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Heterogeneous Radial Basis Function 

D. Randall Wilson, Tony R. Martinez 
e-mail: randy @axon.cs.byu.edu, martinez@cs. by.u.edu 

Computer Science Department, Brigham Young University, Provo, UT 84602, U.S.A. 

ABSTRACT 
Radial Basis Function (RBF) networks typically use a distance function designed for numeric 
attributes, such as Euclidean or city-block distance. This paper presents a heterogeneous ~ ~ s t a ~ ~ e  
function which is appropriate for applications with symbolic attributes, numeric attributes, or 
Empirical results on 30 data sets indicate that the heterogeneous distance metric yields signifi 
improved generalization accuracy over Euclidean distance in most cases involving symbolic attributes. 

1. Introduction 

Much research has been directed at finding better ways of helping machines learn from examples. ~ h ~ n  
domain knowledge in a particular area is weak, solutions can be expensive, time consuming and even impossible 
to derive using traditional programming techniques. 

In such cases, neural networks can be used as tools to make reasonable solutions possible or good s 
more economical. Such an automated solution is often more accurate than a hard-coded program, be 
learns from actual data instead of making assumptions about the problem. It often cm adapt as the 
changes and often takes less time to find a good solution than a programmer would. In addition, in 
learning solutions may generalize well to unforeseen circumstances. 

provide (accurate generalization on a wide range of applications, yet can often be tr 
faster [71 than other models such as backpropagation neural networks [$I or genetic al 

Radiial basis function networks make use of a distance function to find out 
vectors are (one being presented to the network and the other stored in a hidden node stance function 
is typically designed for numeric attributes only and is inappropriate for nominal (unordered symbolic) 
attributes. 

This paper introduces a heterogeneous distance function which allows radial basis function networks to 
appropriately handle applications that contain nominal attributes, numeric attributes, or both. Section 2 
introduces the basic radial basis function network that will be used to demonstrate the u s e ~ ~ ~ n e s s  of tbe 
heterogeineous distance function. Section 3 introduces the distance function itself. Section 4 presents empirical 
results which indicate that in most cases the heterogeneous distance function significantly i m p r ~ v ~ s  
generalization over Euclidean distance when symbolic attributes are present and never reduces accuracy in 
completely numeric domains. Section 5 presents conclusions and future research areas. 

Radial Basis Function (RBF) networks [1][13][15] have received much attention recently because they 

2. Radiial Basis Function Network 

This section Dresents a radial basis function (RBF) network that is used as a probabilistic neural networ~ 
(PNN) [LO] for ciassification. The distance function 
presented in this paper could be appropriately used 
on many different kinds of basis-function networks, 
so this particular network is just one example of its 
use. This network was chosen because of its 
simplicity, which helps to focus on the new distance 
function instead of on other factors. 

The network learns from a training set T, which 
is a collection of examples called instances. Each 
instance i has an input vector yi, and an output class, 
denoted as classi. During execution, the network 
receives additional input vectors, denoted as x, and 
outputs the class that x seems most likely to belong 
to. 

The probabilistic neural network is shown in 
Figure 1. The first (leftmost) layer contains input 
nodes, each of which receives an input value from the 

Input Hidden Class 
nodes nodes nodes 

X: 

U 

Figure 1. Radial Basis Function Network. 
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corresponding element in the input vector x. Thus, for an application with m input attributes, there are m 
input nodes. All connections in the network have a weight of 1. In essence, this means that the input vector 
is passed directly to each hidden node. 

There is one hidden node for each training instance i in the training set. Each hidden node hi has a center 
point yi associated with it, which is the input vector of instance i. A hidden node also has a value oi which 
determines the size of its receptive field. This value is set to the distance of the nearest neighbor of i in the 
training set, using the same distance function as that used during execution. 

A hidden node receives an input vector x and outputs an activation given by the function: 

where D is a distance function such as Euclidean distance or the heterogeneous distance function that will be 
discussed in Section 3. This function g is a Gaussian function which returns a value of 1 if x and yi are equal, 
and drops to an insignificant value as the distance grows. 

