
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

1995-09-23

A Provably Convergent Dynamic Training Method for Multi-layer A Provably Convergent Dynamic Training Method for Multi-layer

Perceptron Networks Perceptron Networks

Timothy L. Andersen

Tony R. Martinez
martinez@cs.byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Andersen, T. and Martinez, T. R., "A Provably Convergent Dynamic Training Method for Multi-

layer Perceptron Networks", Proceedings of the 2nd International Symposium on

Neuroinformatics and Neurocomputers, pp. 77-84, 1995.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Andersen, Timothy L. and Martinez, Tony R., "A Provably Convergent Dynamic Training Method for Multi-
layer Perceptron Networks" (1995). Faculty Publications. 1158.
https://scholarsarchive.byu.edu/facpub/1158

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1158?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

A Provably Convergent Dynamic Training Method for
Multi-layer Perceptron Networks

Tim L. Andersen and Tony R. Martinez
Computer Science Department, Brigham Young University, Provo, Utah 84602

e-mail: tim@axon.cs.byu.edu, martinez@cs.byu.edu

ABSTRACT
This paper presents a new method for training multi-layer perceptron networks caUed DMPl (Dynamic Multi-
layer P e r c q " 1). The method is based upon a divide and conquer approach which builds networks in the form
of binary trees, dynamically allocating nodes and layers as needed. The individual nodes of the network are
trained using a genetic aIgorithm. The method is capable of handling real-valued inputs and a proof is given
concerning its convergence properties of the basic model. Simulation results show that DMPl performs
favorably in comparison with other learning algorithms.

1 Introduction
One of the first models used in the field of neural networking is the single layer, simple

perceptron model (Rosenblatt 1958). The well understood weakness of single layer networks
is that they are able to learn only those functions which are linearly separable. Since multi-
layer networks are capable of going beyond the limited set of linearly separable problems and
solving arbitrarily complex problems, researchers have devoted much effort to devising multi-
layer network training algorithms. The unfortunate drawback to many of the current multi-
layer training methods is that they require someone to specify the network architecture a-priori
(make an educated guess as to the appropriate number of layers, number of nodes in each
layer, connectivity between nodes, etc.). With a pre-specified network architecture, there is no
guarantee that it will be the appropriate network for the problem at hand, and it may not even be
capable of converging to a solution.

Thus, several multi-layer training algorithms have been proposed which do not require
the user to specify the network architecture a-priori. Some of these include EGP (Romaniuk
1993), Cascade Correlation (Fahlman 1991), Iterative Atrophy (Smotroff 1991), DCN
(Romaniuk 1993), ASOCS (Martinez 1990), and DNAL (Bartlett 1993). All of these
methods seek to dynamically generate an appropriate network structure for solving the given
learning problem during the training phase.

This paper presents a new dynamic method for training multi-layer perceptron networks
which we call DMPl (Dynamic Multi-layer Perceptron 1). This method is similar in spirit to
the DCN method given in (Romaniuk 1993) in that:

0 The network begins with a single perceptron node and dynamically adds nodes as
needed.

As nodes are added to the network, each node is trained independently from all
other nodes.

Each node is trained on only a portion of the training set, the portion being based
upon the current set of misclassified examples - a divide and conquer approach.

The network structure grows backwards from the original output node, rather than

The output of each node is connected to at most one other node.
Each node has as inputs the output of at most two other nodes and the training set

0 A Genetic Algorithm (GA) is used to train the individual nodes of the network.

The basic DMPl algorithm is discussed in detail in section 2. Two proofs are given,
one in section 3 which shows that leaf node convergence implies convergence of the entire
network, and one in section 4 which shows that the algorithm is guaranteed to converge to a
solution if the training set is consistent. Section 5 discusses the method used to train individual
nodes in the network, and simulation results are given in section 6. Conclusion and discussion
are given in section 7.

However, the DMPl method differs from DCN in several ways, some of which are:

forwards.

inputs.

0-7803-2512-5/95/$4.00 O 1995 IEEE 77

mailto:tim@axon.cs.byu.edu
mailto:martinez@cs.byu.edu

2 The Basic Approach
Although it is relatively straightforward to extend the algorithm to problems which have

multiple output classes, in the following discussion we assume that the learning problem has a
single, 2 state output. DMPl begins training with a single output node. If the output node
fails to correctly classify some of the positive examples in its training set, then a child node is
allocated and trained on a subset of the parent nodes training examples. The subset of training
examples given to the new node will be the set of misclassified positive examples combined
with the entire set of negative examples from the parent node.

