
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

1998-12-01 

A Work Minimization Approach to Image Morphing A Work Minimization Approach to Image Morphing 

Peisheng Gao 

Thomas W. Sederberg 
tom@cs.byu.edu 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Computer Sciences Commons 

Original Publication Citation Original Publication Citation 
P. Gao and T.W. Sederberg, "A work minimization approach to image morphing," The Visual 

Computer, (1998) 14:39-4. 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Gao, Peisheng and Sederberg, Thomas W., "A Work Minimization Approach to Image Morphing" (1998). 
Faculty Publications. 1134. 
https://scholarsarchive.byu.edu/facpub/1134 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1134?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


A Work Minimization Approach to Image Morphing

Peisheng Gao
Thomas W. Sederberg

Department of Computer Science, Brigham Young University
Provo, Utah 84602

Abstract

An algorithm is presented for morphing two images, often
with little or no user interaction. For two similar images
(such as different faces against a neutral background) the
algorithm generally can create a pleasing morph completely
automatically.

The algorithm seeks the minimum work to deform

one image into the other, where work is a function of the

amount of warping and re-coloration. A hierarchical method

for finding a minimal work solution is invoked. Anchor

point constraints are satisfied by imposing penalties on

deformations that disobey these constraints. Good results

can be obtained in less than ten seconds for 256 × 256

images.

Key Words: Morphing, image registration, shape blending.

1 Introduction

The term morph, short for metamorphosis, has
been applied to various computer graphics methods
for smoothly transforming between geometric mod-
els or images. In this paper, morph refers to image
metamorphosis—the eye-catching visual technique
wherein, given two images I1 and I2, a succession of
intermediate images is created that depicts a con-
tinuous transformation from I1 to I2, as illustrated
in Figure 1.

Morphing is accomplished by simultaneously
warping (deforming) I1 and I2 and cross-dissolving.
Those general concepts, and other considerations
involved in image morphing, are well documented
elsewhere (see, for example, Wolberg 1990; Beier
and Neely 1992; Lee et al. 1995; Beier et al. 1997)
and this paper assumes familiarity with that back-
ground.

Figure 1: Morph (1 − t)I1 + tI2. b) t = 0.2, c)
t = 0.4, d) t = 0.6, e) t = 0.8.

Page 1



Semi-Automatic Image Morphing Page 2

The best-looking morphs result from warps that
successfully align corresponding features. The
manual specification of such warps can be time con-
suming since a user must input pairs of points,
lines, or curves that define correspondences be-
tween I1 and I2 (Beier and Neely 1992; Burns 1994;
Lee et al. 1995; Beier et al. 1997).

This paper presents an algorithm that can de-
termine a warp suitable for morphing two images
with little or no human guidance. The algorithm
is based on a work minimization strategy that de-
rives its cost directly from the images, not from
user-specified constraints. The warp can be com-
puted reasonably quickly: the example in Figure 1
was generated in nine seconds with no user inter-
action on an HP 9000/780/J282 workstation.

Section 2 briefly reviews related research. Sec-
tion 3 discusses the warp definition. Section 4
presents the function used to assess warp work.
Section 5 explains the approach taken to optimize
the work. Section 6 suggests some ways for a user
to guide the algorithm. Section 7 presents several
examples that help substantiate the merit of this
algorithm.

2 Prior research

Morphing originated as a cinematic technique as
early as 1904 (Bordwell and Thompson 1997). Dig-
ital image morphing—warp plus cross-dissolve—
traces back to Tom Brigham at NYIT in the early
1980s (Beier and Neely 1992). The technique
evolved in special effects studios, such as Industrial
Light and Magic. Wolberg’s detailed treatment of
image warping includes a morphing algorithm in
which the image warp is performed using a two-
dimensional spline function (Wolberg 1990). In this
setting, the user adjusts the warp by manipulating
the spline coefficients. Beier and Neely introduced
a user-friendly warp function and interface for spec-
ifying correspondences by means of lines drawn on
the two key images (Beier and Neely 1992).

