
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-08-14

Vision-Based Rendering: Using Computational Stereo to Actualize Vision-Based Rendering: Using Computational Stereo to Actualize

IBR View Synthesis IBR View Synthesis

Kevin L. Steele
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Steele, Kevin L., "Vision-Based Rendering: Using Computational Stereo to Actualize IBR View Synthesis"
(2006). Theses and Dissertations. 1158.
https://scholarsarchive.byu.edu/etd/1158

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1158?utm_source=scholarsarchive.byu.edu%2Fetd%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

VISION-BASED RENDERING: USING COMPUTATIONAL

STEREO TO ACTUALIZE IBR VIEW SYNTHESIS

by

Kevin L. Steele

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Brigham Young University

December 2006

Copyright c© 2006 Kevin L. Steele

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Kevin L. Steele

This dissertation has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Parris K. Egbert, Chair

Date Bryan S. Morse

Date Thomas W. Sederberg

Date Michael A. Goodrich

Date Dan Ventura

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Kevin
L. Steele in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Parris K. Egbert
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of Physical and
Mathematical Sciences

ABSTRACT

VISION-BASED RENDERING: USING COMPUTATIONAL

STEREO TO ACTUALIZE IBR VIEW SYNTHESIS

Kevin L. Steele

Computer Science

Doctor of Philosophy

Computer graphics imagery (CGI) has enabled many useful applications in train-

ing, defense, and entertainment. One such application, CGI simulation, is a real-time

system that allows users to navigate through and interact with a virtual rendition

of an existing environment. Creating such systems is difficult, but particularly bur-

densome is the task of designing and constructing the internal representation of the

simulation content. Authoring this content on a computer usually requires great ex-

pertise and many man-hours of labor.

Computational stereo and image-based rendering offer possibilities to automati-

cally create simulation content without user assistance. However, these technologies

have largely been limited to creating content from only a few photographs, severely

limiting the simulation experience. The purpose of this dissertation is to enable the

process of automated content creation for large numbers of photographs. The work-

flow goal consists of a user photographing any real-world environment intended for

simulation, and then loading the photographs into the computer. The theoretical

and algorithmic contributions of the dissertation are then used to transform the pho-

tographs into the data required for real-time exploration of the photographed locale.

This permits a rich simulation experience without the laborious effort required to

author the content manually.

To approach this goal we make four contributions to the fields of computer vi-

sion and image-based rendering: an improved point correspondence methodology, an

adjacency graph construction algorithm for unordered photographs, a pose estima-

tion ordering for unordered image sets, and an image-based rendering algorithm that

interpolates omnidirectional images to synthesize novel views. We encapsulate our

contributions into a working system that we call Vision-Based Rendering (VBR).

With our VBR system we are able to automatically create simulation content

from a large unordered collection of input photographs. However, there are severe

restrictions in the type of image content our present system can accurately simulate.

Photographs containing large regions of high frequency detail are incorporated very

accurately, but images with smooth color gradations, including most indoor pho-

tographs, create distracting artifacts in the final simulation. Thus our system is a

significant and functional step toward the ultimate goal of simulating any real-world

environment.

ACKNOWLEDGMENTS

I would like to thank my dissertation advisor Dr. Parris Egbert for his support,

advice, counsel, confidence, and patience. I also thank Dr. Bryan Morse and David

Cline for their many helpful conversations and suggestions to my research. Above all

I thank my wife Sandra for her endless encouragement, her positive perspective, and

her willingness to live the student life for so long.

viii

Contents

Acknowledgments vii

Table of Contents xi

List of Tables xiii

List of Figures xvi

1 Introduction 1

1.1 Intent . 2

1.2 Image-Based Rendering . 4

1.2.1 IBR Background . 5

1.2.2 Image-Based Rendering by Warping 5

1.2.3 Database-Driven IBR . 7

1.2.4 Other IBR Techniques . 8

1.3 Image-Based Modeling . 8

1.4 View Interpolation . 9

1.4.1 Derivation of Warping Equation 10

1.4.2 Warping Equation Implications 12

1.5 Computer Vision . 13

1.5.1 Camera Calibration . 14

1.5.2 Intrinsic Calibration . 14

1.5.3 Extrinsic Calibration . 15

1.5.4 Dense Correspondence . 16

1.5.5 Structure From Motion . 17

1.6 Dissertation Contribution . 19

ix

1.6.1 Chapter Descriptions . 20

2 Correspondence Expansion for Wide Baseline Stereo 23

2.1 Introduction . 23

2.1.1 Related Work . 25

2.1.2 Contribution . 27

2.2 Initial Correspondence Set . 27

2.3 Guided Matching . 29

2.3.1 Aggregation . 30

2.3.2 Constraint . 33

2.3.3 Saturation . 34

2.3.4 Final Guided Matching . 35

2.4 Results . 36

2.5 Conclusion and Future Work . 40

3 Histogram Matching for Camera Pose Neighbor Selection 43

3.1 Introduction . 44

3.2 Background . 46

3.3 Content-Based Image Retrieval . 50

3.4 Optimization . 51

3.5 Results . 57

3.6 Summary and Conclusions . 59

4 Minimum Spanning Tree Pose Estimation 63

4.1 Introduction . 64

4.2 Related Work . 65

4.3 Minimum Spanning Tree . 67

4.3.1 Pose Validation . 71

4.3.2 Noise and Outlier Resolution 73

4.4 Results . 74

4.5 Summary and Conclusions . 78

x

5 Omnidirectional View Interpolation of Unstructured

Photographs 83

5.1 Introduction . 84

5.2 Background . 85

5.3 Omnidirectional Image Creation . 86

5.3.1 Pixel Re-Projection Order 87

5.4 View Interpolation . 89

5.5 Analysis . 91

5.5.1 Algorithmic Variations . 94

5.6 Discussion . 96

5.7 Conclusion . 97

6 Conclusions 103

6.1 VBR System . 103

6.1.1 Photographic Input . 103

6.1.2 Camera Pose Estimation . 106

6.1.3 Dense Depth Correspondence Estimation 107

6.1.4 Omnidirectional Image Creation 110

6.1.5 System Results . 111

6.2 Dissertation Contributions . 111

6.3 System Performance and Future Research 113

6.3.1 Camera Pose Error . 113

6.3.2 Dense Depth Error . 115

6.3.3 Successful Synthesis . 116

6.3.4 Other Performance Considerations 116

Bibliography 133

xi

xii

List of Tables

2.1 Correspondence expansion results . 36

3.1 Improvement of precision for partial histogram distances 59

4.1 Mean and standard deviation of the similarity measure 75

5.1 Algorithmic variations used for comparison 95

xiii

xiv

List of Figures

1.1 CGI vs. photo comparison of St. Sophia’s Church 3

1.2 Example of view interpolation IBR 4

1.3 McMillan basis . 11

1.4 Derivation of IBRW equation . 12

1.5 Epipolar lines are used for correspondence searching 16

1.6 Structure-from-motion pipeline . 18

2.1 Example of correspondence expansion 28

2.2 Voronoi regions for a set of existing correspondences 31

2.3 Local transform used to predict new match locations 32

2.4 Flowerbed image pair results . 37

2.5 T-rex image pair results . 38

2.6 Shelf image pair results . 39

3.1 A camera neighborhood adjacency graph 45

3.2 Adjacency graphs created from implicit ordering of input cameras . . 48

3.3 Pyramids representing camera view frusta 52

3.4 Grid of quadrilateral re-projections 54

3.5 Histogram search coverage patterns 56

3.6 Image pair showing optimal partial histogram regions 58

3.7 Representative images from four test sets 60

3.8 Precision/recall graphs from the four test suites 61

4.1 Six posed images of a park bench . 68

4.2 Camera adjacency graph and MST of Figure 4.1 70

4.3 A posed image pair of a cluttered desk 75

4.4 An image pair of a hallway in the same configuration as Figure 4.3 . . 76

xv

4.5 An example of a multi-modal density function 77

4.6 Posed images and reconstruction of a fire hydrant 80

4.7 Posed images and reconstruction of a fossilized skull 81

4.8 Posed images and reconstruction of a taxidermy display 82

5.1 Re-projection order for environment map creation 87

5.2 Environment map resolution from focal length 88

5.3 Three images of a rock façade . 89

5.4 One face of environment map from re-projection 90

5.5 Environment map with view frustum 91

5.6 Delaunay partitioning of viewpoint convex hull 92

5.7 Graph of average Euclidean pixel distance 96

5.8 Interpolation results for rock façade A 98

5.9 Interpolation results for rock façade B 99

5.10 Interpolation results for rock façade C 100

5.11 Interpolated view from tetrahedral center 101

6.1 Vision-Based Rendering System Pipeline 104

6.2 Construction of the candidate depth set 109

6.3 Double exposure synthesis artifacts 114

6.4 Floating geometry synthesis artifacts 116

6.5 Six successfully synthesized t-rex images 117

xvi

Chapter 1

Introduction

Computer graphics imagery (CGI) has progressed from a novelty in the 1960s to

an indispensable technology in the 2000s. What was once a nascent academic niche

is now a world-wide market with applications in simulation and training, medical

visualization, defense and security, and entertainment. Furthermore, the ability to

render CGI fast enough for smooth animation (at least 20-30 frames per second

for “real-time” animation) has been an important goal from the outset due to the

practical uses of such technology. For instance, real-time computer-generated flight

simulation was initiated by General Electric and others in the mid-1960’s [Schacter,

1981], a very early point in computer graphics history.

Many applications lend themselves well to real-time computer graphics, including

the relatively new technology of virtual reality, wherein a user visually navigates and

interacts with an artificial environment using the computer generated imagery as a

navigational cue. In non-immersive virtual reality simulations 1 one typically uses

an input device such as a keyboard, mouse, or joystick to indicate a desired route

to follow or action to take. The computer simultaneously renders an image of what

the user would see if the monitor were a window into the artificial environment. An

important ability of such simulations is to place the user’s viewpoint or virtual “eye”

wherever the user desires in the artificial world and render the images from that

vantage point.

1 Non-immersive virtual reality usually refers to the use of low-end hardware such as a workstation
or PC to compute and render the artificial world. Examples of this include consumer-grade driving
and flight simulators and “first-person shooter” or avatar-based video games. High-end virtual
reality installations generally employ more exotic hardware such as wired gloves, omnidirectional
treadmills and immersive displays.

1

Virtual reality systems typically simulate artificial environments, worlds which

have been imagined, designed and instantiated solely in the computer. While nav-

igating artificial environments in this manner is interesting, navigating models of

existing environments is a much more useful function. Modern flight simulators and

architectural walkthrough systems fall into this category, as do many types of train-

ing simulators used by industry and the military. To develop these types of systems

a designer must first create three-dimensional geometry that will represent objects,

buildings and environmental features in the simulation. The creation process includes

defining geometric entities such as points, lines, planes and polygons, coloring the en-

tities using palettes and photographs, and placing sources of lighting to realistically

illuminate the geometric creation. Once finished, the collection of geometric entities,

sometimes referred to as “content,” can be rendered in real-time by the computer

for the simulation output. Unfortunately, these creational tasks are laborious, time

consuming, and require very specialized training, and hence they are expensive to re-

alize. Additionally, the resulting simulation output generally does not look identical

to the real subject matter that was modeled, a disadvantage for some applications

(Figure 1.1).

Another common type of virtual reality simulation is terrain visualization—

Google Earth 2 is a well-known example of a terrain visualization product. The content

for terrain visualization simulations is often created by overlaying satellite or aerial

photography on geometric tessellations created from digital elevation models (DEMs).

While the content creation process is much more automated, the simulation output

quality usually suffers considerably when the user’s viewpoint is close to ground level.

1.1 Intent

The goal of this dissertation is to eliminate the tedious content creation process

from virtual reality simulations by constructing the content data automatically and

exclusively from photographs. The resulting simplified workflow consists of a user

photographing the real-world environment intended for simulation and then loading

2 http://earth.google.com

2

Figure 1.1: St. Sophia’s Church in Los Angeles. The top image is a VRML model of
the church (http://oldcda.design.ucla.edu/CAAD/worlds.html) rendered using
a real-time VRML viewer. The bottom image is a photograph of the same church
(http://www.constantinepainting.com/gallery.html). The difference in image
quality is due to the simplified geometric model and rudimentary rendering technique
required to meet the real-time performance constraint.

3

Figure 1.2: Image-based rendering creates images of novel viewpoints (middle) given
a set of input images (left and right). This example uses an IBR technique called
View Interpolation [Chen and Williams, 1993]. The black spots in the interpolated
image are characteristic artifacts resulting from sampling rate differences between the
input and novel viewpoints. Most IBR algorithms include methods to reduce artifacts
inherent in their respective techniques.

the photographs into the computer. The theoretical and algorithmic contributions

of the dissertation are then used to transform the photographs into data necessary

for real-time exploration of the photographed locale. This frees the designer from

the tedious task of creating content resembling the target location, and facilitates the

system creation process. The approach we take to solve this problem is to employ

image-based rendering.

1.2 Image-Based Rendering

Image-based rendering (IBR) is a relatively new sub-field of computer graphics.

The goal is still to render images, but rather than rendering from a geometric scene

description, the rendering is performed using metadata from other images, including

photographs and video streams. IBR is often used to render the image content from

a novel viewpoint that is not represented in the photographic input. For example,

given two photographs of the rhinoceros head in Figure 1.2, a third image is rendered

representing a viewpoint between the original two. We will give a brief background

of current IBR techniques and then discuss the specific approach we use to address

the content-creation problem.

4

1.2.1 IBR Background

This section will highlight the main contributions in image-based rendering. More

thorough surveys can be found in Oliveira [2002] and Zhang and Chen [2003].

Image-based rendering was first introduced in a seminal paper by Chen and

Williams [1993]. There had been prior work done with the intention of interactive

walkthroughs of photographed locations, such as Lippman’s Movie Maps [Lippman,

1980] and Miller’s Virtual Museum [Miller et al., 1992]. However, Chen and Williams

were the first to deconstruct the sampled contents of an image for later reconstruc-

tion to fit an objective function, in this case the simulation of a novel viewpoint. In

their paper they present a method to generate images from novel viewpoints within

a regularly spaced grid of input images, each with known camera and depth char-

acteristics. To generate a new view, pixels from images at enclosing grid points are

linearly interpolated to new (x, y) locations using a preprocessed mapping.

Many new algorithms to accomplish IBR-related goals soon followed. Chen [1995]

reported a summary of Apple Computer’s QuickTime VR technology, in which cylin-

drical panoramas are projected to a user-specified viewing plane in real-time. McMil-

lan and Bishop [1995a] introduced the plenoptic function [Adelson and Bergen, 1991]

in the context of computer graphics to provide a comparison framework. The plenop-

tic function is a seven dimensional function that describes the pencil of light rays

visible from any point in space at any time and in any wavelength. A parameterized

version of the function is given by:

p = P (θ, φ, λ, Vx, Vy, Vz, t) (1.1)

where p is the radiant energy arriving at point (Vx, Vy, Vz) from direction (θ, φ) at

time t and wavelength λ. The plenoptic function provides a convenient method to

describe the reconstruction capabilities of various IBR algorithms.

1.2.2 Image-Based Rendering by Warping

McMillan and Bishop [1995a] presented a new image-based rendering system in

which panoramic images are projected onto cylinders, pixel correspondences between

5

cylinders are computed, and novel views between cylinders are generated. They

also introduced generalized 3D warping functions that compute new pixel locations

for images of arbitrary viewpoints [McMillan and Bishop, 1995b]. These functions

were formalized by McMillan [1997] and form the basis of Image-Based Rendering by

Warping (IBRW) algorithms.

Mark et al. [1997] utilize IBRW to create in-between frames for an interactive

walkthrough system. They render key frames synthetically using traditional CGI to

serve as reference images. Since IBRW is a much faster process, the reference images

are warped to generate current views while the next reference location is predicted

and rendered. This allows the system to achieve 60Hz rendering rates.

Shade et al. [1998] introduce layered depth images (LDIs), images whose pixel

locations contain multiple color-depth pairs. Layered depth images can be warped

to new viewpoint locations using IBRW. The multiple pixel layers help to reduce

disocclusions, or “tears” in a re-sampled image resulting from lower sampling rates

than in the original image.

A number of papers use LDIs and IBRW to improve the efficiency of larger

systems. Popescu et al. [1998] use LDIs and IBRW to optimize architectural walk-

throughs of large scene databases. They divide their scenes into cells (rooms and

hallways) and portals (doors and windows). To compute an image of an arbitrary

viewpoint in the scene, they render all geometry that is contained within the same

cell as the viewpoint, but they use pre-computed LDIs for portals of the same cell.

Chang et al. [1999] use a hierarchical space partitioning scheme, the LDI tree, to

efficiently render from arbitrary viewpoints. They place an octree around the scene

and construct LDIs at leaf nodes by warping the reference images to the leaf node

viewpoint. The depth of each path in the octree is set so the sampling rate of the

LDI matches that of the reference images.

McAllister et al. [1999] present an end-to-end system for acquiring depth images

using a custom-built laser range device. The images are preprocessed to identify

potential disocclusion artifacts and tiled to facilitate real-time rendering. Tiles are

rendered using 3D warping on custom-built rendering hardware.

6

1.2.3 Database-Driven IBR

Another class of IBR algorithms consists of storing in a large database hundreds

or thousands of images taken from extremely close viewpoints, and retrieving selected

pixels of each image to reconstruct novel views. Gortler et al. [1996] construct a lumi-

graph by reducing the plenoptic function to four dimensions—two position parameters

and two direction parameters. They only consider rays leaving the convex hull of a

bounded object, and parameterize the rays as 2D coordinates of two parallel planes

facing the object. Using a calibrated camera, the authors capture images of an object

sitting on a capture stage and “rebin” the source pixels to produce a uniform sam-

pling of the object. A dense array of these images is used to reconstruct novel views

of the object. Applying approximated geometric information to the reconstruction

process mitigates ghosting artifacts arising from finite sampling rates.

In a closely related paper Levoy and Hanrahan [1996] propose light field render-

ing. The authors again reduce the plenoptic function to four dimensions, but they

do so using a regular dense array of compressed images. Novel views are rendered

by sampling the 4D function at locations coinciding with the sampling rays of the

desired image, interpolating when necessary. Unlike the lumigraph, light fields do not

use approximate geometry to reduce sampling artifacts, relying instead on sampling

theory to sufficiently blur incorrect details. Isaksen et al. [2000] show how to repa-

rameterize light fields to accomplish effects such as variable focus and depth of field,

and passive autostereoscopic viewing.

Another database-driven IBR technique, concentric mosaics [Shum and He, 1999],

consists of acquiring a set of concentric panoramas by rotating a slit camera along off-

center circles. Rendering novel views of the free space within the concentric boundary

consists of determining the column of pixels for each column of the desired view from

the correct cylinder image and column within that cylinder (or interpolating from

nearby neighbors). Vertical distortion can be alleviated by assuming depth informa-

tion for pixels, columns, or cylinders. A latent network-based solution to concentric

mosaics is given by Li et al. [2001].

Plenoptic stitching [Aliaga and Carlbom, 2001] provides a 4D parameterization of

7

the plenoptic function to facilitate IBR walkthroughs constrained to a horizontal plane

and fixed vertical viewing angle (always looking straight ahead). Omnidirectional

video footage through the environment is stored in a database. Closed loop subsets

of the footage are then used to render novel viewpoints within the loop. Neighboring

loops are said to be “stitched” because there are no visual artifacts as viewpoints

move from one loop to another.

1.2.4 Other IBR Techniques

A few other IBR techniques illustrate the variety, scope, and possibility of IBR as

a rendering medium. Debevec et al. [1996] present view-dependent texture mapping

which combines images from widely spaced viewpoints into textures for rendering

recovered models of the image contents. During the rendering phase the texture

maps are blended based on the gaze angle of the new viewpoint.

Buehler et al. [2001] describe an approach to generalize current IBR algorithms.

Their unstructured lumigraph algorithm relies on a camera blending field to blend

images of a scene taken from arbitrary locations. Because the cameras can be closely-

spaced or widely-separated, their algorithm generalizes the two approaches of view-

dependent texture mapping and light field rendering, and smoothly transitions be-

tween these two extremes. They also contribute a set of listed goals for IBR, which

their algorithm was directly designed to meet.

Recently there has been interest in approximating the plenoptic function on the

surface of objects, reducing its dimensionality from seven to six dimensions. Wood

et al. [2000] introduce surface light fields, functions that assign a color to each ray

originating from the surface of an object. Surface light fields outperform other IBR

methods on objects with highly specular BRDFs (Bidirectional Reflectance Distribu-

tion Functions).

1.3 Image-Based Modeling

Image-based modeling (IBM) is a closely related field to image-based rendering.

While image-based rendering is concerned with synthesizing novel views of existing

8

images, the goal of image-based modeling is to generate 3D models from image data.

These models can then be used in a traditional CGI rendering pipeline alongside

synthetic CGI elements.

In one of the earliest forms of IBM Debevec et al. [1996] employed photogrammet-

ric modeling to create a simplified model of a photograph’s contents. In their system

the user manually associates straight line segments in the photograph with edges of

geometric primitives that will eventually define the scene geometry. A minimization

procedure then finds the camera calibration and geometric primitive scales that best

project the line segments onto the edges.

The Tour Into the Picture [Horry et al., 1997] algorithm consists of a user-

specified scene model, including a vanishing point, imposed on a photograph. The

photograph is warped to new views based on the model to simulate navigation within

the photograph. This is considered image-based modeling rather than rendering be-

cause an actual geometric scene representation is derived.

