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ABSTRACT 
 

 
 

DELINEATION OF MASS MOVEMENT-PRONE AREAS BY LANDSAT 7 AND 
DIGITAL IMAGE PROCESSING 

 
 
 
 

Shiloh M. James Howland 
 

Department of Geology 
 

Master of Science 
 
 
 
  The problem of whether Landsat 7 data could be used to delineate areas prone to 

mass movement, particularly debris flows and landslides, was examined using three 

techniques:  change detection in NDVI (Normalized Difference Vegetation Index), 

change detection in band 5, and the tasseled cap transformation.   These techniques were 

applied to areas that had recently experienced mass movement:  Layton, Davis County 

and Alpine, Spanish Fork Canyon and Santaquin, Utah County.  No distinctive spectral 

characteristics were found with any of these techniques with two possible explanations: 

1.  That despite improved spatial resolution in Landat 7 over its predecessors and 

improved digital image processing capabilities, the resolution is still too low to detect 

these characteristics or 2.   That the aspects of a slope that make it prone to mass 

movement are undetectable at any resolution by remote sensing. 



 Change detection in NDVI examined if areas that remained unchanged (defined 

as ≤ 5% change) between August 14, 1999 and October 17, 1999 correlated to areas that 

are prone to mass movement.  There was no correlation. 

 Change detection in band 5 was examined between August 14, 1999 and October 

17, 1999, October 17, 1999 and May 28, 2000 and August 14, 1999 and May 28, 2000.  

An interesting result is that the Shurtz Lake and Thistle landslides (Spanish Fork Canyon) 

showed changes of greater than 30% during August 14, 1999 – October 17, 1999 and 

October 17, 1999 – May 28, 2000.  These changes were limited to these landslides and 

not seen in abundance in surrounding areas.  A similar localization of 30% change was 

seen in the Cedar Bench landslide (Layton) for the same time periods.  There were no 

other correlations. 

 The tasseled cap transformation shows areas of dominate greenness, soil 

brightness or wetness.  None of these factors had distinctive patterns in the areas studied 

when compared to surrounding, mass movement-prone areas so no conclusions can be 

drawn about the utility of the tasseled cap transformation as it relates to areas of potential 

mass movement. 
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INTRODUCTION TO THE PROBLEM 

 
Landslides are traditionally mapped using large-scale aerial photos and ground 

surveys.  The research presented here is based on the hypothesis that landslide and debris 

flow prone areas have distinctive spectral characteristics that can be delineated using 

digital image processing and Landsat 7 Enhanced Thematic Mapper (ETM+) scenes.  If 

these unique spectral characteristics exist and can be seen at the resolution of Landsat 7, 

it could aid in delineating areas that are likely to experience mass movement in advance 

of actually visiting the location, thus saving time in travel and in field work.   

Remote sensing has already found numerous applications in botany, forestry, 

geography, and even bedrock geologic mapping.  Remote sensing data cannot be used or 

interpreted in a vacuum, but must be understood based on ground truth.  Ground truth is 

the training acquired by doing field work used to understand what the images show and 

how a particular land cover looks in a scene.  Remote sensing data are most effectively 

used when the area in the image is familiar to the interpreter. 

Remote sensing is broadly, or maximally, defined as “the acquisition of data about 

an object without touching it” (Jensen, 2000).  A more practical definition is what Jensen 

(2000) calls the minimal definition: “the noncontact recording of information from the 

ultraviolet, visible, infrared, and microwave regions of the electromagnetic spectrum by 

means of instruments such as cameras, scanners, lasers, linear arrays, and/or area arrays 

located on platforms such as aircraft or spacecraft, and the analysis of acquired 

information by means of visual and digital image processing.”  Many aspects of 
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geological investigation can be considered as remote sensing maximally but not 

minimally. 

Remote Sensing Background 

 
A Landsat 7 scene is more than just a photograph from space.  It is composed of 

eight layers or bands of data that can be recombined and manipulated so that the scene 

becomes useful.  The scene contains all the data.  The resolution of the panchromatic 

band is 15 m per pixel as opposed to 30 m per pixel for the visible and middle infrared 

bands and contains four times as many pixels.  A pixel is a two-dimensional picture 

element that is the smallest non-divisible element of a digital image (Jensen, 1996). 

Each pixel in each band has a brightness value (BV).  A brightness value is an 

assigned value along an 8-bit gray scale ranging from 0 (black) to 255 (white).  This 

value quantifies the amount of electromagnetic energy reflected, within a specific spectral 

range for each band, back to the receiver.  A color image can be construed by looking at 

three gray-scale layers at one time.  Each layer is displayed in a specific plane of color – 

red, green or blue to create a color image (Figure 1). 

Background of the Landsat program 

 
The Landsat program began in 1972 following the successful application of 

satellites to study weather (Jensen, 2000).  This program was designed to study land 

features from satellites in the same way that weather patterns are studied.  Landsat 1 was 

launched with the intent to demonstrate the usefulness of remote sensing for land based 

applications (Sheffner, 1999).  Landsat 1 through Landsat 3 used the Multispectral 

Scanner (MSS)  
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instrument.  These early satellites used four bands covering the green, red and near 

infrared parts of the spectrum at 79 m per pixel and a thermal infrared band at 240 m per 

pixel.  Landsats 4 and 5 used the Thematic Mapper (TM) instrument which kept the same 

bands as the first three instruments but expanded the spectrum with a blue band and two 

middle infrared bands.  Spatial resolution was improved for all previous bands from 79 m 

per pixel to 30 m per pixel and the thermal infrared band improved from 240 m per pixel 

to 120 m per pixel (Jensen, 1996).  

 Landsat 7 ETM+ was originally intended to include bands with 10 m per pixel 

for the visible, near infrared and thermal infrared bands (bands 1-5 and 7), a 5 m 

panchromatic band and stereo capability for a total of eight bands.  However, when 

Landsat 6 failed to achieve orbit in 1993, many of these features were dropped and 

Landsat 6 capabilities were used in Landsat 7 to make up for the loss (Jensen, 1996).   

Landsat 7 was launched in 1999 and uses the Enhanced Thematic Mapper   (ETM+) 

instrument (Table 1).  The two major improvements are the addition of a panchromatic   

(0.52-0.90 µm) band with 15 m per pixel spatial resolution and the improved resolution 

TABLE 1.  PROPERTIES OF LANDSAT 7 ETM+

 Region of 
electromagnetic 
spectrum covered 

Band 
Number 

Spectral 
Range (µm) 

Ground 
Resolution (m)

Blue 1 0.45 to 0.515 30 

Green 2 0.525 to 0.605 30 

Red 3 0.63 to 0.690 30 

Near infrared 4 0.75 to 0.90 30 

Middle infrared 5 1.55 to 1.75 30 

Thermal infrared 6 10.40 to 12.5 60 

Middle infrared 7 2.09 to 2.35 30 
Green, red, near 
infrared 

Pan-
chromatic 0.52 to 0.90 15 
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of the thermal infrared band from 120 m on Landsat 5 to 60 m.   

 

Summary of Images used in this Study 

 
The Landsat 7 images used in this study were from Path 38, Row 32 (using the 

Path and Row Worldwide Referencing System) from August 14, 1999, October 17, 1999 

and May 28, 2000 (Figure 2).  Each scene is 185 km by 185 km.   

 Landsat 7 scenes are available from the EROS Data Center (http://edc.usgs.gov).  

All four scenes were radiometrically and geometrically rectified prior to distribution.  All 

scenes use UTM coordinates and the WGS84 spheroid. 

The landslide/debris flow events to occur after the imagery was sensed were the 

debris flows in Alpine and Santaquin/Spring Lake of September 2002.  No known 

landslide events occurred within the area studied between August 1999 and May 2000. 

  

Previous Work 

 
The earliest published application of Landsat imagery to mass movement 

problems was by Sauchyn and Trench (1978).  They used Landsat Multispectral Scanner 

(MSS) imagery to attempt to map landslides in Colorado.  The authors hypothesized that 

because Landsat images are repetitive (every 18 days for the Landsats 1-3) and offered a 

wide variety of bands (four), that they may be able to delineate landslide features.  

Sauchyn and Trench (1978) identified that when mottling was present in the image, it 

could be a function of hummocky terrain.  This hummocky terrain is assumed to be the 

result of previous mass movement.  However, they were quick to point out that glacial 
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drift can have similar mottling.  Scarps were observed to be most obvious in the near 

infrared band due to enhancement of shadows and possibly vegetation differences. They 

make several points which are still valid despite improved resolution and software 

capabilities.  They assert that the limitations of Landsat images in identifying landslide 

prone areas is a result of landslides lacking unique spectral characteristics and that the 

scale of Landsat images is insufficiently fine to distinguish these areas.  The lack of these 

unique spectral characteristics is due primarily to the fact that landslides can occur in an 

array of surificial materials.  They conclude that landslide prone areas have no unique 

spectral appearance on Landsat images. 