Each hidden node hi is connected to a single class node. If the output class of instance i is j ,  then hi is 
connected to class node cj. Each class node cj computes the sum of the activations of the hidden nodes that are 
connected to it (i.e., all the hidden nodes for a particular class) and passes this sum to a decision node. The 
decision node outputs the class with the highest summed activation. 

One of the greatest advantages of this network is that it does not require any iterative training. One 
disadvantage of this network is that it has one hidden node for each training instance and thus requires more 
computational resources during execution than many other models. In addition, it does not iteratively train 
weights on any of the connections, which can make its generalization less flexible. 

3. Heterogeneous Distance Function 

In Section 2, a probabilistic neural network was presented using radial basis functions and a simple 
weighting scheme that avoided iterative training. In this section, several alternatives for the distance function 
D are defined, including a new heterogeneous distance function H. 

Radial basis functions typically use the Euclidean distance function: 

where m is the number of input variables (attributes) in the application. An alternative function, the city- 
block or Manhattan distance function, uses less computation and often does not significantly change the 
results [lo]. It is defined as: 

(3) 
m 

i= 1 
M ( x ,  Y) = ZIxi - yil 

One problem with both of these distance functions is that they assume that the input variables are linear. 
However, there are many applications that have nominal attributes. A nominal attribute is one with a discrete 
set of attribute values that are unordered. For example, a variable representing symptoms might have possible 
values of headache, sore throat, chest pains, stomach pains, ear ache, and blurry vision. Using a linear 
distance measurement on such values makes little sense in this case, because numbers assigned to the values are 
in an arbitrary order. In such cases a distance function is needed that handles nominal inputs appropriately. 

Stanfill & Waltz [ l l ]  introduced the value difference metric (VDM) which has been used as the basis of 
several distance functions in the area of machine learning [21[31[61. Using VDM, the distance between two 
values n and y of a single attribute a is given as: 

2 
Na,x,c Na,y,c vdm,(x,y)= --- 

c=l[ Na,x Na,y ] (4) 

where Na,x is the number of times attribute a had value x; Na,x,c is the number of times attribute a had value x 
and the output class was c; and C is the number of output classes. Using this distance measure, two values are 
considered to be closer if they have more similar classifications, regardless of the order of the values. 
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Some models that have used the VDM or extensions of it (notably PEBLS [61) have discretized continuous 
attributes into a somewhat arbitrary number of discrete ranges and then treated these values as nominal values. 
Discretization throws away much of the information available to the learning model and often reduces 
generalization accuracy [ 121. 

The Heterogeneous Radial Basis Function (HRBF) model presented in this paper makes use of a new 
distance function that uses the above part of the VDM as a building block. In the HRBF model, the 
heterogeneous distance H between two vectors x and y is given as: 

1, if x or y is unknown; otherwise.. . 
normalized- vdm, (x, y), if a is nominal 
normalized- di f ,  (x, y), if a is numeric 

where m is the number of attributes. The function d,(x,y) returns a distance between the two attribute values 
x and y using one of two functions (defined below), depending on whether the attribute is nominal or numeric. 
Many data sets contain unknown input values which must be handled appropriately in a practical system. The 
function d,(x,y) therefore returns a distance of 1 if either x or y is unknown. Other more complicated methods 
have been tried, as in [14], but with little effect on accuracy. The function H is similar to that used in [4], 
except that it uses W M  instead of an overlap metric for nominal values and normalizes differently. 

One weakness of the basic Euclidean and Manhattan distance functions is that if one of the input variables 
has a relatively large range, then it can overpower the other input variables. For example, suppose an 
application has just two input attributes, f and g. Iff can have values from 1 to lo00 and g has values only 
from 1 tc) 10, then g's influence on the distance function will usually be overpowered by f s  influence. 