Similarly, if the parent node fails to classify some of the negative examples in its
training set, then a child node is allocated and given a training set equal to all of the parent
node’s positive training examples along with all of the of the parent node’s misclassified
negative training examples, This process continues until aLl of the leaf nodes in the network are
able to correctly classify their respective training sets.

The intuition behind the DMPl approach is that if a node incorrectly classifies a certain
subset of positive training examples from its training set, then we cieate a new node (the left
child) and pass the p m n t node’s misclassified positive examples to it which, hopefully, will be
able to separate the misclassified positive examples from the parent node’s set of negative
training examples. Conversely, if the node incorrectly classifies a set of negative training
examples we create a new node (the right child) and pass those examples to the new right child.
The DMPl method thus builds a multi-layer network in the form of a binary tree. The
algorithm is now discussed in greater detail. We defme the following:

T = the original set of examples in the training set.
ni = node i of the network.
Ti c T = the set of examples which are used to train node ni.
t g = thejth example from training set Ti.
k = the number of input variables.
wg = thejth weight of ni, 1 < j I k+2 (the 2 extra weights are for the children of ni).
A(ij’) = the activation of node ni when presented with training example t ~ .
O(i,t) = the output of node ni when presented with training example t, where

0 ifA(i, t) I 0
1 if A(i, t) > 0 . O(i, t) = {

Z(i,t) = the target output of node ni when presented with training example t.
PARENT(i) = np (where p = LiDJ) such that the output of node ni is connected to np.
LEFTcHILD(i) = np (wherep = 2i) such that the output of node np is connected to ni

RIGHTCHILD(1’) = np (wherep = 2i+l) such that the output of node np is connected

Consider an arbitrarily complex, non-linearly separable, two output classification
problem with training set T. Each example in T is defined to be a vector of continuous valued
attributes along with an associated target output classification. The network is initially set up
with a single node (the output layer). We label this node nl, and set TI = T. The node is
trained with the training set TI via the Delta rule training method or some other method until the
total sum-squared error (TSSE) settles (the actual method DMP1 uses to train the individual
nodes is discussed in section 5). During the training of node nl, the weights wlk+l and wlk+2
are held at zero.

At this point, node n1 can not make further progress towards a solution. If the network
has not converged to a solution (TSSE > E), then two new nodes, LEFTCHILD(1) = n2,
RIGHTCHIID(1) = n3, are created and connected to node nl through the weights wlk+l and
wlk+2 respectively. The left child will be responsible for classifying the positive training
examples which were misclassified by the parent node, and the right child will be responsible
for classifying the misclassified negative training examples. The values for the weights wlk+l
and wlk+2 are thus determined by the following, where SGN(x) returns 1 if x 2 0 and -1

through weight wik+i.

to ni through weight Wik+2.

78

otherwise.

k

j=l
POS- SUM(i) = C [(1+ SGN(wij)) x wij 121,

k

j=l
NEG-SUM(i) = C [(l -SGN(w#))x wij /2],

then set
wik+i = max{ POS-SUM(i), NEG-SUM(i)} + 1
wik+2 =-Wik+l = -max{ POS-SUM(i), NEG-SUM(i)} - 1

Note that for any node ni, if the output of LEFTCHILD(i) is high, this forces the
output of nj to be high. On the other hand, if the output of RIGHTCHILD(I) is high, this
forces the output of ni to be low. If the outputs of both LEFTCHILD(i) and
RIGHTCHILD(i) are high then they cancel each other.

The 2 children of node ni are then passed a training set which is a subset of the parent
node's training set. The training set for each child node is determined as follows.

Let LEFTCHILD(i) = np. Then we define the training set Tp for np as follows:
Tp = {tij I tij E Ti A [(Z(i j) = 0) v (Z(i j) = 1 A O (i j) = O)]}.
Then for all tpm E Tp (where 1 I m I ITPI), we know that tpm = tg for some
tu E Tj. For each such tpm = tg set Z(p,m) = Z (i j) .

Let RIGHTCHILD(i) = n9. Then
T q = (tijltijE Ti A [(Z (i J ~ = l) v (Z (i j ~ = O h O (i j) = l)]).
Then for all tqm E Tq (where 1 I m 5 lTql), we know that tqm = to for some
tij E Tj. For each such tqm = tq set Z(q,m) = 1 if Z(i j) = 0, else Z(q,m) = 0.

Each child node is then trained with its corresponding training set. The input weights
on nodes which have children (in this case node nl) are frozen. If either or both of nodes n2
and n3 do not converge to a satisfactory solution on their respective training sets, then the
algorithm is repeated recursively with nodes 112 and/or 113 as the parent nodes. This process
can be repeated until TSSE e E or the number of positivdnegative elements in a node's training
set is too small to be statistically significant (i. e. noise). For this paper, the process was
simply repeated until no further progress could be made at reducing the TSSE.