More recently, Rusinkiewicz et al. [2002] proposed a method to iteratively acquire

the geometry of a hand-held object. They project structured light patterns onto the

object and compute range images from the projections. A user slowly turns the object

to expose all sides, and the range images are merged in real-time to form a 3D model.

This method allows the user to observe holes or deficiencies in the model and move

the object to fill them.

Image-based modeling is an exciting and active research area. Unfortunately

current IBM methods rely on user intervention to help construct the object geome-

try.3 A feature of this dissertation is to meet its goals automatically, with no user

intervention. We therefore focus our research on image-based rendering approaches.

1.4 View Interpolation

Given the ability of image-based rendering to generate images of arbitrary view-

points, an obvious goal is to extend the simulation beyond a few photographs to

3 An active area of computer vision research is structure from motion which attempts of retrieve
scene geometry from photographs with no user intervention.

9

hundreds of photographs of large environments. In a recent attempt, Uyttendaele

et al. [2004] show an interactive system in which omnidirectional video footage is

captured and processed offline. During simulation time, a user can walk through a

virtual environment along the set paths of the captured video, and can change the

viewing direction at any point along a path.

Because the user of this system is essentially viewing stored video footage, this

method is a database solution to image-based rendering. Database solutions such as

this, and including lumigraphs, light fields, and concentric mosaics, are size-limited.

Comparing view interpolation [Chen and Williams, 1993] to light field rendering (and

assuming that light fields were 5D rather than 4D to give it similar navigational abil-

ity), if the horizontal sampling rate of a light field is n times that of view interpolation,

its storage requirements are n3 times more than view interpolation. This severely re-

stricts the ability of database-driven IBR to handle large-scale environments. For this

reason, we choose view interpolation methodologies.

Chen and Williams [1993] first introduced view interpolation, but interpolation

by image warping was formally generalized by McMillan [1997]. McMillan gives a

set of equations that will map a pixel from one image to a location of another image

with a user-specified viewpoint. The derivation of the warping equation helps us to

understand both the power and the limitations of IBRW.

1.4.1 Derivation of Warping Equation

The first step in the derivation is to define a basis for the pinhole camera model

used in image acquisition. Figure 1.3 illustrates graphically the vectors used to form

the basis. When an image coordinate (u, v) is projected onto the basis P, the result

is a vector d̄ from the camera center to the location of the coordinate in world space:

d̄ =


di

dj

dk

 =


ai bi ci

aj bj cj

ak bk ck




u

v

1

 = P


u

v

1

 (1.2)

To construct the warp equation, two camera bases are related in terms of a

10

c

b
a

Ċ

Figure 1.3: A pinhole camera model is adopted for IBRW. Ċ is the camera location,
a and b are vectors defining the unit directions of the image axes, embedded in world
space, and c is the vector from the camera center to the image origin in world space.
A computational basis is formed as the matrix [ā b̄ c̄].

common world space point Ẋ, as in Figure 1.4. Let

x̄1 =


u1

u1

1

 , x̄2 =


u2

u2

1

 . (1.3)

Then given two camera bases P1 and P2,

Ẋ = Ċ1 + t1 P1x̄1︸ ︷︷ ︸
ray1

= Ċ2 + t2 P2x̄2︸ ︷︷ ︸
ray2

. (1.4)

Equation 1.4 employs simple vector addition to point from the camera center to the

world space point Ẋ, equating the expressions from both bases. Rearranging terms

yields
t2
t1

P2x̄2 =
1

t1
(Ċ1 − Ċ2) + P1x̄1 (1.5)

where t1 and t2 are scaling factors for the rays emanating from the camera centers.

The ratio t2
t1

is now dropped from the equation, making the Euclidean ray P2x̄2 a

projective entity, and as such it has an unknown but non-zero scaling factor. This

11

(u1, v1)

(u2, v2)

Ẋ

Ċ1

Ċ2

Figure 1.4: To derive the warp equation, two camera bases pointing to a common
3D location Ẋ are equated.

is consistent with the projective space of the pinhole camera model where image

coordinates are actually homogeneous coordinates, having arbitrary scale. The term

1
t1

is known as generalized disparity, equivalent to one over the depth at a given pixel,

and is referred to as δ(u, v).

Using basic linear algebra, the equation can now be rearranged to form the warp

equation:


u2

v2

1

 =


ā1 · (b̄2 × c̄2) b̄1 · (b̄2 × c̄2) c̄1 · (b̄2 × c̄2) (Ċ1 − Ċ2) · (b̄2 × c̄2)

ā1 · (c̄2 × ā2) b̄1 · (c̄2 × ā2) c̄1 · (c̄2 × ā2) (Ċ1 − Ċ2) · (c̄2 × ā2)

ā1 · (ā2 × b̄2) b̄1 · (ā2 × b̄2) c̄1 · (ā2 × b̄2) (Ċ1 − Ċ2) · (ā2 × b̄2)




u1

v1

1

δ(u1, v1)

 (1.6)

Given two camera centers Ċ1 and Ċ2 and their corresponding bases [ā1 b̄1 c̄1] and

[ā2 b̄2 c̄2], an image coordinate (u1, v1) in image 1 having disparity δ(u1, v1) is mapped

in image 2 to the location (u2, v2).

1.4.2 Warping Equation Implications

This analysis provides us with some insight regarding view interpolation via

IBRW. Given an accurate camera model for a photograph and per-pixel generalized

12

disparity, we can warp the image to resemble what would be seen from any viewpoint

in the same world space as the original. This is a powerful capability that could be

exploited for large-scale environment visualization.

A difficulty arises from the fact that the images are point-sampled, and the warp

equation operates on individual pixels. As points are transformed to new locations,

sampling irregularities occur resulting in un-sampled gaps in the final image that need

to be filled to avoid rendering artifacts. Another problem that occurs is related to

the scale-independence of the homogeneous image coordinates. Since the t2
t1

term was

removed from the warp equation, there is no notion of depth for the warped pixel.

Thus depth order cannot be resolved in the warped pixels from the equation alone.

McMillan [1997] provides a solution by imposing a warp order on the source image

pixels, referred to as occlusion compatible ordering. However, no solution exists for

warping more than one image to the same camera basis while maintaining an occlusion

compatible ordering for all pixels. This precludes the use of many images in an IBRW

simulation.

Unfortunately, there is a much larger problem with using IBRW for large environ-

ment simulation—obtaining the requisite parameters Ċ and δ in the warp equation.

Since our intent is to utilize many photographs in our view interpolation, we must

determine the camera center Ċi in a common space for each photograph, and the

generalized disparity δ(ui, vi) for each pixel of each photograph. The image-based

rendering literature is scarce on suggesting methods to obtain these quantities. How-

ever, we found the field of computer vision rich with viable solutions.

1.5 Computer Vision

Researchers in computer vision have been investigating the problems mentioned

above for a long time. The problem of determining the camera parameters is known

as camera calibration, and the problem of finding per-pixel depth is equivalent to the

dense correspondence problem in computer vision. We will briefly outline the state

of the research for each of these problems.

13

1.5.1 Camera Calibration

Much of computer graphics and vision research involves simplifying the sampling

device to a pinhole camera model. This model consists of an infinitely small focal

point (the pinhole) through which all light rays emanating from a scene pass to strike

the imaging surface (film or CCD array). In this model all points in the scene are in

perfect focus. The parameters of the model are of two classes—intrinsic or internal

parameters defining the optical properties of the camera, and the extrinsic or external

parameters defining the geometric properties. The intrinsic parameters consist of a

principle point (px, py), which is the center of projection in the image, the focal length

f , the number of pixels per unit distance in image coordinates (mx, my), and a skew

parameter s. The extrinsic parameters consist of a translation and rotation to place

the camera in the same space as the scene. The extrinsic parameters are sometimes

called the pose of the camera.

Collectively the intrinsic parameters are represented by a calibration matrix K:

K =


mxf mxs mxpx

0 myf mypy

0 0 1

 (1.7)

The external parameters are represented by a 3×3 rotation matrix R and a translation

vector −C where C is the camera location in scene space. Taken as a linear transform,

the calibration parameters map 3D points to the 2D image plane of the camera:

x = K
[
R −RC

]
X (1.8)

where X is a scene point (x, y, z, 1)T in homogeneous coordinates and x is the pro-

jected point (x, y, w)T in image space.

1.5.2 Intrinsic Calibration

Camera calibration consists formally of determining both intrinsic and extrinsic

camera parameters for a given 3D scene and an image of that scene. However in

practice one usually refers to calibration as finding the intrinsic parameters only, and

14

the extrinsic parameters (camera pose) are found later in a separate step. Intrinsic

calibration parameters can be estimated from the contents of an image if 2D image

coordinates can be associated with known 3D scene points, and there are very stable

algorithms for performing this estimation. A common technique is to photograph a

calibration object, which is often a checkered planar surface or box, and then to either

manually or automatically associate a number of image points with their correspond-

ing points on the object. Intrinsic parameter estimation can then be performed using

methods such as that proposed by Zhang [2000]. These parameters are equivalent to

the camera basis P in Equation 1.2, if the basis were embedded in its own local space

rather than world space.

In computer vision the pinhole camera model is expanded slightly to account for

radial distortion, the non-linear warping of pixel samples along radial lines intersecting

the principle point, and vignetting, the darkening of a photograph at its extremities

when taken with a short focal length. Both artifacts are caused by finite apertures

and imperfections in real lenses, and are corrected for prior to camera calibration.

1.5.3 Extrinsic Calibration

The problem of extrinsic calibration, or pose estimation, is closely related to

intrinsic calibration. Solutions in the literature are available for a single image, for

two images (stereo), or for three or more images (multi-view) [Hartley and Zisserman,

2004]. A typical stereo vision solution amongst practitioners is to establish feature

correspondences between two images, such as points in the 3D scene that are common

to both photographs, and to use the features as constraints on a set of linear equations

to compute the essential matrix, a 3× 3 matrix of rank 2 representing the geometric

relationship between camera poses. The rotation and translation of the second camera

relative to the first can then be extracted from the essential matrix using factorization;

for more details see Longuet-Higgins [1981], Huang and Faugeras [1989], Hartley

[1997], and Ma et al. [2004]. The camera pose estimates could be used in IBRW as

parameters to the warp equation: the camera positions are the camera centers Ċ1

and Ċ2 from Equation 1.4, and the camera rotations transform the camera bases P1

15

Feature Point

e1 e2

Ċ1 Ċ2

Ẋ

Figure 1.5: When two images exist of a 3D object, features in one image are searched
in the second image along epipolar lines. In this figure the camera locations Ċ1 and
Ċ2 together with the 3D point Ẋ define an epipolar plane. The intersection of the
epipolar plane with both images form epipolar lines e1 and e2 respectively, shown as
dotted lines in the figure. When a feature point in image 1 is searched for in image
2, the search is constrained along e2 because even though the exact position of Ẋ is
not known, its projection in image two is guaranteed to be on e2.

and P2 in Equation 1.4 from their local spaces to a common world space.

1.5.4 Dense Correspondence

The dense correspondence problem for finding per-pixel depth is a special case of

the general correspondence problem: given an image and a geometric or photometric

feature in the image such as a point, line, curve, area, texture, or abstracted object,

find the same feature in another image—essentially a search problem. In a stereo

image configuration where two photographs have been acquired of the same 3D scene

or object, features in a reference image are searched for in a query image along epipolar

lines, as in Figure 1.5. If the two images are stereo rectified, their corresponding

epipolar lines fall along identical scan lines in the image, reducing the search to

horizontal image rasters.

Two important criteria to the problem are the choice of feature representation

16

and the choice of an objective function whose minimum indicates a correct feature

match between images. For instance, points are commonly represented by a window

of pixels surrounding the image point to be found, and a typical objective function

to compare two such windows for similarity is to accumulate the squared differences

or normalized cross-correlation of individual pixels between windows. A more recent

trend is to represent feature points in an image with affine- and photometrically-

invariant region descriptors [Tuytelaars and Van Gool, 2000; Mikolajczyk and Schmid,

2002; Lowe, 2004] and to compare the descriptors using a scale-invariant metric such

as the Mahalanobis distance.

Dense correspondence is simply finding point feature matches for most or all

pixels between two or more images. The correspondence problem, be it for a sparse

or a dense set of features, is challenging for several reasons:

1. The objects projecting to pixels in one image may not even be present in another

image, or they may be occluded.

2. Photometric differences between images complicate comparison; this could hap-

pen when photographs were taken at different times, at largely different angles,

or with two different cameras.

3. Manifestations of the aperture problem occur because of the finite-sized acqui-

sition instrument (the aperture in a camera for instance). Examples include

images with repeated patterns, images with little high-frequency detail such as

photographs of a blank wall, or images with sampling rate differences such as

two photographs taken with different focal lengths (zoom factors).

Despite these difficulties in solving the correspondence problem many advances have

been made. Scharstein and Szeliski [2002] provide an excellent survey on various

dense correspondence algorithms, and Sun et al. [2005] show a recent contribution.

1.5.5 Structure From Motion

With a correct camera calibration and dense correspondence, computing per-

pixel depth for each pixel of each image in an image set is straightforward, and

17

(a) (b) (c)

?

Calibration

3D via
triangulation

Feature Correspondence
(Start Here)

Dense
Correspondence

Rectification

Figure 1.6: A structure-from-motion pipeline to re-create the 3D structure that is
seen in a pair of photographs. The top row of images shows two photographs (a)
and (b) of a desktop environment, taken from slightly different positions. Image (c)
shows the derived 3D structure re-projected to a lower vantage point. The process
begins by identifying a sparse set of point correspondences between images (a) and
(b). Several hundred point correspondences are usually necessary in each image, and
four correspondence examples are marked in the diagram at the “Start Here” label.
Having obtained the sparse set of correspondences, the process diverges into two sub-
processes: camera calibration and image rectification followed by dense correspon-
dence estimation. The set of sparse correspondences is used in both sub-processes to
solve the problems at these stages. In the camera calibration stage the camera pose
of image (b) is estimated relative to image (a). In the rectification stage both images
are re-sampled to align their epipolar lines with common image rasters, and then the
dense correspondence for each pixel in image (a) is estimated. Given calibration and
dense correspondence, a 3D point structure is finally estimated via triangulation of
each pixel pair.

18

the original 3D locations of image features can be inferred. This process is known

in the computer vision literature as structure-from-motion, and coincides with the

image-based modeling goals stated in Section 1.3. Figure 1.6 illustrates one possible

computer vision “pipeline” that will take images as input and give an estimate of the

3D structure as output. This process is harmonious with the goals of this dissertation,

and we adopt this methodology as our modus operandi for creating the content for

virtual reality simulations.

Unfortunately, there exist severe limitations in the robustness of the algorithmic

solutions to the calibration and correspondence problems. These limitations ulti-

mately stem from the specific problems listed in Section 1.5.4. For instance, if the

initial set of sparse correspondences is corrupted by noise or non-linear inaccuracies,

then the camera pose estimate will be incorrect to some degree, which in turn lit-

ters the estimated 3D structure with inaccurate geometry (a close look at image (c)

of Figure 1.6 reveals many such artifacts). While camera pose estimation is largely

robust for two or three cameras, the aforementioned limitations preclude the use of

current computer vision methods for the pose estimation of extremely large camera

sets and thus restrict our goal of real environment simulation.

1.6 Dissertation Contribution

The purpose of this dissertation is to contribute theoretic and algorithmic research

elements to the fields of computer vision and image-based rendering in order to ad-

vance the goal of completely automating geometric content creation for virtual reality

simulations of existing environments. This specifically includes addressing the defi-

ciencies in camera pose estimation for large collections of photographs, and proposing

a novel image-based rendering method to accommodate the calibrated camera net-

work. To frame and validate our research contributions we also develop an end-to-end

system that will actualize the workflow proposed in Section 1.1 for a limited class of

environments. Due to our heavy use of and contributions to computational stereo,4

4 “Computational stereo is broadly defined as the recovery of the three-dimensional characteristics
of a scene from multiple images taken from different points of view.”— Barnard and Fischler [1982]

19

we have termed our system Vision-Based Rendering, emphasizing its image-based

rendering roots and its indispensable reliance on computer vision.

1.6.1 Chapter Descriptions

Chapters 2–5 are papers that have been published or are currently submitted

for review. Each paper proposes solutions to a specific need that will advance the

achievement of our stated goals.

Chapter 2, “Correspondence Expansion for Wide Baseline Stereo,” addresses the

unreliability of camera pose estimation when computing the pose from few point

correspondences. In this chapter we outline an algorithm to expand the number

of point correspondences between two images while still maintaining an accurate

epipolar geometry5 between the images.

Chapter 3, “Histogram Matching for Camera Pose Neighbor Selection,” discusses

the need for a camera adjacency graph when dealing with hundreds of related pho-

tographs of an environment. The adjacency graph is an essential data structure for

the task of computing pose estimates for many photographs. We present methods to

construct the adjacency graph based on histogram distances.

Chapter 4, “Minimum Spanning Tree Pose Estimation,” gives an optimal method

to compute the camera pose estimates for a large set of input photographs. The pose

order is based on a traversal of the MST of the adjacency graph, and we propose

an effective cost function that measures the accuracy of the 3D reconstruction of an

image pair.

Chapter 5, “Omnidirectional View Interpolation of Unstructured Photographs,”

is our contribution to image-based rendering. In this chapter we present our rendering

solution that provides six degrees of navigational freedom to a user when exploring

the virtual rendition of an existing environment. Given the pose estimation results

of the previous chapters, we create omnidirectional images at the node points of a

Delaunay decomposition of the viewpoint convex hull. The omnidirectional images

5 The epipolar geometry is a rigid-body constraint between two images that guarantees a projec-
tive transform between their respective camera poses.

20

are interpolated using a non-linear Barycentric weighting to produce novel viewpoints

of the input set.

In Chapter 6 we describe our system as a whole and discuss its performance and

storage considerations, the limited class of environments for which it works well, and

the conditions under which it fails. We also discuss the specific contributions of the

dissertation, and offer conclusions to the body of research and observations of future

directions to take with this project.

21

22

Chapter 2

Correspondence Expansion for Wide Baseline Stereo

Kevin L. Steele and Parris K. Egbert, “Correspondence Expansion for Wide Baseline

Stereo,” In Proc. IEEE Conference on Computer Vision and Pattern Recognition,

Vol I, pp.1055-1061, 2005.

Abstract

We present a new method for generating large numbers of accurate point corre-

spondences between two wide baseline images. This is important for structure-from-

motion algorithms, which rely on many correct matches to reduce error in the derived

geometric structure. Given a small initial correspondence set we iteratively expand

the set with nearby points exhibiting strong affine correlation, and then we constrain

the set to an epipolar geometry using RANSAC. A key point to our algorithm is to

allow a high error tolerance in the constraint, allowing the correspondence set to ex-

pand into many areas of an image before applying a lower error tolerance constraint.

We show that this method successfully expands a small set of initial matches, and we

demonstrate it on a variety of image pairs.

2.1 Introduction

Reliable feature matches between wide baseline image pairs are important for

many stereo algorithms in computer vision. Typical feature types include points,

lines, curves, and textured regions. Correct feature correspondences enable stereo

23

camera calibration and structure-from-motion algorithms, and permit robust estima-

tion of epipolar geometries between two or more images. Epipolar geometries in turn

facilitate further feature matching, image rectification, and the finding of dense image

correspondences.

Finding a sufficiently large number of correct feature correspondences between

image pairs can determine the success or failure of stereo algorithms that rely on

plentiful matches. It is therefore important to be able to generate many correct,

high confidence matches from images in a reasonable amount of time. While there

exist many wide baseline matching algorithms, most address the problem of finding

matches independently; fewer use existing matches in a guided search for more [Matas

et al., 2002; Pritchett and Zisserman, 1998; Schaffalitzky and Zisserman, 2001].

The most common method for finding point correspondences between two wide

baseline images is to first identify points on each image that lend themselves well to

matching. Such interest points often have characteristics such as high intensity vari-

ance and anisotropic texturing in surrounding pixels. Two sets of interest points are

then tentatively matched to one another by finding similar feature vectors between

points, yielding a set of putative matches. The feature vectors often include correla-

tion measures [Faugeras, 1993], and geometric and photometric invariances [Mindru

et al., 1999].

If each image of the pair has N interest points, the matching complexity is O(N2).

Unfortunately, this common N2 method of finding a set of feature matches will usu-

ally result in many mismatches, due mainly to sampling noise, lighting changes, and

foreshortening effects. A robust epipolar geometry estimator such as RANSAC [Fis-

chler and Bolles, 1981] is frequently used as a final step to eliminate the outlying

matches. However, if there is a high percentage of incorrect matches given to the

estimator, RANSAC executes very slowly. Even worse, matches failing the epipolar

constraint are simply discarded, greatly reducing the size of the final correspondence

set. A contribution of our work is that we exploit the near-correctness of these dis-

carded matches, locally adjusting their positions to conform to the constraint (see

Section 2.3.4).

24

Our goal is to aggressively search for additional matches using existing matches

as starting locations, and to make the final correspondence set as large as possible

while preserving the accuracy of its member matches.

2.1.1 Related Work

Many robust methods exist to create point matches for wide baseline stereo.

Baumberg [2000] finds affine-invariant features by extracting the relative skew, stretch,

and rotation from interest point neighborhoods, and matches points with similar im-

age structure. Applying the extracted affine transformation to the sampling window

reduces the number of incorrect matches in the final set of correspondences. Tuyte-

laars and Van Gool [2000] use local affine and photometric invariant features of the

points to facilitate matching. An elliptical region surrounding an interest point is

examined to find its generalized color moments, which comprise the invariant feature

vector. Interest points are matched according to feature vector similarity. Schaffal-

itzky and Zisserman [2001] find texture region matches using affine and photometri-

cally invariant descriptors. Their method is statistically insensitive to the shape of

the region, yielding a more stable match descriptor than point-based matches provide.

