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A Brief Introduction to Formal Methods * 

Paul E. Black Kelly M. Hall Michael D. Jones Trent N .  Larson Phillip J .  Windley 

Laboratory for Applied Logic 
Brigham Young University 

i nfo-lal@lal .cs. byu .edu 

Abstract 

As hardware designs grow in size and complexity, cur- 
rent design methods are proving less adequate. Current 
methods for specification, design, and test are typically 
empirical or informal] that  is, they are based on expe- 
rience and argument. Formal methods are solidly based 
on mathematical logic systems and precise rules of infer- 
ence. Formal methods offer a discipline which comple- 
ments current methods so designers can successfully meet 
the demand for high performance systems. 

Formal methods covers a broad and diverse set of tech- 
niques aimed a t  improving computer correctness. This 
paper explains the role of specifications and implementa- 
tion models in formal methods, and different approaches 
to  proving their correspondence. We refer to  excellent 
overview papers and cite some recent successful examples 
of using formal methods in hardware design. 

Introduction 

Current hardware and software designs are orders of 
magnitude larger and more complex than they have been. 
I t  is therefore more difficult t o  design correct systems us- 
ing only informal techniques and practices. The  term for- 
m a l  m e t h o d s  includes a set of techniques based on math- 
ematical foundations and analysis. Formal methods [lo] 
improve computer design by reducing design errors when 
used as a complement to  empirical techniques currently 
used. This paper provides a brief introduction to  formal 
methods for hardware design.' We discuss what they are, 
describe different methodologies grouped under the head- 
ing formal m e t h o d s ,  and suggest where they can be used 
successfully. Due to  space considerations, the bibliogra- 
phy is not extensive, but it was carefully chosen to  provide 
a good start ing place for further exploration. 

'This work was sponsored by the National Science Foundation 
under NSF grant MIP-9412581 and the Department of Defense un- 
der contract MDA904-94-C-6115. 

'This paper focuses exclusively on formal methods in hardware 
design. Formal methods can also be used in broader system design, 
including software, but such discussion is beyond the scope of this 
paper. 
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What are Formal Methods? 

Formal methods are an analytical approach relying on 
mathematical models for excluding design errors in hard- 
ware. Other approaches to  design fault exclusion, such 
as simulation, are empirical in nature. The  chief benefit 
of analytical techniques is that  they offer 100% coverage 
of the design space. Tha t  is, with a precise mathemati- 
cal model, one can reason about all possible cases. The  
chief drawback is the difficulty of building models and 
conducting analysis. The  precise nature of formal nieth- 
ods precludes informal hand waving to  dismiss difficult, 
extreme cases. 

All formal methods involve one or more of the following 
three parts: 

1. a mathematical model of the design's intended be- 
havior or properties, called the spec i f i ca t ion ,  

2.  a mathematical model of the design's structure, 
called the i m p l e m e n t a t i o n  m o d e l ,  or more briefly, the 
implementation] and 

3.  mathematical expressions stating relationships be- 
tween the models established using analysis (proof) 
t o  demonstrate that  the relations hold. 

Formal methods begin with a specification, an implemen- 
tation model, and a mathematical expression stating th r  
relationship between them. They finish by demonstrating 
the relationship via precisely defined rules. However ~ for- 
mal methods need not include all three aspects. Benefits 
accrue from simply writing a formal specification which 
then serves as an unambiguous reference for impleinenta- 
tion, simulation, and testing. 

A. Simple Example of Formal Methods 

As an example of the activities and models discussed 
above, we might specify the behavior of an exclusive-or 
gate with the following mathematical formula: 

I 1  
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That  is, the behavior of an exclusive-or relates inputs, a 
and b ,  and the output ,  out. Note that  the above formula 
can easily be assigned a rigorously defined meaning. The 
implementation model could be described using a netlist: 

MODULE out . x o r 2 _ i m p  a b ;  
BEGIN 
p .nand2 a b ; 
q .nand2 a p ; 
r .nand2 p b ; 
o u t  .nand2 q r ; 
END ; 

This implementation is four interconneded NAND gates. In  
addition, we must have rigorous definitions of the meaning 
of MODULE, .nand2,  B E G I N ,  e tc . ,  so that  the above imple- 
inentation model also has an unambiguous meaning. 

