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A Provably Convergent Dynamic Training Method for 
Multi-layer Perceptron Networks 

Tim L. Andersen and Tony R. Martinez 
Computer Science Department, Brigham Young University, Provo, Utah 84602 

e-mail: tim@axon.cs.byu.edu, martinez@cs.byu.edu 

ABSTRACT 
This paper presents a new method for training multi-layer perceptron networks caUed DMPl (Dynamic Multi- 
layer P e r c q "  1). The method is based upon a divide and conquer approach which builds networks in the form 
of binary trees, dynamically allocating nodes and layers as needed. The individual nodes of the network are 
trained using a genetic aIgorithm. The method is capable of handling real-valued inputs and a proof is given 
concerning its convergence properties of the basic model. Simulation results show that DMPl performs 
favorably in comparison with other learning algorithms. 

1 Introduction 
One of the first models used in the field of neural networking is the single layer, simple 

perceptron model (Rosenblatt 1958). The well understood weakness of single layer networks 
is that they are able to learn only those functions which are linearly separable. Since multi- 
layer networks are capable of going beyond the limited set of linearly separable problems and 
solving arbitrarily complex problems, researchers have devoted much effort to devising multi- 
layer network training algorithms. The unfortunate drawback to many of the current multi- 
layer training methods is that they require someone to specify the network architecture a-priori 
(make an educated guess as to the appropriate number of layers, number of nodes in each 
layer, connectivity between nodes, etc.). With a pre-specified network architecture, there is no 
guarantee that it will be the appropriate network for the problem at hand, and it may not even be 
capable of converging to a solution. 

Thus, several multi-layer training algorithms have been proposed which do not require 
the user to specify the network architecture a-priori. Some of these include EGP (Romaniuk 
1993), Cascade Correlation (Fahlman 1991), Iterative Atrophy (Smotroff 1991), DCN 
(Romaniuk 1993), ASOCS (Martinez 1990), and DNAL (Bartlett 1993). All of these 
methods seek to dynamically generate an appropriate network structure for solving the given 
learning problem during the training phase. 

This paper presents a new dynamic method for training multi-layer perceptron networks 
which we call DMPl (Dynamic Multi-layer Perceptron 1). This method is similar in spirit to 
the DCN method given in (Romaniuk 1993) in that: 

0 The network begins with a single perceptron node and dynamically adds nodes as 
needed. 

As nodes are added to the network, each node is trained independently from all 
other nodes. 

Each node is trained on only a portion of the training set, the portion being based 
upon the current set of misclassified examples - a divide and conquer approach. 

The network structure grows backwards from the original output node, rather than 

The output of each node is connected to at most one other node. 
Each node has as inputs the output of at most two other nodes and the training set 

0 A Genetic Algorithm (GA) is used to train the individual nodes of the network. 

The basic DMPl algorithm is discussed in detail in section 2. Two proofs are given, 
one in section 3 which shows that leaf node convergence implies convergence of the entire 
network, and one in section 4 which shows that the algorithm is guaranteed to converge to a 
solution if the training set is consistent. Section 5 discusses the method used to train individual 
nodes in the network, and simulation results are given in section 6. Conclusion and discussion 
are given in section 7. 

However, the DMPl method differs from DCN in several ways, some of which are: 

forwards. 

inputs. 
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2 The Basic Approach 
Although it is relatively straightforward to extend the algorithm to problems which have 

multiple output classes, in the following discussion we assume that the learning problem has a 
single, 2 state output. DMPl begins training with a single output node. If the output node 
fails to correctly classify some of the positive examples in its training set, then a child node is 
allocated and trained on a subset of the parent nodes training examples. The subset of training 
examples given to the new node will be the set of misclassified positive examples combined 
with the entire set of negative examples from the parent node. 

Similarly, if the parent node fails to classify some of the negative examples in its 
training set, then a child node is allocated and given a training set equal to all of the parent 
node’s positive training examples along with all of the of the parent node’s misclassified 
negative training examples, This process continues until aLl of the leaf nodes in the network are 
able to correctly classify their respective training sets. 