Mikolajczyk and Schmid [2002] find affine-invariant feature points by first detecting

multi-scale Harris corners, and then use these points in an iterative procedure until

the points converge to affine invariance. Both the relative scale and the shape of the

point neighborhoods are recovered simultaneously.

Matas et al. [2002] find corresponding regions using an improved similarity mea-

sure that adds a voting scheme to the commonly-used Mahalanobis distance. Their

method also improves on the large-scale invariance of Mindru et al. [1999]. Ferrari

et al. [2003] propose a method to utilize multiple images (more than two) to establish

point correspondences between all images. We focus on using only two images, and

our method for correspondence expansion is independent of the type of comparison

function used to score the fitness of a match. In fact, any method previously used to

identify feature matches can be leveraged to initialize our algorithm, and correspon-

dence expansion can easily be appended to any existing matching scheme to increase

25

the number of final matches.

Several methods have been proposed that use known matches to guide the search

for additional point matches. Lourakis et al. [1998] find point and line feature cor-

respondences on a common plane by using a randomized search strategy to find an

initial set of point and line matches. They then use the derived homography of three

lines to verify the point locations and to predict the location of further matches.

Their method relies on the presence of planar features, while our algorithm makes no

assumptions on geometric properties. Pritchett and Zisserman [1998] compute local

homographies at existing matches to guide the search for new matches. They first

use existing homographies to predict match locations and then employ a hierarchical

approach to create new homographies to carry out additional searches. Our algorithm

uses local affine transformations to guide searches, rather than homographies. Matas

et al. [2002] improve their number of matched regions by finding affine transformations

of correspondences that survive a preliminary RANSAC cull. They then include those

portions of regions whose transformed correlation are above a pre-selected threshold

in a second RANSAC cull. This roughly doubles or triples the number of correspon-

dences from simply using a single RANSAC prune. A major contribution we make

beyond both Pritchett and Zisserman [1998] and Matas et al. [2002] is to apply an

epipolar constraint at each iteration, rather than once, as described in Section 2.3.2,

enabling many more correct matches to be found.

Ferrari et al. [2004a,b] introduce a method that selects an initial set of feature

correspondences as anchors to an iterative exploration of the surrounding image areas.

The resulting correspondence set is able to detect matches between images exhibiting

non-rigid deformations, and they use this ability as input to an object recognition

system. Our proposed method is similar to that of Ferrari et al. in that we iteratively

augment and constrain our expanding match set (see Section 2.3). However we employ

a novel use of the epipolar constraint (Section 2.3.2) that allows a high growth rate

while retaining an approximate epipolar geometry, then refine the final match set to

a correct epipolar geometry upon completion. This is in contrast to the method of

Ferrari et al. in which they purposefully avoid epipolar constraints in order to permit

26

non-rigid deformations.

Finally, Schaffalitzky and Zisserman [2001] improve on the number of matched

regions they find by matching pixels within matched regions. This approach is very

successful in generating large numbers of correctly matched points. Their method is

limited, however, to isotropic texture regions. In contrast, we are not limited by any

statistical property of the input images.

2.1.2 Contribution

In this paper we present a new method that expands an initial set of wide baseline

correspondences by an iterative two-step process. We do not propose a new method

of establishing initial feature matches. Rather, we propose a novel technique to

iteratively grow a set of correspondences outward from a small initial set of matched

points.

We use a local affine transform approximation to predict search locations near

existing matches. Newly found matches are incrementally added to the correspon-

dence set, and the expanded correspondence set is refined using a high error tolerance

RANSAC measure. The result is an expanding set of high confidence correspondences

that “grow” outward from existing matches, as shown in figure 2.1. We discuss the

details of our algorithm in the next sections. Section 2.2 briefly describes the initial-

ization of the algorithm, Section 2.3 discusses how the process iteratively expands the

correspondence set, Section 2.4 shows the results of the method, and we conclude in

Section 2.5.

2.2 Initial Correspondence Set

Prior to employing the correspondence expansion algorithm, we must have a

potentially small set G of putative matches between two source images I1 and I2.

These matches need not all be correct. For correspondence expansion to work, at

least one match needs to be correct. The more correct matches contained in G,

the faster the algorithm will perform. Note that a single initially correct match is

a necessary, but not sufficient condition, i.e., given at least one correct match, the

27

Figure 2.1: An example of correspondence expansion occurring at each step of the
iterative algorithm. The top two images of a wall are the left and right images to be
matched. One initial point was selected by a user, shown as a red and white circle in
the top two images. As matches are found and added to the correspondence set, the
matches “grow” outward from the original point, and incorrect matches quickly disap-
pear. Point correspondences are shown as white lines in the image sequence. The last
image in the sequence shows the final correspondence set containing 1,925 matches.
The lower six images have been darkened to better highlight the correspondences.

28

algorithm provides no guarantee that matches will be expanded. We have found in

practice that this is of no practical concern, since generally there are several correct

matches in an initial correspondence set, all of which tend to expand quickly as the

algorithm proceeds.

As discussed in the introduction, there have been many wide baseline feature

correspondence algorithms proposed over the past several years (see Ferrari et al.

[2003] and Goedemé et al. [2004] for references to more algorithms), and any of these

could be used to create G. These matches could also be input by a user if desired.

While not novel, we briefly mention the initialization procedure we used to create G.

We start by detecting Harris corners [Harris and Stevens, 1988] in each of the two

source images I1 and I2. We employ the often-used O(N2) scheme of comparing each

corner point detected in I1 to every corner point detected in I2. We also determine

the relative local rotation between image patches surrounding the corner points, and

following Dufournaud et al. [2000] we attempt to match at several resolutions to find

a characteristic scale between image regions.

We measure similarity by taking the sum of the squared differences between pixels

in the local image region, and assign as matches point pairs with the highest similarity.

Since the matching assignment may be a many-to-one mapping, point pairs with

the highest similarity are bi-directionally checked, making it an O(N3) procedure.

Matches passing the bi-directional comparison check are finally added to G. While

not optimal, for a small number of initial corner points the computation time is

negligible when run on a modern processor, exploiting a strength of our algorithm of

not needing many initial matches.

2.3 Guided Matching

With a set G of initial matches, we employ our correspondence expansion al-

gorithm to grow the set to include additional matches. The expansion algorithm is

iterative and adds matches to the correspondence set at each step. There are two

parts to each iterative step: aggregation and constraint. In the aggregation step, we

use the current set of matches as seed points to “grow” additional matches that are

29

nearby, adding the new matches to the current set. In the constraint step, we con-

strain the newly-enlarged correspondence set to an epipolar geometry, so that when

the points in the set are used as seed points in the next iteration, they will have

a higher likelihood of growing correct matches. Important to the success of the al-

gorithm is the need for a high error tolerance on the epipolar geometry, as will be

explained in Section 2.3.2.

2.3.1 Aggregation

Before beginning the iterative cycle, we detect a set of several thousand Harris

corners P1 in I1. These serve as interest points which will be matched together with

locations in I2 to form correspondences as the iteration proceeds. We also maintain

a current correspondence set C which is initialized to the original match set G.

For each point Pi in P1, we find the nearest point c1i in C; c1i has already been

matched to a point c2i in I2. To quickly find nearest points, Voronoi maps over I1

and I2 are constructed for the points in C. We use graphics hardware to quickly

build Voronoi diagrams by rendering cones into two depth buffers, one each for I1

and I2 [Kenneth E. Hoff et al., 1999; Woo et al., 1997]. The cones are centered at

each point in C and have a finite base. The colors of the rasterized cones determine

the identity of the Voronoi regions. In this way Voronoi regions can be looked up

from a 2D location in constant time. Figure 2.2 shows an example of the Voronoi

regions for an image.

Having found the closest matched point c1i in C to the unmatched feature point

Pi, we compute an affine transformation that maps the image region surrounding c1i

to the region surrounding c2i. Baumberg observed that small planar surface patches

undergo affine transformations when seen from different viewpoints [Baumberg, 2000],

and that non-planar smooth patches can successfully be approximated by planar

surface patches for correlation. Rather than estimate the whole affine transform,

which given the match location in C amounts to finding four parameters, we only

consider the local rotation and scale.

Rotation is estimated by using the best correlation from a small set of candidate

30

Figure 2.2: Voronoi regions for a set of existing correspondences. The top image of a
taxidermy display contains a set of points, highlighted in white, matched to points in
another image of the same scene (not shown). The bottom image shows the same set
of points surrounded by their corresponding Voronoi regions–each separate region is
highlighted in a different shade. The black Harris corners within each Voronoi region
will potentially be matched using the local rotation and scale of the nearest existing
match.

31

c1j

pi

c1i

I1 I2

?

c2j

c2i

Figure 2.3: The local transform is used to predict new match locations. The fea-
ture point pi was detected using the Harris corner detector, and its closest existing
matching point c1i provides a local rotation and scale to guide the search for a match
for pi in I2. The local rotation is found by maximizing the correlation from a set
of candidate rotations. To find the local scale around c1i, its closest match c1j is
located, then the scale to transform pi to I2 is computed as the ratio of the distances:
|c2i − c2j| / |c1i − c1j|.

rotations. A pre-computed lookup table is used to accelerate the rotated locations

of each pixel in the window. We could use nearby matches to estimate the rotation,

or even the full affine transformation. However, local 2D rotations differ greatly

across the image due to the projection of 3D camera rotation, so matches not in the

immediate neighborhood of c1i yield incorrect rotations. Local scale is less susceptible

to the effects of 3D camera rotation, so we compute it directly from a nearby match.

We first find the closest match c1j to c1i in C, then using these two existing matches

the local scale is the ratio of their distances (Figure 2.3).

Once the local rotation and scale are estimated, the feature point pi in I1 is

transformed to a new location p′ in I2 (not necessarily a corner point). A steepest-

ascent hill-climbing strategy is used to find the best match in I2—the correlation at

p′ is compared with the correlation at all the pixel neighbors, and p′ is moved until a

local maximum is reached.

With the putative match identified, the whole process is reversed, where the

32

inverse rotation and scale are used to transform p′ back to I1 to predict the original

location of pi in I1. Again the hill-climbing strategy is used to find the best match p′′

in I1. If the original feature point pi and the point p′′ are within a threshold distance

(we use 1 pixel), then the match [pi, p
′] is considered valid and added to the set C of

current correspondences, and pi is removed from the set P1 of feature points.

After all feature points in P1 have been processed in this manner, C will po-

tentially be much larger. The rate at which matches are added to C depends on

the size of the cones determining the Voronoi regions, the number of Harris corners

detected within the Voronoi region of each existing match, and the heterogeneity of

the texture surrounding the detected corners. In images containing a large portion

of high frequency detail, we have found that C increases in size by 50% to 200% at

each iteration until the saturation point is reached (discussed in Section 2.3.3).

2.3.2 Constraint

It is imperative that C contain many correct matches, since these are used to seed

the growth of additional matches in subsequent iterations. To further ensure that

most or all matches in C are correct, they are constrained to an epipolar geometry.

It has been well demonstrated that a robust epipolar geometry can be determined

from a set of putative matches using RANSAC [Fischler and Bolles, 1981; Ma et al.,

2004]. RANSAC is an iterative algorithm, and the number of iterations needed can

be automated as shown in Hartley and Zisserman [2004]. The generation of the

epipolar geometry using this algorithm also serves to effectively segment, or cull,

correct correspondences from incorrect, outlying correspondences. It is for this second

purpose that we employ the RANSAC algorithm.

Even though the RANSAC algorithm is robust, care must be taken to avoid too

many incorrect matches in the input set, as the number of iterations required will

quickly grow very large. For instance, given an input set with an estimated 75%

outliers, the number of iterations required to ensure correct segmentation of inliers

from outliers with 95% probability will be about 50,000, as given by the following

33

equation from Hartley and Zisserman [2004]:

Niterations =
log(1− .95)

log(1− (1− ε)7)
| ε = .75 (2.1)

When generating the consensus sets during RANSAC culling, we intentionally

use a high inlier error tolerance—matches within five pixels of their epipolar lines are

considered inliers. This is an important aspect of our algorithm. Though it results in

a less accurate epipolar geometry, it permits many more matches to be added to C.

By including more matches in this way even if they are slightly incorrect, we speed

up the inlier/outlier segmentation considerably, giving the algorithm a fast iteration

cycle, and more importantly, improving the ability to grow more matches in the next

iteration. Thus, at this stage of the algorithm, the set C temporarily contains a large

number of incorrect matches due to the high error tolerance. However, as a result, the

algorithm is able to create an average of 50% more final correct matches in our test

images than it does by using a low RANSAC error tolerance, such as 0.5 or 0.1 pixels.

This is because the high error tolerance permits matches to expand into regions of I1

and I2 that otherwise would have contained fewer candidate matches.

Inlier matches that survive the epipolar constraint are kept in the set C of current

correspondences. Matches that fail are removed from the set, and each point c1i from

the failed matches are placed back in the set P1 of feature points for future matching

consideration.

It is important to note that we do not use the epipolar constraint to guide the

search for new matches, as it has been used historically. Doing so would poten-

tially contaminate the correspondence set with false matches following an incorrectly

estimated epipolar geometry. Rather, as explained in Section 2.3.1, we use an approx-

imated affine transform to guide the search, and we utilize the epipolar constraint to

refine the augmented correspondence set along the way.

2.3.3 Saturation

The correspondence expansion iterations are allowed to proceed to a saturation

point, when no additional matches are added to C in the aggregation step. This

34

occurs when all the feature points in P1 either have been matched or have no cor-

relating matches that can be found. We have observed that during the aggregation

and constraint phases, the size of C may occasionally drop slightly as the matches

it contains shift to a more accurate epipolar geometry. Immediately following such

adjustments, the size of C usually increases dramatically since the increased accuracy

will admit more correct matches. To permit these desirable fluctuations, we allow

the size of C to drop a pre-determined number of times (we use three) before termi-

nating the iteration cycle. This conservative termination criterion tends to allow the

correspondence expansion to advance into most areas of I1 and I2 that would have

been reached by an unbounded number of iterations. Our experience has shown that

when the expansion covers most of the image area, succeeding operations such as

pose estimation using the point matches are more accurate than when the expansion

reaches saturation only on localized regions of the images.

2.3.4 Final Guided Matching

At its saturation point, the current correspondence set C contains many more

matches than it did initially; however, the matches do not adhere closely to the

epipolar constraint as a result of the high error tolerance permitted earlier in the

algorithm. As a final step, we wish to impose a tighter epipolar constraint to ensure

a correct set of matches. Unfortunately, applying the constraint would eliminate

many matches in C that are close to correct but are far enough away from their

epipolar lines to fail the epipolar constraint.

Rather than discard all of these near-correct matches, we adjust their matched

positions prior to the final constraint application. We use a simple guided search

strategy that, in contrast to Section 2.3.2, does use the epipolar constraint as a guide.

Matched points c2i from C in I2 are projected orthogonally to their corresponding

epipolar lines, then their counterpart points c1i are matched to points in I2 along

short segments of the epipolar lines. Those matches with better correlations replace

the old matches, while those not having better correlations are discarded. Finally, the

set C is constrained to an epipolar geometry with a low error tolerance of .5 pixels

35

Im# Initial Matches Final Matches Time In Secs. Iterations

1 53 144 33 11

2 25 189 29 14

3 29 270 20 19

4 37 480 28 17

5 53 531 46 14

6 53 531 55 15

7 35 607 43 13

8 52 661 39 13

9 63 818 37 11

10 98 849 48 11

11 27 871 29 15

12 100 908 42 12

13 46 1208 34 13

14 81 1307 25 10

15 58 1401 36 18

16 109 1916 33 13

17 66 1942 43 17

Table 2.1: Results from the correspondence expansion algorithm, sorted by the num-
ber of final matches found. The initial matches were computed using the initialization
procedure of Section 2.2. The Final Matches column reports the number of matches
found after expansion. The average expansion time in seconds for all images in the
table is 36.5 seconds; this time does not include finding the initial match set. The
average number of iterations is 14. All tests were run on a 3.2 GHz Pentium 4 CPU.

to create the final correspondence set.

2.4 Results

We tested the correspondence expansion algorithm on images acquired from a

variety of indoor and outdoor environments. Starting with a few dozen matches, our

algorithm performed extremely well, expanding the correspondence set by approxi-

mately 3 to 30 times its original size. We also found that there were very few incorrect

final matches.

To measure the accuracy of the matches, we hand-picked a small set of corre-

spondences in each image pair to compute an accurate fundamental matrix F. We

36

Figure 2.4: Flowerbed image pair. This correspondence set was expanded from 35
initial matches to 931 final matches. The top images are the original pair, and the
bottom image illustrates the final correspondences with lines.

37

Figure 2.5: T-Rex skull image pair, expanded from 30 initial matches to 532 final
matches. Correspondences are shown with white lines.

38

Figure 2.6: Shelf image pair exhibiting scale change and camera cyclo-rotation. This
set was expanded from 19 initial matches to 112 final matches.

39

then started the expansion algorithm from a different, small set of automatically de-

rived initial matches, and tested the expanded set against F to measure the match

distances from their respective epipolar lines. We measured this accuracy on a set

of 17 image pairs. The average error for the hand-picked correspondences was 0.766

pixels, and the average error for the expanded set of correspondences was 1.862 pixels,

with a standard deviation of 1.18. This indicates a high accuracy for the expanded

correspondence set, considering that the point matches are not made to sub-pixel

precision. Note also, that this measure does not check for mismatches which lie along

correct epipolar lines.

Table 2.1 reports the number of matches found, the expansion run-time in sec-

onds, and the number of iterations needed for the 17 images used in the accuracy

check. Figures 2.4, 2.5, and 2.6 show examples of the expansion algorithm finding

matches in image pairs.

2.5 Conclusion and Future Work

We have presented a method to expand an initial set of wide baseline correspon-

dences to many times its original size. Using an iterative two-step process, we first

aggregate additional matches around existing “seed point” matches. An approxi-

mate affine transformation (translation, rotation, and scale) maps the points of the

seed match and is used to predict new match locations. Second, we constrain the

aggregated matches to a high error tolerance epipolar constraint using RANSAC.

These steps are iterated until no matches are added to the expanded set. Using

correspondence expansion successfully yields many more wide baseline matches than

are obtained using previous methods alone. Our algorithm does not replace previ-

ous matching algorithms; rather it augments existing methods as a “post-process” to

increase the number of final, high quality correspondences.

We presently do not consider photometric differences between most image pairs

while matching. To match images with significant lighting change, we perform inten-

sity histogram equalization in YIQ space as a preprocess to correspondence expansion.

While this reduces photometric differences and performs fairly well in practice, we

40

would like to use an invariant measure. A possible solution is to use color moments as

in Mindru et al. [1999]; Tuytelaars and Van Gool [2000], however any local measure

will impose a large computational burden on our algorithm. A pre-processed contrast

and brightness normalization procedure such as in [Sand and Teller, 2004] may be a

more efficient approach.

41

42

Chapter 3

Histogram Matching for Camera Pose Neighbor Selection

Kevin L. Steele, Parris K. Egbert, and Bryan S. Morse, “Histogram Matching for

Camera Pose Neighbor Selection,” Third International Symposium on 3D Data

Processing, Visualization and Transmission (3DPVT ’06)

http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000000.

Abstract

A prerequisite to calibrated camera pose estimation is the construction of a camera

neighborhood adjacency graph, a connected graph defining the pose neighbors of the

camera set. Pose neighbors to a camera C are images containing sufficient overlap in

image content with the image from C that they can be used to correctly pose C using

structure-from-motion pose estimation techniques. In a video stream, the camera

neighborhood adjacency graph is often a simple connected path; frames are only posed

relative to their immediate neighbors.

We propose a novel method to build more complex camera adjacency graphs that

are suitable for posing large numbers of wide- and narrow-baseline images. We employ

Content-Based Image Retrieval techniques to identify similar images likely to be graph

neighbors. We also develop an optimization to improve graph accuracy that is based

on an observation of common camera motions taken when photographing with the

intent of structure-from-motion. Our results substantiate the use of our method for

determining neighbors for pose estimation.

43

3.1 Introduction

Camera pose estimation, the recovery of a camera’s extrinsic parameters, is a

long-studied problem in computer vision, and researchers have generated significant

results and some robust algorithms [Hartley and Zisserman, 2004]. In many pose-

estimation algorithms, image features such as points and lines are matched between

image pairs, triplets, or sequences and the matches are used to compute the camera

pose. A prerequisite to this feature matching is the identification of image pairs or

an image neighborhood defining similar images with which to match features. These

image neighbors can be expressed as an undirected adjacency graph [Teller et al.,

2003], where nodes of the graph are cameras and their respective images, and edges

infer proximity between cameras whose view frusta overlap to include common scene

structure. Edges essentially connect cameras that have a high likelihood of successful

pose estimation due to the overlapping image content (see Figure 3.1 for an example).

Many pose-estimation algorithms depend on the transitive correctness of succes-

sive camera poses:

(A
p→ B) ∧ (B

p→ C) ⇒ (A
p→ C), (3.1)

where A
p→ B is a binary relation between camera pair {A, B} ∈ Scams (the set of

all input cameras) indicating that camera B is correctly posed relative to camera

A. Since there is often an explicit ordinality to the pose estimation of a camera

sequence, a poor estimate early in the chain can propagate large pose errors. It is

therefore important that the camera neighborhood adjacency graph be as connected

as possible (Figure 3.1). Our objective in this paper is to propose a novel process of

camera neighbor selection for construction of the adjacency graph.

