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Surface Intersection Loop Destruction

Alan K. Zundel and Thomas W. Sederberg
Brigham Young University

22 July 1996

1 Introduction

The intersection curve between two surface patches consists of one or more connected com-

ponents or branches. Each component can be classified as either an open branch, with

endpoints on at least one patch boundary, or as a closed loop (see Figure 1).

Figure 1: Open Branch and Closed Loop

It is known that the intersection curve formed by two rational surface patches is generally

of very high degree (324 in the case of two bicubic patches) and genus (433 in the case of

two bicubic patches) [KS88]. The large genus means it is impossible to exactly express the

intersection curve in the form of a parametric equation. Hence, algorithms for “computing”

an intersection curve usually are designed to compute a piecewise approximation of the

curve to within a tolerance.

Most such algorithms require that an initial point be identified on each branch of the
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1 INTRODUCTION 2

intersection, and then a curve-following scheme is invoked to compute the approxima-

tion [Pra86, BHHL88, CO88, BK90, SN91]. Whereas starting points on open branches

can be found by simply intersecting each surface with the boundary curves of the opposing

surface, starting points on loops can be more elusive.

This paper introduces an algorithm for “loop destruction” — intelligently subdividing

a pair of intersecting Bézier surface patches so as to slice through the closed loops, thereby

converting them into open branches. The algorithm is based on a technique called Bézier

clipping — a variation of interval arithmetic that takes advantage of the convex-hull property

of Bernstein polynomials. Loops are typically split in one or two tries if their diameters are

at least, say, one-eighth the width of the patch. For infinitesimally small loops, the method

converges quadratically.

The algorithms presented here can be applied to any surface type for which the tangent

directions can be computed. Our development focuses on Bézier tensor product surface

patches.

Various methods have been proposed for detecting closed loops. A simple but fallible

method is to extract a set of isoparametric curves from one surface and intersect them with

the opposing surface [Tim77]. This algorithm detects big loops multiple times, but may miss

small loops. More robust loop detection techniques have been developed based on various

strategies such as tesselation and subdivision techniques (see, for example [Arn87, LR80,

Dok85, HAG83, HEFS85]); surface, tangent and normal cones [SM88, Hoh91, PP90]; par-

allel and collinear normals [SKW85, SKC89]; surface implicitization [PP87, PP90, SAG84];

and vector fields [Che88, Kri90].

The loop destruction algorithm requires a method for detecting the possible existence of

a loop which in turn makes use of surface-bounding pyramids as reviewed in Section 2. Sec-

tion 3 then discusses how these pyramids are used to determine the non-existence of closed

loops. Section 4 reviews Bézier clipping and applies it to the loop destruction problem.
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2 Bounding Pyramids

The loop destruction algorithm makes use of pyramids that bound patches and pyramids

that bound tangent directions in a manner discussed below. Several variations on the idea

of bounding pyramids have appeared in the literature [SM88, Kim90, Hoh91, Kri90, KP91].

This section reviews, without proof, the bounding pyramids presented in [SZ96].

2.1 Tangent Bounding Pyramids

Given a rational Bézier surface patch Q(u, v) with positive weights, a tangent bounding

pyramid Pu(Q) (or Pv(Q)) is any pyramid that contains all tangent directions Qu(u, v) (or

Qv(u, v)) 0 ≤ u, v ≤ 1. This means that any tangent vector whose tail is translated to the

appropriate pyramid’s vertex will lie within that pyramid.

Denote by Pu+(Q) the nappe of Pu(Q) that encloses all the positive tangent directions

and denote the other nappe of Pu(Q) by Pu−(Q) (see Figure 2.a).

Pu+(Q) ⊇ {Qu(u, v)|(u, v) ∈ [0, 1]× [0, 1]}
Pu−(Q) ⊇ {−Qu(u, v)|(u, v) ∈ [0, 1]× [0, 1]}

}
. (1)

Nappes Pv+(Q) and Pv−(Q) are defined similarly (see Figure 2.b).