After the training phase has been completed the network enters the execution phase.
During this phase, incoming examples are presented to every node in the network and the
output of node nl is then taken to be the predicted output classification for the given example.

3 Leaf Node Convergence
Theorem 1 states that if all leaf nodes in the network correctly classify their respective

training sets, then the output of the root node nl will be correct for all examples in its training
set Ti . This implies that the network output will be correct for all examples in the original
training set T, since 2'1 = T. The formal theorem and proof are given below.

Theorem I : If all leaf nodes in the network correctly predict the classification for all of
the examples in their respective training sets, then the output of the root node nl will be
correct for all examples in its training set TI.

Proof: The proof is by induction on the maximum network depth. The base case is a tree of
depth 1 . In this case, there is exactly one leaf node in the tree, which is node nl. Since the
training set of node nl is Ti, by definition all of the examples in Ti are correctly classified if
node nl (the leaf node) correctly classifies all of its training examples. Furthermore, all
examples in the original training set T must be classified correctly, since Ti is equal to T.

79

Assume that for a network of depth I h, if the leaf nodes in the network classify all
elements in their respective training sets correctly, then the output of node nl will be correct for
all examples in its training set Ti. We now show that for a network of depth h + 1, node ni
will classify all of the examples in its training set correctly if the leaf nodes classify their
training sets correctly.

Assume that all leaf nodes correctly classify the examples from their training sets.
What we must show is that the output of node ni is then c o m t for all examples in its training
set. We know that node nl has at most two children, a left child (node n2) and a right child
(node n3), each of which is the root of a tree of depth at most h. Since nodes n2 and n3 are
each the root of a tree of depth I h, we have from the inductive assumption that the output of
nodes n2 and n3 are correct for all of the examples in their respective training sets. There are
then two cases for any example t E TI .

Case 1 : Z(1.t) - Q
In this case, the output of node n2 is 0 since t E T2 from the construction of T2, and

Z(2,t) = 0 = O(2,t) from the inductive assumption.
The output of node n3 can be either 0 or 1 . Assume O(3,t) = 1. Then the output of nl

is forced low by the large negative weight between node n3 and nl, and thus O(1,t) = 0. Now
assume O(3,t) = 0. Then we must have O(1,t) = 0. This is true since the input weights of
node nl have not changed since the allocation of node n3, and if we have O(1,t) = 1 then we
must have had t E T3 (from the construction of T3 since t was misclassified by ni).
Therefore, O(3,t) = 1 since node n3 correctly classifies all elements of its training set, which
violates our assumption. Thus for every t E Ti, ifZ(1,t) = 0, then O(1,t) = 0.

Case 2: Z(1.t) = 1
This case is similar to case 1. In this case, the output of node n3 is 0 since t E T3 from

the construction of T3, and Z(3,t) = 0 = O(3,t) from the inductive assumption.
The output of node n2 can be either 0 or 1. If O(2,t) = 1 then O(1,t) = 1. Assume

O(2,t) = 0. Then we must have O(1,t) = 1. Otherwise if we have O(1,t) = 0 then we must
have had t E T2 (again from the construction of T2 since t was misclassified by n l) .
Therefore, O(2,t) = 1, which again violates our assumption. Thus for every t E T i , if Z(1,t) =
1, then O(1,t) = 1.

From case 1 and case 2 we have that for any example t E T i , Z(1,t) = O(l , t) , which
concludes the proof. Since the training set Ti is equal to the original training set T, this implies
that the network will have converged to a solution for the original training set T when the leaf
nodes of the network have converged to a solution for their respective training sets.

4 Proof of Convergence
Here we prove that the network is guaranteed to converge to a solution. There are two

assumptions which we must make in order to guarantee convergence. The first is that the
training set must be consistent. That is, we must not have two or more training examples
which have equivalent input values and different output classifications. However, DMPl is
capable of generating good solutions when presented with inconsistent training sets.
Secondly, we assume that each node added to the network is guaranteed to classify at least one
positive and one negative example from its training set. This assumption may seem restrictive,
but it is always possible to force this condition (although it may not be desirable to do so). For
example, one can force this condition simply by arbitrarily choosing a single positive example
and a single negative example, and then using the hyperplane which is the perpendicular
bisector to the line joining these two points as the decision surface and set the input weights
accordingly. Alternatively, one could use the two points chosen to implement a nearest
neighbor classifier for the given node.