McKean et al (1991) evaluated remote sensing as applied to landslide hazard 

analysis in California and Oregon.  They used remote sensing to map vegetation patterns 

and from this, infer debris flow susceptible landforms.  In addition, they also performed a 

supervised classification of vegetation at several times, assuming that vegetation serves 

as a proxy for soil conditions.  They found a correlation between greenness and soil depth 

with greenness defined by a Kahunen-Loeve transformation (Principle Components 

Analysis) of NS001 data.  NS001 data is a simulation of Landsat 7 data which uses a 

multispectral scanner flown in a large aircraft to collect data from the ground in roughly 

the same range of the electromagnetic spectrum as Landsat 7.  However, the resolution is 

much finer and the area to be studied can be targeted more directly.  The scale and 

location of NS001 imagery is determined by the researcher who then specifies what 

altitude the aircraft should be flown.  Greenness is measured by the amount of reflectance 

in the near infrared range but the specific definition of greenness can be adapted to 

individual problems.  In another application, McKean et al. (1991) also used Airborne 
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Synthetic Aperture Radar (at approximately 30 m per pixel spatial resolution) to study a 

forested earthflow in Oregon that showed an increase in brightness in band 4 (near 

infrared) as flow speed increased.  As the earthflow moved faster, it toppled pine trees, 

exposing the deciduous undergrowth which explains why band 4 brightened with 

increased flow speed. Near infrared, middle infrared/near infrared and greenness indices 

were all able to detect major colluvial deposits that correlate with actual soil depths.  

An interesting approach using Landsat 4 images, the Normalized Difference 

Vegetation Index (NDVI) and landslide mapping came from Samarakoon et al. (1993).  

By comparing scenes from September and November for the Yoshino river basin in 

Japan, they discovered areas that remained high in greenness (high NDVI) in both the 

wet (September) and dry (November) seasons.  It was inferred that these areas had higher 

soil moisture and could be more susceptible to mass movements.  The NDVI was a proxy 

for the “state” or amount of groundwater and it can partly compensate for illumination 

conditions and atmospheric effects.  The resultant image of high moisture areas was then 

compared to previously mapped landslides.  Upon comparison, it was found that most of 

the estimated high-moisture areas as determined by interpretation of the satellite images 

were distributed over landslide prone areas.   

A technique using both Landsat 4 Thematic Mapper (TM) data and Synthetic 

Aperture Radar (SAR) was used to locate retrogressive slope failures in shale along the 

Saskatchewan River by Shih and Jordan (1993).   They comment that the spatial 

resolution of Landsat 4 TM and SPOT (Systeme pour l'Observation de la Terre) data is 

generally not fine enough for landslide characterization.  For this purpose, they re-

sampled the TM data with the SAR data to achieve a smaller effective spatial resolution.  
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Landslides in the Saskatchewan Valley were easily seen on SAR and re-sampled 

SAR/TM scenes because of their large size, poorly vegetated surfaces, and morphologies.  

Landslides were generally found near areas of active river erosion.  Shih and Jordan 

(1993) concluded that their methodology is useful in characterizing landslides in both 

high and low relief areas.  They make no comment on spectral characteristics of areas 

that may experience landslides, only that landslides can be seen on SAR and re-sampled 

SAR/TM scenes. 

Objective 

 
The objective of this study was to determine if the improvements in the resolution 

of Landsat 7 ETM+ and the availability of more advanced digital imaging software could 

be used to identify mass movement prone areas.  This was to be accomplished by 

building upon previous work and specifically by using several Landsat 7 ETM+ images 

and ERDAS Imagine 8.5 software to study the landslides and debris flows of the Wasatch 

Front, central Utah. 

Summary and History of Wasatch Front Mass 
Movement Events 

 
Specifically, this research focuses on four areas of mass movement activity along 

the Wasatch Front and 11 specific landslides or debris flows within those areas.  

Selection of these areas guided by Dr. Matthew Mabey of Brigham Young University and 

to overlap research being done by Francis Ashland of the Utah Geological Survey.  The 

four areas, from north to south, are listed below; the number in brackets indicates years of 

notable or measurable movement: 

 

   7



1. Layton  
A.  Heather Drive landslide [2001] 
B.  Sunset Drive landslide [1998] 
C.  South Fork Kays Creek landslide [1984, 1998] 
D.  Cedar Bench landslide [1998] 
E.  South Weber Drive landslide [1983, 1984, 1998] 

2.   Alpine  
A.  Preston Canyon debris flows [2002] 

3.  Spanish Fork Canyon 
A.  Thistle Slide [1983, 1998] 
B.  Shurtz Lake landslide [1997] 
C.  Joes Canyon debris flow [1998] 

4.  Santaquin 
A.  Two un-named debris flows from Dry Mountain tributaries 4 and 5 

[2002] 
 

Because the images are fairly recent, ranging from August 1999 to May 2000, 

landslides/debris flows were selected that had occurred between 1997 and 2002.  For this 

study to be valid, it was assumed that conditions at the time of imaging were comparable 

to real ground conditions in 1997 to 2002.  This may not be a valid assumption as 1998 

was the fifth wettest year on record for Utah and subsequent years have been much drier.  

Also, landslides/debris flows had to be selected for study that were within the Landsat 7 

scenes.   

This research examines landslide areas after the fact with the hypothesis that some 

feature(s) would be unique.  If found, these features could be applied to other mass 

movement prone areas and aid in prediction of future events of mass movement.  

Specifically, comparable areas located near landslides were studied; comparable being 

defined as similar geomorphology, slope, vegetation, and surficial geology.  For example, 

in Spanish Fork Canyon, the hummocky terrain between the Shurtz Lake and Thistle 

slides is assumed to be a potential source for future mass movement events.  This 

assumption is made because the terrain is interpreted as previous mass movement events 
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and it seems likely that because of the steep slope and history of mass movement events, 

this area will move again.  Likewise, the drainage of Joes Canyon, also in Spanish Fork 

Canyon, is compared to nearby Sterling Hollow.  Therefore, it was not the actual 

landslide or debris flow being studied but the areas in the vicinity of the slide or flow that 

seems most likely to have an event in the future. 

Layton  

 
Layton City has experienced five major landslides in the last five years, notably 

along the valley walls of Kays Creek and primarily as a result of the 1998 wet year.  Five 

landslides in Layton are used in this study (Figures 3, 4, and 5).  The Layton landslides 

all occurred within transgessive Lake Bonneville deposits of latest Pleistocene age 

(Giraud, 1998a).  Subsequently, rivers have cut down through these silty to gravelly 

deposits creating steep, unstable valley walls.  The valley walls of Kays Creek were 

mapped as landslide deposits as early as 1975 (Kaliser and Slosson, 1988) and all the 

recent (1998-2001) landslides occurred in areas of previous movement. 

Heather Drive.  The Heather Drive landslide in Layton moved as early as August 

1998 when homeowners had to repair driveways and noticed foundation cracks (Figure 

6).  Movement continued at a slow rate until late August 2001 when it failed rapidly 

(Giraud, 2002b).  This landslide is unusual because it continued in late summer during a 

year with below-average precipitation. The Heather Drive landslide was the only Layton 

landslide to occur in 2001.  The scarp (410 m long and 3 m high) follows an arcuate crest 

which was interpreted as a reactivation of a previous landslide (Giraud, 2002b).   
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Sunset Drive.  The Sunset Drive landslide occurred near 1851 East Sunset Drive (lot 

105) in Layton in April 1998 (Giraud, 1998a).  It occurred on the same northwest facing 

valley wall of South Fork Kays Creek as the South Fork Kays Creek and Heather Drive 

landslides.  Houses in the area experienced exterior damage including displaced 

foundations, tilted and bowed walls and damaged door frames.   Houses on the 

surrounding lots suffered ground cracks in foundations, displaced driveway slabs and 

gaps in between the driveway, garage and elsewhere (Giraud, 1998a).  The crest of 

surrounding lots 104-108 is scallop-shaped which is interpreted by Giraud as being 

formed by previous landslide movement.  A stream has incised the Weber River 

Bonneville delta and exposed lacustrine sediments that are prone to landsliding (Giraud, 

1998a).    The only visible geomorphic features are two scarps (maximum height of 30 

cm) that may not be related to each other and 1.3 cm wide ground cracks.  Giraud notes 

in his report that this area is susceptible to future landslide events. 