Therefore, distances are often normalized by dividing the distance for each variable by the range of that 
attribute, so that the distance for each input variable is in the range 0..1. However, this allows outliers 
(extreme values) to have a profound effect on the contribution of an attribute. For example, if a variable has 
values which are in the range 0..10 in almost every case but with one (possibly erroneous) value of 50, then 
dividing by the range would almost always result in a value less than 0.2. A more robust alternative is to 
divide the values by the standard deviation in order to reduce the effect of extreme values on the typical cases. 

In the heterogeneous distance metric, the situation is more complicated because the nominal and numeric 
distance values come from different types of measurements. It is therefore necessary to find a way to scale 
these two different measurements into approximately the same range in order to give each variable a similar 
influence on the overall distance measurement. 

Since 95% of the values in a normal distribution fall within two standard deviations of the mean, the 
difference between numeric values is divided by 4 standard deviations in order to scale each value into a range 
that is usually of width 1.0. 

Using VDM, the average value for Nu,x,c/Nu,x (as well as for Na,y,c/Nu,y) is 1/C. Since the difference is 
squared aind then added C times, the sum is usually in the neighborhood of C(l/C?)=I/C. This sum is therefore 
multiplied by C to get it in the range O..l, making it roughly equal in influence to normalized numeric values. 

The functions normalized-vdm and normalized-difl are thus defined as: 

2 

normulized-vdm,(x,y) = (7)  

1. - YI normalized- diffa (x, y) = - 
4% 

where C is the number of classes, N is defined as in (4), and 6, is the standard deviation of the numeric values 
of attribute a. Note that in practice the square root in (7) is not performed since the squared attribute 
distances are needed in (5) to compute H. Similarly, the square root in (5) is not typically performed in 
computing H, since the squared distance ( H 2  instead of D 2  in this case) is used in (1) to compute g,  the 
activation of a hidden node. 
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cal Results 
The Heterogeneous Radial Basis Function (HRBF) algorithm was implemented and tested on several 

databases from the Machine Learning Database Repository at the University of California Irvine [5].  
Each test consisted of ten trials, each using one of ten partitions of the data randomly selected from the 

data sets, i.e., 10-fold cross-validation. Each trial consisted of building a network using 90% of the training 
instances in hidden nodes and then using this network to classify the remaining 10% of the instances to see how 
many were classified correctly. 

In order to see what effect the new heterogeneous distance function has on accuracy, a homogeneous version 
of the algorithm was implemented as well, which is exactly the same as HRBF, except that it uses a 
normalized Euclidean distance function. This is accomplished by using normalized-diff,(x,y) instead of 
normalized-vdm,(x,y) in (6) for nominal as well as for nJmeric attributes. The homogeneous algorithm will 
be referred to as the default algorithm, or simply RBF. Both algorithms used the same training sets and test 
sets for each trial. 

The average accuracy for each database over all trials is shown in Figure 2. A bold value indicates which 
value was highest for each database. One asterisk (*) indicates that the higher value is statistically 
significantly higher at a 90% confidence level, using a one-tailed paired t-test. Two asterisks (**) are used to 

Figure 2 also lists the number of continuous and nominal input attributes for each database. Note that the 
ark differences that are significant at a 95% or higher confidence interval. 

accuracy for every application 
that has only numeric attributes 
is exactly the same for both RBF 
and HRBF. This is no surprise, 
since the distance functions are 
equivalent on numeric attributes. 

However, on the databases 
that have some or all nominal 
attributes, HRBF obtained 
higher generalization accuracy 
than RBF in 112 out of 23 cases, 
10 of which were significant at 
the 95% level or above. RBF 
had a higher accuracy in only 
four cases, and only one of those 
(the Zoo data set) had a 
difference that was statistically 
significant. 

It is interesting to note that 
in the Zoo data set, 15 out of 16 
of the attributes are boolean, and 
the remaining attribute, while 
not linear, is actually an ordered 
attribute. These attributes are 
tagged as nominal, but the 
Euclidean distance function is 
appropriate for them as well. 