The emergence of inexpensive and high-quality digital cameras and camcorders,

together with the improved ability to quickly move image and video content into

computer memory has enabled many applications of 3D reconstruction and visual-

ization. It is increasingly desirable to construct dense camera networks of hundreds

of cameras for visualization and reconstruction purposes. However, given the limi-

tations of current pose estimation algorithms, especially with wide-baseline cameras,

44

Figure 3.1: A camera neighborhood adjacency graph. These five images contain
varying amounts of overlap of a museum taxidermy display. Images containing sig-
nificant overlap are bi-directionally connected in the graph. Thus, the center image
has four neighbors, and its camera should be posed relative to these four neighboring
cameras.

45

creating the prerequisite adjacency graph is difficult. Current algorithmic deficiencies

include the inability to involve all close camera neighbors in an initial pose estimate

while excluding images that do not overlap at all. Another deficiency is the lack of a

coherent method to include all types of footage, e.g., video streams and still images,

simultaneously in the pose estimates.

In this paper we propose a novel and efficient way to create the camera neighbor-

hood adjacency graph in the presence of hundreds of input images by using methods

from content-based image retrieval systems. We use color histograms to identify sim-

ilar images as candidate camera neighbors, and partial histogram functions (defined

in Section 3.4) to more accurately determine neighbors given constraints unique to

the purpose of pose estimation. Our method has the ability to find accurate camera

neighbors for large numbers of input images without imposing a specific pose order

(at the expense of an O(n2) algorithm), and makes no distinction between image

input formats (still images or video streams).

3.2 Background

Often the adjacency graph creation for a pose solution is done by hand in order

to exploit known matching characteristics and optimize the quality of the pose esti-

mation. When few images are to be matched, neighbor selection is trivial. In this

section we describe past methods in determining pose-neighbor selection. Often the

selection process is implicit to a pose-estimation algorithm, and an adjacency graph

is not explicitly constructed.

Teller et al. [2003] create omni-directional images of outdoor urban environments

for pose estimation. They determine camera neighbors by taking the k-nearest neigh-

bors of an initial adjacency graph constructed from GPS sensor data acquired at the

physical camera location. Most other methods (including ours) attempt to build the

adjacency graph exclusively from image content rather than utilizing external sensors.

Much recent work has focused on using video streams in the matching pro-

cess [Fitzgibbon and Zisserman, 1998; Koch et al., 1999a,b; Lhuillier and Quan, 2002;

Nistér, 2000; Sainz et al., 2003], in which features (points, lines, etc.) are identified

46

in an initial frame and then tracked through subsequent frames until the features

are no longer identifiable. New features are typically added throughout the tracking

process so that at any given frame of the stream many features exist between the

current frame and its immediate predecessor and successor. Thus an image’s match

(and pose) neighbors are the frames immediately preceding or following it in the video

stream, and the corresponding adjacency graph degenerates to a path graph, i.e. a

path containing all the nodes of the graph (see (a) in Figure 3.2). All algorithms

that operate on sequences of images produce similar degeneracies, regardless of input

format. For instance, Lhuillier and Quan [2002] use still images rather than a video

stream, but they nonetheless enforce an ordering on the input images to define match

partners. Sainz et al. [2003] designed their calibration solution to include video se-

quences, manually tracked sequences, and still images. However, they still require an

imposed ordering on all input images. In contrast, our method makes no assump-

tion on the input order and produces adjacency graphs in which most or all correct

world-space neighbors are detected and included, not simply those nearby in a linear

sequence.

Algorithmic variants include matching to images several frames separated (two,

three, or more frames ahead or behind the current frame) to improve matching char-

acteristics such as sharpness or depth variance [Nistér, 2001]. The first attempts to

depart from the conventional sequential ordering requirement are those of Koch et al.

[1999a,b], who proposed the method of sweeping a camcorder over a viewpoint surface

in a zigzag pattern to construct a viewpoint mesh, a 3D polygonal mesh whose ver-

tices are the viewpoints of the reconstructed cameras. Rather than restricting their

pose neighbors to frames before and after a current frame, they exploit the zigzag

nature of the sweeping pattern to find additional neighbors. Their method backtracks

at each frame to examine the 3D locations of previously posed cameras—any prior

cameras within a distance threshold are included as neighbors to the current frame.

Figure 3.2 (b) shows an example of their method. In [Koch et al., 1999b] the authors

predict a very coarse estimate of an unknown camera pose by first computing the

fundamental matrix F of an image pair from feature matches. They use the epipole

47

(a)

(b)

X

X

(Degenerate adjacency graph)

(Better adjacency graph)

Figure 3.2: Adjacency graphs created from an implicit ordering of the input cameras.
The pyramids in (a) and (b) show the camera locations of two hypothetical input video
streams pointing toward a central point (X). The input for (a) is a one-dimensional
tracked sequence about X. Most current algorithms construct the (degenerate) ad-
jacency graph using immediate frame neighbors, as shown with the arrows. The
input for (b) is a viewing sphere [Koch et al., 1999a] from a zigzag about X. Looking
beyond the immediate frame sequence [Koch et al., 1999a,b], one can create better
graph configurations with more pose neighbors, and consequently more accurate pose
estimates.

48

extracted from F to predict the new pose direction, and the residual correspondence

error of the rectified image pair1 to predict the distance from the pose-partner. Given

this coarse pose estimate, they can use a world-space proximity measure to deter-

mine camera neighbors from previously posed cameras. Thus the authors are able

to implicitly build a more complete, non-degenerate camera neighborhood adjacency

graph. This method is similar to ours in that it attempts to build a non-degenerate

adjacency graph. However, their video stream must be centered on one central object

of the scene, since the coarse pose estimate cannot account for camera rotation. Our

method is able to deal with arbitrary camera motion around any part of the scene,

provided there is sufficient overlap of scene content in the input set.

Several recent contributions associate overlapping images using local image fea-

tures. Brown and Lowe [2003] and Brown and Lowe [2005] extract SIFT features

from each image and build a k-d tree containing all features from all the images of

the input set. Images of the same objects or scenes are identified by searching the

k-d tree for the nearest neighbors of a given query feature found on the object of

interest. This allows the implicit creation of an adjacency graph, which the authors

use to determine the metric pose of each image through bundle adjustment.

Schaffalitzky and Zisserman [2002] find geometrically and photometrically invari-

ant feature descriptors in all images and store them in a BSP tree. Feature vectors

within a threshold distance are considered matches, and an adjacency graph in the

form of an explicit spanning tree is constructed. Brown and Lowe [2003, 2005] and

Schaffalitzky and Zisserman [2002] use local image features to identify adjacent im-

ages. Their algorithmic complexity is linear in the number of images, plus a non–linear

(though small) tree searching component.

In this paper we propose the use of content-based image retrieval (CBIR) tech-

niques for the task of image neighbor determination for camera pose estimation. By

using CBIR to build the camera neighborhood adjacency graph, rather than relying

on implicit input order, we remove the requirement of a sequentially-ordered input

1For efficiency the authors use a linear affine mapping as an approximation to the projective
rectification.

49

set. The input set can thus be seen as an image database from which to draw pose

neighbors for a given image. Queries made on the database have the constraint that

all returned images are neighbors in the adjacency graph.

3.3 Content-Based Image Retrieval

Content-based image retrieval is a set of techniques for retrieving images from a

database using features automatically derived from the images themselves. The fea-

tures used to query CBIR databases often include color histogram content, texture,

color location, shape and image composition. CBIR has received widespread re-

search attention, and a number of general-purpose CBIR search engines exist—IBM

QBIC [Flickner et al., 1995], MIT Photobook [Pentland et al., 1994], and Berkeley

Blobworld [Carson et al., 1999] to name a few.

Image retrieval in the larger context is concerned with finding the images in

a database that are semantically relevant or similar to a query image. Often the

relevant images are of the same class or category, such as “all brown dogs” or “all

persons on a beach.” In the context of pose estimation, however, we are concerned

with finding locationally relevant images, or images of the same part of a scene as the

query image. This puts a large constraint on typical CBIR usage, and restricts the

useful feature types.

We use color histograms as the feature type to match images. The color histogram

is a widely-used feature representation for image retrieval [Rui et al., 1997]. Its

advantages include invariance to rotation and translation of the image content. One

major drawback of using color histograms for image retrieval is that they discard any

spatial information in the image content. For example, a histogram of an outdoor

scene loses all information that the blue sky is at the “top” of the image, complicating

queries for more blue sky images. However, as will be discussed in Section 3.4, this

weakness is not a disadvantage when using histogram matching for camera neighbor

selection.

We transform RGB image color to the HSV color space and make comparisons

50

using the hue component exclusively. A simple L1-distance comparison function be-

tween two hue histograms H and I works well in practice:

d(H, I) =
n∑

k=1

|Hk − Ik| (3.2)

where n is the number of color bins. Given a query image histogram H, and a

database image histogram I, the histogram distance d(H, I) represents the dissimi-

larity between the two images. For the L1-distance metric, d(H, I) is precisely the

number of pixels that differ in hue in both images. For each query image, we can sort

the remaining images in our input set (the database) on increasing values of d, then

threshold either the number of neighbors or the value of d to determine the actual

neighbors of the query image.

By performing histogram matching using all images in the input set as indepen-

dent query images, we can build a directed adjacency graph. If the degree of each

node is constant, as would be the case in a typical implementation, then the graph is

directed due to the lack of a symmetric binary relation in the set of all neighbors, i.e.

I1 having neighbor I2 does not imply I2 has neighbor I1. For many pose estimation

algorithms, a directed adjacency graph is sufficient. If an undirected graph is neces-

sary, it can be assumed from the directed graph with the allowance of a non-uniform

threshold (for example, each node may have differing numbers of neighbors).

3.4 Optimization

We now propose a novel optimization that improves the accuracy of the adjacency

graph as constructed in Section 3.3. The optimization is based on an observation of

typical camera motions made when photographing scenes for eventual structure-from-

motion applications:

Observation. When photographing for the purpose of later 3D reconstruction or vi-

sualization, we have a tendency to follow specific camera-motion patterns—we tend

either to rotate about a subjects up-axis, or to track (translate) horizontally or verti-

cally past a subject.

51

x
z

y

Figure 3.3: Pyramids representing camera view frusta. Each of the darker blue
cameras in the left column has been rotated to the right about the origin in 12
increments of 3◦; each row of the pictured matrix of viewpoints comprises a rotational
set Src. Each set has also been rotated 5◦ up from the previous set to represent varying
grazing angles of the geometry with the cameras. The view frusta for all cameras
intersect the ground plane y = 0 forming individual quadrilaterals. The quads for
two such cameras (circled) are outlined in bold red and black lines. Note that the
overlap between the two quads is exactly the geometric scene content shared between
the two images of the circled cameras. The image of the overlap in this figure is shown
as the shaded area of Figure 3.4.

We also tend to avoid extreme or arbitrary camera motions such as cyclo-rotation,

panning (except in the case of creating panoramas), diagonal tracks, large rotations

and large tracks. While we haven’t performed user studies on the validity of this

observation, we believe it to be a fair characterization based on our own camera

motion patterns and those observed in the computational stereo literature.

This observation will guide the development of our algorithm. Let the ground

plane y = 0 be a coarse approximation of the geometry of interest in a structure-from-

motion application. If we map the typical camera motions taken from the observation,

we get a set of translated and rotated camera positions centered on a point, e.g., the

52

Euclidean origin. Figure 3.3 illustrates candidate sets of rotated cameras. The set of

rotations can be expressed by

Src =

β⋃
θ=α

M(θ, t)P (3.3)

where Src is the set of homogeneous camera projection matrices representing the

rotated cameras, P is the homogeneous camera matrix of an initial camera, M(θ, t)

is the parameterized matrix that rotates the initial camera by θ about a point on the

principal axis t units from the camera center, and α and β are the limits of rotation.

M(θ, t) is expressed in Equation (3.4) as the composition of the individual affine

transformations in (3.5). These matrices translate the camera’s rotational center to

the origin, rotate the camera about the positive y-axis, and then translate it back

again.

M(θ, t) =


cos θ 0 sin θ −t sin θ

0 1 0 0

− sin θ 0 cos θ t− t cos θ

0 0 0 1

 (3.4)

=


1 0 0 0

0 1 0 0

0 0 1 t

0 0 0 1




cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 −t

0 0 0 1

 . (3.5)

The intersections of the view frusta with the ground plane form quadrilaterals,

as shown in Figure 3.3. Let qi be the image of the quadrilateral formed by an initial

camera Ci, and qr be the image of the quadrilateral formed by a rotated camera Cr,

where Ci and Cr are cameras whose defining matrices Mi, Mr ∈ Src. The image qi

can be re-projected to Cr by a homography H. This re-projection q̂i is the original

quadrilateral as seen from the vantage point of Cr. The overlap of the re-projected

quad q̂i with qr is precisely that geometry that is seen from both cameras. Figure 3.4

illustrates the overlap of q̂i with qr for the array of cameras in Figure 3.3.

53

90°

85°

80°

75°

70°

65°

60°

55°

50°

45°

40°

35°

3° 6° 9° 12° 15° 18° 21° 24° 27° 30° 33° 36°

Y-Axis Rotation

X
-A

xi
s

R
ot

at
io

n

A B

C

Figure 3.4: Grid of quadrilateral re-projections. Each square of the grid shows the
re-projection of an initial camera’s quad to a rotated camera of the same set. The
white area in each square is the overlap of the re-projected quad with the quad of
the corresponding rotated camera. It is easily seen that the coverage pattern shifts
to the right (the square labeled B) as the cameras increase in their y-axis rotation,
and the pattern rotates clockwise as the camera sets decrease in their x-axis rotation
(the square labeled C). This suggests the search patterns illustrated in Figure 3.5.
The green shaded area in the figure corresponds to the quadrilateral overlap from
Figure 3.3.

54

In the context of pose estimation, the overlap represents the image content from

which to derive useful features for feature matching. The quality of the matches

directly determines the success of the pose estimation. Since larger image overlaps

imply larger quantities of matches, we would like to quantify the amount of overlap

between a query image and all other images, and assign neighbors to the query image

from among those with the most overlap. Herein lies the optimization: we can improve

the accuracy of the adjacency graph by detecting this overlap, then computing color

histogram comparisons only on the overlapping portions of images rather than on

entire images.

Examining the family of overlap patterns created from typical camera motions

suggests an efficient method to determine the correct overlap. Consider the example

of the two cameras labeled A and B in the top corners of Figure 3.4. Camera B is

horizontally rotated 36◦ about a point visible to both cameras. The overlap pattern

seen at label B in Figure 3.4 is approximately a right-shift of the image contents. If

the scene contains any depth variation, there will be parallax in the shift, but for

moderate depth variation the shift still maintains most of the color content. If we

compute a color histogram on only the shifted portion of image B, and its equal but

opposite shift (we denote as the conjugate shift) in image A, we exclude from the

histograms those pixels that are not likely to be shared between the images. Using

these partial histograms, the distance function of Equation (3.2) will yield a more

accurate comparison of these two images.

Since we do not know in advance the amount of rotation (if any) between two

cameras, we can parameterize the shift and perform an iterated search for the smallest

histogram distance. The histogram distance function then becomes

d(Hφ, Iφ∗) =
1

|φ|

n∑
k=1

|Hφ,k − Iφ∗,k| (3.6)

where Hφ is the partial histogram of the query image given a shift pattern, Iφ∗ is the

partial histogram of the test image given the conjugate shift pattern, and |φ| is the

size in number of pixels of the partial histogram. The function φ returns the set of

pixels of a specific shift parameter, and φ∗ the set of pixels of the conjugate shift.

55

(b)

(d)

(f)

(a)

(c)

(e)

Figure 3.5: Histogram search coverage patterns—each pair consists of a search pat-
tern and its conjugate. We propose six pairs of search patterns (a-f) that follow the
coverage patterns in Figure 3.4. Pattern (a) proceeds left-to-right in one image and
right-to-left in the other image. Patterns (b-d) proceed similarly according to the
arrows. Patterns (e) and (f) proceed from the corners as illustrated to detect low-
grazing angle rotation, for example the pattern labeled C from Figure 3.4. Note in
this case that we do not need to proceed from the bottom corners for two reasons: the
effect of perspective decreases the overlap much more at the top corners, and camera
angles from the underside of surfaces are not included in the list of common camera
motions.

56

The distance is weighted by the size of the partial histogram to give distance per unit

pixel. The histogram distance of the best overlap is given by

dmin = min
l

d(Hφ(l), Iφ∗(l)) (3.7)

where l is the shift parameter. In the above example, l iterates left-to-right across

the columns of image B, Hφ(l) computes the histogram of the pixels to the right of

column l in image B, and Iφ∗(l) computes the histogram of the pixels to the left of

column (ImageWidth− l) in image A.

This process can be repeated using other shift patterns that represent the common

camera motions. We use six different shift patterns, given in Figure 3.5, and take the

minimum dmin of the six patterns to be the final partial histogram distance between

two images. Figure 3.6 shows the outlines of an optimal partial histogram region from

an image pair.

The algorithmic complexity of partial histogram comparison is similar to that of

using global histograms. Computing the global histogram is O(n) in the number of

pixels, and computing partial histograms is also O(n) for each shift pattern since, for

each value of the shift parameter l, we simply add a line of pixel values to the his-

togram data computed for the previous value. However, while comparing histograms

is O(n) in the number of hues chosen for both global and partial histograms, we make

m more comparisons for partial histograms, m = ImageWidth, m = ImageHeight,

or m = ImageWidth + ImageHeight depending on the shift pattern. We have

observed this commensurately increased running time in practice.

3.5 Results

We tested our optimized and non-optimized adjacency graph building algorithms

using four sets of wide-baseline images. Sample images from each of the four sets

are shown in Figure 3.7. We use precision vs. recall comparisons to measure the

accuracy of the set Si of computed neighbors for each image. To use this measure, we

also constructed the set Ti of “true” neighbors for each image. Precision measures

57

Best overlapping region, computed
from partial histogram distance

Figure 3.6: Image pair showing optimal partial histogram regions. The partial
histogram distance function found the minimum at column 219 (640×480) in the left
image using coverage pattern (b) from Figure 3.5.

the percentage of Si in Ti, or |Si

⋂
Ti|/|Si|. Recall measures the percentage of Ti in

Si, or |Si

⋂
Ti|/|Ti|.

To automatically construct the set Ti we utilized feature correspondences that

are often-times used to estimate internal and external camera parameters. We com-

puted an accurate set of point matches and their connecting vectors between all pairs

of input images. The proportion of image overlap for each pair was determined from

its average matching vector. Since low variances of point match vectors correlate well

with close image neighbors, we rejected outlying images with no overlap by thresh-

olding on σ2. Finally, we constructed Ti for each image from the images exhibiting

the most overlap.

We use Equation (3.7) to build the candidate neighbors for each image in the test

sets. For a given query image, the minimum histogram distances are computed to all

other images in the set. The distances are sorted, and the test images corresponding

to the smallest n distances are kept as neighbors to the query image. We measure

the precision/recall accuracy for values of n = [1..k − 1], k being the size of the test

58

set.

Results of the four test cases are given in Figure 3.8. Each data point on the

four graphs represents the average precision and recall of the computed neighbor sets

for a specific n number of neighbors. The graphs show a typical inverse relationship

between precision and recall [Chowdhury, 2004], and in all four cases using partial

histogram distances improves the precision accuracy from simply using the global

histogram function in Equation (3.2). Partial histogram distances improve precision

on average by 26.9% for five neighbors, and by 24.3% for ten neighbors. Table 3.1

lists percentage improvements for each of the four test cases.

Percentage Improvement

5 Neighbors 10 Neighbors

Museum 35.8% 36.2%
office 24.0% 24.1%

outdoor1 24.7% 23.7%
outdoor2 23.0% 13.3%

Table 3.1: Improvement of precision accuracy for using partial histogram distances
rather than global histogram distances.

3.6 Summary and Conclusions

We have shown a novel and efficient method to create the camera neighbor-

hood adjacency graph for use in pose estimation without having to first find feature

matches between two images—a potentially time-consuming process for wide-baseline

images [Goedemé et al., 2004]. In addition, our method can process sequential and

non-sequential image collections simultaneously, such as images from still cameras

and video streams from camcorders. An ordering such as a least-cost Hamiltonian

path could later be imposed on the adjacency graph for use in existing sequential

pose-estimation algorithms, although we foresee hierarchical or other non-sequential

posing schemes to ultimately be more efficient.

59

Museum (from 55 images)

Office (from 39 images)

Outdoor1 (from 30 images)

Outdoor2 (from 16 images)

Figure 3.7: Representative images from four test sets. The images from both the
Museum and Office sets have camera motions containing significant horizontal and
vertical rotation, while Outdoor1 has horizontal and some vertical rotation, and Out-
door2 has only horizontal rotation.

60

Museum

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Partial
Global
1-x

Office

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Partial
Global
1-x

Outdoor 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Partial
Global
1-x

Outdoor 2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Partial
Global
1-x

Figure 3.8: Precision/recall graphs from the four test suites (museum, office, outdoor1
and outdoor2). The lighter pink plot in each graph shows the precision/recall accuracy
for histograms taken from the whole images (global histogram). The darker blue
plots show the accuracy for partial histograms. In all test cases the partial histogram
comparisons improved the accuracy significantly.