Energy minimization methods have previously
been brought to bear on the morphing problem, but
primarily for the purpose of constraint matching.
For example, (Lee et al. 1996) uses a thin-plate
model in obtaining a C1 warp that satisfies feature
specification from points, polylines, and curves.
(Lee et al. 1995)uses snakes (Kass et al. 1988)

—energy-minimizing splines—to expedite feature
specification; those features are then constrained
using a hierarchical free-form deformation.

The central problem studied in this paper—how
to warp one image so that it “most closely” resem-
bles a second image—is referred to in other settings
as image registration or stereo matching. For ex-
ample, medical imaging (Bookstein 1991) applies
such algorithms to register images of parallel slices
through organs, or to align geometric models of
entire organs with a canonical model. In stereo
matching (Brown 1992; Dhond and Aggarwal 1989;
Weng et al. 1992), the two images to be registered
are a stereo pair; registration enables parallax to be
inferred and depth to be estimated. Stereo match-
ing is a more straightforward problem than regis-
tration for image morphing, since it takes advan-
tage of the epipolar constraint and the two images
are slightly different views of the same scene.

The automatic image morphing algorithm pre-
sented in this paper found its motivation primarily
in the solution to the polygon shape blending prob-
lem presented in (Sederberg and Greenwood 1992)
(extended to shape blending of B-spline curves in
(Sederberg and Greenwood 1995)). The effect of
polygon shape blending is similar to image morph-
ing.

In Figure 2, polygon 1 (a cow) and polygon 6
(a deer) are given. The shape blending algorithm
in (Sederberg and Greenwood 1992) automatically
computes the intermediate polygons 2–5, without
requiring the user to specify any matching features.
That algorithm models each given polygon as if it

1 2 3

4
5 6

Figure 2: Cow-to-deer polygon shape blend.



Semi-Automatic Image Morphing Page 3

were formed by bending a piece of wire. A legal
shape blend is taken to be one that can be repre-
sented with the bending and stretching of wire—no
cutting or splicing allowed—such that each vertex
on one key polygon maps to a vertex on the other
key polygon, and vice versa. The algorithm then
selects the “best” shape blend as the one requiring
the least amount of “work” to bend and stretch one
polygon into the other.

The polygon shape blending algorithm must ad-
dress two independent questions: What is the most
suitable measure of work, and how can the least-
work solution be found? In (Sederberg and Green-
wood 1992), work equations are modeled after the
work required to deform a piece of wire. Bend-
ing work and stretching work are computed inde-
pendently. As in elastic stretching and bending
of physical wire, the stretching work in the shape
blend algorithm is proportional to the square of the
change of length of each polygon edge, and bend-
ing work is proportional to the square of the angle
change at each vertex.

For the polygon shape blend problem, the num-
ber of all legal shape blends is exponential in the
number of vertices, which might make the task of
finding a global minimal-work solution seem hope-
less. Fortunately, a dynamic programming solution
exists which can find the least-cost shape blend in
O(n2 log n) time, where n is the largest number
of vertices on either key polygon. Unfortunately,
this solution does not adapt to the image morph-
ing problem, so a heuristic optimization method is
presented in Section 5

3 Image Warping

The image warping phase of the image morphing
process is typically performed using smooth func-
tions: mesh warping techniques involve C2 tensor-
product cubic B-splines (Lee et al. 1995; Wolberg
1990) or C∞ Bézier maps (Nishita et al. 1993), and
field morphing methods (Beier and Neely 1992) are
also generally C∞.

We have chosen to use C0 bi-linear uniform B-
splines. Although the algorithm can work using B-
splines of higher order (or other types of piecewise
maps), we implemented a piecewise bi-linear func-
tion for the sake of speed. The morph algorithm
spends the majority of its time sampling the color

of mapped pixels, so the speed of the algorithm
is roughly proportional to the speed of computing
the warped location of a pixel. For our application,
the use of bi-quadratic B-splines would be about
five times slower than bi-linear. Furthermore, the
goal of image warping is to align features as closely
as possible. Many features—for example, a hair
line or the silhouette of an article of clothing—are
not particularly smooth. One can argue that a C0

pixel-resolution map can be just as suitable in such
instances as a C2 map.

For the purposes of our discussion, we will as-
sume that I1 and I2 are both square images of res-
olution R × R. The generalization to the images
being different sized rectangles is straightforward,
but would needlessly clutter our notation.