South Fork Kays Creek.  A landslide along South Fork Kays Creek (Giraud, 1998b) 

occurred in April 1998 in the vicinity of 1050 East and 1530 North in the city of Layton.  

Movement displaced turf, curbs, chain link fences and a rock wall.  This event occurred 

in on the same north-facing bluff as the Sunset Drive and Heather Drive landslides, 

which has been mapped as prehistoric landslide deposit.  The 1984 landslide scarp on this 

bluff is visible on 1985 aerial photos but has since been re-graded and filled (Giraud, 

1998b).  The scarp of the 1998 landslide has a similar length, shape and position to the 

1984 scarp.  At its maximum, the 1998 scarp was 1 m high.  As the stream continues to 

erode the toe of the 1998 slide, movement will likely continue (Giraud, 1998b). 
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Cedar Bench.  The April 1998 Cedar Bench landslide occurred on the same 

northeast-facing bluff as the 1984 and 1998 South Weber landslides.  The landslide 

occurred just above the Cedar Bench subdivision on a bluff with an average gradient of 

35% (Solomon, 1998).  The 1998 landslide was a composite slide that possibly 

reactivated older, deep-seated earth slides and flows.  The area is a complex of shallow 

slides about 120 m wide with a maximum scarp height of 2.5 m (Christenson, 1998).  In 

1998, precipitation for January through April was 147% of average and the landsliding is 

believed to be a result of increased pore pressure (Christenson, 1998).   

South Weber Drive.  The 1998 landslide occurred on the eastern edge of South 

Weber landslide complex which is a zone of prehistorical and historical landsliding 

(Figure 7).  The entire slope moved  in spring 1984.  The 1998 slide occurred in a zone of 

slumps and slides about 75 m long and 360 m wide.  The scarp was up to 1.8 m high and 

all movement appeared to be shallow and did not affect the Davis-Weber canal (Black, 

1998).  Black noted that landsliding began due to marginal slope stability and elevated 

groundwater levels, but the exact cause for movement is still unclear.   Precipitation in 

the area in January and February of 1998 was 200% of normal precipitation (Giraud, 

1998).   

This same area (south of South Weber Drive) had a rotational slide activated in 

1983.  It reactivated along the lines of an ancient slide mass and at least one small debris 

flow occurred historically at the toe of the landslide (Kaliser and Slosson, 1988).  Maps 

of the South Weber Drive area show landslide events in 1984 and 1998 (Lund, 1984; 

Black, 1998).   
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Alpine  

 
The City of Alpine in northern Utah County experienced two debris flows in an 

eight day period in September, 2002, both emanating from Preston Canyon (Figures 8, 9, 

and 10).  No previous landslide or mass movement maps show debris flows emanating 

from this canyon.  In nearby American Fork Canyon, 27 landslide/debris flow events 

occurred in 1983 (Brabb, Wieczorek, and Harp, 1989). 

Preston and Willow canyons are narrow canyons incised into the Precambrian 

Mineral Fork Tillite and the Cambrian Mutual Formation (quartzite) and Tintic Quartzite 

(Baker and Crittenden, 1961).  The head of each canyon is composed of Mississippian 

age limestones.  There are Pleistocene – Holocene age debris flow deposits at the mouths 

of each canyon (Machette, 1992) 

Preston Canyon.  The City of Alpine was affected by two debris flows on 

September 8 and 16, 2002.  By September 8, 2002, Alpine had received 3.9 cm of rain in 

48 hours (Warnock, 2002).  This debris flow damaged a home at 87 N Bald Mountain 

Drive.  Richard Giraud of the Utah Geological Survey visited Alpine between the two 

debris flow events and mapped the September 8 flow.   

On September 16, 2002, Alpine received 1.4 cm of rain in 24 hours which 

initiated the first debris flow. This flow began in a north facing tributary of Preston 

Canyon.  This second flow was examined by the author on September 18, 2002.  At 

Preston Canyon Drive, it was about 45 m wide (Figure 11).  Farther east, the channel was 

2 m deep (Figure 12).  Boulders up to 45 cm across had been entrained and lighter, 

organic float such as dead branches were entrained perpendicular to the direction of flow.  

The September 8 flow broke through to Bald Mountain Drive on an undeveloped lot, 
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which shows evidence of previous debris flow events but no events have been mapped in 

this area. 

Spanish Fork Canyon  

 
Spanish Fork Canyon is a mass movement-prone area, known primarily for the 

Thistle slide in 1983.  It has also experienced more recent movement in Thistle slide itself 

and surrounding areas (Figures 13, 14 and 15). 

Joes Canyon and Sterling Hollow are canyons that incise two sandstone units – 

the Permian Diamond Creek sandstone and the Oquirrh Formation (Witkind and Page, 

1983).  At the mouths of each canyon are lacustrine gravel deposits from Lake 

Bonneville and fan alluvium that predates Lake Bonneville (Machette, 1992).  The Shurtz 

Lake and Thistle landslides both emanated from the Tertiary North Horn Formation 

which consists of mudstone, sandstone, limestone and conglomerate layers.  The 

mudstone is unstable when wet and has a tendency to slump (Witkind and Page, 1983).  

There are also older landslide deposits in the area of Thistle slide (Witkind and Page, 

1983).  

The most remarkable historic movement of Thistle slide followed seven months 

of above-normal precipitation in April 1983.  Within a week, the landslide dammed the 

river and formed ‘Thistle Lake’.  Thistle Lake reached its peak on June 2, 1983 with a 

volume of 8000 hectare-meters and depth of 55 m. (Slosson et al.., 1992; Slosson & 

Kaliser, 1988; Ashland, 2002).  Thistle Slide was active prior to 1983 and had been 

mapped as early as 1955 and described by Rigby and Hintze in 1962 (Schroder, 1971). 
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Thistle.  The Thistle landslide reactivated most recently in May, 1998 (Figure 16).  

Movement was initiated by the detachment of a large slump block at the crown of the 

landslide. The detachment and rotation of the slump block created a vertical scarp of 

nearly 30 m in height.  Most movement occurred by sliding on the deep 1983 rupture.  

Relative displacement of casings oriented east-west suggests a minimum of 

approximately 48 m of movement (this value may include 1997 movement) (Christenson, 

1998).  Average rates of movement for years prior to 1997-8 were about 0.17 m/yr 

yielding about 2.4 m of movement that would have occurred from 1984-1998 

(Christenson, 1998).  The entire landslide, except for the dam, moved in 1998 

(Christenson, 1998). The spring of 1998 was the third wettest on record for Spanish Fork 

Canyon and surpassed only by 1982 and 1983 (Figure 17) (Ashland, 2003).   

The southeast side of Thistle landslide had partially reactivated in 1997, the fifth 

wettest year on record.  Folds and scarps were visible as early as March, 1997 and 

confirmed in September.   

Shurtz Lake. The Shurtz Lake landslide occurred in early May 1997 displacing Utah 

Power and Light high voltage power lines.   The landslide is a composite body with two 

earth flows that are visible from State Highway 6 (Figure 18).  With the snowmelt in 

March 1998, the slide reactivated and achieved a maximum displacement of 20 m along 

its left flank.  Both episodes of movement were preceded by above-normal precipitation.  

Shurtz Lake slide is only 1.5 km north of Thistle slide and shares some geologic 

similarities with Thistle in that both emanated from the North Horn Formation.  There is 

no evidence of the Shurtz Lake area moving since at least 1923 when the power lines 

were installed on the slope (Ashland, 2003).  The Shurtz Lake slide occurred in 
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prehistoric hummocky landslide deposits that are visible in large-scale aerial photos from 

1983 (Ashland, 2003).  Ashland (2003) asserts that the Shurtz Lake slide is only dormant 

and not yet stabilized. 

Joes Canyon.  The third event in Spanish Fork Canyon in 1998 was a debris flow in 

late April in Joes Canyon, a deep narrow channel.  Superelevation extended to 20 m 

above the channel of 3 m flow depth, as estimated by vegetation disturbances (Ashland, 

2003) (Figure 19).  At the mouth of Joes Canyon, the debris flow created a levee (Figure 

20) and fan (Figure 21) of lighter organic materials.  Evidence of previous movement in 

this canyon is found on aerial photographs from 1984 showing a debris flow that 

occurred previously, most likely just a few years before (Ashland, 2003).   