U

V

Q(u,v)

Pu+(Q)

Pu-(Q)

U

V

U

V

Q(u,v)

Pv+(Q)

Pv-(Q)

Figure 2: Bézier Surface Patch with U- and V-Tangent Bounding pyramids

For a polynomial tensor product Bézier surface patch

Q(u, v) =
m∑
i=0

n∑
j=0

Qi,jB
m
i (u)Bn

j (v), (2)
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the partial derivative is itself a polynomial Bézier patch given by

Qu(u, v) =
m−1∑
i=0

n∑
j=0

(Qi+1,j −Qi,j)mBm−1
i (u)Bn

j (v). (3)

Because of the convex hull property of Bézier surfaces, the convex hull of the vectors

(Qi+1,j −Qi,j) will contain all partial derivative directions Qu(u, v). In other words, the

convex hull of the (Qi+1,j−Qi,j) vectors can serve as Pu+(Q). The negative nappe Pu−(Q)

is similarly the convex hull of the (Qi,j −Qi+1,j) vectors. Pv(Q) can be constructed in like

manner.

For the case of a rational Bézier surface patch, the computation of the hodograph is

much more expensive, resulting in a degree 2m × 2n rational patch. A tangent bounding

pyramid can be computed as having its vertex at the origin and enclosing all (2m + 1) ×

(2n + 1) hodograph control points. However, [SWS95] presents a much more efficient way

of computing the pyramid for a rational patch that only involves vectors defined by control

points of the given patch, not of the hodograph.

A useful property of tangent bounding pyramids is that if pyramid Pu(Q) is translated

so that its vertex lies at Q(σ, τ), then the isoparameter curve segment Q(u, τ), u ∈ [σ, 1],

lies within Pu+(Q) and Q(u, τ), u ∈ [0, σ], lies within Pu−(Q) (see Figure 2.a).

In practice, we recommend the use of a pyramid with a rectangular directrix (see [SZ96]).

2.2 Surface Bounding Pyramids

A surface bounding pyramid has the property that when its vertex is translated to any point

on the surface patch, the surface patch lies entirely outside of the pyramid. Such a pyramid

can be derived from two tangent bounding pyramids Pu(Q) and Pv(Q) as follows.

Consider an arbitrary ray in the patch parameter space

(u0 + αt, v0 + βt) where u0, v0, u0 + αt, v0 + βt ∈ [0, 1]. (4)

The image of one of these rays on the surface patch is a parametric curve

Q(u0 + αt, v0 + βt) (5)
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whose first derivative (tangent) vector is:

Qt(u0 + αt, v0 + βt) = αQu(u0 + αt, v0 + βt) + βQv(u0 + αt, v0 + βt). (6)

Taking the case α, β > 0, we define a pyramid P++(Q) that satisfies

Qt(u0 + αt, v0 + βt) ⊆ P++(Q) = {αVu + βVv|Vu ∈ Pu+(Q), Vv ∈ Pv+(Q)}. (7)

P++(Q) can be taken as the convex hull of Pu+(Q) and Pv+(Q).

U

V

U

V

Pu+

Pv+

U

V

U

V

P++
P(Q)

P(Q)

Figure 3: a. P++ bounding positive quadrant b. P (Q) surface bounding pyramid

It is shown in [SZ96] that if P++(Q) is translated so that its vertex lies at any point on

the surface patch Q(u0, v0), then the portion of Q(u, v) for which u ∈ [u0, 1] and v ∈ [v0, 1]

will lie entirely within P++(Q).

Likewise we can define bounding volumes P+−(Q), P−−(Q) and P−+(Q), each bounding

one quadrant of Q. Observe that P+−(Q) and P−+(Q) are opposite nappes of the same

pyramid, and P++(Q) and P−−(Q) are opposite nappes of the same pyramid. The union

of the volumes

P++(Q) ∪ P+−(Q) ∪ P−−(Q) ∪ P−+(Q) (8)

is the boolean negative of a pyramid, which we denote P (Q):

P (Q) = {P = (x, y, z)|P 6∈ P++(Q) and P 6∈ P−+(Q) and P 6∈ P−−(Q) and P 6∈ P+−(Q)}

(9)

P (Q) bounds patch Q(u, v) in the sense that if the vertex of P (Q) is translated to any

point on Q(u, v), the patch Q(u, v) will lie entirely outside of pyramid P (Q), as illustrated

in Figure 3.b. Note that pyramid P (Q) always has a quadrilateral directrix.

It is shown in [SZ96] that a normal-bounding pyramid (i.e., a pyramid that bounds all

surface-normal vectors) can be obtained as the complement of a surface-bounding pyramid
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— the locus of all vectors that are not perpendicular to any vector inside the surface-

bounding pyramid. Thus, this normal-bounding pyramid has a quadrilateral directrix, and

each of its four faces is perpendicular to a face on the surface-bounding pyramid.