The warp is defined hierarchically as follows. Im-
pose an (x, y) coordinate system on I1 with (0, 0)
in the lower left corner and (1, 1) in the upper right
corner. Denote by Fi :

(
x
y

)
→
(
x̃
ỹ

)
a warp of I1 using

a 2i × 2i grid of bi-linear B-spline patches:

Fi(x, y) =
2i∑
j=0

2i∑
k=0

Bj(x)Bk(y)Pi
jk, (1)

where

Bj(x) =


2ix− j for x ∈ [ j

2i ,
j+1
2i ]

j + 2− 2ix for x ∈ [ j+1
2i ,

j+2
2i ]

0 otherwise
(2)

and likewise for Bk(y).
There are two reasons for using a hierarchical

warp: it plays a crucial roll in the optimization
method in Section 5, and it offers a simple con-
trol over the time/quality tradeoff, as discussed in
Section 7.
Fi is onto if Pi

00 = (0, 0), Pi
2i,0

= (1, 0), Pi
0,2i =

(0, 1) and Pi
2i,2i = (1, 1), and none of the other

edge control points is moved from their assigned
edge. Fi is one-to-one if all quadrilaterals Qi

jk =
Pi
j,k–P

i
j+1,k–P

i
j+1,k+1–Pi

j,k+1, j = 0, . . . , 2i − 1,
k = 0, . . . , 2i − 1 are convex and oriented counter-
clockwise. Figure 3 shows an example of a one-to-
one F2 warp.

The undisplaced, lattice positions of the control
points are

Pi
jk = (

j

2i
,
k

2i
). (3)

The identity warp is obtained when each control
point Pi

jk is in its lattice position (3).



Semi-Automatic Image Morphing Page 4

Figure 3: An F2 warp with vertices P2
jk and quadri-

laterals Q2
jk.

An Fi+1 warp (with control points Pi+1
jk ) is

equivalent to an Fi warp (with control points Pi
jk)

if

Pi+1
jk =

1
4
Pi
bj/2c,bk/2c +

1
4
Pi
b(j+1)/2c,bk/2c +

1
4
Pi
bj/2c,b(k+1/2)c +

1
4
Pi
b(j+1/2)c,b(k+1/2)c(4)

for all j, k ∈ [0, . . . 2i+1].
Denote by c1(x, y) the pixel color at location

(x, y) in I1. If (x, y) lies on a boundary between
two pixels, use the color of pixel to the North of
a horizontal boundary, or to the East of a vertical
boundary. Denote by c2(Fi(x, y)) the pixel color
on I2 of a point (x, y) mapped by Fi. Denote by
Fi◦I1 the result of applying warp Fi on I1, without
resampling.

4 Work equations

Motivated by the polygon shape blending algo-
rithm (Sederberg and Greenwood 1992) reviewed
in Section 2, our hope is to find some measure of
“work” that can determine how easily a morph can
be performed. We will use the terms cost and work
interchangeably.

Model I1 as a physical painting of discrete pix-
els on a deformable medium. Consistent with the
choice of C0 bi-linear B-splines for the warp equa-
tion, we might think of the deformable medium as
a grid of 2i × 2i distinct squares Qi

jk made of an
idealized elastic material. Each square Qi

jk has ver-
tices Pi

jk,P
i
j+1,k, Pi

j+1,k+1, Pi
j,k+1. The deformed

square is denoted Fi ◦Qi
jk, as shown in Figure 3.

The process whose work we want to measure has
two parts: warp I1 so that it looks like I2 as much

as possible, then modify the colors of Fi◦I1 so that
it is identical to I2.

In order to physically impose a warp Fi on this
grid, one must deform each square by moving each
of its four corners to their assigned locations, and
then perhaps stick pins through the corners to hold
the deformed squares in place. The “rubber” is
thick enough that it won’t buckle under compres-
sion, so it takes work to shrink a square as well as
to stretch it.