Theorem 2: If the training set is consistent and each additional node added to the
network is guaranteed to correctly classify at least one positive and one negative example
from its training set during training, then the network is guaranteed to converge to a
solution where all examples in the original training set Tare correctly classified.

80

Proof: The proof is obvious. Each node in the network is guaranteed to have a training set
which is at least one smaller in the number of examples than its parent's training set. The
maximum depth of the network is then 17'11, the size of the initial nodes training set. At this
depth, the leaf nodes will have at most one example in their training sets, which they are
guaranteed to correctly classify from the initial assumption. Thus, the leaf nodes will correctly
classify all elements in their training sets, and from theorem 1 the network will have converged
to a solution.

The decision function used and the way it is implemented can affect the guaranteed
convergence properties of the network. With DMPl it was decided to relax the constraint on
forcing correct classification of at least one positive and one negative example. The GA
training method used in DMPl utilizes a fitness function that strongly favors decision
boundaries which have at least one positive and one negative example classified correctly, but
the very nature of the GA approach makes it impossible to guarantee such a condition. While
GA training method does not guarantee convergence of the network, it does make convergence
highly likely for consistent training sets, and it was felt that for most cases the GA training
method would be more conducive to good classification accuracy than other methods.

5 TrainingMethod
The method used to train each node in the network is based upon genetic algorithms.

The basic method is given in figure 1. Each individual in the population consists of a vector of
real values, where each individual is considered to be a potential weight vector for the node
being currently trained.

Initialize a population of individuals.
While not done

Evaluate the fitness of each individud.
Select the top x individuals.
Create new individuals from those selected above via the genetic operations

The x most fit individuals are selected from the parents and children and allowed to
of recombination and mutation.

survive. I I
Figure 1. Genetic training algorithm.

The reason for selecting the genetic algorithm method for training each node was so the
network would be able to deal with the situation shown in figure 2. In this example, a small
set of positive examples are surrounded by a large set of negative examples.

-/
' Figure 2. Example pattern distribution.

With this example, the standard perceptron training algorithm is likely to generate a
decision surface which has all of the patterns on one side, since that would minimize
misclassification error for a single hyperplane. However, assuming that we wanted to separate
out the positive examples in figure 2, a decision surface that had a11 examples on one side
would be useless to the DMP1 training method, since it would fail to distinguish at least one
positive example from at least one negative example. For example, the decision surface in

81

figure 3a could be more desirable for the purposes of DMP1, since it could eventually lead to
the set of decision surfaces in figure 3b, which completely separate the set of positive examples
from the set of negative examples.

-
_.

a b
Figure 3. Decision surfaces.

In order to generate these types of decision surfaces with a genetic algorithm, it is
necessary to use a fitness function which favors them. For DMP1, the following simple
fitness function was selected:

Given a vector of real values i of length k, and
a node nj of the network, let

fitness(i) = sin X R / 2 + 1 e E Tj A z (j , e) = 1 A o (j , e) = 1)

{ ele E Tj A Z(j , e) = l}

where the weights of node nj have been set to i.

This function ranges between 0 and 2, and tends to favor decision boundaries which
correctly classify at least one example from both output classes. For example, the fitness for a
boundary with all of the positive and negative examples on one side will be 1, while the fitness
for the boundary in figure 3a would be approximately 1.5. Thus, the genetic algorithm favors
the boundary in figure 3a over the boundary shown in figure 2 which minimizes classification
error (has all examples on one side). The misclassified examples in figure 3a would then be
passed to the child nodes, with the assumption that these nodes will eventually generate a set of
decision surfaces similar to those in 3b.

6 Results
The DMPl training algorithm was tested on several different data sets which were

obtained from the UCI Machine Learning Database. The real-world data sets used are Pima
Indian (diabetes), Bupa (liver disease), Monks 1-3, Mushroom, Tic-tac-toe, and Sonar. The
Monks, Mushroom, and Tic-tac-toe data sets are translated into a binary format where each
input had two possible states. For example, a 6 state single input in the original file would be
translated into 6 two state inputs, only one of which is set to 1 depending on the original input
value. The other data sets which have real-valued attributes are left in their original formats.

15 runs for each data set were conducted. For each run, the data is randomly split into
two equal parts, one part being used for training the network and the second part for testing

82

generalization accuracy. Table 1 reports the average accuracy on the test set, and also lists
generalization results obtained using two other learning methods for comparison purposes.
The first column lists the data sets tested, the second column gives the accuracy on the test set
for the DMPl training method, and the last three columns axe the results of the other methods.
The numbers in parenthesis are the standard deviations for the reported results. The other
methods shown are c4.5 (Quinlan 1986), and a multi-layer back propogation network. These
results are taken from (Zarndt 1995). The last row of the table gives the average accuracy
across all of the data sets for each of the methods. The average accuracy on the training set
across the 15 runs is reported in table 1.