61

We have also proposed an optimization for improving the accuracy of the adja-

cency graph by computing partial histograms, i.e., histograms on just the overlapping

portions of image pairs. The optimal overlapping portion is found as the minimum

of a distance function that computes partial histograms on a pre-determined pat-

tern of image overlaps. The pre-determined pattern comes from an observation of

common camera motions used when photographing content for visualization or 3D

reconstruction.

Our method works well for the image sets we have shown in this paper and for

many other image sets we have tested. Since our algorithm requires each image in a

set to act as the query image, and each query image is compared to all other images

in the set, it is an O(n2) algorithm. In practice one can perform the algorithm on

sets containing hundreds of images without undue computation time on a modern

processor. However, for sets of extremely large size (thousands of images) it may be

beneficial to hierarchically cluster the input images as they are matched. Traditional

clustering methods could be used for this using coarse histogram content as a cluster

feature.

62

Chapter 4

Minimum Spanning Tree Pose Estimation

Kevin L. Steele and Parris K. Egbert, “Minimum Spanning Tree Pose Estimation,”

Third International Symposium on 3D Data Processing, Visualization and Trans-

mission (3DPVT ’06)

http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000000.

Abstract

The extrinsic camera parameters from video stream images can be accurately es-

timated by tracking features through the image sequence and using these features to

compute parameter estimates. Long video sequences have been posed in this man-

ner. However, large sets of still images cannot be posed using the same strategy

because wide-baseline correspondences are not as robust as narrow-baseline feature

tracks. Moreover, video pose estimation requires a linear or hierarchically-linear or-

dering on the images to be externally calibrated (posed), reducing the image matches

to the neighboring video frames.

We propose a novel generalization to the linear ordering requirement of video pose

estimation by computing the Minimum Spanning Tree of the camera adjacency graph

and using the tree hierarchy to determine the pose order for a set of input images. We

validate the pose accuracy using an error metric that is functionally independent of

the posing process. Because we do not rely on feature tracking for generating feature

correspondences, our method can use internally calibrated wide- or narrow-baseline

images as input, and can pose images from multiple video streams without special

pre-processing to concatenate the streams.

63

4.1 Introduction

External camera calibration consists of determining the external or extrinsic pa-

rameters of a camera matrix P , which are the parameters defining the camera location

and orientation relative to a world coordinate frame. Much effort in computer vision

has gone into developing stable methods of estimating the external camera parameters

in projective and metric spaces; see Hartley and Zisserman [2004] for a rigorous treat-

ment and a compilation of references. A related body of work describes the process of

auto-calibration, the automated estimation of a camera’s internal parameters from a

collection of uncalibrated images [Armstrong et al., 1994; Faugeras et al., 1992; Polle-

feys et al., 1998; Triggs, 1997]. Auto-calibration is often performed simultaneously

with external calibration (pose estimation).

More recently research has focused on the use of video streams as input to pose

estimation problems [Fitzgibbon and Zisserman, 1998; Koch et al., 1999a,b; Lhuillier

and Quan, 2002; Nistér, 2000; Sainz et al., 2003]. Large numbers of cameras can

be successively posed by tracking features through a sequence of video frames and

using those features to pose cameras relative to their predecessors in the sequence.

Dense pose estimation of this sort is an important precursor to reconstruction and

visualization applications. The advantage to using video streams as an input to

pose estimation, rather than taking still images of the same structure, is that the

correspondence problem is simpler to resolve in a narrow-baseline setting. Hence,

feature matches between image pairs and image triplets are more accurate, improving

the pose estimation accuracy.

However, several disadvantages exist to using video streams. Video pose estima-

tion uses an implicit ordering to determine pose order—frames are posed relative to

immediate or close predecessors in the image sequence. Most algorithms are unable

to exploit out-of-sequence image matches that would otherwise improve an estimate.

It is also problematic to combine multiple video streams of a scene, since features are

not propagated from one stream to another. We would also like the ability to pose

large numbers of wide-baseline images that cannot be matched using robust feature

tracking.

64

In this paper we propose a generalization to the sequential ordering scheme re-

quired by video pose estimation. Rather than posing cameras in a linear ordering, we

utilize the camera adjacency graph [Teller et al., 2003] to determine the best images

from which to extract match features for pose estimation. We compute the Minimum

Spanning Tree (MST) of the adjacency graph to determine the pose order for the set

of input images, and validate the pose accuracy using a novel error metric that is

functionally independent of the posing process.

The contributions of our proposed method are that it can utilize both narrow-

and wide-baseline images as input, it can include multiple video streams, and it can

determine an optimal set of posed images to use as match generators in computing

the next estimate. Our method has produced reliable pose estimates in scenes of over

one hundred wide-baseline images without using feature tracking as a correspondence

solution.

4.2 Related Work

The goal of dense pose estimation (the estimation of many related camera poses)

has been addressed almost exclusively in the context of narrow-baseline imagery from

video stream input. This is due largely to the existence of highly robust solutions

to the correspondence problem in the narrow-baseline setting, where feature tracking

can take a predominant role [Tomasi and Kanade, 1992]. In this section we review

the work on dense pose estimation from video streams (video pose estimation).

Fitzgibbon and Zisserman [1998] present a method to track features through

an open or closed sequence of video frames, and use successive frame triplets to

estimate trifocal tensors. They then hierarchically combine the tensors to build a

reconstruction within a common world frame. While the tensor hierarchy promotes

reliable 3D structure throughout the sequence to aid in matching, the matching order

is still essentially linear in that images are matched to preceding or succeeding video

frames. Nistér [2000] presents a generalization of Fitzgibbon and Zisserman [1998]

where registration of leaf-level trifocal tensors is delayed until the tensor hierarchy is

complete. A set of spanning tensors (wide tensors) are chosen from the hierarchy to

65

represent the entire sequence, from which intermediate views are registered and the

structure is triangulated. In this way unnecessary video frames can be discarded.

Still images have also been used for closed loops [Lhuillier and Quan, 2002], but

a linear ordering on the input images is still enforced, and a “quasi-dense” feature

set is used to compute the fundamental matrices and trifocal tensors, thus partially

avoiding the difficulty of posing wide-baseline images. Steedly et al. [2003] use tracked

features for video pose estimation, then the posed sequence is partitioned into rigid

body clusters to simplify the bundle adjustment phase.

There have been several attempts to utilize feature matches outside the conven-

tional video frame order [Koch et al., 1999a,b]. Koch et al. [1999a] sweep a camcorder

over the object of interest in a zigzag fashion, and construct a 3D polygonal mesh

whose vertices are the viewpoints of the reconstructed cameras. Rather than restrict-

ing their fundamental matrix computations to the preceding frames, they exploit the

zigzag nature of the sweeping pattern to find additional images with which to match.

Their method backtracks at each frame to examine the 3D locations of previously

posed cameras—any prior cameras within a distance threshold are used to update

the current pose estimate.

In another work Koch et al. [1999b] sequentially predict a coarse pose estimate

for the next video frame by using the epipole extracted from the fundamental matrix

F to predict the new pose direction, and the residual correspondence error of the

rectified image pair to predict the distance from the previous pose. Given this coarse

pose estimate, they use a world-space distance threshold to find additional images to

update the pose estimate. A deficiency of this method is that the video stream must

be centered on one central object in the scene, since the coarse pose estimate cannot

account for camera rotation.

While these methods can successfully pose many frames in their video sequences,

they are still restricted to single streams, or streams that have been modified to permit

concatenation. We propose a unifying solution to both still image and multiple video

stream pose estimation that does not require the robustness of inter-frame feature

tracking.

66

Some related work has been done to create 2D topologies (connected graphs) for

image mosaics [Marzotto et al., 2004; Sawhney et al., 1998]. Sawhney et al. [1998]

present a method to find the connected graph relating all the images of a mosaic or

panorama. Their choice of graph edges depends on two competing goals: to connect

images with the best overlap, and to connect images that will best improve the global

registration accuracy. Marzotto et al. [2004] build upon the method of Sawhney et al.

[1998] by creating a spanning tree of the 2D topology whose edges are determined as

the minimum of the normalized distance between image centroids projected onto the

mosaic being constructed.

Both Marzotto et al. [2004] and Sawhney et al. [1998] illustrate the application of

graph construction to optimize image/camera placement. However, their application

is specifically developed for the purpose of mosaic creation, where their cost function

is related to image registration and their camera placement is about a common optical

center. Our contribution, in contrast, is to use graph construction to determine the

optimal ordering for camera placement in general position, requiring a novel cost

function. Specifically, our cost function uses validation on the 3D reconstruction to

accurately determine edge inclusion, as developed in Section 4.3.1.

4.3 Minimum Spanning Tree

The basic data structure we use is the camera adjacency graph [Teller et al.,

2003], an undirected graph whose nodes are cameras and their respective images, and

whose edges infer geometric proximity between the cameras. Two nodes sharing an

edge in the adjacency graph imply that the view frusta of the corresponding cameras

overlap to include common scene structure, and thus the images share some amount of

content. Teller et al. [2003] construct each node of the camera adjacency graph from

the k nearest neighbors taken from GPS sensor data acquired at the physical camera

location. For traditionally-acquired camcorder or still camera imagery, the adjacency

graph could be constructed by determining the quantity or quality of feature matches

between image pairs; edges in the graph indicate large numbers of accurate feature

correspondences. Alternatively, we construct our graph based on the amount of image

67

Figure 4.1: Six images of a park bench. The pyramids show the position and orien-
tation of the cameras after being posed using the MST algorithm. The inset shows a
small amount of the 3-D reconstruction.

68

overlap between image pairs, determined from color histogram comparisons [Rui et al.,

1997]. From each node in the graph (each image of the input set) we add edges to

the n nodes closest in histogram distance.

Our primary contribution is to remove the linear pose-order requirement by using

the Minimum Spanning Tree of the adjacency graph to determine pose order. We

start by specifying the root node, either manually or heuristically (a node attached

to the smallest-weighted edge, for instance). We then proceed by using Prim’s al-

gorithm to construct the MST—nodes are iteratively added to the tree in the order

of increasing edge weights [Cheriton and Tarjan, 1976]. The edge weights are the

histogram distances between nodes, and the camera pose order is the order in which

nodes are added. Figure 4.1 illustrates a simple input set and its pose estimates, and

Figure 4.2 shows the corresponding adjacency graph and MST.

The final spanning tree is guaranteed to be optimal in minimizing the total edge

cost. We wish to transfer this optimality to the process of pose neighbor selection so

that finding the MST means finding the optimal ordering. We define this optimality

to be the following: At each step of the tree creation, the node added is precisely that

camera which

(a) contains the most image overlap (the minimum histogram distance) with some

node in the tree, and

(b) maintains a scene reconstruction consistent with that offered by the current tree

(see Section 4.3.1).

By choosing the camera order based on maximum overlap we pre-condition in-

coming nodes to have a high likelihood of correct pose estimation. However, it is not

sufficient to simply pose cameras in the order of maximum image overlap. In practice,

the histogram distance estimator for image overlap is not perfect and will result in

occasional outliers. Additionally, there will be noise and occasional outliers in the

correspondence as well, which propagates errors to the pose estimate computed from

them. Therefore we need to add a validation of the pose estimate that is independent

69

(1) - Root

(6)

(5) (4)

(3)

(2)

Figure 4.2: Camera adjacency graph and MST of Figure 4.1. The images in this
figure are spatially oriented as shown by the posed pyramids in Figure 4.1. The edges
of the adjacency graph are small dotted lines—in this simple example the graph is
completely connected. The minimum spanning tree was constructed with image (1)
as the root node, and the edges are marked with thick solid lines.

70

of both the adjacency graph edge weights (histogram distance) and correspondence

set noise.

4.3.1 Pose Validation

We validate a new pose estimate by comparing the scene structure contributed

by the new pose to the scene structure provided by its parent in the MST (we use

calibrated cameras in our MST pose estimation algorithm, so there is no need to

upgrade the reconstruction from projective to metric). Rather than compare points

triangulated from the correspondence set, we compare dense stereo correspondence

between images. This results in a richer pose comparison and thus a more accurate

error estimate. Scharstein and Szeliski [2002] offer a good survey of dense correspon-

dence methods. Given a pose candidate Cnew, its parent C ′, and its grandparent C ′′,

we compute depth maps D1 and D2 by triangulating dense stereo between C ′ and C ′′,

and between C ′ and Cnew respectively. Note that D1 and D2 are both computed from

the viewpoint of C ′ to make depth comparisons meaningful. We define the recon-

struction similarity S between two depth maps as the sum of the Gaussian of depth

differences:

S(D1, D2) =
∑
p∈P

e−(D1p−D2p)/2σ2
p (4.1)

where P is the set of all pixel locations in the depth maps D1 and D2. We choose σ

separately for each pixel to be the camera space inter-pixel distance at the specified

depth:

σp =
Dp

f
C′

√
‖P

C′ − p‖2 + f 2
C′

, p ∈ P (4.2)

where f
C′ is the focal length of C ′ and P

C′ is the principal point of the image from

C ′. Choosing σ separately for each pixel provides a more uniform depth comparison

by factoring out projective scaling. As each new pose Cnew is added to the MST, its

similarity S to the current reconstruction is retained as an attribute of Cnew. The

similarity attribute is undefined for the first two nodes of the MST since they do

not have grandparents, so when the third node is added to the MST, its similarity is

propagated up as a special case.

71

In the ideal case where both the pose estimate and the dense stereo correspon-

dence are perfect, the similarity measure is equal to the number of pixels that overlap

between the three input images. This can be seen by considering three perfectly

matched points from the input images of C ′′, C ′, and Cnew. The two resulting trian-

gulated 3-D points will coincide, and thus the difference in depth distances D1p−D2p

will be zero for those points. The summation
∑

e0 from Equation 4.1 will then be

equal to the number of common pixels from the three images.

Realistically there will be two error classes that commonly arise—dense corre-

spondence error and pose error. Correspondence error typically arises in regions of

low frequency, and hence good matches generally occur on edges, corners, and areas

of high texture frequency [Pritchett and Zisserman, 1998]. Given a correct pose esti-

mate, the correspondence error will be less in areas of high detail, and the similarity

measure will correspond to the number of shared pixels with accurate point matches.

This will be a reasonably high value given sufficient image detail (see Table 4.1 for

typical values). Pose error arises in the absence of accurate point matches in the pose

estimation process, and a large pose error yields a very low similarity measure. Thus

the reconstruction similarity S is a valid discriminator of correct or near-correct pose.

We consider a new pose to be valid if its similarity S is at least half that of its

parent node. This constraint invalidates poses that are structurally inconsistent with

valid MST nodes, and we have found this threshold to work well in practice. This

condition can arise when a node’s correspondence set has too much noise or too many

outlying matches, or if the node has an incorrect neighbor in the adjacency graph.

When a node is invalidated by failing the similarity comparison, it is not added

to the MST, and the algorithm proceeds with the next node. The failed node can be

added at a later stage of the algorithm, but it must be added with a different parent.

In this way the pose order will be optimal with respect to both optimality properties

(a) and (b).

72

4.3.2 Noise and Outlier Resolution

To estimate camera pose P relative to the parent node, we use the eight-point

algorithm to first estimate the essential matrix E from point matches, then we recover

rotation and translation from E [Ma et al., 2004]. Since no perfect point correspon-

dence algorithm exists, there is always some amount of noise in the point matches,

which transfers to the pose estimate. Worse, there may sometimes be severe outliers

in the point matches that will lead to a completely erroneous pose. While the val-

idation step of section 4.3.1 will detect most such pose errors, we can improve the

chances of finding an initially correct estimate by first observing the effect of noise

propagation in the eight-point algorithm.

The effect of correspondence noise in posing can be illustrated by treating the

pose location as a continuous random variable X. 1 If we estimate pose from random

subsets of the point correspondence set, we generate a population of pose locations

Xp = {x1, x2, . . . , xn}. By using a density estimator such as Parzen windows, we

define a likelihood function for a 3D location x:

L(x) =
1

n

n∑
i=1

W (‖x− xi‖) (4.3)

and a probability density function for the random variable X:

ρ(x) =
L(x)∫

ω
L(x) dx

, ω = R3. (4.4)

For the kernel W we use a Gaussian function with σ a constant factor of the desired

pose baseline (for instance, if the baseline is set to 1, σ = .1).

Note that this formulation is not a RANSAC procedure, in which subsets of

sampled data are iteratively and independently chosen to robustly fit a model to

the sampled data. While both RANSAC and Equation 4.4 employ randomly chosen

subsets of sampled data, we are simply using the random subsets of 2D point cor-

respondences as input to the eight-point algorithm to establish hypothetical camera

1 Camera rotation could also be used as a random variable, but since we lack a Euclidean distance
measure between any two rotations for use in a smoothing function, i.e., (R1 −R2) ∈ SO(3) cannot
be mapped to R1, it is more difficult to estimate density from a population of rotations.

73

poses, and then using these discrete pose locations to define a continuous function

having higher probabilities near clusters of hypotheses.

The shape of the pdf indicates the stability of the given correspondence set. A

narrow, single-modal function is desirable and will generally yield a correct pose esti-

mate. A multi-modal function is indicative of extreme outliers in the correspondence

set. We take the pose to be the element of the population that maximizes the pdf:

P = arg max
x∈Xp

ρ(x). (4.5)

This effectively chooses the most probable pose in the population as the correct one.

In practice we do not need to evaluate the denominator in Equation 4.4 since we only

need to find a maximum. Figures 4.3 and 4.4 illustrate two examples of noisy poses

and our method of selecting the most probable pose from the pdfs.

If the density function is multi-modal, resulting from match outliers for instance,

then the maximum argument associates P with the mode of maximum density; see

Figure 4.5 for an example. This will be correct only if the majority of the point

correspondences are inliers. While this will be the case most of the time when using a

robust point correspondence algorithm, it will occasionally fail. To further reduce the

effect of outlier-propagated error, we augment the node selection portion of Prim’s

algorithm from Section 4.3 with pose density estimation. Rather than posing a new

node only with its intended parent in the MST, we additionally pose it with the

k nearest neighbors of the intended parent, constrained to similar gaze directions,

creating a population of candidate poses. We then use density estimation again to

determine the most probable pose, setting σ to a factor of the Euclidean distance

between the intended parent and the intended grandparent. In practice this avoids

nearly all pose errors resulting from outlying point correspondences. Any remaining

erroneous poses are culled by validation, yielding very stable pose estimation.

4.4 Results

We verified the stability of MST pose estimation using several sets of wide-

baseline images taken from a still digital camera. Figures 4.6, 4.7, and 4.8 show

74

Figure 4.3: An image pair of a cluttered desk (upper left pair). The upper right pair
of images illustrates a portion of the point correspondences used to generate the pose
estimate. The images were taken by hand attempting to restrict the camera motion
to horizontal translation only, and the right image was posed relative to the left. The
left wireframe pyramid shows the left camera pose defined to be at the world-space
origin, and the cluster of wireframe pyramids on the right shows the population of
pose estimates from which the most probable pose was selected using Equation 4.5.
Both the left camera and the final selected pose have their images texture mapped
into the respective pyramids. Note that due to the large amount of detail in the
images and hence the large number of accurate point correspondences, the cluster
distribution is small relative to the baseline.

Hydrant Skull Lions

S̄ 15402.7 9769.8 15791.8
σ 4219.9 4580.3 3586.9

Table 4.1: Mean and standard deviation of the similarity measure S for the examples
in Figures 4.6 (fire hydrant), 4.7 (fossilized skull), and 4.8 (lion display). The values of
S̄ roughly correspond to the average number of consistently reconstructed 3-D points
in image triplets as nodes are added to the MST, and thus can be comparatively used
to indicate good pose.

75

Figure 4.4: An image pair of a hallway in the same configuration as Figure 4.3. Both
the left camera and the final selected pose have their images texture mapped into the
respective pyramids. Note that these images have less high-frequency detail, so the
point correspondences are noisier, resulting in a larger cluster distribution than that
of Figure 4.3.

76

Figure 4.5: An example of a multi-modal density function. This image pair is the
same as in Figure 4.4, but the cameras are posed using a smaller number of point
correspondences as input to the eight-point algorithm [Ma et al., 2004]. With a
higher probability of choosing outlying matches, the pyramid cluster distribution is
large and the density function is multi-modal. An accurate pose is selected because
in the correspondence set there is a larger proportion of correct point matches than
outlying matches.

77

the pose estimates of three sets of input images. Each image set was taken by hand

with a still digital camera. The examples show ten sample images from the input set

(each image is 640x480 pixels) and pyramids representing the position and orientation

of the final pose estimates. One image in each set was defined to be located at the

world-space origin, and all remaining images in each set were posed in the same space

using the MST pose estimation algorithm. We have listed the average values of the

similarity measures for each example in Table 4.1.

The cameras in the examples are posed fairly accurately, as shown in the figures

by the positions of the pyramids and the sparse 3-D reconstruction. However, it is

difficult to determine the exact accuracy of the pose estimates without measuring the

extrinsic camera calibration using an external verification setup such as a gantry or

robotic arm while photographing a scene. Fortunately, if the eventual goal of camera

calibration is to perform 3-D reconstruction or visualization where the success of the

application is measured by the accuracy of the 3-D content, the similarity measure of

Section 4.3.1 is applicable and by definition is directly related to the accuracy of the

pose estimation.