3 Loop Detection

Bounding pyramids and cones can be used in several ways to assure the non-existence of

a closed loop. When we say that a pair of surfaces passes a loop test, we will mean that

the test has positively determined that no loop exists. Test failure is inconclusive; the

intersection may or may not involve a closed loop.

Loop Test 0 [SKC89]. If either Pu(Q1) or Pv(Q1) lies completely within P (Q2),

no closed loop exists.

Figure 4.a shows a directional curve bounding pyramid and a surface bounding pyramid

that pass the test, assuring the non-existence of any closed loops. Figure 4.b illustrates a

failure of the test indicating a possible loop.

Curve on Q1

Q2

Surface Bound of Q2 Directional Bound of Curves on Q

Directional Bound inside Surface Bound

Curve on Q1

Q2

Surface Bound of Q2 Directional Bound of Curves on Q

Directional Bound Intersecting Surface Bound

Figure 4: A. Passing the Loop. B. Failing the Loop Test.
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Loop Test 0 involves a pyramid that bounds all isoparameter curves of constant u or

v. This test can be generalized to consider families of curves whose preimages are parallel

straight lines.

C(t, u0, v0, α) = Q(u0 + αt, v0 + (1− |α|t)), u0, v0 ∈ [0, 1], α ∈ [−1, 1] (10)

defines such a family of curves for a fixed α. From the chain rule, the tangent vector for

such a curve is

Ct(t, u0, v0, α) = αQu(u0, v0) + (1− |α|)Qv(u0, v0). (11)

If Q(u, v) is a tensor product polynomial surface of degree m× n, C(t, u0, v0, α) is a curve

of degree n+m in t. However, for fixed α and for any u0, v0 ∈ [0, 1], Ct(t, u0, v0, α) can be

computed by evaluating a degree n× n hodograph

Qα(u, v) = αQ̂u(u, v) + (1− |α|)Q̂v(u, v) (12)

where Q̂u(u, v) denotes Qu(u, v) after degree elevation in u and Q̂v(u, v) denotes Qv(u, v)

after degree elevation in v. As in Section 2.1, we can determine a pyramid Pα(Q) that

bounds the hodograph Qα(u, v).

Note that Loop test 0 is actually four tests: If either Pu(Q1) or Pv(Q1) lies completely

within P (Q2) — or if either Pu(Q2) or Pv(Q2) lies completely within P (Q1) — no closed

loop exists. Figure 5 shows a pair of intersecting surfaces which do not intersect in a closed

loop yet all four test 1 cases fail. This is not unusual. However, we can modify the test so

that surfaces like this are more likely to pass the test.

Figure 5: Example Surface Pair
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Loop Test 1. If any pyramid Pα(Q1) lies completely within P (Q2), no closed

loop exists.

This follows directly from the proof of Loop Test 0 [SKC89]. In practice, this test is

performed several times using various discrete values of α. If the patches pass the test for

any value of α, no loop exists.

Loop Test 2 If no vector contained in a surface normal bound is perpendicular

to any vector contained in a directional bound (for a fixed parameter direction)

on the other surface, no closed loop exists.

This loop test was suggested to the authors by Tim Strotman and is based on the following

reasoning. If a closed loop exists, its preimage C1 on patch 1 is also a closed loop. Any

line in the parameter space of patch 1 is parallel to a line T that is tangent to Ci. At

the point of tangency, the image of T is perpendicular to the normal vector of patch 2 at

that point. In practice, Loop Test 2 is equivalent to Loop Test 1, except it uses the normal

bound rather than the surface bound.

Test 2 is performed in the following manner.

1. For each of the four corners (di) of the directional bounding pyramid

For each of the four corners (nj) of the normal bounding pyramid
If di · nj > max set max = di · nj.
If di · nj < min set min = di · nj.

2. If 0.0 6∈ [min,max] no tangential line exists.

4 Bézier Clipping

Bézier clipping is the name given to a series of algorithms for performing various computa-
tions on Bézier curves and surfaces, such as parametric curve intersection [SWZ89, SN90],
curve-surface intersection [SN91], and ray-patch intersection [NSK90]. Here it is used to
guide the loop destruction process.