Table 1. Average test set accuracy.

tic-tac-toe f 100 I 0
$able 2. Average training set accuracy for DMPl

I

In spite of the fact that overlearning can be a problem with the DMPl training method,
it does appear from the results shown in table 1 that its generalization accuracy is at least
comparable with the other learning methods. Indeed, the results on the sonar data set show
that the DMPl method is capable of strongly outperforming the other learning methods on at
least one real-world problem of interest. In addition, the average accuracy for DMPl across all
of the data sets is also better than that reported for the other learning algorithms.

Table 2 shows that the DMPl training algorithm is generally able to come up with a
solution which correctly classifies each example in the training set. The only exception to this
came with the sonar data set, where a few examples from the training set were misclassified.
While the convergence characteristics of DMPl are interesting, the concern is that could lead to
memorization of noise and other idiosyncrasies in the training set data which would cause
degradation of generalization performance.

In fact, it does appear that this is the case. Table 3 shows the average number of nodes
the network contained after convergence for each of the data sets for the DMPl method. From
this table it can be seen that data sets which require large networks tend to be strongly
correlated with poor generalization performance. For example, the pima data set required on
average 145 nodes to converge to a solution. This was by far the largest network required by
any of the data sets, and as expected the generalization results reported for this data set also
faired the worst in comparison with the other learning methods. The results on the tic-tac-toe
data set are similarly disappointing, where the DMPl method had a generalization accuracy of
80.4 compared to a 97 percent accuracy reported for the simple, single layer perceptron.

a3

8 monk1 2.6

tic-tac-toe 38.4 3.8

7 Conclusion and Future Work
The overall empirical performance of DMPl as measured by average generalization

accuracy was better than any of the other learning methods. However, it is expected that the
generalization capabilities of DMPl could be improved upon if some effort was made to reduce
its sensitivity to noisy inputs. For example, statistical significance tests could be used to prune
child nodes, or part of the training examples could be withheld and used as a node pruning set,
or the fitness function could be further refined to help prevent memorization of noise and
further limit the size of the network.

Another area for improvement is in the network structure and how nodes are added to
the network. It is highly likely that the basic structure of the networks generated by DMPl
(binary trees) will not be optimal for solving many problems of interest. For example, in some
cases a better solution might be generated if the output node had three children instead of two.
The algorithm could be modified so that it would be capable of dynamically adding more than
two children to a node deemed beneficial.

With this in mind, future work is concentrating on the following areas:
Training of individual nodes - fitness function refinement, GA refinement, and

Pruning algorithms - using a pruning set, statistical tests.
Modifications to the basic algorithm which allow nodes to have more than two

other training methods.

children.

8 Bibliography
Azimi-Sadjadi, Mahmood (1993). Recursive Dynamic Node Creation in Multilayer Neural

Networks. IEEE Transactions on Neural Networks, Vol4, No 2, pp 242-256.
Bartlett, Eric (1994). Dynamic Node Architecture Learning: An Information Theoretic

Approach. Neural Networks, Vol7, No 1, pp 129-140.
FaNman, S. and C. Lebiere (1991). The Cascade Correlation Leaming Architecture.
Martinez, Tony and Jacques Vidal(1988). Adaptive Parallel Logic Networks. Journal of

Parallel and Distributed Computing. Vol5, pp 26-58.
Martinez, T. R. and Campbell, D. M. (1991). "A Self-Adjusting Dynamic Logic Module",

Journal of Parallel and Distributed Computing, v l l , no. 4, pp. 303-13.
Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1231-106.
Romaniuk, Steve and Lawrence HzI (1993). Divide and Conquer Neural Networks. Neural

Networks, Vol6, pp 1105-1 116.
Rosenblatt, F. (1958). The Perceptron: A probabilistic Model for Information Storage and

Organization in the Brain. Psychological Review, Vol. 65, No. 6.
Smotroff, Ira, David Friedman and Dennis Connolly (1991). Self Organizing Modular Neural

Networks. Intemational Joint Conference on Neural Networks, 11, 187- 192.
Zarndt, Frederick (1995). Masters Thesis, in preparation.

84

	A Provably Convergent Dynamic Training Method for Multi-layer Perceptron Networks
	Original Publication Citation
	BYU ScholarsArchive Citation

	A Provably Convergent Dynamic Training Method for Multi-layer Perceptron Networks - Neuroinformatics and Neurocomputers, 1995., Second International Symposium on