We wish to  show that  the implementdon satisfies the 
specification. We can express t,his with the mathemati- 
cal relation implies and express rigorous definitions of the 
netlist (not given here for brevity) as a function INTERP 
in the following manner : 

t V a b out. IPITERP(out . x o r 2 _ i m p  a b )  + 
x o r 2 - s p e c  a b o u t  

One can also read the formula as, for all a, b and o u t ,  
the interpretation of an XOR2 implementation (as defined 
above) on a ,  b and o u t  implies the XOR2 specification 
(also defined above) on a ,  b and o u t .  Using mathemati- 
cal analysis and the definitions of . x o r 2 i m p ,  x o r 2 s p e c ,  
and INTERP, we can prove that  the imp1ement.ation satis- 
fies the specification. 

Notice that  the relationship covers all values of the in- 
puts and output (a, b ,  and ou t ) ,  not just some test values. 
Of course, in this simple example an exhaustive simula- 
tion is trivial, but many formal methods can be applied 
to circuits with lo1'' states or more and still show that  
the relationship holds for all possibilities. 

How Do I Put Formal Methods to Work? 

Va.rious formalisms and techniques are applicable tmo 
each part of the process described in the previous section. 
To write a formal specification, one must make choices 
about which formalism to  use (first order logic, higher or- 
der logic, temporal logic, s ta te  machines, automata,  trace 
specifications, etc.) and the kinds of criteria to specify 
(functional correctness, liveness, safety, timing, and so 
on) .  To  model a circuit, one must decide which level of 
abstraction (gate level, switch level, circuit level, register- 
transfer level. or higher) is appropriate as well as which 
formalism to  use (first order logic, higher order logic, au- 
tomat,a, etc.). The  relationship of implementation and 
specification may be equivalence, implication, etc. How 
one handles each of the three parts forms a taxonomy of 
formal methods tools and techniques [ 3 ] .  

A .  The Specification 

W-riting a specification for a design is perhaps the most 
difficult aspect of the formal methods process. Formal 
specifications require the designer to  clearly, concisely, 
and unambiguously state what a circuit must do. To 
be oi any benefit, the specification must be a n  abstract 
representation of the implementation. T h a t  is, it should 
state what a circuit must do, not, how. The abstractions 
may be any combination of structural (an ALU instead 
of gates), da ta  (numbers instead of bit vectors), temporal 
(instruction cycles instead of clock cycles), or behavioral 
(a page from memory is saved to  disk instead of which 
page is saved to  which cylinder). Specifications may be 
quite comprehensive, or they may include relatively few 
fundamental requirements such as a request is eventually 
granted or twc communicating devices never deadlock. 
Specifications can also indicate timing properties, load 
characteristics, and other properties of the device. 

The idea of formal methods is to  show that  the im- 
plementation meets the specification; but  how does one 
ensure that  the specification is correct? Ultimately it 
inus6 be validated by the designers: they must examine 
the specification and decide that  it expresses what they 
want. Higher level abstractions help by making it easier 
to  state desired properties and behaviors. More powerful 
representations can more easily and concisely express the 
designer's desires. A specification of a few fundamental 
properties may be easy to  judge correct, but leaves other 
important properties only informally specified. Some rep- 
resentations are executable, allowing designers to  validate 
the specification by simulation in addition to  review. 

One of the most important choices to  make is the level 
of abstraction in the specification. Higher level abstrac- 
tions tend to allow more concise specifications, since less 
detail is included. Abstraction causes the specification 
to be more easily modified and validated. On the other 
hand. an abstract specification is more difficult to  relate 
to the implementation. Multi-level verification treats the 
one level's specification as the next higher level's imple- 
mentation. Thus several simple abstractions can be inde- 
pendently verified to  yield the overall proof. 