The intuition behind the DMPl approach is that if a node incorrectly classifies a certain 
subset of positive training examples from its training set, then we cieate a new node (the left 
child) and pass the p m n t  node’s misclassified positive examples to it which, hopefully, will be 
able to separate the misclassified positive examples from the parent node’s set of negative 
training examples. Conversely, if the node incorrectly classifies a set of negative training 
examples we create a new node (the right child) and pass those examples to the new right child. 
The DMPl method thus builds a multi-layer network in the form of a binary tree. The 
algorithm is now discussed in greater detail. We defme the following: 

T = the original set of examples in the training set. 
ni = node i of the network. 
Ti c T = the set of examples which are used to train node ni. 
t g  = thejth example from training set Ti. 
k = the number of input variables. 
wg = thejth weight of ni, 1 < j  I k+2 (the 2 extra weights are for the children of ni). 
A(ij’) = the activation of node ni when presented with training example t ~ .  
O(i,t) = the output of node ni when presented with training example t, where 

0 ifA(i, t )  I 0 
1 if A(i, t )  > 0 . O(i, t )  = { 

Z(i,t) = the target output of node ni when presented with training example t. 
PARENT(i) = np (where p = LiDJ) such that the output of node ni is connected to np. 
LEFTcHILD(i) = np (wherep = 2i) such that the output of node np is connected to ni 

RIGHTCHILD(1’) = np (wherep = 2i+l) such that the output of node np is connected 

Consider an arbitrarily complex, non-linearly separable, two output classification 
problem with training set T. Each example in T is defined to be a vector of continuous valued 
attributes along with an associated target output classification. The network is initially set up 
with a single node (the output layer). We label this node nl, and set TI = T. The node is 
trained with the training set TI via the Delta rule training method or some other method until the 
total sum-squared error (TSSE) settles (the actual method DMP1 uses to train the individual 
nodes is discussed in section 5). During the training of node nl, the weights wlk+l and wlk+2 
are held at zero. 

At this point, node n1 can not make further progress towards a solution. If the network 
has not converged to a solution (TSSE > E), then two new nodes, LEFTCHILD(1) = n2, 
RIGHTCHIID( 1) = n3, are created and connected to node nl through the weights wlk+l and 
wlk+2 respectively. The left child will be responsible for classifying the positive training 
examples which were misclassified by the parent node, and the right child will be responsible 
for classifying the misclassified negative training examples. The values for the weights wlk+l 
and wlk+2 are thus determined by the following, where SGN(x) returns 1 if x 2 0 and -1 

through weight wik+i. 

to ni through weight Wik+2. 
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otherwise. 

k 

j=l 
POS- SUM(i) = C [(1+ SGN( wij )) x wij 121, 

k 

j=l 
NEG-SUM(i) = C [ ( l -SGN(w#))x wij /2], 

then set 
wik+i = max{ POS-SUM(i), NEG-SUM(i)} + 1 
wik+2 =-Wik+l = -max{ POS-SUM(i), NEG-SUM(i)} - 1 

Note that for any node ni, if the output of LEFTCHILD(i) is high, this forces the 
output of nj to be high. On the other hand, if the output of RIGHTCHILD(I) is high, this 
forces the output of ni to be low. If the outputs of both LEFTCHILD( i )  and 
RIGHTCHILD(i) are high then they cancel each other. 

The 2 children of node ni are then passed a training set which is a subset of the parent 
node's training set. The training set for each child node is determined as follows. 

Let LEFTCHILD(i) = np. Then we define the training set Tp for np as follows: 
Tp = {tij I tij E Ti A [ (Z(i j )  = 0) v (Z( i j )  = 1 A O ( i j )  = O)]}. 
Then for all tpm E Tp (where 1 I m I ITPI), we know that tpm = tg for some 
tu E Tj. For each such tpm = tg set Z(p,m) = Z ( i j ) .  

Let RIGHTCHILD(i) = n9. Then 
T q =  (tijltijE Ti A [ ( Z ( i J ~ = l ) v ( Z ( i j ~ = O h O ( i j ) =  l)]). 
Then for all tqm E Tq (where 1 I m 5 lTql), we know that tqm = to for some 
tij E Tj. For each such tqm = tq set Z(q,m) = 1 if Z(i j )  = 0, else Z(q,m) = 0. 