This warp of I1 should ideally align its features
quite well with I2, but generally Fi ◦ I1 will not be
identical to I2. To make them the same, we need to
visit each pixel of I2 and possibly repaint it to some
degree. The more different the colors, the more
work is needed to bring them into agreement. Since
we have not resampled Fi◦I1, a pixel of I2 might be
covered by a mosaic of pieces of mapped pixels from
Fi ◦ I1, and each segment of that mosaic involves a
different amount of re-coloration work. Since those
mosaics can be complicated, we estimate the re-
coloration cost by sampling (see Section 4.1).

The work to transform I1 into I2 using a given
warp Fi is computed by summing the warping and
re-coloration work for each rubber-like square:

Wtotal =
2i−1∑
j=0

2i−1∑
k=0

cc

(
256
R

)2

W c
jk+cs

400
2562

W s
jk+ca

600
2562

W a
jk

(5)
whereW a

jk is work due to angle-change, W s
jk is work

due to stretching, and W c
jk is the re-coloration work

for the square Qi
jk. The coefficients ca, cs, and

cc control the relative influence that these compo-
nents exert on the total cost. The constants

(
256
R

)2,
400
2562 , and 600

2562 are, admittedly, unattractive; they
were derived empirically so that, in most cases,
choosing cc, cs, and ca the all be one (or, in gen-
eral, to vary between zero and ten) will yield good
results. Division by R in

(
256
R

)2 assures that the
coefficient cc is independent of image resolution;
otherwise, the morph result for a pair of images at
one resolution would differ from the result of the
same two images at different resolution. Section 7
discusses appropriate values for those coefficients.
One additional work component, used for optional
anchor points, is discussed in Section 6.1.

We compute the values of W c, W s, and W a as
follows.



Semi-Automatic Image Morphing Page 5

4.1 Re-coloration cost, W c

The most important cost component is the re-
coloration cost. It also consumes a large major-
ity of the total algorithm time, so it is crucial that
this computation be fast. We have experimented
with several different re-coloration cost functions
and have found that the following simple formula
generally works well:

W c
jk =

∑
P̄∈Qi

jk

d(c1(P̄), c2(Fi(P̄))), (6)

with P̄ being the center of a pixel, and d being a
function that computes the “distance” between two
colors. The examples in this paper were computed
taking d to be the Cartesian distance between the
two colors in RGB space. In words, we obtain W c

jk

by sampling each pixel in I1 whose center P̄ lies
within Qi

jk. The distance d is found between that
pixel’s color, and the color of the pixel in I2 that
P̄ maps to. W c

jk is the sum of those distances.
Taking d to be Cartesian distance in RGB space

has yielded good results in the cases we have tested,
although those cases have generally involved fairly
similar colors. We suspect that closer study might
suggest a more intelligent distance metric, espe-
cially for situations where hues differ.

There could be room for improving this method
of approximating the re-coloration cost, both in
terms of speed and accuracy. For instance, the sim-
ple method in (6) undersamples Q2

jk when the area
of the deformed Qi

jk is larger than its undeformed
area. Again, our experience to date suggests that
the quality of morphs generated using this sam-
pling frequency is generally as good as that ob-
tained using more dense sampling. Also, it might
be made faster in regions of uniform color where
less dense sampling would suffice. However, sam-
pling in regions of uniform color can efficiently be
sped up in the optimization phase (see Section 5).

4.2 Stretching cost, W s

The angle and stretching costs provide a simple
approximation to the work of deforming the rubber
squares. We use the equation

W s
jk = δ2

1 + δ2
2 + δ2

3 + δ2
4 (7)

where the four δ values are the length changes that
the four edges of Qi

jk experience when warped.

4.3 Angle cost, W a

The angle cost is taken to be

W a
jk = (θ2

1 + θ2
2 + θ2

3 + θ2
4)/2i (8)

where the four θ values are the angle changes, in ra-
dians, that the four angles of Qi

jk experience during
warping. Division by 2i assures that the two maps
Fi ≡ Fi+1 will have the same cost.

5 Optimization

Assuming the existence of a cost function with the
nice property that a lower cost indicates a more
pleasing morph, our problem of creating an auto-
matic morph algorithm reduces to that of finding
the global minimum cost function from among all
possible warps. This optimization problem involves
22i+1 degrees of freedom (the (x, y) control point
coordinates) and countless local minima. The stan-
dard solutions to such an optimization problem in-
clude genetic algorithms and simulated annealing.
We experimented with a genetic algorithm, but it
was much slower (at least, our implementation of
it) than the following method, which we used to
create the examples in this paper. While it makes
no pretense at finding a global minimum, it is sim-
ple and fast, and produces surprisingly good re-
sults.