The basic idea behind Bézier clipping is to represent a Bernstein-form polynomial

y = f(x) =
n∑
i=0

yiB
n
i (x) (13)
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as an explicit Bézier curve

x = t =
n∑
i=0

i

n
Bn
i (t); y =

n∑
i=0

yiB
n
i (t). (14)

The crucial feature is that the control points are evenly spaced in x along the [0, 1] interval.
The fundamental operation used in Bézier clipping is to determine ranges of t for which

y

x=1x=0

P0

P1

P2

P3

P4

P5

xmax

xmin

Figure 6: Bézier Clipping

y(t) 6= 0. Referring to Figure 6, such ranges can be determined by intersecting the convex
hull of the control points of the explicit Bézier curve with the x-axis. Hence, in this example,
the ranges t ∈ [0, xmin] and t ∈ [xmax, 1] do not contain a root of f(t).

We now apply this idea to loop destruction. Denote by

Hu(u, v) =
m∑
k=0

n∑
l=0

Hu
klB

m
k (u)Bn

l (v) (15)

the hodograph dQ1(u,v)
du . Q1 is a degree m×n patch, and Hu(u, v) is degree elevated so that

it is also degree m× n.

Consider next a pyramid (with quadrilateral directrix) that bounds the normal vectors
of Q2. Denote by n00, n01, n10, n11 the unit vectors along each edge of the positive nappe
of the pyramid and define

n(a, b) = (1− a)(1− b)n00 + a(1− b)n01 + b(1− a)n10 + abn11. (16)

Then, for any vector normal to Q2, there exist a, b ∈ [0, 1] such that n(a, b) is parallel to
that normal vector.

Denote

Du(a, b, u, v) = Hu(u, v) · n(a, b) =
1∑
i=0

1∑
j=0

m∑
k=0

n∑
l=0

Du
ijklB

1
i (a)B1

j (b)Bm
k (u)Bn

l (v) (17)

where
Du
ijkl = nij ·Hu

kl. (18)
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From Loop Test 2, we observe that if

Du(a, b, u, v) 6= 0, ∀a, b, u, v ∈ [0, 1] (19)

there is no closed loop.

We can now adopt the idea of Bézier clipping to identify values of v for which a closed
loop cannot exist. Treat Du(a, b, u, v) as a degree m polynomial in u (in Bernstein form)
whose coefficients are polynomials (also in Bernstein form) in the variables a, b, and v:

Du(a, b, u, v) =
m∑
k=0

 1∑
i=0

1∑
j=0

n∑
l=0

Du
ijklB

1
i (a)B1

j (b)Bn
l (v)

Bm
k (u) (20)

Our goal is to identify ranges of v for which Du(a, b, u, v) is never zero for all possible values
of a, b, u ∈ [0, 1]. This is carried out by expressing Du(a, b, u, v) as a degree n polynomial
in Bernstein form, with interval control points:

[D]u(v) =
n∑
l=0

[D]lBn
l (v). (21)

Each of the [D]l are determined by taking the minimum and maximum of the 4(m + 1)
values

Du
ijkl, i = 0, 1; j = 0, 1; k = 0, . . . ,m. (22)

Referring to Figure 7, the gray region shows the projection of Du(a, b, u, v) onto the v,Du

[D]u(v)

v=1v=0

[D]0

[D]1

[D]2 [D]3

vmax

vmin

Figure 7: Bézier clipping to determine loop-free regions

plane. For any fixed value of v = ṽ ∈ [0, 1], all values of Du(a, b, u, v) with a, b, u ∈ [0, 1] lie
in the intersection of the gray region with the line v = ṽ. Then, since

[D]u(v) ⊃ Du(a, b, u, v), a, b, u ∈ [0, 1], (23)

it is clear that no loop can exist for any value of v for which

[D]u(v) 6⊃ 0. (24)

This is easily done by finding where the v axis lies outside of the convex hull of the control
points of [D]u(v). In Figure 7, no loop occurs for v < vmin or for v > vmax. Clearly, if all
control points of [D]u(v) have the same sign, no loops exist anywhere on the patch.
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In similar manner, we can determine ranges of u within which no closed loop can occur.
This is done by forming an interval Bernstein polynomial [D]u(u) whose control points [D]k
are determined by taking the minimum and maximum of the 4(n+ 1) values

Du
ijkl, i = 0, 1; j = 0, 1; l = 0, . . . , n. (25)

Loop destruction is then attempted by subdividing the patches. If (umax − umin) <
(vmax−umin), then the patch is split in the u direction at (umin +umax)/2. Otherwise, the
split is made in the v direction at (vmin + vmax)/2. After splitting, the loop test is again
invoked. If the test passes, we’re done. Otherwise, further Bézier-clip-guided subdivisions
(and subsequent loop tests) are performed.