Related to  t3he level of abstraction is the expressive- 
ness of the language. A simple language, such as state 
machines or first order logic, is easy to  reason about - 
in fact, many simple languages are decidable: they have 
completely automatic algorithms for calculating the cor- 
rectness of statements. More expressive languages, such 
as higher-order logic, can more concisely express a wide 
range of specifications, but, they are more difficult to  rea- 
son about. 

More abstract and expressive languages are more pow- 
erful in the long run, but tend to  require more initial in- 
vestment since they are more mathematical and less like 
representations with which designers are familiar. 
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B. The Implementation Model 

Creating a model of the implementation is a standard 
task for hardware designers. Implementation models are 
similar t o  simulation models in use by designers now. An 
implementfation model may be extracted from the simula- 
tion model, or,  potentially, the same model may be used 
for both verification and simulation. The  implementation 
model must have a well defined interpretation or mean- 
ing. A model with simple primitives is easier t o  reason 
about,  but is a poor representation of the circuit. A more 
detailed model is a better representation of the circuit, 
but it is more difficult t o  use in a verification. 

How does one ensure that  the implementation model 
actually represents the physical device? As with the spec- 
ification, validating the implementation can not be done 
by machine. Since the model only represents certain char- 
acteristics of the device, the final design must be checked 
to  ensure that  it has those characteristics. 

Few formal methods tools accept models written for 
standard simulation tools without significant syntactic 
changes to  the model. Most tools require a completely 
new model expressed in a different modeling framework. 
Thus,  a designer often must construct multiple models of 
their circuit, one for each design tool (simulator, formal 
methods tool, etc.). Multiple versions raise the cost of 
design maintenance and can lead to  version skew prob- 
lems. Current research in formal methods is aimed a t  
using standard HDLs for implementation modeling and 
providing increased simulation capability. 

C. Relating the Implementation and the Specification 

There are several methods currently being used for re- 
lating implementations to  specifications. These include 
theorem proving, model checking, equivalence checking, 
and language containment. Among these, the most com- 
monly used are model checking and theorem proving. 

In the model-checking approach, the specification is ex- 
pressed as a formula in temporal logic. Such logics make 
statements about a world that  changes through t,ime, and 
they allow reasoning about dynamically changing situa- 
tions. Implementation models are usually in the form of 
state transition graphs. They can be compared with tlhe 
specification automatically. The  system may verify that  
the models are valid, or it may provide counter-examples 
for any specifications falsified by the implementation. 

Since model checking typically uses state-based hard- 
ware descriptions, it is hetter suited for checking control 
structures, as it expresses things such as concurrency and 
synchronization. Also, by modeling a particular kind of 
logic and world, model checkers aren’t excessively com- 
plex. Of coiirse, this means tha t  they are not readily 
used on other types of problems. 

As an example, the well known model checker SMV [6] 
uses specifications written in the temporal logic CTL and 

implementation models written in a VHDL-like language 
for creating state machines. 

Theorem proving, in contrast, is a more interactive 
technique. When one uses a theorem prover to  verify 
hardware the usual process is t o  design a specification and 
implementation as logic descriptions first-order predicate 
logic, higher-order logic, etc. The  designer then guides the 
proof assistant tool through rigorous proof steps showing 
that  the implementation model satisfies the logical specifi- 
cation. The  level of interaction required of t,he user varies 
widely between theorem prover tools: some tools demand 
much detail but offer great flexibility (e.g., HOL); other 
tools are more automatic a t  the expense of flexibility (e.g., 
PVS, NQTHM). 

Theorem provers ultimately rely on the designer t o  cre- 
ate an appropriate model of the hardware, and even to  
guide the system (sometimes explicitly) along the path 
to a proof. This can be a complex process, but theorem 
provers are very general and can be employed in a wide 
range of applications. Theorem provers are not as useful 
for reasoning about temporal aspects of hardware. But 
theorem provers are well suited for hierarchical methods 
of development (due to  their abstraction mechanisms) as 
well as reasoning about functional specifications and pa- 
rameterized descriptions. 

The  NQTHM theorem prover uses Boyer-Moore 
quantifier-free first order logic (with equality) t o  repre- 
sent both specifications and implementation models [4]. 
The HOL theorem prover [9] uses higher-order logic to  
produce a flexible, but demanding environment for crest- 
ing specification and implementation models. 