 

Santaquin 

 
Santaquin and Spring Lake experienced five major debris flows on September 12, 

2002, within the same week of the Alpine debris flows.  Two flows, emanating from 

tributaries 4 and 5, are examined in detail (Figures 22 and 23).  The flows have no 

official name but based on the Utah Geological Survey report and the burned-area 

emergency rehabilitation (BAER) report, they will be called the Tributary 4 and 

Tributary 5 debris flows for this report (McDonald and Giraud, 2002 and U.S. Forest 

Service, 2001). 

The Tributary 4 and 5 flows emanated from two large canyons on the northern 

end of the west slope of Dry Mountain.  The other large flows came from Tributaries 6, 3 

and 2 and the small flows came from Tributaries 7, 9, 11, 12, and 14 (McDonald and 

Giraud, 2002).  Dry Mountain consists of a succession of rock units ranging from the 
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mid-Proterozoic to the Mississippian.  These units include the Archean/Proterozoic 

Santaquin Canyon complex, Proterozoic Big Cottonwood Formation, Cambrian Tintic 

Quartzite and Ophir Shale and Mississippian Gardison and Deseret limestones (Witkind 

and Wise, 1991). 

Events leading up to the Santaquin debris flows began a year prior with the Mollie 

Fire, which burned the Dry Mountain drainages in their entirety between August 18 and 

September 1, 2001 with the mostly intensely burnt areas on the north-facing slopes of the 

tributaries of Dry Mountain (Hardy, 2001 and U.S. Forest Service, 2001) (Figure 24).  An 

article in the Deseret News from October 16, 2001 warned residents to consider flood 

insurance (Hardy, 2001).  The same article stated that there was no vegetation above the 

subdivisions on the east side and it would only take 0.60 cm to 1.30 cm of rain in a half-

hour to cause debris flows (Hardy, 2001) and on September 12, 2002, Santaquin received 

1.4 cm of rain (McDonald and Giraud, 2002).  Although the slopes were seeded after the 

fire, the continuing drought made it difficult for the seeds to gain a foothold (Hardy, 

2002b).  It is noted in the BAER report that there was a heightened debris-flow risk 

following the Mollie fire (U.S. Forest Service, 2001). 

The United States Forest Service installed jersey barriers at 900 East from 150 to 

450 South in an attempt to protect structures.  The 2002 debris flows hit about a half mile 

north of the barriers at 300 North (City of Santaquin, 2003).  Previous mass movement in 

this area includes a landslide mapped near Spring Lake during the 1983 wet year (Brabb 

at al., 1989). 

Tributary 4 and 5 debris flows.  On September 12, 2002, two large debris flows 

traveled west from Dry Mountain and damaged homes in Spring Lake and Santaquin, 
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Utah County (Figure 25).  The hazard for debris flows on Dry Mountain existed prior to 

the fire and will exist even once the vegetation recovers (McDonald and Giraud, 2002). 
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ERDAS IMAGINE 8.5 AND IMAGE PROCESSING 

TECHNIQUES 

To determine if debris flow/landslide prone areas have distinctive spectral 

characteristics, three image processing techniques were used with ERDAS Imagine 8.5.  

ERDAS Imagine 8.5 is a powerful digital image processing program that permits the 

analyst to perform a wide array of image processing techniques very quickly.  The three 

techniques examined in this research are: 

1. Change detection using the Normalized Difference Vegetation Index 
2. Change detection of band 5  
3. Tasseled cap transformation 

 
The spectral characteristics of debris flow and landslide prone areas are not well 

known.  However, change detection using the Normalized Difference Vegetation Index 

and a precursor to the technique using band 5 have shown some potential.  The remaining 

technique, tasseled cap transformation, was used because it employs parameters 

important to mass movement.   

No technique, or combination of techniques, was successful in delineating 

distinctive characteristics of landslide/debris flow prone areas in the Wasatch Mountains.  

For a small region such as the slopes of South Fork Kays Creek in Layton, it was 

expected that the recently active slopes would have a signature that was specific to the 

active area and that inactive areas would not have that same signature.  For a larger 

region, such as Spanish Fork Canyon, it was hypothesized that some part(s) within the 

landslide/debris flow prone areas would have a distinct signature on a Landsat 7 image 

that could be related to unique conditions on the ground.  Ideally, these ground conditions 
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would be favorable for initiating mass movement.  It seems clear now that there are two 

explanations for the lack of distinctive features: that the imagery spatial resolution is still 

too low in resolution to discern those differences or there are no surface differences and 

initiation of mass movement is based on other factors such as weather or subsurface 

conditions that cannot be measured by Landsat 7. 
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CHANGE DETECTION OF THE NORMALIZED 

DIFFERENCE VEGETATION INDEX (NDVI) 

 

 The Normalized Difference Vegetation Index (NDVI) is a measure of greenness 

assessed using the formula NDVI = (BVnear infrared - BVred) / (BVnear infrared + BVred) for each 

pixel of the scene.  Specifically for Landsat 7, the formula is NDVI = (BVBand 4 – BVBand 3) 

/ (BVBand 4 + BVBand 3) where BV is the brightness value for each pixel in each band.  

Change detection is a simple mathematical subtraction of the later NDVI image from the 

earlier NDVI image. 

Samarakoon et al. (1993) used change detection with NDVI images from different 

times (September and November) to find areas that had high NDVI and that remained 

unchanged during the intervening time correlated to previously mapped landslides.  This 

technique was used to answer the question: do areas that remained unchanged over a 

period of time correlate to landslide/debris flow prone areas?  If an area remains 

unchanged in greenness/NDVI for a significant period of time, it is hypothesized that this 

is due to unchanged groundwater conditions that could be favorable for mass movement.  

Samarakoon et al.’s (1993) work studied the Yoshino river basin in Japan, which receives 

an average of 2.5 m of rain every year, a value which is in marked contrast to the limited 

amount of rain (0.6 cm annually) that the Wasatch Mountains of Utah receive. (National 

Weather Service, 2003)   

An NDVI image is a gray-scale image that shows bright areas of high NDVI and 

dark areas of low NDVI.  If this technique had been successful at correlating unchanged 
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areas to mass movement prone areas, places of high NDVI that remained unchanged 

would have been seen from the August 1999 scene to the October 1999 scene. These two 

dates were used because they most closely correspond to the August-November 

comparison that Samarakoon et al., used.  To increase the chance that it would detect 

areas where change would be close to zero, the change detection algorithm limits were 

set at ± 5%. A change in percentage instead of a change in number of brightness values is 

used to narrow the range of change that would show “no change.”  The use of 

percentages in change means that the brighter NDVI areas in particular have less freedom 

to change before they leave the bounds set as equaling ‘no change.’   

Although the results show that some actual landslides change differently when 

compared to surrounding areas, the results do not support the general hypothesis that 

landslide/debris flow prone areas have distinctive spectral characteristics relative to 

NDVI.  Areas of positive NDVI change show as bright green and negative change 

appears as bright red.  The change detection layer in each subset is displayed over a band 

8 scene from May 28, 2000 of the area.  

Layton 

 
Change in NDVI in the Layton subset for August 14, 1999 and October 17, 1999 

shows a predominant ≥ 5% decrease in the study areas (Figure 26).  The bluffs of all five 

landslides, including the areas of the recently active landslide all show this decrease.  The 

bluffs themselves are well delineated as areas of ≥ 5% decrease with one small exception 

– the area just north of the Heather Drive landslide. This area is a gently undulating, but 

not hummocky, grassy slope and not as steep as the bluffs on which all the landslides 

occurred.  For this reason, there is hesitation to draw the conclusion that the lack of 
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change between August and October alone suggests that conditions are favorable for 

mass movement.  This is a good example of why remote sensing cannot be examined 

without ground truth or this area may have been mistakenly categorized as primed for 

movement.  Most areas that show no change are not vegetated to begin with, so should 

not have any change in NDVI.  

Alpine 

 
Change detection analysis for the Alpine subset between August 18, 1999 and 

October 17, 1999 show most of the mountainous areas as having a ≥ 5% decrease 

between these two dates (Figure 27).  Again, this would be expected during fall as plants 

begin to die.  The distribution of unchanged areas in Preston and Willow canyons is 

similar so no conclusions can be drawn from this data that might explain why Preston 

Canyon experienced debris flows in September 2002 and Willow Canyon did not.  

Spanish Fork Canyon 

 
Change detection analysis for the Spanish Fork Canyon area between August 14, 

1999 and October 17, 1999 shows nearly the entire scene as having a ≥ 5% decrease 

between these two dates (Figure 28).  This is predictable in that much vegetation begins 

to die by mid-October so a reduction in NDVI is expected.  Notably, parts of Thistle slide 

and Shurtz Lake landslide remain unchanged as do some of the un-vegetated slopes at the 

bottom of the area.  Although this analysis does not offer any indications of potential 

movement in the study area between Thistle and Shurtz Lake landslides, the lack of 

change on the landslides themselves could mean that those areas are still active.  In the 

Sterling Hollow study area, there are no unchanged areas so no conclusions can be drawn 
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about the potential for mass movement in that canyon from this analysis.   The large 

green area (≥ 5% increase) on the east side of the image is a cloud on the August 14, 

1999 image. 