4.1 Directional Curve Bounding

We have just used the u-hodograph of Q1 to identify loop-free regions — regions of u and
v on Q1 that cannot contain any closed loops. Likewise, we can find loop-free regions using
the v-hodograph of Q1. Clearly, the union of the loop-free regions obtained used the u- and
v-hodographs is also a (possibly larger) loop-free region.

Further, from Loop Test 2, we can potentially enlarge the loop-free regions further
by considering hodographs in other parameter directions. Equation 10 defines a curve
C(t, u0, v0, α) that is the image of a straight line in parameter space, with arbitrary direction
α. We now consider how to determine loop-free regions using −1 ≤ α ≤ 1 — that is, regions
where no curve C(t, u0, v0, α) for fixed α is tangent to the SSI curve.

Let

Hα(u, v) =
m∑
k=0

n∑
l=0

Hα
klB

m
k (u)Bn

l (v) (26)

where
Hα
kl = αHu

kl + (1.0− |α|)Hv
kl. (27)

This leads to the function

D(α, a, b, u, v) = Hα(u, v)·n(a, b) =
∑

i = 01
∑

j = 01
m∑
k=0

n∑
l=0

Dα
ijklB

1
i (a)B1

j (b)Bm
k (u)Bn

l (v)

(28)
where

Dα
ijkl = nij ·Hα

kl = nij · (αHu
kl + (1.0− |α|)Hv

kl). (29)

For any given α, loop free regions may be determined by performing a Bézier clip on
the functions [D]α(u) and [D]α(v).

Since Bézier clip calculations are relatively cheap, it generally pays to check a few values
of α in addition to 0 and 1.

4.2 Spatial Bézier Clipping

It often happens that the bounding boxes of two patches often overlap only slightly. Figure
8 shows two surfaces for which the loop detection tests fail. Since the tests are translation
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Figure 8: Surface Pair with Small Overlap

invariant, if the patches can be translated so as to create a closed loop, the test will fail.
In this example, the intersection is transverse, but the test fails since the patches can be
translated so as to create a closed loop.

An effective solution to this problem, suggested by Tomoyuki Nishita, is to perform a
Bézier clip of each patch against the bounding box of the other patch. This operation clips
away portions of one patch which do not lie within the bounding box of the opposing patch,
resulting in two smaller patches that tend to more nearly occupy roughly the same region
in space. Thus, regions of each patch which definitely play no roll in the intersection have
no influence on the loop detection test. The results of such a clip on the surface patch pair
shown in Figure 8 are shown in Figure 9. In this refined problem, the loop test passes.

Figure 9: Surface Pair after Bézier Clipping to Bounding boxes

5 Discussion

The power of Bézier clipping for loop destruction is dramatically illustrated in the case of
a simple convex surface just tangent to a plane (Figure 10), where there exists an infinites-
imally small closed loop. In this contrived case, all rows of the control grid are translations
of each other, so all the rows of the u-hodograph are identical. Therefore, [D]u(u) becomes
an interval function of width zero. Further, since the surface is convex, the function is
monotonic with one root. This root locates the u value of the tangency point between the
surface and the plane exactly. The v location can be computed in a similar manner using
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Figure 10: Simple Convex Surface Tangent to Plane

the v hodograph and [D]v(v).

The example in Figure 11 involves two fairly complicated surfaces which intersect in
four branches, three of which are closed loops. Loop detection obviously fails, requiring

Figure 11: Surface Intersection Problem With Multiple Loops

subdivision. The problem is so complicated that Bézier clipping fails to identify any loop-
free region, so a bisection is performed. One of the loops is split into open branches, and
the remaining two loops are separated into subproblems. One of these subproblems is
illustrated in Figure 12. Both of the subproblems also fail the loop detection tests. On
the third iteration, Bézier clipping identifies loop-free regions, guiding the subdivision to
sucessfully split the two remaining loops.
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