What Will Formal Methods Do? 

Formal methods will ensure tha t  an implementation 
meets a specification, but they will not guarantee that  
the final product will always operate perfectly. Wha t  for- 
mal methods can do is limited by the philosophical limits 
on what can be proven, informally defined description lan- 
guages and extra-logical factors. These limitations ought 
t o  be kept in mind when describing and discussing the 
results of a formal verification project. A more complete 
discussion of what formal methods will and will not do 
can be found in [a ] .  

There are aspects of the design process to  which the no- 
tions of specification and implementation simply do not 
apply. Specifications can not convey design intentions and 
implementation models can not describe physical proper- 
ties. Consequently, the verifier is forced to  choose a level 
of abstraction for the specification and a sufficiently con- 
crete level for the implementation model. These decisions 
are part  of the process, but should be explicitly stated 
when making a claim about verification. For example, 
claiming that  a microprocessor has been verified a t  the 
gate-level implementation to  meet a functional block spec- 
ification more completely conveys the scope of the veri- 
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fication than simply stating tha t  the processor has been 
verified. 

In practice, the designer, verifier and each manufacturer 
use different, informally defined languages to  describe the 
design. Often, the translations between these languages 
requires a combination of experience, intuition and luck. 
This is especially true of low-level design descriptions 
which may consist of nothing more than annotated di- 
agrams and a few paragraphs of text. Without mathe- 
matically precise definitions of the design-description lan- 
guage, i t  is impossible to know if the verifier’s interpreta- 
tion of the design is the same as the designer and if the 
design manufactured is the same as the one described by 
the verifier. These gaps can be bridged by using a com- 
mon, formally defined language a t  all three levels. 1Vorli 
on these t,ypes of languages is underway at Computational 
Logic, Inc. and Brigham Young University [11]. 

Claims about verified devices, especially in safety or se- 
curity critical applications, should be strictly limited to  
factors covered by the logic. Faulty communication, so- 
cial hierarchies, political climates, and so forth are usually 
not covered in the verification process. For example! ver- 
ification dernonstrating tha t  the low-level model of a chip 
prevents unauthorized users from accessing da ta  does not 
guarantee tha t  a passer-by could not read sensitive data 
on a monitor. Consideration of these factors ought to 
temper broad guarantees about verified devices. 

Formal methods have been successfully used in com- 
mercial and academic designs. We mention a few to sug- 
gest the wide applicability and utility of formal methods. 

Johnson, Miner, and Camilleri[5] compare several for- 
mal tools by implementing a simple circuit in each of 
them. They “contrast how the underlying formalisms in- 
fluence one’s perspective on design and verification.” 

Windley and Coe[8] verified the correctness of a sim- 
ple pipelined microprocessor using HOL ~ and Srivas and 
Miller[7] report, the formal verification of a commercial 
microprocessor. Bainbridge, Camilleri, and Fleming[l] re- 
late verifying menlory protocols in an  industrial setting. 
They point out formal methods can be used even with a 
short trme to m,arket. 

Conclusion 

Formal methods are a useful addition to  the hardware 
design process. To male use of formal methods, first a 
specification must be written which expresses the design 
criteria., then an implementation model must be written 
or captured which represents the design. Formal verifica- 
tion demonstrates tha t  an  implementat,ion model meets 
a specification for a l l  cases. However formal methods are 
not a silver bullet which prevents all errors. Rather formal 
methods are a complement to good design methodology 
and testing. The  chief benefit of formal methods is not 
the final true from the tool, but rather the process that is 
required to  get, the final result. 

While the wide variety of specification and implemen- 
tation modeling techniques and the many ways of relating 
them can make the choice of how and when to apply for- 
mal methods sound daunting, in fact there are relatively 
few tools to choose from. Of these tools, the best criteria 
for choosing is how they handle the task of relating the 
implementation model and the specification. Once a par- 
ticular tool is chosen, many of the options for creating the 
implementation model and specification are eliminated. 
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