Santaquin 

 
Change detection between August 14, 1999 and October 17, 1999 of the 

Santaquin subset shows that the Dry Mountain study area, including Tributaries 4 and 5, 

uniformly shows a ≥ 5% decrease (Figure 29).  The distribution of unchanged areas is 

consistent between Tributaries 4 and 5 which experienced debris flows in September, 

2002 and the other canyons that did not.  Therefore, no conclusions can be drawn about 

why Tributaries 4 and 5 experienced debris flows but other nearby canyons to the south 

did not. 

 

Conclusions 

The climate difference is the most probable explanation for why this technique 

was not particularly useful in delineating any distinctive NDVI features that correlate to 

areas of mass movement.  Another explanation could be that the factors that caused mass 

movement cannot be identified with this technique, regardless of climate. 
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CHANGE DETECTION IN BAND 5 

Band 5 (1.55-1.75 µm) is one of the two middle infrared (MIR) bands, the other 

being band 7 (2.08 – 2.35 µm).  Band 5 is sensitive to the amount of water in plants and 

soil and can be used in crop drought investigation and in measuring plant vigor (Jensen, 

1996).  The theoretical basis for this work was to see how soil moisture changed over 

time in landslide/debris flow-prone areas and if any assumed landslide/debris flow-prone 

areas had significant difference from other areas.  A low brightness value in band 5 

means an area is wet or moist.   

Shallow landslides may be a result of increased soil moisture.  For this reason, 

change detection was used to determine how soil moisture (band 5) responded through 

time.  This met with some interesting results in Spanish Fork Canyon, so the technique 

was attempted at the other locations.  For this reason, Spanish Fork Canyon is discussed 

first in this section.   

Change detection was examined between August 14, 1999 and October17, 1999, 

October 17, 1999 and May 28, 2000, and August 14, 1999 and May 28, 2000 to see how 

the brightness values changed.  The technique was used with values of ± 10% and ± 30%.  

After experimenting using the Spanish Fork Canyon subset, it was determined that these 

values were the most useful because they highlighted the differences between Thistle and 

Shurtz Lake landslides compared to the surrounding areas. Spanish Fork Canyon was 

used as the training ground for this technique because it is such a large area of potential 

landslides.  Change detection highlights pixels that changed ≥ 10% or ≥ 30% between the 
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two dates.  Percentages were used instead of brightness values to focus on significant 

fluctuations.  

Some work has been done previously using band 6.  A study by Shih and Jordan 

(1993) found a correlation between the response of Landsat 5’s thermal infrared band 6 

and qualitative soil moisture. Landsat 7 has a TIR band with resolution of 60 m; a great 

improvement over the 120 m resolution of Landsat 5 which will allow better resolution of 

areas of differing soil moisture.  Despite having the lowest resolution of the eight bands 

at 60 m, band 6 may offer the most data as it responds to soil moisture and temperature 

(Mantovani et al., 1996).  Change detection was attempted with band 6 in the Spanish 

Fork Canyon subset and there were no distinctive results for any of the landslide prone 

areas.  In band 6, there is an insignificant difference, usually less than 30 brightness 

values, between the lowest value and the highest value of a scene, whereas band 5 

generally has a difference of 150 brightness values.  This significant range of brightness 

values along with its relationship to soil moisture, making examination of band 5 

valuable. 

Spanish Fork Canyon 

 
This analysis focused on the study area between Shurtz Lake and Thistle slides 

and Sterling Hollow.  If this technique were successful, these study areas would change 

differently compared to other nearby areas. 

At ± 10% for the change between August 14, 1999-October 17, 1999, the area 

between Thistle and Shurtz Lake slides show a ≥ 10% decrease in brightness value for 

this time period and predominately in less vegetated areas (Figure 30).  Thistle slide is 

well delineated by the otherwise sporadic patches of ≥ 10% decrease.  The Shurtz Lake 
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slide is not as well delineated but the concentration of areas with ≥ 10% decrease are 

more dense near the slide.  Joes Canyon and Sterling Hollow have similar areas of 

decrease and increase.  Joes Canyon does not look different from Sterling so no 

conclusions can be drawn from this data.  The large red area on the eastern edge of the 

image is a cloud.  This cloud appears as an anomaly on the October 17, 1999 scene. 

At ±30%, Thistle slide and Shurtz Lake slide have a higher concentration of areas 

of ≥ 30% decrease than the study area between the two landslides, which means some 

unique soil moisture conditions may exist within the landslides themselves (Figure 31).  

Joes Canyon and Sterling Hollow have a few minor drainages with ≥ 30% decrease but 

because they both do, it is not significant.  

At ±10% for the time between October 17, 1999 and May 28, 2000, Thistle and 

Shurtz Lake slides show an increase of ≥ 10%, the expected and reverse change seen 

between August 14, 1999 and May 28, 2000 (Figure 32).  Sterling and Joes Canyons have 

similar characteristics – the sunlit side showing a ≥ 10% decrease and the shadowed 

(west facing) side showing a ≥ 10 increase in brightness values for Band 5.  At 30% for 

this same time frame, Thistle and Shurtz Lake slides show an increase of ≥ 30% and a 

fairly high concentration of pixels showing a change (Figure 33).  The areas between the 

two slides have a few, very small areas of change.  Sterling and Joes Canyons again have 

a few minor drainages showing a ≥ 30% increase but because the areas of increase are 

similar in size and respective location, it is insignificant. 

Between August 14, 1999 and May 28, 2000, the ± 10% change shows that 

Thistle and Shurtz Lake slides themselves show a ≥ 10% decrease for the time period 

(Figure 33).  This is significant in that the surrounding areas show a ≥ 10% increase for 
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the same time.  This shows that the landslides themselves have some distinctive soil 

moisture properties that are not seen in nearby areas.  There are no significant 

observations of Joes Canyon and Sterling Hollow for these dates.  At ± 30%, a few small 

areas within Thistle and Shurtz Lake landslides themselves show a ≥ 30% decrease 

(Figure 34).  Most of the study area shows no change at this value so the ≥ 30% decrease 

in the landslides again shows some significant differences between the landslides and the 

surrounding area. 

The results in Spanish Fork Canyon were interesting and it was anticipated that 

other areas would show similar responses when comparing band 5 over the available time 

frame.  However, even the few results seen in Spanish Fork Canyon were not replicable 

in other areas.  Although the images are included, there is nothing truly interesting about 

the results.  This study can conclude tentatively that the soil moisture conditions present 

in landslides, but not landslide-prone areas, are distinct even years after they have moved 

but cannot actually say what those conditions are unless the area was studied with more 

recent images.  Unfortunately for this study, the study areas that are considered prone to 

future debris flows/landslides lack any unique soil moisture characteristics that could be 

identified by change detection in band 5. 

Layton 

 
The Layton area is more complex because of the numerous landslides within a 

residential area.  This study only focuses on the five landslides as discussed in the 

Background section of this paper.  Also, the bluffs that have been actively moving – 

North and South Forks of Kays Creek and the bluff on the south side of the Davis-Weber 

Canal – are considered to be the best locations for future landslides.  For this technique to 
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be successful, the areas that have moved recently should have results that differ from 

nearby areas. 

For the time between August 14, 1999 and October 17, 1999, change detection for 

±10% shows an area of ≥ 10% decrease in the vicinity of South Weber Drive and Cedar 

Bench landslides (Figure 36).  The slope of South Fork and North Forks of Kays Creek 

show a ≥ 10% decrease but the lowest part of the slope shows no change at 10%.  For 

±30% in the same time frame, the slopes remain unchanged with scattered areas of ≥ 30% 

decrease (Figure 37).  Recently active landslide areas appear no different from inactive 

but potential landslide areas. 

As with Spanish Fork Canyon and the other areas in this study, the areas of 

increase or decrease reverse when looking at the October 17, 1999-May 28, 2000 

timeframe. However, at ±10%, there is a ≥ 10% increase in area of South Weber 

Drive/Cedar Bench landslides and the slopes of South Fork Kays Creek (Figure 38).  

Some areas in the deepest part of the drainages remain unchanged for this time period.  