Denote by F̂i the current least-cost warp, and
by W (F̂i) the work associated with that warp from
(5). F̃ is the final warp computed by the algorithm.

Initialize F̂1 to the identity transformation (3).
for i=1 to imax{

for each control point Pi
jk {

for n = 0 to ni{
for each displacement δ ∈ ∆n

i {
Move Pi

jk to F̂i(Pi
jk + si,nδ).

Denote the resulting warp by F ′i .
if W (F ′i ) < W (F̂i), replace F̂i with F ′i .
}
}
}
Determine the warp F̂i+1 equivalent to F̂i,
as in equation (4).
} F̃ = F̃imax



Semi-Automatic Image Morphing Page 6

In words, at each refinement level i, the algo-
rithm visits each vertex Pi

jk and adaptively refines
its position. The set of perturbations is defined by
an array of offset vectors ∆n

i . Pi
jk is moved to the

best of those candidate locations, and from this
(possibly) new location, it is perturbed again us-
ing a (possibly different) set of offsets ∆n+1

i . This
adaptive refinement of each vertex continues ni
times. For the examples in this paper, we used
n1 = 5, n2 = 3, n3 = 2, and n4 = n5 = n6 = 1.

The array of offset vectors ∆n
i changes with i

and n. Brief experimentation has shown that good
results can be obtained fast if ∆1

2 and ∆1
3 are as il-

lustrated in Figure 4 and if all other offset positions
are as illustrated in Figure 5.

(1,1)

(1,-1)(-1,-1)

(-1,1)

Figure 4: Offset points ∆1
2 and ∆1

3.

(1,1)

(1,0)(0,0)

(0,1)

Figure 5: Other ∆n
i .

The offset vectors in ∆n
i need to be scaled de-

pending on i and n. The degree of scaling is spec-
ified by si,n. For example, for the offset vectors
just described, we used s1,1 = 0.5, s1,2 = 0.1,
s1,3 = 0.05, etc.

Corner vertices are not moved, while a legal dis-
placement for an edge vertex keeps the vertex on
its assigned edge. (A legal displacement for any
vertex is one that does not violate the one-to-one
map.)

The algorithm spends 95% of its time computing
W (F̃i) as the respective control points are moved
to new candidate positions. The movement of a
single control point Pjk alters at most four domain
squares: Qi

jk, Qi
j−1,k, Qi

j,k−1, and Qi
j−1,k−1. Af-

ter Pi
jk is perturbed, W (F̂i) can be found most

quickly by just computing the change in work for
Qi
jk, Qi

j−1,k, Qi
j,k−1, and Qi

j−1,k−1.
The optimization algorithm is illustrated in Fig-

ure 6. Here, I1 from Figure 1 is being warped to
match I2. The left column shows the original I1

and warps F1, F2 and F3. The right column shows
the difference between the images on the left and
I2. White means no difference and black means
maximum difference.

The following table lists the total work W (F̂i) at
the end of each optimization level for the morph in
Figures 1 and 6. If no warping is performed, the
re-coloration work is 3384.5 units.

i W s W b W c W (F̂i)
0 0 0 3384.5 3384.5
1 4.8 16.3 3121.4 3142.5
2 106.5 98.4 1994.8 2199.8
3 158.1 160.2 1069.6 1387.9
4 184.7 121.9 562.0 868.6
5 180.7 94.3 459.8 734.8
6 182.4 92.9 413.4 688.7

6 User Guidance

With no user guidance, the algorithm may pro-
duce unacceptable results, possibly because the op-
timizer may get stuck on a local minimum. How-
ever, even if we went to the expense of computing
the globally minimum-cost warp, we would not al-
ways be happy with the result. For example, Fig-
ure 26 in (Sederberg and Greenwood 1992) shows a
polygon shape blending result that can be proven
impossible to attain solely using work minimization
(unless one uses different work equations for differ-
ent portions of the polygon). Surely, such examples
abound in image morphing.