In all, HRBF performed as 
well or better than the default 

The above results indicate 
that the heterogeneous distance 
function is typically more 
appropriate than the Euclidean 
distance function for appIications 
with one or more nominal 
attributes, and is equivalent to it 
for domains without nominal 
attributes. 

in 26 out of 30 cases. 

Rl3F 
(Euclidean) 

Numeric Nominal 
HRBF Attributes Attributes 

Annealing 
Audiology 
Australian-Credit 
Bridges 
Credit-Screening 
DNA Promoters 
Echocardiogram 
Flags 
Hayes-Roth 
Heart 
Heart-Disease (Hungarian) 
Heart-Disease (More) 
Heart-Disease (Swiss) 
Hepatitis 
Horse-Colic 
House-Votes-84 
Image Segmentation 
Solar-Flare 1 
Solar-Flare 2 

Th yroid-Disease (Euthyroid) 
Tic-Tac-Toe 
ZOO 

Soybem-Large 

Average: 

Numeric D a t a b a  
Breast-Cancer-Wisconsin 
Liver-Disorders 
Ifis 
Pima-Indians-Diabetes 
Sat.Test 
Vowel 
Wine 

76.19 
36.00 
80.14 
52.36 
75.36 
54.27 
78.04 
45.74 
52.17 
80.74 
64.00 
45.95 
38.85 
79.33 
67.09 
69.22 
80.48 
81.71 
99.53 
13.01 
90.74 
65.78 
78.89** 
65.46 

97.00 
62.50 
94.00 
76.30 
85.65 
92.01 
94.38 

76.06 
54.00** 
83.77** 
55.27' 
83.48** 
76.91** 
79.46 
57.1 1** 
65.96** 
80.00 
74.92** 
45.95 
38.85 
79.33 
67.09 
79.77** 
80.48 
81.41 
99.53 
35.10** 
90.74 
79.74"" 
73.33 
71.23** 

97.00 
62.50 
94.00 
76.30 
85.65 
92.01 
94.38 

9 
0 
6 
4 
6 
0 
7 

10 
0 
7 
7 
7 
7 
6 
7 
0 

18 
1 
1 
6 
7 
0 
0 

9 
6 
4 
8 

36 
10 
13 

29 
69 

8 
7 
9 

57 
2 

18 
4 
6 
6 
6 
6 

13 
16 
16 
1 
9 

11 
29 
18 
9 

16 

0 
0 
0 
0 
0 
0 
0 

Figure 2. Comparative experimental results of RBF and HRBF, 
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5. Conclusions & Future Research 

The Heterogeneous Radial Basis Function (HRBF) network uses a normalized heterogeneous distance 
function which is typically more appropriate than the Euclidean distance function for applications that have at 
least some nominal or symbolic attributes. By using a more appropriate distance function, higher 
generalization accuracy can be obtained on most typical heterogeneous or completely symbolic domains, 
Furthermore, the heterogeneous distance function is equivalent to a normalized Euclidean distance function in 
completeliy numeric domains so generalization accuracy will be identical in those domains as well, 

In this paper the heterogeneous distance function was used with a probabilistic neural network for 
classification, which allowed very fast training at the cost of a large, static network. However, this function 
is appropriate for a wide range of basis function networks that use distance functions. 

Currmt research is seeking to test the heterogeneous distance function on a variety of other models, 
including various Radial Basis Function networks and instance-based machine learning systems. The 
normalization factors are also being examined to see if they provide the best possible normalization. 

In addition, it appears that some data which is tagged as “nominal” is often somewhat ordered. It is 
hypothesized that if the values of nominal attributes are randomly rearranged then the HRBF would perform 
about the same (since it does not depend on the ordering of nominal values), but that the homogeneous RBF 
would suffer a loss in accuracy. The accuracy of this hypothesis and the severity of the loss in accuracy are 
currently being explored. 

The results of this research are encouraging, and show that heterogeneous distance functions can be used to 
apply basis function networks to a wider variety of applications and achieve higher generalization accuracy than 
the homogeneous distance functions used in the past. 
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