This seems unusual that the increased moisture of spring would not affect the soil 

moisture conditions. Unfortunately, unchanged areas do not correlate to any recently 

active landslides and because they are in the bottom of the drainage, it is unlikely that 

they will move.  At ±30%, the area of the Cedar Bench landslide shows a ≥ 30% increase 

(Figure 39). Except for a few very small, scattered areas of ≥ 30% increase, this is the 

only location with any interesting results.  The location of a retention pond in the vicinity 

of the landslide may skew the result. 

  The August 14, 1999 and May 28, 2000 scenes are so close that change detection 

between those two scenes may be the only valid way of studying this problem.  For the 
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changes between August 14, 1999 – May 28, 2000 at ±10%, the grassy area north of the 

Heather Drive landslide and the slope coincident with the Cedar Bench landslide have a 

marked decrease at ±10% (Figure 40) but minimal at ±30% (Figure 41).  The rest of the 

bluff for the South Fork Kays Creek area, Cedar Bench, and Sunset Drive and South 

Weber landslides showed no changes ≥ 30% between August 14, 1999 and May 28, 

2000.   

Alpine 

 
As with all other techniques, the analysis of changes in band 5 is examined in two 

canyons: Preston Canyon and Willow Canyon.  It assumed that except for Preston 

Canyon experiencing a debris flow, both canyons share similar characteristics as far as 

soil moisture, slope, and other variables are concerned.  If the hypothesis was correct, it 

would be expected that Preston Canyon would have a different response in band 5 than 

Willow Canyon over time.  Ideally, this different reaction would be unique to Preston 

Canyon and evidence of its future movement potential.  It can be argued that conditions 

have changed over time but for this study, only these images were available. 

Band 5 is compared between August 14, 1999 and October 17, 1999.  At ±10% 

change, Preston and Willow Canyons look similar (Figure 42).  The south-facing slopes 

have areas of ≥ 10% change but most of the slopes showed a ≥ 10% change, including the 

drainage on the north-facing slope from which the September 2002 debris flows 

originated.  At ±30%, Preston Canyon has a few small areas in the canyon bottom and on 

the north-facing slope that shows a ≥ 30% decrease (Figure 43).  Willow Canyon lacks 

any changes at ±30%.  If the areas of ≥ 30% decrease occurred in the drainage that 
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initiated the debris flow, there may be some correlation.  As this is not the case, nothing 

can be concluded from this analysis.   

Comparing band 5 between October 17, 1999 and May 28, 2000 shows the 

expected results.  Most of the mountain slope shows a ≥ 10% increase in brightness 

between these two dates (Figure 44).  This area includes the drainage of the September 

2002 debris flow events.  At ±30%, a few small areas in the floor of Preston Canyon and 

on the north-facing slope of Willow Canyon show a ≥ 30% increase (Figure 45).  None of 

those areas coincide with the drainage causing the September 2002 event.   

Between August 14, 1999 and May 28, 2000, at ± 10% most of the slope shows a 

≥ 10% increase in that time (Figure 46).  A notable exception is the bowl in the upper 

part of Preston Canyon where the September 2002 debris originated.  There are no 

changes at ±30% (Figure 47).  This is interesting but it is difficult to draw conclusions 

from this because the drainage of most interest is in the shadows in both scenes.  At best, 

this result is inconclusive because it is difficult to draw any conclusions from the 

shadowed data. 

Santaquin 

 
For the Dry Mountain debris flows, the changes seen in Tributaries 4 and 5 were 

compared with other canyons on the same slope.  It is assumed that all were burned 

equally in the August/September 2001 fires (confirmed by the initial BAER report), have 

the same slope and same basic conditions.  The debris flows for both canyons initiated in 

the various feeder drainages at the upper bowls of the canyons. 

Between August 14, 1999 and October 17, 1999 at ± 10%, a ≥ 10% decrease is 

widespread over all of Dry Mountain (Figure 48).  Most canyons, including Tributaries 4 
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and 5, have small areas of ≥ 10% increase on the sunlit, south facing slopes.  Tributaries 

4 and 5 have no characteristics that are unique to them.  At ± 30% change, there are no 

changes (increase or decrease) for the Dry Mountain area (Figure 49).  

Between October 17, 1999 and May 28, 2000 at 10%, a widespread ≥10% 

increase is seen on shadowed side of all canyons, including the upper reaches of 

Tributaries 4 and 5 where the debris flows initiated (Figure 50). At ±30%, Tributaries 4 

and 5 show somewhat more areas of ≥ 30% increase compared to other canyons but these 

areas do not match the locations of the upper reaches of the canyons where the debris 

flows initiated (Figure 51).   

At ± 10% for the time between August 14, 1999 and May 28, 2000, Tributaries 4 

and 5 equally green (≥ 10% increase) compared to other canyons (Figure 52).  An 

interesting note is that both north and south facing slopes of the canyons show a ≥ 10% 

increase.  At ± 30% change, none of the slopes of the west side of Dry Mountain show 

any changes in either direction (Figure 53). 

Essentially, there were no unique changes in the soil moisture of Tributaries 4 and 

5 as compared to other canyons on Dry Mountain for any time period for which there is 

data. 

 

Conclusions 

This technique failed to delineate distinctive characteristics discernable by 

comparing band 5 across time.  The interesting results are that the Shurtz Lake and 

Thistle landslides did show decreases and increases of ± 30% when surrounding areas did 

not. 
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TASSELED CAP TRANSFORMATION 

 

The tasseled cap transformation or Kauth-Thomas transformation creates three 

new axes out of the original 6 axes (bands) of data for a Landsat 7 scene (the term 

‘tasseled cap’ refers to the shape of the plot when brightness values for brightness are 

plotted against brightness values for greenness, see Figure 54) (Kauth and Thomas, 

1976).  The three new axes correspond with three indices: the soil brightness index, the 

green vegetation index, and the wetness index (Jensen, 2000). For example, in the 

wetness index, wet areas have lower brightness values than drier areas.  Brightness is a 

weighted sum of all bands and defined in the direction of the principal variation in soil 

reflectance.  Greenness is orthogonal to brightness and a contrast between the near-

infrared and visible bands.  As expected, it is intended to correlate to the amount of green 

vegetation in a scene.   

Figure 54: Conceptualization of the tasseled cap 
transformation.  The path represents the path a pixel 
travels during the growing season 
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These three bands are shown with brightness in the red plane, greenness in the 

green plane and wetness in the blue plane.  The algorithm for a tasseled cap 

transformation for Landsat 7 data is: 

Brightness = 0.3037(BVBand1) + 0.2793(BVBand2) + 0.4743(BVBand3) + 
0.5585(BVBand4) + 0.5082(BVBand5) + 0.1863(BVBand7) 

 
Greenness = -0.2848(BVBand1) - 0.2435(BVBand2) - 0.5436(BVBand3) + 

0.7243(BVBand4) + 0.0840(BVBand5) - 0.1800(BVBand7) 
 
Wetness = 0.1509(BVBand1) + 0.1973(BVBand2) + 0.3179(BVBand3) + 

0.3406(BVBand4) - 0.7112(BVBand5) - 0.4572(BVBand7) 
 

The August 1999 scene and the May 2000 scene were so similar that only the 

August and October, 1999 scenes are discussed here.  Because of the ability of the 

tasseled cap transformation to highlight areas of brightness, wetness, and greenness, it 

was hypothesized that landslide/debris flow prone areas may show as particularly green.  

However, landslide/debris flow prone areas were not any different in overall brightness, 

wetness or greenness.  The interesting result of this analysis was that landslides were 

noticeably brighter in the soil brightness index than surrounding areas.  One complication 

in this analysis is that shadows obscure the actual groundcover and shadow is interpreted 

as wetness in the analysis. 

Layton  

 
In the August 14, 1999 image, the tasseled cap transformation shows the Cedar 

Bench area to be unusually bright red on the image (possibly the landslide itself, see also 

Spanish Fork Canyon in this same section) (Figure 55).  The South Weber Drive 

landslide appears green like the rest of the slope.  The Heather Drive, Sunset Drive and 

South Fork Kays Creek slides are all in areas of green and brown, which is a mix of red 
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and green.  Brown is interpreted as dead vegetation and fire damage, based on a small 

burned area near Hobbs Canyon.  In the October 17, 1999 image, the only landslide-

prone area that looks appreciably different is Cedar Bench where the brightness is less 

pronounced and greenness seems to have subdued it (Figure 56).  Overall, the entire 

scene shows a noticeable drop in greenness that is expected between August and October. 

 

Alpine 

 
In the August 14, 1999 scene, Preston and Willow Canyons appear nearly 

identical (Figure 57).  They share the same combination of blue (in this case, shadow is 

being interpreted incorrectly as wetness) and green.  The heads of each canyon are 

similar.  The large red/bright area on the south side of Point of the Mountain is an 

extensive gravel mining operation. 