Figure 15 shows a morph between two key frames
of a swinging-arm animation. This morph was
computed with help from some user input, as de-
scribed in Sections 6.1 and 6.2. Figure 7 shows two
frames of a morph from the same two key frames,
created without user intervention. The work com-
puted for the bad morph is actually less than the
work for the good morph in Figure 15, meaning
that the work equations used did not achieve the
goal of “the lower cost the better morph”.

However, even in cases where user input is
needed, the work-minimization algorithm appears
to require far less user help than manual morph al-



Semi-Automatic Image Morphing Page 7

Figure 6: a1) I1; b1) F̂1 ◦ I1; c1)F̂2 ◦ I1; d1) F̂3 ◦ I1.
Right column shows difference between left column
and I2.

Figure 7: Unacceptable automatic morph.

Figure 8: F̂1 ◦ I1 and color difference I2 − F̂1 ◦ I1.

gorithms. The next two subsections describe two
methods for user interaction: anchor points and
initial warp.

6.1 Anchor points

Anchor points (called key points in some commer-
cial software) come in pairs, (a1, a2). The user po-
sitions a1 on I1 and a2 on I2. The algorithm then
assures that F̃ (a1) = a2.

Figure 9: Anchor point specification.

The constraints imposed by anchor points can be
incorporated into the work equations by adding a
penalty function that encourages the warp to align



Semi-Automatic Image Morphing Page 8

each pair of anchor points:

W a =

{
c1

2d
δ if d ≤ δ/2

c1(δ−d)+c2(d−δ/2)
δ/2 if d > δ/2

(9)

where
δ =

R

22i ,

c2 = 3δ2, c1 = c2/8, and d = ||F̃i(a1) − a2||, the
distance from F̃i(a1) to a2. Recall that R is the
image resolution and i is as in (1).

The warp in Figure 8 was created by specifying
a single pair of anchor points, shown in Figure 9.

6.2 Specify the Initial Warp F1

Another approach to guiding the warp is to invite
the user to adjust the control points. If the grid for
F1 in Figure 10 is provided, the algorithm success-
fully converges to the warp in Figure 8.

Figure 10: Manual specification of F1.

Notice that this F1 warp is not onto. One can
argue that the onto requirement is not essential
for well-defined image morphs. However, in our
implementation, we allow a user-specified F1 to pull
away from the edges, but force F3 to be onto.

7 Examples and Discussion

The early optimization levels (i = 1, 2, 3) run faster
than the later ones. It is possible to terminate the
optimization after any level and observe the current
morph. Figure 11 shows the t = 0.5 image from
the morph sequence in Figure 14, terminated after
i = 2, i = 3, i = 4, and i = 5. The following table
lists the execution time and total morph-work for
each of the four images in Figure 11. The morph
sequence in Figure 14 was computed using i = 6.

Figure 11: a) result after i = 2, b) after i = 3, c)
after i = 4, and d) after i = 5.

i cpu seconds W (F̂i)
2 3.3 3822
3 4.6 2856
4 5.8 2056
5 7.26 1660
6 10.2 1512

Times came from runs on an HP 9000/780/J282
workstation. The resolution is 256×256. The time
for 512× 512 is about four times longer.

The coefficients cc, cs, and ca in (5) have sig-
nificant impact on the quality of the morph. The
morph in Figure 1 was computed automatically us-
ing coefficients cc = cs = ca = 1, as was the morph
in Figure 11.

There is a small degree of intuition behind the
choice of coefficients. For example, if cs = ca = 0,
the warp will tend to be more fluid. Figure 12 is
the middle frame of a morph that was generated
using cs = ca = 0. While morphs can sometimes
be improved by adjusting the work coefficients, the
most efficient strategy is probably to set cc = cs =
ca = 1 and add anchor points as needed.

This method clearly works best when the two
images are relatively similar. Figure 13 shows a
morph between the two authors. The image in the
middle was generated by the algorithm with no as-
sistance. The only flaw is a very slight “ghosting”
on the right ear lobe. The warp in Figure 14 was



Semi-Automatic Image Morphing Page 9

Figure 12: Example with cs = ca = 0.

also created with no user assistance. The warp in
Figure 15 needed one anchor point. The colors in
Figure 16 differ enough that the algorithm required
eight anchor points. The algorithm succeeds nicely
in mapping the outline of the birds in Figure 17,
but six anchor points were needed to align the in-
ternal details.

