Block diagram of learning sub-modes 2-6. 

2.3 Learning sub-modes 2-6 
The function of the remaining sub-modes is to keep 

the system minimal and consistent. This is done by 
allocating a new node that contains the NI and corre- 
sponding priority and by deleting redundant or con- 
tradicting information from the system. After this is 
done, the CU proceeds to the default mode ( e x )  or to  
11 if additional learning is desired. 

The block diagram of learning sub-modes 2-6 is 
shown in Figure 4. In learning sub-mode 2 ( l Z ) ,  the 
free latch is toggled to  a high value if the self-delete 
signal was asserted in 11, effectively deleting the node 
from the system. In learning sub-mode 3 (U), the 
NI is stored in the latches of every free node in the 
system. In 14, each node sends its routing informa- 
tion to its parent. At the end of this sub-mode, every 
route latch in the system contains information that 
determines a unique path from the root node down 
through the tree. This unique path is guaranteed to 
contain at least one free node that now has the NI and 
its priority’stored in its latches. From the information 
contained in the newly acquired routing information 
and the present state of the free latch, the next state 
of the free latch of each node is determined in learning 
sub-mode 5 ( l 5 ) .  This state is temporarily stored in 
the set free latch until its value is needed in learning 
sub-mode 6 (16). Finally, in 16, the set free latch’s 
value is used to update the free latch’s value. In other 
words, a single free latch’s value is set to a low logic 
level, effectively adding it to the tree. 

3 System design, testing, and ongoing 
research 

Three of the ICs described in Section 2 have been 
interconnected on a multi-chip module interconnec- 
tion substrate (see Figure 5) in a three-node feasibil- 
ity study, and this small PASOCS has been tested. 
To test the system, various combinations of instances 
were presented, and the system’s outputs were ob- 
served. 
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Figure 5: The PASOCS MCM prototype. The dimen- 
sions of the MCM are 2.5cm x 2.3cm. 

The execution mode of the PASOCS operates as 
predicted by the software simulation, but two func- 
tions of the learning sub-modes (associated with over- 
all network minimization and rule relationships) do 
not operate as predicted. These problems can cause 
the system to  store invalid information and therefore 
return incorrect information in the execution mode. 
It should be noted that these are problems with the 
specific implementation of the ICs and not with the 
functionality of the PASOCS model or with the orig- 
inal conceptual design of the ICs, described in more 
detail in [13]. Despite these problems, most of the 
functions of the three-node PASOCS are functioning 
according to  original design specifications. A detailed 
report of the test results can be found in [13]. 

In addition to the research reported here, ASOCS 
models other than PASOCS are also being investi- 
gated. These and other more classical neural network 
models can benefit from the results presented in this 
paper. Current research seeks to extend the general 
ideas presented here to other models. 

Other related research seeks high-density intercon- 
nect technologies that can be exploited to create larger 
neural network systems [13, 141. MCM interconnec- 
tion and packaging techniques offer a promising solu- 
tion to  the high interconnect and processing element 
densities required for such hardware implementations. 
The MCM for this prototype was fabricated in the 
Integrated Microelectronics Laboratory at Brigham 
Young University. Other models that can benefit from 
MCM characteristics are also being investigated. 

4 Conclusion 
This paper described a VLSI implementation of a 

connectionist system that was built using an MCM 
interconnection substrate. The IC differs significantly 
from many other commercially available ICs and re- 
search projects dealing with connectionist architec- 
tures. Many of these are modeled after the classi- 
cal “weighted connection” neural systems. However, 
this IC is modeled after PASOCS 

different approach to implementation. 
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