In the October 17, 1999 scene, overall greenness has decreased, as would be 

expected.  Again, Preston and Willow Canyons share a lot of the same characteristics, the 

same amount of greenness and yellow/redness (Figure 58).   

 

Spanish Fork Canyon 

 
In the August 14, 1999 scene, Shurtz Lake and Thistle landslide stand out very 

clearly as bright red areas (Figure 59).  This result is unique to this area as that in no other 

area are the actual landslides as readily apparent.  The distribution of greenness in the 

study area between Shurtz Lake and Thistle landslides is not remarkable.  Neither are 

there any noticeable differences between distributions and intensities of greenness in 
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Sterling Hollow when compared to Joes Canyon.  In the October 17, 1999 scene, the area 

is noticeably less green but that decrease in greenness is uniform, expected, and not 

localized in any way (Figure 60).   

 

Santaquin 

 
Tributary 4 has a single drainage of brightness not comparable to anything in  

Tributary 5 for the August 14, 1999 tasseled cap transformation (Figure 61).  Both 

canyons have the same characteristics but these characteristics are not distinctive from 

those found in the surrounding canyons.  Tributaries 4 and 5 have similar mixes of 

greenness and brightness as nearby canyons. 

In the October 17, 1999 scene, the areas of brightness are more readily apparent 

but Tributaries 4 and 5 do not look significantly different than surrounding canyons 

(Figure 62).  Tributary 4 canyon has some streaks of brightness that are unique.  The 

debris flows could have been triggered by a condition that existed before the 2001 Mollie 

Fire but this is inconclusive because these scenes pre-date that event. 
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CONCLUSIONS 

Change detection using the Normalized Difference Vegetation Index (NDVI) 

showed no correlation between areas that showed no change in NDVI between August 

and October.  The landslide/debris flow prone areas showed the changes that would be 

expected as plants died off in the fall but these changes were similar to surrounding areas 

that were not presumed to be landslide/debris flow prone.  Change detection using band 5 

showed that Thistle and Shurtz Lake landslides changed differently than the surrounding, 

landslide-prone areas.  Some unique surface conditions must exist in these two landslides.  

The tasseled cap transformation showed that landslides, particularly the Thistle, Shurtz 

Lake and possibly Cedar Bench slides are drier than surrounding areas.  This may 

correlate to the changes in band 5 for these areas.  Other areas were perhaps too small to 

draw the same conclusions. 

The conclusions made here corroborate the statement made by Sauchyn and 

Trench (1978) with regards to Landsat 3 – Landsat 7 ETM+ still lacks the spatial 

resolution necessary to delineate the spectral characteristics of landslide/debris flow 

prone areas.  Although the spatial resolution may be the most obvious limitation, it could 

be that phenomena for which Landsat 7 cannot compensate                                                                          

may be the true limiting factors.  This includes such auxiliary data as weather, difference 

in slope, subsurface conditions, or groundwater conditions.  Despite improved resolution 

and more advanced digital image processing software, the fundamental problem remains 

what it has been for many years –coarse spatial resolution.  Until a remote sensing 
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program is developed with an instrument that covers the same range of the 

electromagnetic spectrum but with even greater spatial resolution, these spectral 

characteristics will remain veiled.   

Geologists would be well served to continue research into the limitations and 

benefits of incorporating the vast amount of remote sensing data available into the toolkit 

used to solve problems.  Any future work done on the problem of identifying distinctive 

surface features of landslide/debris flow prone areas should make several changes.  First, 

selected images should be recent.  Only two images are absolutely necessary – one before 

the landslide/debris flow and one after the event.  Also, field work should be done as 

soon after the event as possible and follow-up field work should be done on the same date 

as the second (post-event) image.  This assures that what the analyst interprets is based on 

the best possible ground truth data and not on assumptions or conjecture.   
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Figure 1:  Landsat-7 ETM+ subset image of Utah Valley, May 28, 2000.  Near infrared 
(band 4) shown in the red plane, red (band 3) shown in the green plane and green plane
and green (band 2) shown in the blue plane.

41



42

Figure 2:  The study areas for this research - Landsat 7 scene, path 38, row 32, May 28, 2000.  The image
is displayed as 7, 4, 2; middle infrared (band 7) in the red plane, near infrared (band 4) in the green plane 
and green (band 2) in the blue plane.  The four study areas are marked.
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Figure 3:  Landslides (1998-2001) of the Layton and South Weber area.  The image was taken 
on May 28, 2000 and is displayed as bands 4, 3, 2.
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Figure 4:  Topographic map of the location, morphology, and slope of the South Weber area 
landslides.
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Figure 5:  Topographic map showing the location, morphology and slope of the Layton area
landslides.
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Figure 6:  The Heather Drive landslide; houses remaining on Heather Drive are 
visible at the top of the bluff.  The landslide itself is mostly revegetated and not 
clearly visible.(August 2002)

Figure 7:  The South Weber Drive landslide visible as small scarps in the slope. 
(July 2002)  
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Figure 8:   The September 8 Preston Canyon debris flow where it 
crossed Preston Canyon Drive; Preston Canyon is visible in the 
background. Photograph taken facing east. (September 18, 2002)
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Figure 9:  Locations of Preston and Willow Canyons in Alpine area; Landsat 7 
scene using bands 4, 3 and 2 (May 28, 2000).
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Figure 10: Topographic map showing location of the Preston Canyon debris flow 
and affected areas.
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Figure 11:  Preston Canyon Drive where the debris flow crossed Bald Mountain Drive, 
photograph taken facing east.  (September 18, 2002)

Figure 12:  The channel of the Preston Canyon debris flow, photograph taken facing east.
(September 18, 2002)
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Figure 13:  Location of landslides and debris flows in Spanish Fork Canyon.  Landsat 7
subset, bands 4, 3,2; imaged May 28, 2000.
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Figure 14: Topographic map of Sterling Hollow and Joes Canyon, and path of Joes Canyon debris flow.
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Figure 15: Topographic map of the locations and morphology of the Thistle slide and 
Shurtz Lake landslide.

Thistle Slide

Shurtz Lake 
landslide

51

1 km



Figure 16:   Thistle landslide, photograph taken facing southwest.
(July 4, 2002)

Figure 17:  Precipitation curve for Spanish Fork Canyon, 
1928-1998; Ashland, 1998.

52

Year

1928 1938 1948 1958 1968 1978 1988 1998

A
nn

ua
l p

re
ci

pi
ta

tio
n 

(in
.)

10

15

20

25

30

35

40



Figure 18:  Shurtz landslide, photograph taken facing west.  Only the two earthflows 
are visible, the remainder of the slide is on the plateau.  (July 4, 2002)

Figure 19:   The channel of Joes Canyon debris flow, photograph taken facing south-southwest.
(July 4, 2002)
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Figure 20:  Levee of Joes Canyon debris flow, photograph taken facing south.  (July 4, 2002)

Figure 21:  Toe of the Joes Canyon debris flow fan, photograph taken facing north.  Jared 
Howland in foreground.  (July 4, 2002)
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Study area

Figure 22:  Locations of Tributaries 4 and 5 flows and study area for Santaquin; Landsat 7 scene
using bands 4, 3 and 2, imaged May 28, 2000.
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Tributary 4 debris flow

Tributary 5 debris flow

Figure 23:  Topographic map showing locations of Tributary 4 and 5 debris flows and affected areas.  
The subdivision hit by the Tributary 4 debris flow is not shown on this map.

Figure 24:  Source area of the Tributary 5 debris flow, photograph taken facing south.  Note the 
burned trees from the Mollie Fire in 2001.  (September 19, 2002)
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Figure 25:   The Tributary 4 debris flow and the subdivision it hit, photograph taken facing 
northwest. (September 19, 2002)



Figure 26:  Layton subset scene (band 8) overlain by areas of +/- 5% change in NDVI
between August 14, 1999 and October 17, 1999.  Red areas decreases in NDVI of greater 
than 5% and green areas show increases in NDVI of greater than 5%.  The study areas 
show decreases.
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Figure 27:  Alpine subset scene (band 8) overlain by areas of +/- 5% change in NDVI between 
August 14, 1999 and October 17, 1999.  Red areas decreases in NDVI of greater than 5% and green 
areas show increases in NDVI of greater than 5%.  The study areas show decreases.
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Figure 28:  Spanish Fork subset scene (band 8) overlain by areas of +/- 5% change in 
NDVI between August 14, 1999 and October 17, 1999.  Red areas decreases in NDVI of 
greater than 5% and green areas show increases in NDVI of greater than 5%.  The study 
areas show decreases.