8 Conclusions

We have presented an algorithm that is capable of
automatically creating good image morphs in many
cases where the two images are sufficiently similar.
In cases where user guidance is needed, we believe
that this approach can significantly ease the burden
placed on the artist. It appears to be a time saving,
work-minimizing tool.

These results can be extended in several direc-
tions. Currently a single work equation applies to

the entire image. It seems reasonable to allow dif-
ferent equations for different regions of a scene.
For example, the background should be permit-
ted to move freely to accommodate motion in the
foreground. Perhaps the stretching and angle co-
efficients should be zero for background, and the
color work should be zero for background mapping
to background, but relatively high for background
mapping to non-background.

The use of different color spaces for computing
re-coloration work should be studied.

9 Acknowledgements

This paper benefited from several discussions with
Bill Barrett, Brian Morse, Kirk Duffin, and Eric
Mortenson. Alyn Rockwood shared some valuable
insights on hierarchical optimization.

Bibliography

Beier T, Neely S (1992) Feature-based image meta-
morphosis. In: Catmull EE (ed) Computer Graph-
ics (SIGGRAPH ’92 Proceedings), 26:35–42

Beier T, Costa B, Gomes J, Velho L (1997) Warp-
ing and morphing of graphical objects. Course
notes #34, SIGGRAPH’97.

Bookstein FL (1991) Morphometric tools for land-
mark data. Cambridge University Press, New York

Bordwell D, Thompson, K (1997) The power of
Mise-en-scene in Film Art, an introduction. Mc-
Graw Hill

Brown LG (1992) A Survey of Image Registration
Techniques. ACM Computing Surveys, 24:325–
276.

Burns P (1994) CD-Morph. Addison-Wesley

Dhond UR, Aggarwal, JK (1989) Structure from
Stereo: A Review. IEEE Transactions on Systems,
Man and Cybernetics, 19:1289–1510

Kass M, Witkin A, Terzopoulos D (1988) Snakes:
Active contour models. International Journal of
Computer Vision, 1:321–331

Lee SY, Chwa KY, Shin SY, Wolberg G (1995)
Image metamorphosis using snakes and free-form



Semi-Automatic Image Morphing Page 10

deformations. In Cook R (ed) SIGGRAPH 95
Conference Proceedings, Annual Conference Series,
pages 439–448. ACM SIGGRAPH, Addison Wes-
ley

Lee SY, Chwa KY, Hahn J, Chin SY (1996) Image
morphing using deformation techniques. Journal
of Visualization and Computer Animation, 7:3–24

Nishita T, Fujii T, Nakamae E (1993) Metamor-
phosis using Bézier clipping. In First Pacific Con-
ference on Computer Graphics and Applications.
Korean Information Science Society, Korean Com-
puter Graphics Society.

Sederberg TW, Greenwood E (1992) A physically
based approach to 2D shape blending. In Cat-
mull EE (ed), Computer Graphics (SIGGRAPH
’92 Proceedings), 26:25–34

Sederberg TW, Greenwood E (1995) Shape blend-
ing of 2–D piecewise curves. In Daehlen M, Lyche
T, Schumaker L (eds) Mathematical methods for
curves and surfaces, 497–506. Vanderbilt Univer-
sity Press.

Weng J, Ahuja N , Huang TS (1992) Matching Two
Perspective Views. PAMI,14:806–825

Wolberg G (1990) Digital image warping. IEEE
Computer Science Press



Semi-Automatic Image Morphing Page 11

Figure 13: The two authors and the automatically-generated mid-way morph

Figure 14: Automatic image morph

Figure 15: Morph computed with one anchor point, or by setting the initial 2X2 grid

Figure 16: Morph computed with six anchor points

Figure 17: Morph computed with five anchor points


	A Work Minimization Approach to Image Morphing
	Original Publication Citation
	BYU ScholarsArchive Citation

	tmp.1409942176.pdf.r9xqi