Each child node is then trained with its corresponding training set. The input weights 
on nodes which have children (in this case node nl) are frozen. If either or both of nodes n2 
and n3 do not converge to a satisfactory solution on their respective training sets, then the 
algorithm is repeated recursively with nodes 112 and/or 113 as the parent nodes. This process 
can be repeated until TSSE e E or the number of positivdnegative elements in a node's training 
set is too small to be statistically significant (i. e. noise). For this paper, the process was 
simply repeated until no further progress could be made at reducing the TSSE. 

After the training phase has been completed the network enters the execution phase. 
During this phase, incoming examples are presented to every node in the network and the 
output of node nl is then taken to be the predicted output classification for the given example. 

3 Leaf Node Convergence 
Theorem 1 states that if all leaf nodes in the network correctly classify their respective 

training sets, then the output of the root node nl will be correct for all examples in its training 
set Ti .  This implies that the network output will be correct for all examples in the original 
training set T, since 2'1 = T. The formal theorem and proof are given below. 

Theorem I :  If all leaf nodes in the network correctly predict the classification for all of 
the examples in their respective training sets, then the output of the root node nl will be 
correct for all examples in its training set TI. 

Proof: The proof is by induction on the maximum network depth. The base case is a tree of 
depth 1 .  In this case, there is exactly one leaf node in the tree, which is node nl.  Since the 
training set of node nl is Ti,  by definition all of the examples in Ti are correctly classified if 
node nl (the leaf node) correctly classifies all of its training examples. Furthermore, all 
examples in the original training set T must be classified correctly, since Ti is equal to T. 
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Assume that for a network of depth I h, if the leaf nodes in the network classify all 
elements in their respective training sets correctly, then the output of node nl will be correct for 
all examples in its training set Ti. We now show that for a network of depth h + 1, node ni 
will classify all of the examples in its training set correctly if the leaf nodes classify their 
training sets correctly. 

Assume that all leaf nodes correctly classify the examples from their training sets. 
What we must show is that the output of node ni is then c o m t  for all examples in its training 
set. We know that node nl has at most two children, a left child (node n2) and a right child 
(node n3), each of which is the root of a tree of depth at most h. Since nodes n2 and n3 are 
each the root of a tree of depth I h, we have from the inductive assumption that the output of 
nodes n2 and n3 are correct for all of the examples in their respective training sets. There are 
then two cases for any example t E TI .  

Case 1 :  Z(1.t) - Q 
In this case, the output of node n2 is 0 since t E T2 from the construction of T2, and 

Z(2,t) = 0 = O(2,t) from the inductive assumption. 
The output of node n3 can be either 0 or 1 .  Assume O(3,t) = 1. Then the output of nl 

is forced low by the large negative weight between node n3 and nl,  and thus O(1,t) = 0. Now 
assume O(3,t) = 0. Then we must have O(1,t) = 0. This is true since the input weights of 
node nl have not changed since the allocation of node n3, and if we have O(1,t) = 1 then we 
must have had t E T3 (from the construction of T3 since t was misclassified by ni). 
Therefore, O(3,t) = 1 since node n3 correctly classifies all elements of its training set, which 
violates our assumption. Thus for every t E Ti, ifZ(1,t) = 0, then O(1,t) = 0. 

Case 2: Z(1.t) = 1 
This case is similar to case 1. In this case, the output of node n3 is 0 since t E T3 from 

the construction of T3, and Z(3,t) = 0 = O(3,t) from the inductive assumption. 
The output of node n2 can be either 0 or 1. If O(2,t) = 1 then O(1,t) = 1. Assume 

O(2,t) = 0. Then we must have O(1,t) = 1. Otherwise if we have O(1,t) = 0 then we must 
have had t E T2 (again from the construction of T2 since t was misclassified by n l ) .  
Therefore, O(2,t) = 1, which again violates our assumption. Thus for every t E T i ,  if Z(1,t) = 
1, then O(1,t) = 1. 

From case 1 and case 2 we have that for any example t E T i ,  Z(1,t) = O(l , t ) ,  which 
concludes the proof. Since the training set Ti is equal to the original training set T, this implies 
that the network will have converged to a solution for the original training set T when the leaf 
nodes of the network have converged to a solution for their respective training sets. 