60

Sterling Hollow study area

Joes Canyon study area

Study area between Shurtz 
Lake and Thistle slides

Shurtz Lake slide

Thistle slide



Figure 29:  Santaquin subset scene (band 8) overlain by areas of +/- 5% change in NDVI 
between August 14, 1999 and October 17, 1999.  Red areas decreases in NDVI of greater than 
5% and green areas show increases in NDVI of greater than 5%.  The study areas show decreases.
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Figure 30:  Spanish Fork subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between August 14, 1999 and October 17, 1999 at +/- 10% change.  Red areas show
decreases of greater than 10% and green areas show increases of greater than 10%.
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Figure 31:  Spanish Fork subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between August 14, 1999 and October 17, 1999 at +/- 30% change.  Red areas show
decreases of greater than 30% and green areas show increases of greater than 30%.  There 
is some concentration of areas of decrease (red) in Shurtz Lake slide and near/in Thistle slide.
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Figure 32:  Spanish Fork subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between  October 17, 1999 and May 28, 2000 at +/- 10% change.  Red areas show
decreases of greater than 10% and green areas show increases of greater than 10%.  
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Figure 33:  Spanish Fork subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between  October 17, 1999 and May 28, 2000 at +/- 30% change.  Red areas show
decreases of greater than 30% and green areas show increases of greater than 30%.   There 
is a concentration of areas of increase (green) for the area near and in Thistle Slide and in 
the Shurtz Lake slide.
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Figure 34:  Spanish Fork subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between  August 14, 1999 and May 28, 2000 at +/- 10% change.  Red areas show
decreases of greater than 10% and green areas show increases of greater than 10%. 



Figure 35:  Spanish Fork subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between  August 14, 1999 and May 28, 2000 at +/- 30% change.  Red areas show
decreases of greater than 30% and green areas show increases of greater than 30%. 
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Figure 36:  Layton subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between August 14, 1999 and  October 17, 1999 at +/- 10% change.  Red areas show
decreases of greater than 10% and green areas show increases of greater than 10%.   

Figure 37:  Layton subset of Landsat 7 scene (band 8) overlain by changes in
band 5 between August 14, 1999 and  October 17, 1999 at +/- 30% change.  Red areas show
decreases of greater than 30% and green areas show increases of greater than 30%.   
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Figure 38:  Layton subset of Landsat 7 scene (band 8) overlain by +/- 10% change 
in band 5 between October 17, 1999 and May 28, 2000.  Red shows areas of greater
than 10% decrease and green shows areas of greater than 10% increase in brightness value. 

Heather Drive study area

Sunset Drive study area

South Weber study area
Cedar Bench 
study area

South Fork 
Kays Creek 
study area

69



Figure 39:   Layton subset of Landsat 7 scene (band 8) overlain by +/- 30% change 
in band 5 between October 17, 1999 and May 28, 2000.  Red shows areas of greater
than 30% decrease and green shows areas of greater than 30% increase in brightness value. 
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Figure 40:  Layton subset of Landsat 7 scene (band 8) overlain by +/- 10% change 
in band 5 between August 14, 1999 and May 28, 2000.  Red shows areas of greater than 
10% decrease and green shows areas of greater than 10% increase in brightness value. 
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Figure 41:  Layton subset of Landsat 7 scene (band 8) overlain by +/- 30% change 
in band 5 between August 14, 1999 and May 28, 2000.  Red shows areas of greater than 
30% decrease and green shows areas of greater than 30% increase in brightness value. 
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Figure 42:  Alpine subset of Landsat 7 scene (band 8) overlain by +/- 10% change in band 5 between 
August 14, 1999 and October 17. 1999.  Red shows areas of greater than 10% decrease and green shows areas of 
greater than 10% increase in brightness value. 

Figure 43:  Alpine subset of Landsat 7 scene (band 8) overlain by +/- 10% change in band 5 between 
August 14, 1999 and October 17. 1999 .  Red shows areas of greater than 10% decrease and green shows areas of 
greater than 10% increase in brightness value. 
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Figure 45:  Alpine subset of Landsat 7 scene (band 8) overlain by +/- 30% change 
in band 5 between October 17. 1999 and May 28, 2000.  Red shows areas of greater than 
30% decrease and green shows areas of greater than 30% increase in brightness value. 

Figure 44:  Alpine subset of Landsat 7 scene (band 8) overlain by +/- 10% change 
in band 5 between October 17. 1999 and May 28, 2000.  Red shows areas of greater than 
10% decrease and green shows areas of greater than 10% increase in brightness value. 

74

Preston Canyon

Willow Canyon study area

Preston Canyon

Willow Canyon study area



Figure 46:  Alpine subset of Landsat-7 scene (bands 4, 3 and 2) overlain by +/- 10% change in band 
5 between August 14. 1999 and May 28, 2000.  Red shows areas of greater than 10% decrease and 
green shows areas of greater than 10% increase in brightness value. 

Figure 47:  Alpine subset of Landsat-7 scene (bands 4, 3 and 2) overlain by +/- 30% change in band 
5 between August 14. 1999 and May 28, 2000.  Red shows areas of greater than 30% decrease and 
green shows areas of greater than 30% increase in brightness value. 
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Figure 48:  Santaquin subset of Landsat 7 scene (band 8) overlain by +/- 10% change 
in band 5 between August 14. 1999 and October 17, 1999.  Red shows areas of greater than 
10% decrease and green shows areas of greater than 10% increase in brightness value. 

Figure 49:  Santaquin subset of Landsat 7 scene (band 8) overlain by +/- 30% change 
in band 5 between August 14. 1999 and October 17, 1999.  Red shows areas of greater than 
30% decrease and green shows areas of greater than 30% increase in brightness value. 
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Figure 50:  Santaquin subset of Landsat 7 scene (band 8) overlain by +/- 10% change 
in band 5 between October 17, 1999 and May 28, 2000.  Red shows areas of greater than 
10% decrease and green shows areas of greater than 10% increase in brightness value. 

Figure 51:  Santaquin subset of Landsat 7 scene (band 8) overlain by +/- 30% change 
in band 5 between October 17, 1999 and May 28, 2000.  Red shows areas of greater than 
30% decrease and green shows areas of greater than 30% increase in brightness value. 
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Figure 52:  Santaquin subset of Landsat 7 scene (band 8) overlain by +/- 10% change 
in band 5 between August 14, 1999 and May 28, 2000.  Red shows areas of greater than 
10% decrease and green shows areas of greater than 10% increase in brightness value. 

Figure 53:  Santaquin subset of Landsat 7 scene (band 8) overlain by +/- 30% change 
in band 5 between August 14, 1999 and May 28, 2000.  Red shows areas of greater than 
30% decrease and green shows areas of greater than 30% increase in brightness value. 
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Figure 55:  Layton subset (August 14, 1999) transformed using the tasseled cap 
transformation.  Red or pink areas are high in brightness, green areas are high in 
greenness and blue areas are high in wetness or shadow.

Figure 56:  Layton subset (October 17, 1999) transformed using the tasseled cap 
transformation. Red or pink areas are high in brightness, green areas are high in 
greenness and blue areas are high in wetness or shadow.Note the strong decrease in greenness.
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Figure 57:  Alpine subset (August 14, 1999) transformed using the tasseled cap 
transformation.  Red or pink areas are high in brightness, green areas are high in 
greenness and blue areas are high in wetness or shadow.

Figure 58:  Alpine subset (October 17, 1999) transformed using the tasseled cap 
transformation.  Red or pink areas are high in brightness, green areas are high in 
greenness and blue areas are high in wetness or shadow.As expected, there is a 
strong decrease in greenness.
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Figure 59:  Spanish Fork subset (August 14, 1999) transformed using the tasseled cap 
transformation.  Red or pink areas are high in brightness, green areas are high in greenness 
and blue areas are high in wetness or shadow.
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Figure 60:  Spanish Fork subset (October 17, 1999) transformed using the Tasseled Cap 
transformation. Red or pink areas are high in brightness, green areas are high in greenness 
and blue areas are high in wetness or shadow.
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Figure 61:  Santaquin subset (August 14, 1999) transformed using the tasseled cap transformation.  Red or pink
areas are high in brightness, green areas are high in greenness and blue areas are high in wetness or shadow.

Figure 62:  Santaquin subset (October 17, 1999) transformed using the tasseled cap transformation.  Red or pink
areas are high in brightness, green areas are high in greenness and blue areas are high in wetness or shadow.
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