4.5 Summary and Conclusions

We have proposed a novel method, MST pose estimation, to estimate the extrinsic

camera parameters, or pose parameters, for large collections of images. Our method

generalizes on current methods which use narrow-baseline feature tracking to robustly

estimate point correspondences and camera pose in a linear or hierarchically-linear

order (imposed by the linear nature of the video stream). MST pose estimation

finds the Minimum Spanning Tree of the camera adjacency graph and uses the tree

node hierarchy to determine pose order. This enables pose candidates to be matched

against a much larger number of images than just the immediate predecessors in linear

video streams. We lose the robustness from narrow-baseline matching algorithms but

gain in the ability to pose generalized input: still images with multiple video streams.

To compensate for the reduced robustness of point correspondences, we proposed

78

a validation method based on reconstruction similarity to quantify the pose cor-

rectness. We additionally outlined a novel noise error compensation technique that

reduces pose error propagated from correspondence noise. This technique is based

on interpreting a population of pose estimates as a probability density function and

using density estimation to retrieve the most probable pose from the population. To-

gether with pose validation, these techniques enable robust pose estimation for large

collections of wide-baseline images.

79

Figure 4.6: Images of a fire hydrant from an input size of 69 images. The pyramids
illustrate the pose estimates for each image. The inset shows the pose estimates from
a viewpoint close to ground level. The 3-D point clouds in the background of this
figure and of Figures 4.7 and 4.8 are shown only to illustrate the general position of
the estimated poses relative to the scene structure, and are not attempts to accurately
reconstruct the 3-D geometry.

80

Figure 4.7: Images of a fossilized skull specimen from an input size of 160 images.
The pyramids illustrate the pose estimates for each image, and the inset shows the
pose estimates from a higher viewpoint. The pyramids in this figure are necessarily
small in order to show each image from the complete set.

81

Figure 4.8: Images and pose estimates of a taxidermy display from an input size of
67 images. The lion shape evident in the reconstructed point cloud corresponds to
the lion displayed in the top row of images.

82

Chapter 5

Omnidirectional View Interpolation of Unstructured

Photographs

Kevin L. Steele and Parris K. Egbert, “Omnidirectional View Interpolation of Un-

structured Photographs,” The contents of this chapter will be submitted to

Graphics Interface 2007.

Abstract

We present a view interpolation method for photographs taken with hand-held

consumer cameras. Given pose and per-pixel depth estimates for each image in a

sparse collection, our scalable algorithm synthesizes views between existing images.

View interpolation occurs within a tetrahedral decomposition of the image viewpoint

convex hull, where each viewpoint is a node in a Delaunay complex. There are no

constraints on the location or orientation of the input photographs or the synthesized

viewing parameters, allowing six degrees of navigational freedom.

Our primary contribution is a novel method of creating omnidirectional images at

each node that are well suited to interpolating unconstrained sets of photographs. Our

method preserves the sampling rate of each original image, and it does not require a

panoramic sampling about the node center. We also propose an image quality function

that defines and estimates the distance between a synthesized image and a target

photograph. We use the quality function as an error metric to compare variations of

our omnidirectional interpolation algorithm.

83

5.1 Introduction

View interpolation is a form of image-based rendering in which an image is syn-

thesized to resemble an intermediate viewpoint between two or more input images.

Usually, though not always [Seitz and Dyer, 1996], the change in viewpoint between

input images is a rigid-body transformation, and novel synthesized views are rendered

from viewpoints that are linear combinations of these transformations.

The use of view interpolation of CGI images as a means to navigate virtual envi-

ronments was made feasible by Shade et al. [1996] and Chang et al. [1999]. However,

the real potential of Image-Based Rendering (IBR) techniques is in their use with

photographs rather than with CGI. Images synthesized from IBR manipulation of

photographic content has high impact and can deliver compelling results. Particu-

larly, the use of view interpolation of photographs or video for virtual navigation of

a real environment is an important goal with many applications in simulation, edu-

cation, and entertainment. Unfortunately, realizing this goal has been elusive for two

reasons: the difficulty of determining a camera’s external calibration or pose, and the

greater difficulty of determining per-pixel depth information in photographs.

In fact, the computer vision community has researched these two problems for

many years. The external calibration of large camera networks has recently become

viable as a solution to the pose estimation problem [Brown and Lowe, 2005; Schaffal-

itzky and Zisserman, 2002]. Per-pixel depth estimation strategies, also known as the

stereo correspondence problem, have been surveyed in Scharstein and Szeliski [2002].

Recent results in segmentation-based stereo allow multiple views (more than two)

to contribute to the solution, and produce reasonable depth maps [Tao et al., 2001;

Zitnick et al., 2004].

With the advances in computer vision addressing the shortcomings of IBR, view

interpolation of large photographic collections is becoming feasible. Following this

trend, we propose a view interpolation algorithm for unstructured photographs, or

photographs taken from arbitrary positions without the aid of a rig or gantry, i.e. by

using a hand-held consumer- or prosumer-grade still digital camera. Our algorithm

assumes accurate internal and external calibration and per-pixel depth information

84

for all input photographs. Given an input set, we interpolate images located at the

vertices of tetrahedra taken from a Delaunay partitioning of the viewpoint convex

hull.

Our primary contribution in this paper is a novel method of creating omnidirec-

tional images at each camera viewpoint that are well suited to view interpolation.

Our method preserves the sampling rate of each original image; each image that is

associated with a given camera viewpoint is retained in its entirety in the resulting

omnidirectional image. The omnidirectional images utilize as much information as

possible from the original input set.

5.2 Background

View interpolation first appeared in the graphics literature in an innovative pa-

per by Chen and Williams [1993]. The authors presented a method for generating

images of novel viewpoints from existing synthetic images arranged in a grid pattern.

Pixels in the source images were linearly interpolated in real-time to new locations

using a preprocessed mapping between existing viewpoints. The mapping was later

generalized [McMillan and Bishop, 1995b] by relaxing the regular grid constraint

of the source viewpoints, and is generally referred to as Image-Based Rendering by

Warping [McMillan, 1997].

At approximately the same time the computer vision community became inter-

ested in view interpolation of photographs. Laveau and Faugeras [1994] presented a

limited method to interpolate photographs using the fundamental matrices between

image pairs. Werner et al. [1995] introduced a method to synthesize arbitrary view-

points using linear combinations of source photographs. Both methods required dense

pixel correspondences between source image pairs.

Virtual walkthroughs have received attention from both graphics and vision re-

searchers. Aliaga and Carlbom [2001] record closed loops of omnidirectional video and

render novel views from frames enclosing the new viewpoint. Gotz et al. [2002] propose

a database organization that is optimized for image-based walkthroughs. Columns

of image data are grouped into epipolar plane images which are easily compressed.

85

IBR reconstruction is performed by retrieving the appropriate columns of image data

as needed by novel viewpoints. Li et al. [2001] show an algorithm to transmit pic-

tures, panoramas, and concentric mosaics [Shum and He, 1999] over low-bandwidth

network connections by employing selective retrieval and caching strategies. Tomite

et al. [2002] interpolate images taken from an omnidirectional camera to render planar

interactive walkthroughs. Our work is similar in intent to Tomite et al. [2002], how-

ever their emphasis is in the interpolation methodology, while ours is on the creation

of omnidirectional images from planar images.

5.3 Omnidirectional Image Creation

In addition to providing view interpolation between the viewpoints of an input set

of photographs, we wish to enable arbitrary viewing orientation between viewpoints

as well. However, each input photograph samples only a small amount of the view-

ing sphere surrounding the viewpoint. We will therefore create an omnidirectional

image at each original camera viewpoint, retaining the pixel samples of the original

photograph in the new image.

The use of omnidirectional imagery for rendering is not new. Teller et al. [2003]

also create omnidirectional images from photographs, but for each omnidirectional

image they synthesize, the constituent photographs are all taken close to a common

center of projection which facilitates the creation process. Due to the unconstrained

nature of the input set, our input photographs do not have a common center of

projection, and so we must re-project the pixel samples to the viewpoint of the input

photograph for which an omnidirectional image is being synthesized.

We create an omnidirectional image for a camera by first constructing a cubical

environment map [Greene, 1986] centered on the camera viewpoint and oriented along

the primary axes. We convert the pixels of all input images, including those of the

image associated with the given camera, to 3D points in a common world space, then

re-project them to the environment map. Pixels are converted to 3D points in world

86

1.72.4

2.6 a
c

d

b

Figure 5.1: Cameras a, b, c, and d all have images acquired through the view
frustums shown. An environment map is centered on the viewpoint of camera a. The
distances of cameras b, c, and d to the environment map center are 1.7, 2.4, and
2.6 units respectively. The distance of camera a to the environment map center is 0
units, so its pixels are re-projected first, followed by the pixels of camera b, camera
c, then camera d.

space by projecting them from their respective camera centers:

Pworld = C +
(pxy − C)

‖pxy − C‖
dxy (5.1)

where C is the camera center of the pixel, pxy is the pixel location in world space, dxy

is the depth at pixel 〈xy〉, and Pworld is the 3D point in world space.

5.3.1 Pixel Re-Projection Order

The environment map maintains all information from the re-projected points,

including color and world-space position. Rather than treat the map faces as depth

maps, we treat them as write-once maps; the first point projected to a given pixel is

kept, and all others are discarded. The order of re-projection is therefore important.

We order the point re-projections by the distance between a 3D point’s camera view-

point and the environment map center of projection. Since the environment map is

87

θ
focal length

Figure 5.2: Top view of a camera frustum and environment map centered on the
camera viewpoint. A camera with no rotation will coincide with the front map face.
If the horizontal resolution is 640 pixels and the horizontal field of view θ is 40◦, then
the camera focal length in pixel units is 640

2
/ tan 40

2
≈ 879, and the resolution of each

map face would be 1758× 1758 pixels.

centered on a camera viewpoint, the pixels of that camera are re-projected first, thus

retaining the original image in the environment map (see Figure 5.1).

In order to retain the sampling rate of the original image, the environment map

should match the image resolution as closely as possible. This can be achieved by

setting the resolution of each map face to twice the camera focal length in pixel units.

Figure 5.2 illustrates the relationship geometrically.

The advantage to using write-once maps rather than depth maps is that the

write-once depths are more uniformly consistent with whole photographs. If depth

maps were used, the resulting depths in a given environment map face would be

corrupted with depth noise that inevitably occurs in dense depth estimation. This

depth noise favors the heterogeneous distribution of source pixels throughout the

map, i.e. any given pixel’s neighbors are likely to have originated with different source

photographs, resulting in a noisy environment map. Write-once maps ensure that the

88

Figure 5.3: Three images of a rock façade from the original input set of 99 images.

source pixels from large portions of a photograph will be transferred as a block to the

environment map, maintaining a truer rendition of the original photograph. However,

this potentially creates erroneous environment map segments in the presence of large

photograph depth errors or occlusion differences between viewpoints.

Once the environment map is constructed, the images of each face could be

warped [McMillan and Bishop, 1995b] to generate new viewpoints nearby. However,

warping requires per-pixel generalized disparity—equivalent information to per-pixel

depth. Rather than warp the environment map faces to render new views, we will

simply use the stored locations and colors of the original 3D points, and render

these points using the traditional graphics pipeline. The omnidirectional image thus

contains a subset of all reconstructed points, and the write-once mapping policy

ensures that the subset comes from cameras located closest to the viewpoint. The

image is therefore the most accurate estimation of an omnidirectional sampling at that

viewpoint. Figure 5.3 shows three images from an example input set of 99 images,

Figure 5.4 shows one face of an environment map after re-projecting all pixels of all

images onto it, and Figure 5.5 shows the map centered on a camera viewpoint.

5.4 View Interpolation

Given omnidirectional images for each viewpoint in the input set, we define the

navigational boundaries as the convex hull of the set of all viewpoints. Note that we

are not constrained to planar movement as previous walkthrough methods have been.

The virtual camera’s location and orientation are unconstrained within the boundary

of the viewpoint convex hull, permitting six degrees of navigational freedom.

89

Figure 5.4: The front face of an environment map after all pixels of the input set
images have been re-projected. The pixels belonging to the camera centered at the
environment map were re-projected before all other cameras, and are outlined in
white.

The convex hull is partitioned into a 3D Delaunay complex consisting of adjoining

irregular tetrahedra. Figure 5.6 shows the camera poses and Delaunay partitioning

of the input set.

Our view interpolation occurs within the four vertices of a tetrahedron. The 3D

points of each omnidirectional image are rendered to the viewing plane of a novel

viewpoint. Four such intermediate images are created from the four tetrahedral ver-

tices and are blended using the Barycentric coordinates of the novel viewpoint as

blending weights.

90

Figure 5.5: The front face (from Figure 5.4) of an environment map centered on
a camera viewpoint whose view frustum is shown in green. The image pixels are
projected to 3D points, then re-projected onto the face of the environment map.

The novel viewpoint within a tetrahedron creates four sub-tetrahedra when com-

bined with the four original vertices. The Barycentric coordinates of the novel view-

point within an irregular tetrahedron are computed as the ratio of volumes of sub-

tetrahedra to the volume of the enclosing tetrahedron.

5.5 Analysis

Using the view interpolation strategy of Section 5.4, we are able to synthesize

images of arbitrary viewpoints within the simulation boundary of the viewpoint con-

vex hull. In a simulation setting this enables unconstrained navigational freedom

for exploring the virtual rendition of the input photographic content. However, it is

not enough to simply render synthetic images that look convincing or acceptable to

the user. It is important to measure the success of our view interpolation method

91

(A)

(B)

Figure 5.6: (A) The pyramids show the position and orientation of each camera from
the input set. (B) The Delaunay partitioning of the viewpoint convex hull.

92

with a quantifiable error metric in order to unambiguously determine its visual per-

formance. In this paper we will quantify both the re-projection error when creating

omnidirectional images and the interpolation error during view synthesis. We will

combine these two errors into one error metric that measures the quality of the final

interpolated image.

In general it is difficult to quantify the correctness of a synthesized image be-

cause of the many subjective factors that contribute to the meaning of “correctness.”

In terms of image-based rendering and photographic view interpolation, a possible

correctness requirement for a synthesized view is that it be identical to some photo-

graph that could be taken with a real camera at the same viewpoint with the same

viewpoint parameters (orientation, focal length, and sampling rate). We can further

define a quality spectrum to measure how close a synthetic image is to being correct.

We will adopt a simple error metric to measure the closeness of a synthesized image to

an ideal image—the average Euclidean distance in RGB space between counterpart

pixels:

E(Isynth, Iideal) =
1

WH

W∑
x=1

H∑
y=1

‖Isynth(x, y)− Iideal(x, y)‖ (5.2)

where Iideal is an ideal image (an original photograph), Isynth is the synthesized image

at the same viewpoint, I(x, y) is the RGB color at image coordinate (x, y), and (W, H)

are the image dimensions of both images.

The error function E will be zero for identical synthetic and ideal images, and in

the worst case some maximum M for the distance between white and black images:

M = 2b
√

3, (5.3)

where b is the image’s bit depth per channel.

The error function quantifies how close a synthesized image is to the ideal image.

We would wish this comparison to reflect how a human would judge the quality of an

interpolated view. If a user judges image A to be closer than image B to photograph

P, then E(A, P) < E(B, P). Even though we cannot duplicate subjective human

judgments of image quality, we still find the error metric a useful tool to compare

algorithmic variations of the interpolation methods.

93

Given the error metric E, we can evaluate the quality of the final interpolated

image. If we could acquire photographs from known positions and orientations within

the interpolation boundary, we could compare any synthesized view directly with an

acquired view. However, measuring external camera calibration is a difficult proce-

dure that usually requires using a controlled gantry, and it is subject to mechanical

inaccuracies that would interfere with the error metric. Instead we take error mea-

surements only at the viewpoints of the input image set. Since we have a priori

knowledge of the input set external calibration, we can synthesize views at exactly

the same position and orientation as each camera in the set. For each error measure-

ment EA to be taken at viewpoint A from the input set, we rebuild the Delaunay

complex without including the viewpoint A as a Delaunay site. We then synthesize

a novel view A′ at the viewpoint A and compare it with the input photograph PA

originating at A. The error function E(A′, P) defines the accuracy of the interpolated

image compared to the original photograph.

5.5.1 Algorithmic Variations

The raw values of the error function E are not instructive as standalone values.

However, we can compare values of E between different methods of synthesizing

interpolated views to get relative error values, and then draw conclusions on the

merits of each variation accordingly. We will examine six variations on the basic

algorithm presented in Section 5.3 by varying two parameters: the resolution of the

environment maps used to create omnidirectional images, and the rendering point

size used for view synthesis.

Recall that the resolution of each environment map face was computed to be twice

the focal length of the camera at the map center in order to maintain the sampling

rate of the original photograph. Relaxing this constraint by reducing the resolution

introduces artifacts into the synthesized image, but can improve performance by

requiring fewer points being rendered per map face.

A visible artifact of reduced map resolution is the introduction of gaps or holes in

the synthesized image where no 3D points were projected (see the right side images

94

of Figures 5.8 and 5.9). These gaps can be reduced by using a rendering point size

larger than a pixel, effectively “filling in” the gaps with redundant color. We can

measure the effects of reduced map resolution and increased render point size via the

error function E.

We perform error analysis on the following six variations in map resolution and

pixel point size:

Resolution Scale Point Size

1 (R = 2f) 1 pixel

1 (R = 2f) 2 pixels

1 (R = 2f) 3 pixels

1 (R = 2f) 4 pixels
2/3 (R = 4f/3) 2 pixels

1/2 (R = f) 2 pixels

Table 5.1: Algorithmic variations used for comparison. R is the map resolution for
each face, and f is the camera focal length.

For each algorithmic variation we use E to compare the synthesized interpolated

image with the original camera image at each viewpoint of the input set. Figure 5.7

shows the comparison of the six variations. The graph illustrates the average pixel

distance for all pixels in an image pair except those pixels coinciding with gaps in the

synthesized image.

It is evident from the graph that the best variation is the full resolution map with

a pixel point size of 1. However, there may be advantages to using poorer quality

variations, as explained in Section 5.6. Figures 5.8, 5.9, and 5.10 show examples of

synthesized images using the four of the six algorithmic variations.

95

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Average Euclidean Pixel Distance

Map: 1, Pt: 4, Avg: 51.39
Map: 1, Pt: 3, Avg: 49.11
Map: 1/2, Pt: 2, Avg: 46.81
Map: 1, Pt: 2, Avg: 46.61
Map: 2/3, Pt: 2, Avg: 46.58
Map: 1, Pt: 1, Avg: 46.34

Figure 5.7: Comparison of algorithmic variants. The vertical axis is the value of
the error function E, and each data point on the horizontal axis is an evaluation of
the error function at a specific input viewpoint (66 total). The higher lines (in the
graph and the legend) indicate less-accurate images. The lowest line in the graph,
corresponding to the full-resolution map with point size 1, indicates the most accurate
set of synthesized images.

5.6 Discussion

We tested our omnidirectional images and view interpolation method using a

custom viewer that virtually navigates the environment captured by the input pho-

tographs. Figure 5.11 shows two input images from one of the tetrahedra and the

interpolated image created at the tetrahedron center.

Since the resolution of the environment maps is large, each omnidirectional im-

age contains hundreds of thousands of 3D points. Given a large number of input

photographs, we found it impractical to pre-load omnidirectional image points into

display lists. Instead we load the points as needed from disk during run-time, which

does not incur too large a penalty. For any viewpoint within a tetrahedron, the 3D

96

points attached to a single vertex are loaded from disk as a block. As the viewpoint

moves from a tetrahedron to a neighboring tetrahedron, only one vertex changes at

a time, requiring the loading of the new vertex’s 3D points.

Some hardware systems may have disk access restrictions that prohibit loading

a block of 3D points in real-time. Using lower environment map resolutions result in

fewer 3D points in each omnidirectional image, and hence smaller block sizes to load.

It may also be desirable to use larger point sizes to render the 3D points in each block

to reduce gap artifacts in the synthesized image. The analysis of Section 5.5.1 helps

us to understand the image quality tradeoffs for lower resolutions and larger point

sizes.

While the viewpoint is within a tetrahedral boundary, our view interpolation

algorithm runs at 15-20 fps on a 3GHz P4. As future work we hope to implement

a predictive caching strategy to load omnidirectional images from disk based on the

user viewpoint movement.

We also hope to further investigate the pixel re-projection order criterion in Sec-

tion 5.3.1. It may be beneficial to consider not only distance from the omnidirectional

center, but also angle differences between cameras. In this way we could favor images

that are farther from the center of re-projection, but that are acquired from closer

angles and hence have a more accurate sampling of the subject material.

5.7 Conclusion

We have introduced a novel method of creating omnidirectional images that ex-

ploit the characteristics of pose- and depth-enhanced photography. The images are

amenable to tetrahedral view interpolation and permit six degrees of navigational

freedom within the environment described by the set of input photographs. We have

also proposed a simple view interpolation strategy that is straightforward to imple-

ment. We believe that current and future advances in dense camera calibration and

per-pixel depth estimation will promote applications such as the virtual navigation

of large-scale photographic content.

97

Original

Map Scale 1, Point Size 2 Map Scale 1, Point Size 1

Map Scale 2/3 , Point Size 2 Map Scale 1/2 , Point Size 2

Figure 5.8: The top image is the original photograph that was removed for compari-
son. The remaining four images show the interpolated results for various environment
map resolutions and render point sizes. The dark curves seen in the right two images
result from aliasing due to a higher sampling rate in the reconstruction than in the
original photographs.

98

Original

Map Scale 1, Point Size 2 Map Scale 1, Point Size 1

Map Scale 2/3 , Point Size 2 Map Scale 1/2 , Point Size 2

Figure 5.9: The top image is the original photograph that was removed for compari-
son. The remaining four images show the interpolated results for various environment
map resolutions and render point sizes. The dark points and curves seen in the right
two images result from aliasing due to a higher sampling rate in the reconstruction
than in the original photographs.