4 Proof of Convergence 
Here we prove that the network is guaranteed to converge to a solution. There are two 

assumptions which we must make in order to guarantee convergence. The first is that the 
training set must be consistent. That is, we must not have two or more training examples 
which have equivalent input values and different output classifications. However, DMPl is 
capable of generating good solutions when presented with inconsistent training sets. 
Secondly, we assume that each node added to the network is guaranteed to classify at least one 
positive and one negative example from its training set. This assumption may seem restrictive, 
but it is always possible to force this condition (although it may not be desirable to do so). For 
example, one can force this condition simply by arbitrarily choosing a single positive example 
and a single negative example, and then using the hyperplane which is the perpendicular 
bisector to the line joining these two points as the decision surface and set the input weights 
accordingly. Alternatively, one could use the two points chosen to implement a nearest 
neighbor classifier for the given node. 

Theorem 2: If the training set is consistent and each additional node added to the 
network is guaranteed to correctly classify at least one positive and one negative example 
from its training set during training, then the network is guaranteed to converge to a 
solution where all examples in the original training set Tare correctly classified. 
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Proof: The proof is obvious. Each node in the network is guaranteed to have a training set 
which is at least one smaller in the number of examples than its parent's training set. The 
maximum depth of the network is then 17'11, the size of the initial nodes training set. At this 
depth, the leaf nodes will have at most one example in their training sets, which they are 
guaranteed to correctly classify from the initial assumption. Thus, the leaf nodes will correctly 
classify all elements in their training sets, and from theorem 1 the network will have converged 
to a solution. 

The decision function used and the way it is implemented can affect the guaranteed 
convergence properties of the network. With DMPl it was decided to relax the constraint on 
forcing correct classification of at least one positive and one negative example. The GA 
training method used in DMPl utilizes a fitness function that strongly favors decision 
boundaries which have at least one positive and one negative example classified correctly, but 
the very nature of the GA approach makes it impossible to guarantee such a condition. While 
GA training method does not guarantee convergence of the network, it does make convergence 
highly likely for consistent training sets, and it was felt that for most cases the GA training 
method would be more conducive to good classification accuracy than other methods. 

5 TrainingMethod 
The method used to train each node in the network is based upon genetic algorithms. 

The basic method is given in figure 1. Each individual in the population consists of a vector of 
real values, where each individual is considered to be a potential weight vector for the node 
being currently trained. 

Initialize a population of individuals. 
While not done 

Evaluate the fitness of each individud. 
Select the top x individuals. 
Create new individuals from those selected above via the genetic operations 

The x most fit individuals are selected from the parents and children and allowed to 
of recombination and mutation. 

survive. I I 
Figure 1. Genetic training algorithm. 

The reason for selecting the genetic algorithm method for training each node was so the 
network would be able to deal with the situation shown in figure 2. In this example, a small 
set of positive examples are surrounded by a large set of negative examples. 

-/ 
' Figure 2. Example pattern distribution. 

With this example, the standard perceptron training algorithm is likely to generate a 
decision surface which has all of the patterns on one side, since that would minimize 
misclassification error for a single hyperplane. However, assuming that we wanted to separate 
out the positive examples in figure 2, a decision surface that had a11 examples on one side 
would be useless to the DMP1 training method, since it would fail to distinguish at least one 
positive example from at least one negative example. For example, the decision surface in 
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figure 3a could be more desirable for the purposes of DMP1, since it could eventually lead to 
the set of decision surfaces in figure 3b, which completely separate the set of positive examples 
from the set of negative examples. 

- 
_. 

a b 
Figure 3. Decision surfaces. 

In order to generate these types of decision surfaces with a genetic algorithm, it is 
necessary to use a fitness function which favors them. For DMP1, the following simple 
fitness function was selected: 

Given a vector of real values i of length k, and 
a node nj of the network, let 

fitness(i) = sin X R / 2  + 1 e E Tj A z ( j ,  e )  = 1 A o ( j , e )  = 1) 

{ ele E Tj A Z( j ,  e )  = l} 

where the weights of node nj have been set to i. 

This function ranges between 0 and 2, and tends to favor decision boundaries which 
correctly classify at least one example from both output classes. For example, the fitness for a 
boundary with all of the positive and negative examples on one side will be 1, while the fitness 
for the boundary in figure 3a would be approximately 1.5. Thus, the genetic algorithm favors 
the boundary in figure 3a over the boundary shown in figure 2 which minimizes classification 
error (has all examples on one side). The misclassified examples in figure 3a would then be 
passed to the child nodes, with the assumption that these nodes will eventually generate a set of 
decision surfaces similar to those in 3b. 