99

Original

Map Scale 1, Point Size 2 Map Scale 1, Point Size 1

Map Scale 2/3 , Point Size 2 Map Scale 1/2 , Point Size 2

Figure 5.10: The top image is the original photograph that was removed for compari-
son. The remaining four images show the interpolated results for various environment
map resolutions and render point sizes. The noise prevalent throughout the synthe-
sized images is the result of incorrect dense depth estimates.

100

Figure 5.11: The top two images are photographs from the input set that are part
of the omnidirectional images of two tetrahedral vertices. The bottom image is an
interpolated view from the center of the tetrahedron. The black artifacts on the image
periphery result from per-pixel depth estimate errors.

101

102

Chapter 6

Conclusions

This dissertation has presented an end-to-end system that allows a user to input

a set of photographs acquired by an off-the-shelf still digital camera, and then to

interactively explore the photographic environment with unconstrained navigation.

In this chapter we will describe the system’s functional components and how the

preceding chapters fit together as a whole.

Our current system is operative for content creation, but it is unfortunately

very limited in the types of environments it can presently simulate. We will therefore

discuss the limitations of the developed system and characterize the primary sources of

error that lead to current system deficiencies, and we will place the system limitations

into a framework of future research. It is our hope that further work will extend the

system capabilities to enable simulation of a much more general class of environments.

6.1 VBR System

Our Vision-Based Rendering system consists of four major stages: photographic

input, camera pose estimation, dense depth correspondence estimation, and omnidi-

rectional image creation. Figure 6.1 illustrates these four steps, and the sequence can

be thought of as a “pipeline” where each step is dependent on the completion of its

predecessor.

6.1.1 Photographic Input

As a first step, the user must decide on the environment to be simulated. We have

found that acquiring several hundred photographs of an enclosed space such as a large

103

1. Acquire Photography
• Input photos to system

• Select one image to be the
world-space origin (lower
center, outlined in red)

2. Pose Cameras
• Create adjacency graph

(Chapter 3)

• Find point matches using
Correspondence Expansion
(Chapter 2)

• Use MST Pose Estimation
(Chapter 4)

3. Estimate Dense Depth
• Utilize many nearby

cameras for more accurate
depth estimation

• Use modified version of
Zitnick et al. (2004)

4. Create Omni-
directional Images

• Store each omnidirectional
image as a separate block
on disk (Chapter 5)

• Load blocks as needed
during simulation run-time

Figure 6.1: Vision-Based Rendering System Pipeline

104

room to be sufficient. Furthermore, any prominent features should be photographed

from many different angles and distances to ensure that interest points have a high

sampling rate.

Most of the photo acquisition for this dissertation was done using a Canon Power-

Shot G3, a high-quality consumer camera. We shot at 640×480 with a fixed aperture

and shutter speed (in manual mode). This resolution was used to keep the correspon-

dence expansion time (see Chapter 2) to under 30 seconds per image. We usually kept

the ISO speed at 100, and chose the aperture and shutter speed to yield a reasonable

brightness while in the acquisition setting. While photographing we took moderate

care to avoid motion blur, but we did not use a tripod, flash or any other accessories.

In our system it is important to maintain a constant zoom on the digital camera

during acquisition, as will be explained in Section 6.1.2. We generally chose a zoom

setting midway between the focal length extremities of the lens, and keep that zoom

setting for the duration of a photography session.

Not all input photographs need be acquired during the same session, so long as

the same camera settings are used and the scene content and lighting has not changed

significantly. We found that outdoor scenes often look better in diffuse lighting, i.e.

on a cloudy day, but this can be challenging if the cloud cover is variable.

From the acquired photographs the user selects one image to be the world-space

origin. Its camera location will be at Euclidean coordinates (0, 0, 0) and have no

rotation. We found it helpful to choose an image in a central location of the input

set to reduce cumulative pose error, but also one that also has a substantial number

of images overlapping in content.

Once the input images have been acquired by the user and an initial image chosen

to be the origin, the user is finished and the VBR system automatically processes the

images to compute the final data files necessary for virtual exploration of the image

content.

105

6.1.2 Camera Pose Estimation

We use the MST pose algorithm as detailed in Chapter 4 to estimate the camera

poses for the input set. As images are added to the set of posed cameras, their

pose is estimated by computing the essential matrix1 between an image pair from

point correspondences, then recovering translation and rotation from the essential

matrix using singular value decomposition (the rotation is an orthonormal matrix

and the translation is a vector in skew-symmetric matrix form). We use the eight-

point algorithm from Ma et al. [2004] to compute the essential matrix. However, since

we create a population of pose estimates (and hence essential matrices) from which to

create a probability density function (Section 4.3.2), we need as many accurate point

correspondences as possible. Prior to computing any essential matrices, we establish

and store in a database a set of highly accurate point correspondences between image

pairs using the correspondence expansion algorithm of Chapter 2.

Since we are computing essential matrices rather than fundamental matrices2, we

need to provide the camera calibration for each input image. With high-end cameras,

much of the internal calibration is nearly ideal; the pixels are square, the principle

point is very close to the center of the image, and the skew is essentially zero. The

only quantity remaining is the focal length, which we extract from the EXIF headers

in the JPEG images output from our (and any) digital camera. This focal length is

accurate to two significant figures in millimeters, and is sufficiently accurate for our

system.

To avoid having to extract the focal length for every input image we require a

constant zoom during the acquisition session. This also reduces problems that may

arise from the limited focal length precision. A popular alternative is to employ

autocalibration, where a camera’s internal calibration is derived automatically from

point correspondences between several images. This is an area of active research

in computer vision, beginning with Faugeras et al. [1992]. See Ronda et al. [2004]

1 The essential matrix E is a 3 × 3 rank two matrix that encodes the geometric relationship
(relative position and rotation) between two calibrated cameras.

2 The fundamental matrix F is an essential matrix with internal calibration K factored in; e.g.
F = K−>EK−1. Given two corresponding points x and x′, x′>Fx = 0.

106

for recent results. Autocalibration is not a fully mature process and requires careful

attention to the specific types of camera motions, so we avoid it by requiring a constant

zoom constraint. In practice this is not restrictive.

6.1.3 Dense Depth Correspondence Estimation

Dense correspondence, or stereo correspondence, has received much research at-

tention largely because of its difficulty. Scharstein and Szeliski [2002] provide a good

survey on algorithms to date. Much of the difficulty stems from the finite aperture

problem, specifically the ambiguity inherent in matching textureless regions between

two images. A recent approach to solving the problem is to match unstructured seg-

ments rather then geometric features such as points or lines. Image segments are

easily defined and consist of groups of neighboring pixels that have similar color or

some other attribute. Segmentation-based matching is more robust to mismatch er-

ror, and has met with some success [Tao and Sawhney, 2000; Tao et al., 2001; Zitnick

et al., 2004].

We use a modified version of the segmentation-based stereo algorithm presented

by Zitnick et al. [2004]. In their paper the authors describe an approach to estimate

dense correspondence between an image and two neighboring images. They define a

discrete probability density function for each segment of an image in which the pdf

domain is the set of possible pixel disparities a segment can have. The image and

its left and right neighbors must be rectified (all possible matches are on common

rasters between the images), and the segment disparity is the distance in pixels that

the segment would need to shift left or right in order to coincide with its counterpart

segment in another image. The pdf of each segment is iteratively modified according

to a set of constraints. The authors give a smoothness constraint in which a segment’s

disparity must be similar to that of neighboring segments of the same image based

on color differences, and a consistency constraint in which a segment’s disparity must

be similar to that of segments it projects to on neighboring images. After a number

of iterations the disparity at the pdf maximum is defined to be the final disparity for

a segment. The segmentation is then relaxed and a per-pixel disparity smoothing is

107

performed across the entire image.

While this method produced good results in Zitnick et al. [2004], it has a few

restrictions that limit its use in our system. The use of scalar disparities and the

rectified image requirement work well with one or two neighboring images, but we

wish to leverage many neighboring cameras when estimating dense depth to improve

the correspondence accuracy. Since our cameras are in general position (arbitrary 3D

locations and orientations), they cannot easily be rectified to a canonical stereo con-

figuration.3 Rectification requires either a planar homography (a one-to-one mapping

between two planes in R3) or an algorithmic equivalent, and rectifying many cameras

to a common reference image loses nearly all useful matching segments in the rectified

images.

To use the depth estimation algorithm of Zitnick et al. we generalize the pdf

domain from disparity to 3D depth, maintaining a set of candidate depths for each

segment in an image rather than a set of disparities. The candidate depth set is

constructed by first rasterizing in another image the epipolar line associated with

the segment center, and then back-projecting the pixels of the rasterized line onto a

ray emanating from the first image’s camera center through the segment center (see

Figure 6.2). Each point of closest intercept on the ray is a viable depth. For each

segment of an image we accumulate all viable depths contributed from all neighbor-

ing cameras, and then discard depths that project to redundant pixels. Figure 6.2

illustrates the candidate depth gathering process.

We iteratively modify the generalized pdf domain using the smoothness and con-

sistency constraints of the original paper. The depth at each segment that maximizes

the pdf is retained as the final depth for the segment. Stage 3 of Figure 6.1 shows

an example of a dense depth map created using this method. The artifacts along

the left and bottom image borders in the figure illustrate the difficulty of obtaining

completely correct depth estimates.

3 A canonical stereo configuration consists of two cameras with identical internal and external
calibration parameters, except that one camera’s position differs in the local x-axis.

108

Figure 6.2: The top diagram shows a segment in the right camera and its rasterized
epipolar line in the left camera. Each pixel of the epipolar line is back-projected to
the segment’s ray to generate a set of candidate segment depths. The horizontal green
line shows the relative separation of the depths in the set. The bottom photographs
illustrate the same process. A segment is red-highlighted in the right image. Its
epipolar line is drawn as a thin red line in the left image, and the segment projections
that yield viable depths in the candidate depth set are shown as a thick white line.

109

6.1.4 Omnidirectional Image Creation

With camera pose and per-pixel depth estimates computed for each input im-

age, we create omnidirectional images centered on each camera viewpoint using the

methods in Chapter 5. Each omnidirectional image is comprised of a collection of

3D points and their respective colors, and is stored on disk as a block for on-demand

runtime loading. We also store on disk the Delaunay partitioning of the viewpoint

convex hull. These files constitute the output of our VBR system.

We created a real-time viewing application to demonstrate the results of the VBR

system. The viewer allows a user to visually explore the virtual photographic contents

of the input set. It does so by receiving navigational input from the user to position

a virtual “eye” with location and orientation viewing parameters, and then rendering

a synthetic image in real-time. The image resembles how a photograph would appear

if acquired with the same parameters. If the virtual viewing parameters happen to

coincide with those of an existing photograph given to the system in stage 1, then the

synthesized view will be identical to the original photograph. If the “eye” is elsewhere

within the Delaunay partitioning, an interpolated view is synthesized.

As a preliminary step, the viewer loads the Delaunay partitioning information

from disk and creates a polygonal representation of all tetrahedra from the partition-

ing. The polygon colors are encoded with tetrahedral identifiers. For each frame dur-

ing simulation time, an off-screen render of the polygonal representation is performed

using the input viewing parameters and a 1-pixel wide color buffer. The resulting

color encodes the identity of the tetrahedron enclosing the viewpoint. This off-screen

render operation is performed very quickly in GPU hardware by using display lists

to keep the polygons on the GPU, and by using such a small render buffer.

Given the tetrahedron ID, the four omnidirectional images enclosing the virtual

viewpoint are loaded from disk (if not already resident in a cache). A novel view

is then synthesized from the four omnidirectional images using our view interpola-

tion method given in Section 5.4. This iterative process of tetrahedron identification

followed by image synthesis is performed for each frame in real-time, giving the appli-

cation user the sensation of virtually navigating the simulated photographic content.

110

6.1.5 System Results

Synthesized image results from the VBR system are shown in Figures 5.11, 6.3,

6.4, and 6.5. The system can successfully integrate and interpolate image collections

with certain characteristics such as high frequency detail and moderately complex

scene geometry. However it fails to correctly estimate camera pose and dense depth

maps for many types of indoor images, and distracting artifacts are consequently

generated in such simulations. Sections 6.3.1 and 6.3.2 discuss the nature of these

errors in greater detail.

6.2 Dissertation Contributions

This dissertation contributes theoretical and algorithmic advances to the fields

of computer vision and graphics. We list here the specific contributions and their

references within this document:

• We define an algorithm to expand a small set of existing point correspondences

between two wide-baseline images to a much larger set while maintaining the

epipolar constraint (Section 2.3).

• We define an algorithm to build a camera neighbor adjacency graph from a

collection of unordered photographs using partial color histograms (Section 3.4).

• We give an explicit and optimal ordering to the construction of the adjacency

graph in the form of the Minimum Spanning Tree (Section 4.3).

• We give a cost function used in constructing the Minimum Spanning Tree that

measures the reconstruction accuracy between two pairs of wide baseline images.

The cost function is independent of the method used to determine pose order

(Section 4.3.1).

• We give a model that describes how correspondence noise transfers to a camera

pose estimate, and we provide a method to estimate the optimal pose in the

presence of correspondence noise and match outliers (Section 4.3.2).

111

• We generalize the segmentation-based dense correspondence algorithm of Zit-

nick et al. [2004] to use many neighboring cameras in arbitrary, non-rectified

configurations (Section 6.1.3).

• We define an algorithm to transform still photographs with distinct focal points

into omnidirectional images that maintain the sampling rate of the original

primary image (Section 5.3).

• We define an image quality function that ranks interpolated images by their

distance to a target photograph (Section 5.5).

• We propose a view interpolation algorithm that permits six degrees of naviga-

tional freedom (Section 5.4).

• We construct a system to automatically input a set of photographs and build

the necessary data structures for unconstrained virtual navigation of the pho-

tographic content (Section 6.1).

In any large research project a list of specific contributions represents only the

“tip of the iceberg” when compared to the total amount of research performed. Failed

attempts to solve a particular problem often go undocumented, yet provide key in-

sights and intuitions to the real solutions. As an example, we first attempted to

expand the match correspondence set of Section 2.3 with a logically small epipolar

error tolerance (.5 pixels). Only marginally successful, we discovered upon investiga-

tion that the expansion could not proceed into most portions of an image because of

the extreme accuracy of the epipolar constraint. This observation led to the insight

and novel usage of a relaxed epipolar constraint (5+ pixels) during the aggregation

phase (see Section 2.3.1). Thus the contributions listed above are not only the result

of inductive and deductive problem solving, but of trial and error processes as well.

112

6.3 System Performance and Future Research

With our VBR system we are able to automatically create simulation content

from a large unordered collection of input photographs, a major achievement in image-

based rendering. However, there are presently severe restrictions in the type of image

content our system can accurately simulate. Photographs containing large regions

of high frequency detail, Lambertian lighting, and moderately complex geometry

are incorporated into simulation content very accurately. These include images of

outdoor and natural phenomena such as rock formations, soil, rubble, trees, flora,

and vegetation. Images with low frequency detail or smooth color gradations, such

as painted walls and objects, or scenes with high reflectivity like a tiled floor or metal

sculptures do not integrate into existing content very well and create distracting

artifacts in the final simulation. Most indoor photographs fall into this category.

6.3.1 Camera Pose Error

There are two primary reasons for these limitations in our present system. The

first is pose estimation error propagated from incorrect point correspondences. Cor-

respondence error resulting from smooth color ambiguity is manifest in the form of

match outliers (extreme point mismatches obvious to the human eye) and small mis-

matches of several pixels or less. While our correspondence expansion method of

Section 2.3 enforces a rigid epipolar constraint on the final set of correspondences,

there is room along epipolar lines for marginal super-pixel error. Given a poor initial

correspondence set, it is also possible to inadvertently enforce an incorrect epipolar

geometry as the expansion proceeds. In either case, the resulting set of near-correct

point matches propagate to a near-correct, though not sufficiently correct, pose esti-

mate. Our robust method of optimizing a pose estimate from a noise-corrupted pose

population (Section 4.3.2) helps reduce the error, but that method assumes a zero-

median noise distribution, which is not often possible for indoor photographs. The

interpolation artifacts produced by mismatch error come in the form of ghosting or

synthesized “double exposures.” Figure 6.3 shows two examples of ghosting caused

by incorrect pose estimates.

113

Figure 6.3: Example of ghosting artifacts resulting from incorrect pose estimates.
The images on the left are interpolated from four omnidirectional images, where one
or more of the camera poses are not correctly aligned with the remaining poses. The
counterpart images on the right are from the original photographs to illustrate the
intended synthesized images.

A more robust feature type would improve the matching characteristics and hence

the camera pose estimates. Nistér [2000] uses lines in addition to point features to

match image triplets by computing their tri-focal tensors, the three-image epipolar

equivalent to fundamental matrices. As future work we propose adding richer fea-

ture sets such as line segments to the correspondence algorithms. This alone should

improve the pose estimation for indoor photographs, since indoor scenes generally

contain large numbers of straight line segments.

114

6.3.2 Dense Depth Error

The second primary reason for our system limitations is incorrect dense depth

estimation. We compute dense depth maps for all input images by generalizing the

segmentation-based algorithm of Zitnick et al. [2004] (see Section 6.1.3). Segmentation-

based stereo improves dense depth maps over older stereo methods such as dynamic

programming on raster spans [Cox et al., 1996], but it is still very error prone in the

presence of photometric ambiguity like solid colors and smooth color changes. Addi-

tionally, all dense stereo methods fail along image borders when there is insufficient

information from neighboring images to resolve depth. For example, note the erro-

neous depth values in the borders of the depth map shown in Stage 3 of Figure 6.1.

In that example, there were not enough images below and to the left of the image in

question to find correspondences and compute accurate depth.

Incorrect depth estimates are manifest as “floating” geometry in the final simu-

lation. Depth errors create incorrect geometry which is often disconnected from the

correct reconstruction. Such errors appear to float in front of the scene being synthe-

sized. Unfortunately, depth error is more common and more difficult to resolve than

pose estimation error, and its artifacts are more distracting to the simulation user.

Figure 6.4 shows examples of geometric artifacts caused by incorrect depth estimates.

Dense depth estimation suffers from the same ultimate problems as camera pose

estimation—finding point matches between two or more images. There is much re-

search currently being performed in the field of dense stereo correspondence. Most

of the research focuses on using belief propagation, graph cuts, or combinations of

the two [Tappen and Freeman, 2003], but less research is focused on using dense

multi-view correspondence to compute depth from more than two images. As future

work on this system, we suggest utilizing a recent dense stereo method such as belief

propagation to reduce the amount of geometric error in the synthesized images.

115

Figure 6.4: Example of geometric artifacts resulting from incorrect depth estimates.
The left image is interpolated from the reconstructed geometry of several input im-
ages. Note the “floating” geometry in front of the lioness, image segments originating
from the left border of the input image. The right image is one of the input images
used to generate the synthesized view.

6.3.3 Successful Synthesis

Given the limitations we have described, our system currently cannot simulate

many indoor and outdoor environments that we had originally hoped to model. How-

ever it can simulate environments whose input photographs have enough high fre-

quency detail to mitigate the error conditions from Sections 6.3.1 and 6.3.2. For

example, we can create a fairly accurate simulation from the input images referred

to in Figure 4.7 because of the amount of detail in the photographic content. Fig-

ure 6.5 shows six images synthesized from the simulation. Note the relative absence

of ghosting or floating geometry artifacts.

Another example of a successful simulation is shown in Figure 5.11. In this

case, photographs of a rock outcropping are very accurately transformed into the

simulation content because the photographic detail and uniform lighting permitted

precise camera pose and dense depth estimation.

6.3.4 Other Performance Considerations

If we consider the system as a whole—correspondence discovery and expan-

sion, camera pose estimation, dense depth computation, and omnidirectional image

116

Figure 6.5: Six images of a t-rex skull, each synthesized by interpolating the geometry
of three neighboring input photographs. The background in each image has some
artifacts, but the skull specimen itself is cleanly rendered.

117

creation—the major computational bottleneck is in finding correspondences. Our

system takes 20–30 seconds on a 3.2 GHz P4 to find an ample set of accurate cor-

respondences between two wide-baseline images. Given the considerable number of

correspondence sets we generate in order to pose a large image collection, this pair-

wise runtime not only affects the total system runtime for content creation, but it

inhibits algorithmic exploration and development of all parts of the system. We

suggest as one of the first considerations for future work to investigate alternative

(faster) methods to find accurate wide-baseline correspondences. Unfortunately ac-

curacy cannot be sacrificed for speed, since correspondence accuracy is essential for

all succeeding system phases. Using region-based matching [Matas et al., 2002] may

be a worthwhile starting point.

We have also observed that photographs taken with smaller baselines, i.e. that are

more closely spaced, integrate better into simulation content with fewer objectionable

artifacts than photographs with larger baselines. This is an obvious consequence of a

specific matching algorithm characteristic: it is much easier to find accurate pair-wise

correspondences between small baseline images than it is for wide baseline images.

More accurate correspondences yield improved pose and depth estimates, and hence

fewer simulation artifacts. Since adding images to the simulation content increases

database size, the necessary tradeoff is to sacrifice simulation quality (in terms of

rendering artifacts) for database size. Understanding this tradeoff and its implications

would be a useful area for further study.

Another area of future work is to incorporate individual frames of video footage

into the set of input images. Shooting video is much easier and faster than snapping

hundreds of still images, but often the images from video suffer from photographic

artifacts resulting from poorer lens and CCD quality. Care would need to be taken

to avoid motion blur and lighting changes; Nistér [2001] offers a good starting point.