6 Results 
The DMPl training algorithm was tested on several different data sets which were 

obtained from the UCI Machine Learning Database. The real-world data sets used are Pima 
Indian (diabetes), Bupa (liver disease), Monks 1-3, Mushroom, Tic-tac-toe, and Sonar. The 
Monks, Mushroom, and Tic-tac-toe data sets are translated into a binary format where each 
input had two possible states. For example, a 6 state single input in the original file would be 
translated into 6 two state inputs, only one of which is set to 1 depending on the original input 
value. The other data sets which have real-valued attributes are left in their original formats. 

15 runs for each data set were conducted. For each run, the data is randomly split into 
two equal parts, one part being used for training the network and the second part for testing 
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generalization accuracy. Table 1 reports the average accuracy on the test set, and also lists 
generalization results obtained using two other learning methods for comparison purposes. 
The first column lists the data sets tested, the second column gives the accuracy on the test set 
for the DMPl training method, and the last three columns axe the results of the other methods. 
The numbers in parenthesis are the standard deviations for the reported results. The other 
methods shown are c4.5 (Quinlan 1986), and a multi-layer back propogation network. These 
results are taken from (Zarndt 1995). The last row of the table gives the average accuracy 
across all of the data sets for each of the methods. The average accuracy on the training set 
across the 15 runs is reported in table 1. 

Table 1. Average test set accuracy. 

tic-tac-toe f 100 I 0 
$able 2. Average training set accuracy for DMPl 

I 

In spite of the fact that overlearning can be a problem with the DMPl training method, 
it does appear from the results shown in table 1 that its generalization accuracy is at least 
comparable with the other learning methods. Indeed, the results on the sonar data set show 
that the DMPl method is capable of strongly outperforming the other learning methods on at 
least one real-world problem of interest. In addition, the average accuracy for DMPl across all 
of the data sets is also better than that reported for the other learning algorithms. 

Table 2 shows that the DMPl training algorithm is generally able to come up with a 
solution which correctly classifies each example in the training set. The only exception to this 
came with the sonar data set, where a few examples from the training set were misclassified. 
While the convergence characteristics of DMPl are interesting, the concern is that could lead to 
memorization of noise and other idiosyncrasies in the training set data which would cause 
degradation of generalization performance. 

In fact, it does appear that this is the case. Table 3 shows the average number of nodes 
the network contained after convergence for each of the data sets for the DMPl method. From 
this table it can be seen that data sets which require large networks tend to be strongly 
correlated with poor generalization performance. For example, the pima data set required on 
average 145 nodes to converge to a solution. This was by far the largest network required by 
any of the data sets, and as expected the generalization results reported for this data set also 
faired the worst in comparison with the other learning methods. The results on the tic-tac-toe 
data set are similarly disappointing, where the DMPl method had a generalization accuracy of 
80.4 compared to a 97 percent accuracy reported for the simple, single layer perceptron. 
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8 monk1 2.6 

tic-tac-toe 38.4 3.8 

7 Conclusion and Future Work 
The overall empirical performance of DMPl as measured by average generalization 

accuracy was better than any of the other learning methods. However, it is expected that the 
generalization capabilities of DMPl could be improved upon if some effort was made to reduce 
its sensitivity to noisy inputs. For example, statistical significance tests could be used to prune 
child nodes, or part of the training examples could be withheld and used as a node pruning set, 
or the fitness function could be further refined to help prevent memorization of noise and 
further limit the size of the network. 

Another area for improvement is in the network structure and how nodes are added to 
the network. It is highly likely that the basic structure of the networks generated by DMPl 
(binary trees) will not be optimal for solving many problems of interest. For example, in some 
cases a better solution might be generated if the output node had three children instead of two. 
The algorithm could be modified so that it would be capable of dynamically adding more than 
two children to a node deemed beneficial. 

With this in mind, future work is concentrating on the following areas: 
Training of individual nodes - fitness function refinement, GA refinement, and 

Pruning algorithms - using a pruning set, statistical tests. 
Modifications to the basic algorithm which allow nodes to have more than two 

other training methods. 

children. 
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