Finally, one should consider whether it is better to simulate photographic con-

tent using a view synthesis system as we have, or to simply create geometry using

structure-from-motion techniques. We chose to use view interpolation rather than

reconstruction because it is easier to hide the error artifacts inherent to geometric

118

reconstruction when we retain the original photographic imagery. Image-based mod-

eling and reconstruction strategies must also resolve the problem of geometric data

size—each photograph potentially contributes a 3D point from each pixel. Handling

a database of millions or billions of such points, and transforming them into more

general geometric entities such as polygons is a very difficult problem.

Almost all of the problems associated with both approaches can be traced back to

the correspondence problem—given two images, which portions match? A general and

robust solution to this formidable problem will solve most if not all of the difficulties

in computational stereo and reconstruction, and enable many exciting and useful

applications that have yet to be seen.

119

120

Bibliography

Adelson, E. and Bergen, J. The plenoptic function and the elements of early vision.

In Landy, M. and Movshon, J. A., editors, Computational Models of Visual

Processing, chapter 1. MIT Press, Cambridge, Mass., 1991.

Aliaga, D. G. and Carlbom, I. Plenoptic stitching: a scalable method for recon-

structing 3D interactive walkthroughs. In Proc. 28th Annual Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pages 443–

450, 2001.

Armstrong, M., Zisserman, A., and Beardsley, P. Euclidean reconstruction from

uncalibrated images. In Proc. British Machine Vision Conference (BMVC

’94), pages 509–518, 1994.

Barnard, S. T. and Fischler, M. A. Computational stereo. ACM Computing Surveys,

14(4):553–572, 1982.

Baumberg, A. Reliable feature matching across widely separated views. In Proc.

Conference on Computer Vision and Pattern Recognition (CVPR ’00), pages

774–781, 2000.

Brown, M. and Lowe, D. G. Recognising panoramas. In Proc. International Confer-

ence on Computer Vision (ICCV ’03), pages 1218–1225, 2003.

Brown, M. and Lowe, D. G. Unsupervised 3D object recognition and reconstruction

121

in unordered datasets. In Proc. Fifth International Conference on 3-D Digital

Imaging and Modeling (3DIM 2005), pages 56–63, 2005.

Buehler, C., Bosse, M., McMillan, L., Gortler, S., and Cohen, M. Unstructured

lumigraph rendering. In Proc. 28th Annual Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH ’01), pages 425–432, New York, NY,

USA, 2001. ACM Press.

Carson, C., Thomas, M., Belongie, S., Hellerstein, J. M., and Malik, J. Blobworld:

A system for region-based image indexing and retrieval. In Proc. 3rd Int.

Conference on Visual Information and Information Systems (VISUAL ’99),

pages 509–516, London, UK, 1999. Springer-Verlag.

Chang, C.-F., Bishop, G., and Lastra, A. LDI Tree: A hierarchical representation

for image-based rendering. In Proc. 26th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH ’99), pages 291–298, New

York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

Chen, S. E. Quicktime VR: an image-based approach to virtual environment naviga-

tion. In Proc. 22nd Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’95), pages 29–38, New York, NY, USA, 1995. ACM

Press.

Chen, S. E. and Williams, L. View interpolation for image synthesis. In Proc.

20th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’93), pages 279–288, New York, NY, USA, 1993. ACM Press.

Cheriton, D. and Tarjan, R. Finding minimum spanning trees. SIAM Journal of

Computing, 5:724–742, 1976.

122

Chowdhury, G. G. Introduction to Modern Information Retrieval, 2nd Ed. Facet

Publishing, London, 2004.

Cox, I. J., Hingorani, S. L., Rao, S. B., and Maggs, B. M. A maximum likelihood

stereo algorithm. Computer Vision and Image Understanding, 63(3):542–567,

1996.

Debevec, P. E., Taylor, C. J., and Malik, J. Modeling and rendering architecture

from photographs: a hybrid geometry- and image-based approach. In Proc.

23rd Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’96), pages 11–20, New York, NY, USA, 1996. ACM Press.

Dufournaud, Y., Schmid, C., and Horaud, R. Matching images with different res-

olutions. In Proc. Conference on Computer Vision and Pattern Recognition

(CVPR ’00), pages 612–618, 2000.

Faugeras, O. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT

Press, 1993.

Faugeras, O., Luong, Q., and Maybank, S. Camera self-calibration: theory and

experiments. In Proc. European Conference on Computer Vision (ECCV ’92),

pages 321–334. Springer-Verlag, 1992.

Ferrari, V., Tuytelaars, T., and Van Gool, L. Wide-baseline multiple-view correspon-

dences. In Proc. Conference on Computer Vision and Pattern Recognition

(CVPR ’03), pages 718–725, 2003.

Ferrari, V., Tuytelaars, T., and Van Gool, L. Simultaneous object recognition and

123

segmentation by image exploration. In Proc. European Conference on Com-

puter Vision (ECCV ’04), volume 1, pages 40–54, 2004a.

Ferrari, V., Tuytelaars, T., and Van Gool, L. Integrating multiple model views for

object recognition. In Proc. Conference on Computer Vision and Pattern

Recognition (CVPR ’04), pages 105–112, 2004b.

Fischler, M. A. and Bolles, R. C. RANdom SAmple Consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

Fitzgibbon, A. W. and Zisserman, A. Automatic camera recovery for closed or open

image sequences. In Proc. 5th European Conference on Computer Vision-

Volume I (ECCV ’98), pages 311–326, London, UK, 1998. Springer-Verlag.

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani,

M., Hafner, J., Lee, D., Petkovic, D., Steele, D., and Yanker, P. Query by

image and video content: The QBIC system. Computer, 28(9):23–32, 1995.

Goedemé, T., Tuytelaars, T., and Van Gool, L. Fast wide baseline matching for visual

navigation. In Proc. Conference on Computer Vision and Pattern Recognition

(CVPR ’04), pages 24–29, 2004.

Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. The lumigraph. In Proc.

23rd Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’96), pages 43–54, New York, NY, USA, 1996. ACM Press.

Gotz, D., Mayer-Patel, K., and Manocha, D. IRW: An incremental representation for

image-based walkthroughs. In ACM Multimedia ’02, 2002.

124

Greene, N. Environment mapping and other applications of world projections. IEEE

Computer Graphics and Applications, 6(11):21–29, 1986.

Harris, C. and Stevens, M. A combined corner and edge detector. In Proc. Fourth

Alvey Vision Conference, pages 147–151, 1988.

Hartley, R. and Zisserman, A. Multiple View Geometry in Computer Vision, Second

Edition. Cambridge University Press, ISBN: 0521540518, 2004.

Hartley, R. In defense of the eight-point algorithm. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI ’97), 19(6):580–593, 1997.

Horry, Y., Anjyo, K.-I., and Arai, K. Tour into the picture: using a spidery mesh

interface to make animation from a single image. In Proc. 24th Annual Con-

ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97),

pages 225–232, New York, NY, USA, 1997. ACM Press/Addison-Wesley Pub-

lishing Co.

Huang, T. and Faugeras, O. Some properties of the e matrix in two-view motion

estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI ’89), 11(12):1310–1312, 1989.

Isaksen, A., McMillan, L., and Gortler, S. J. Dynamically reparameterized light

fields. In Proc. 27th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’00), pages 297–306, New York, NY, USA, 2000.

ACM Press/Addison-Wesley Publishing Co.

Kenneth E. Hoff, I., Keyser, J., Lin, M., Manocha, D., and Culver, T. Fast

computation of generalized voronoi diagrams using graphics hardware. In

125

Proc. 26th Annual Conference on Computer Graphics and Interactive Tech-

niques (SIGGRAPH ’99), pages 277–286, New York, NY, USA, 1999. ACM

Press/Addison-Wesley Publishing Co.

Koch, R., Pollefeys, M., Heigl, B., Van Gool, L., and Niemann, H. Calibration of

hand-held camera sequences for plenoptic modeling. In Proc. International

Conference on Computer Vision (ICCV ’99), pages 585–591, 1999a.

Koch, R., Pollefeys, M., and Van Gool, L. Robust calibration and 3D geometric

modeling from large collections of uncalibrated images. In DAGM, 1999b.

Laveau, S. and Faugeras, O. 3-D scene representation as a collection of images.

In Proc. International Conference on Pattern Recognition (ICPR ’94), pages

689–691, 1994.

Levoy, M. and Hanrahan, P. Light field rendering. In Proc. 23rd Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH ’96), pages

31–42, New York, NY, USA, 1996. ACM Press.

Lhuillier, M. and Quan, L. Quasi-dense reconstruction from image sequence. In Proc.

7th European Conference on Computer Vision-Part II (ECCV ’02), pages 125–

139, London, UK, 2002. Springer-Verlag.

Li, J., Tong, Y., Wang, Y., Shum, H.-Y., and Zhang, Y.-Q. Image-based walkthrough

over the internet. In International Workshop on Very Low Bitrate Video Cod-

ing (VLBV ’01), 2001.

Lippman, A. Movie-maps: An application of the optical videodisc to computer graph-

ics. In Proc. 7th Annual Conference on Computer Graphics and Interactive

126

Techniques (SIGGRAPH ’80), pages 32–42, New York, NY, USA, 1980. ACM

Press.

Longuet-Higgins, H. A computer algorithm for reconstructing a scene from two pro-

jections. Nature, 293(10):133–135, 1981.

Lourakis, M., Halkidis, S., and Orphanoudakis, S. Matching disparate views of planar

surfaces using projective invariants. In Proc. British Machine Vision Confer-

ence (BMVC ’98), pages 94–104, 1998.

Lowe, D. G. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

Ma, Y., Soatto, S., Kosecka, J., and Sastry, S. S. An Invitation to 3-D Vision.

Springer, 2004.

Mark, W. R., McMillan, L., and Bishop, G. Post-rendering 3D warping. In Proc.

1997 Symposium on Interactive 3D Graphics, pages 7–16, 1997.

Marzotto, R., Fusiello, A., and Murino, V. High resolution video mosaicing with

global alignment. In Proc. Conference on Computer Vision and Pattern Recog-

nition (CVPR ’04), pages I: 692–698, 2004.

Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust wide baseline stereo from

maximally stable extremal regions. In Proc. British Machine Vision Confer-

ence (BMVC ’02), pages 384–396, 2002.

McAllister, D. K., Nyland, L., Popescu, V., Lastra, A., and McCue, C. Real-time

rendering of real world environments. In Proc. Eurographics Workshop on

127

Rendering Techniques, pages 145–160, 366, 1999.

McMillan, L. An Image-Based Approach to Three-Dimensional Computer Graphics.

PhD thesis, University of North Carolina, April 1997. URL http://www.cs.

unc.edu/\simibr/pubs/mcmillan-diss/mcmillan-diss.pdf.

McMillan, L. and Bishop, G. Plenoptic modeling: an image-based rendering sys-

tem. In Proc. 22nd Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’95), pages 39–46, New York, NY, USA, 1995a. ACM

Press.

McMillan, L. and Bishop, G. Head-tracked stereoscopic display using image warping.

Proceedings of SPIE, 2409:21–30, 1995b.

Mikolajczyk, K. and Schmid, C. An affine invariant interest point detector. In Proc.

7th European Conference on Computer Vision-Part I (ECCV ’02), pages 128–

142, London, UK, 2002. Springer-Verlag.

Miller, G., Hoffert, E., Chen, S. E., Patterson, E., Blackketter, D., Rubin, S., Aplin,

S. A., Yim, D., and Hanan, J. The virtual museum: interactive 3D navigation

of a multimedia database. Journal of Visualization and Computer Animation,

3(3):183–197, 1992.

Mindru, F., Moons, T., and Van Gool, L. Recognizing color patterns irrespective

of viewpoint and illumination. In Proc. Conference on Computer Vision and

Pattern Recognition (CVPR ’99), pages 368–373, 1999.

Nistér, D. Frame decimation for structure and motion. In Second European Workshop

on 3D Structure from Multiple Images of Large-Scale Environments (SMILE

128

http://www.cs.unc.edu/$sim $ibr/pubs/mcmillan-diss/mcmillan-diss.pdf
http://www.cs.unc.edu/$sim $ibr/pubs/mcmillan-diss/mcmillan-diss.pdf

’00), pages 17–34, London, UK, 2001. Springer-Verlag.

Nistér, D. Reconstruction from uncalibrated sequences with a hierarchy of trifocal

tensors. In Proc. 6th European Conference on Computer Vision-Part I (ECCV

’00), pages 649–663, London, UK, 2000. Springer-Verlag.

Oliveira, M. M. Image-based modeling and rendering techniques: a survey. RITA -

Revista de Informtica Terica e Aplicada, 9(2):37–66, 2002.

Pentland, A., Picard, R., and Sclaroff, S. Photobook: content-based manipulation of

image databases. Proc. SPIE, 2185:34–47, 1994.

Pollefeys, M., Koch, R., and Van Gool, L. Self calibration and metric reconstruction

in spite of varying and unknown internal camera parameters. In Proc. 6th

International Conference on Computer Vision (ICCV ’98), pages 90–96, 1998.

Popescu, V., Lastra, A., Aliaga, D., and de Oliveira Neto, M. Efficient warping

for architectural walkthroughs using layered depth images. In Proceedings of

the Conference on Visualization (VIS ’98), pages 211–215, Los Alamitos, CA,

USA, 1998. IEEE Computer Society Press.

Pritchett, P. and Zisserman, A. Wide baseline stereo matching. In Proc. 6th Inter-

national Conference on Computer Vision (ICCV ’98), pages 754–760, 1998.

Ronda, J. I., Valdés, A., and Jaureguizar, F. Camera autocalibration and horopter

curves. International Journal of Computer Vision, 57(3):219–232, 2004.

Rui, Y., Huang, T. S., and Chang, S.-F. Image retrieval: past, present, and future.

In International Symposium on Multimedia Information Processing, 1997.

129

Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. Real-time 3D model acquisition. ACM

Transactions on Graphics (SIGGRAPH ’02), 21(3):438–446, 2002.

Sainz, M., Susin, A., and Bagherzadch, N. Camera calibration of long image sequences

with the presence of occlusions. In Proc. IEEE International Conference on

Image Processing (ICIP ’03), pages I: 317–320, 2003.

Sand, P. and Teller, S. Video matching. Technical report, Massachusetts Insti-

tute of Technology, 2004. URL http://graphics.csail.mit.edu/~sand/

vid-match/tech-report.html.

Sawhney, H. S., Hsu, S., and Kumar, R. Robust video mosaicing through topology

inference and local to global alignment. In Proc. 5th European Conference on

Computer Vision-Volume II (ECCV ’98), pages 103–119, 1998.

Schacter, B. Computer image generation for flight simulation. IEEE Computer Graph-

ics and Applications, 1(4):29–68, 1981.

Schaffalitzky, F. and Zisserman, A. Viewpoint invariant texture matching and

wide baseline stereo. In Proc. International Conference on Computer Vision

(ICCV ’01), pages 636–643, 2001.

Schaffalitzky, F. and Zisserman, A. Multi-view matching for unordered image sets,

or “How do I organize my holiday snaps?”. In Proc. 7th European Conference

on Computer Vision-Part I (ECCV ’02), pages 414–431, 2002.

Scharstein, D. and Szeliski, R. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. International Journal of Computer Vision, 47(1-

3):7–42, 2002.

130

http://graphics.csail.mit.edu/~sand/vid-match/tech-report.html
http://graphics.csail.mit.edu/~sand/vid-match/tech-report.html

Seitz, S. M. and Dyer, C. R. View morphing. In Proc. 23rd Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH ’96), pages

21–30, New York, NY, USA, 1996. ACM Press.

Shade, J., Lischinski, D., Salesin, D. H., DeRose, T., and Snyder, J. Hierarchical

image caching for accelerated walkthroughs of complex environments. In Proc.

23rd Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’96), pages 75–82, New York, NY, USA, 1996. ACM Press.

Shade, J., Gortler, S., wei He, L., and Szeliski, R. Layered depth images. In Proc.

25th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’98), pages 231–242, New York, NY, USA, 1998. ACM Press.

Shum, H.-Y. and He, L.-W. Rendering with concentric mosaics. In Proc. 26th Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’99), pages 299–306, New York, NY, USA, 1999. ACM Press/Addison-Wesley

Publishing Co.

Steedly, D., Essa, I., and Dellaert, F. Spectral partitioning for structure from motion.

In Proc. International Conference on Computer Vision (ICCV ’03), pages

996–1003, 2003.

Sun, J., Li, Y., Kang, S. B., and Shum, H.-Y. Symmetric stereo matching for occlusion

handling. In Proc. Conference on Computer Vision and Pattern Recognition

(CVPR ’05), pages 399–406, Washington, DC, USA, 2005. IEEE Computer

Society.

Tao, H. and Sawhney, H. S. Global matching criterion and color segmentation

based stereo. In Fifth IEEE Workshop on Applications of Computer Vision

131

(WACV ’00), pages 246–253, 2000.

Tao, H., Sawhney, H. S., and Kumar, R. A global matching framework for stereo

computation. In Proc. International Conference on Computer Vision (ICCV

’01), volume I, pages 532–539, 2001.

Tappen, M. F. and Freeman, W. T. Comparison of graph cuts with belief propagation

for stereo, using identical mrf parameters. In Proc. Ninth IEEE International

Conference on Computer Vision (ICCV ’03), pages 900–907, Washington, DC,

USA, 2003. IEEE Computer Society.

Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., and Master,

N. Calibrated, registered images of an extended urban area. International

Journal of Computer Vision, 53(1):93–107, 2003.

Tomasi, C. and Kanade, T. Shape and motion from image streams under orthography:

a factorization method. International Journal of Computer Vision, 9(2):137–

154, 1992.

Tomite, K., Yamazawa, K., and Yokoya, N. Arbitrary viewpoint rendering from multi-

ple omnidirectional images for interactive walkthroughs. In Proc. International

Conference on Pattern Recognition (ICPR ’02), pages 987–990, 2002.

Triggs, W. Auto-calibration and the absolute quadric. In Proc. Conference on Com-

puter Vision and Pattern Recognition (CVPR ’97), pages 609–614, 1997.

Tuytelaars, T. and Van Gool, L. Wide baseline stereo based on local, affinely invariant

regions. In Proc. British Machine Vision Conference (BMVC ’00), pages 412–

422, 2000.

132

Uyttendaele, M., Criminisi, A., Kang, S. B., Winder, S., Szeliski, R., and Hartley,

R. Image-based interactive exploration of real-world environments. IEEE

Computer Graphics and Applications, 24(3):52–63, May/June 2004.

Werner, T., Hersch, R. D., and Hlaváč, V. Rendering real-world objects using view

interpolation. In Proc. International Conference on Computer Vision (ICCV

’95), pages 957–962, June 1995.

Woo, M., Neider, J., and Davis, T. OpenGL Programming Guide. Addison Wesley,

second edition, 1997.

Wood, D. N., Azuma, D. I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D. H.,

and Stuetzle, W. Surface light fields for 3D photography. In Proc. 27th Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’00), pages 287–296, New York, NY, USA, 2000. ACM Press/Addison-Wesley

Publishing Co.

Zhang, C. and Chen, T. A survey on image-based rendering - representation, sampling

and compression. Technical Report AMP 03-03, Carnegie Mellon University,

June 2003.

Zhang, Z. A flexible new technique for camera calibration. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (PAMI ’00), 22(11):1330–1334, 2000.

Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. High-quality

video view interpolation using a layered representation. ACM Transactions on

Graphics (SIGGRAPH ’04), 23(3):600–608, 2004.

133

	Vision-Based Rendering: Using Computational Stereo to Actualize IBR View Synthesis
	BYU ScholarsArchive Citation

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	 Introduction
	 Intent
	 Image-Based Rendering
	 IBR Background
	 Image-Based Rendering by Warping
	 Database-Driven IBR
	 Other IBR Techniques

	 Image-Based Modeling
	 View Interpolation
	 Derivation of Warping Equation
	 Warping Equation Implications

	 Computer Vision
	 Camera Calibration
	 Intrinsic Calibration
	 Extrinsic Calibration
	 Dense Correspondence
	 Structure From Motion

	 Dissertation Contribution
	 Chapter Descriptions

	 Correspondence Expansion for Wide Baseline Stereo
	 Introduction
	 Related Work
	 Contribution

	 Initial Correspondence Set
	 Guided Matching
	 Aggregation
	 Constraint
	 Saturation
	 Final Guided Matching

	 Results
	 Conclusion and Future Work

	 Histogram Matching for Camera Pose Neighbor Selection
	 Introduction
	 Background
	 Content-Based Image Retrieval
	 Optimization
	 Results
	 Summary and Conclusions

	 Minimum Spanning Tree Pose Estimation
	 Introduction
	 Related Work
	 Minimum Spanning Tree
	 Pose Validation
	 Noise and Outlier Resolution

	 Results
	 Summary and Conclusions

	 Omnidirectional View Interpolation of UnstructuredPhotographs
	 Introduction
	 Background
	 Omnidirectional Image Creation
	 Pixel Re-Projection Order

	 View Interpolation
	 Analysis
	 Algorithmic Variations

	 Discussion
	 Conclusion

	 Conclusions
	 VBR System
	 Photographic Input
	 Camera Pose Estimation
	 Dense Depth Correspondence Estimation
	 Omnidirectional Image Creation
	 System Results

	 Dissertation Contributions
	 System Performance and Future Research
	 Camera Pose Error
	 Dense Depth Error
	 Successful Synthesis
	 Other Performance Considerations

	Bibliography

