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Cross Validation and MLP Architecture Selection 

Tim Andersen and Tony Martinez 
tirn@axon.cs.byudu,martinez@cs.byu.edu 

Computer Science Department, Brigham Young University 

Abstract 
The pe l fomnce  of cross validation (CV) based MLP 
architecture selection is examined using 14 real world 
problem domains. When testing many different network 
architectures the results show that CV is only slightly 
more likey than random to select the optimal network 
architecture, and that the strategy of using the simplest 
available network architecture pe~orms better than CV in 
this case. Experimental evidence suggests several reasons 
for the poor pelformance of CV. In addition, three general 
strategies which lead to significant increase in the 
performance of CV are proposed While this paper focuses 
on using CV to select the optimal MLP architecture, the 
strategies are also applicable when CV is used to select 
between several difJerent learning models, whether the 
models are neural networks, decision trees, or other types 
of learning algorithms. When using these strategies the 
average generalization performance of the network 
architecture which CV selects is significantly better than 
the pelfonnance of several other well known machine 
learning algorithms on the data sets tested 

1. Introduction 

This paper examines the performance of cross validation 
(CV) as an MLP (multi-layer perceptron) architecture 
selection strategy. A primary advantage of CV is that only 
the data is used to determine which architecture is 
appropriate, without the requirement for user intervention 
or the setting of any adjustable parameters. Unfortunately, 
for a variety of reasons CV does not always perform as 
well as desired. The purpose of this paper is to determine 
empirically whether or not the expectation that CV based 
architecture selection will generally perform well on real 
world problems is justified. We also explore empirically 
and discuss general strategies for increasing the likelihood 
that CV will select a good architecture. 

One of the major difficulties with MLPs lies in the 
selection of the optimal network architecture for a given 
problem. MLP architecture selection is concerned with the 
number of layers in the network, the number of nodes in 
each layer, the interconnections between the nodes, and so 
forth. For any given learning problem there is an 
essentially infinite number of possible MLP network 
architectures, but only a small subset of these exhibit good 
performance in general. A great deal of effort has been 

devoted towards MLP architecture selection, and several 
different methods which seek to automate (more or less) 
MLP architecture selection are now available. These 
methods include network construction, network pruning, 
information based criteria such as MDL and MML, and 
cross validation. In addition to architecture selection 
strategies, there are regularization methods such as weight 
decay, stopped training techniques, and bayesian techniques 
which all seek to obviate the need to select an optimal 
network architecture, instead using the most complex 
architecture which can be practically implemented and then 
using some other strategy to avoid overfitting. However, 
no one of these methods has yet proven to perform well on 
a large variety of problem domains. 

We define the "optimum" network architecture to be the 
simplest network architecture which is capable of 
representing the underlying function which generated the 
training data. However, architecture selection strategies are 
rarely if ever concerned with identifying the "optimum" 
network architecture. A more pressing concern is the 
probability that a given MLP architecture will perform 
well after training. We define the network architecture 
which is the most likely to perform well after training on 
the available training data as the "optimal" network 
architecture. The determination of the optimal network 
architecture is thus highly dependent upon the available 
training data and the idiosyncracies of the training 
algorithm. Finding the optimal network architecture is the 
goal of most (if not all) architecture selection strategies. 

This paper provides insight into the empirical performance 
of CV on a variety of real world problem domains. To 
date, there have been few studies which have focused on the 
empirical performance of CV based MLP architecture 
selection on a large number of real world problems. One 
reason for this may be the enormous amount of 
computation required for such a study. This study, which 
applies CV to 14 different real world problems, utilized 74 
unix workstations running continuously over a period of 
approximately two and a half months. The studies in the 
literature which specifically examine the performance of 
CV and compare it with that of other methods [8][10][3] 
analyze performance using only a few (1 or 2) data sets, 
and so cannot be considered conclusive. A realistic 
evaluation of the performance of CV based MLP 
architecture selection on real world problems, including 
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strength and weaknesses, needs to be established. This 
paper also examines the conditions which can affect the 
performance of CV, such as the number of architectures 
tested, the similarities between the architectures, the degree 
of difference in CV holdout scores, the amount of available 
training data, etc. It is important to be aware of these 
items and how they can affect the performance of CV in 
order to design a system which has a high probability of 
finding an optimal architecture. 

The results in this paper, which are presented in detail in 
section 4, show that, at least on the real world data sets 
tested in this paper, CV is on average only slightly better 
than random architecture selection when choosing from 
among a large number of potential architectures. The main 
benefit of CV in this case is to decrease the likelihood of 
choosing an extremely sub-optimal architecture. Any 
potential increase in generalization accuracy obtainable 
through CV based architecture selection drops off rapidly as 
the number of tested architectures increases. This is 
particularly true when the architectures being compared are 
similar in their structure. This means that using CV to 
compare several similar network architectures, is not only 
wasteful of computational resources but can also degrade 
the performance of CV. However, if a reasonable 
difference between network architectures is maintained, 
then more architectures can be compared before the 
performance of CV begins to degrade. Also, the 
probability that CV will choose the optimal architecture is 
lower when the difference between CV scores is small, and 
significant improvement to generalization accuracy can be 
made by only accepting a particular network architecture if 
all other simpler architectures have significantly worse CV 
SCOR%S. 

Section 2 discusses the problem of model selection, CV, 
and real world problems. Section 3 gives the data sets and 
methods used in this paper, and section 4 details the 
results. The conclusion is given in section 5. 

2. Model Selection and Real World Problems 

One of the primary goals of machine learning is to produce 
a general, automated learning algorithm which performs 
well for all types of learning problems. This has been 
proven to be an unattainable goal [7][9]. However, it is 
possible to develop a learning algorithm that will perform 
provably well for a particular problem or type of problems. 
For the most part we are not interested in all types of 
learning problems but are primarily interested in the "real 
world learning problems. To the extent that all real world 
learning problems are similar, it should be possible to 
develop a general leaming algorithm which perform well 
on them. 

CV is an oft used method for comparing two or more 
learning models to estimate which model will perform the 
best on the problem at hand. With n-fold CV, the 
available training data is partitioned into n disjoint subsets, 

the union of which is equal to the original training set. 
Each learning model is trained on n-1 of the available 
subsets, and then tested on the one subset which was not 
used during training. This process is repeated n times, 
each time using a different test set chosen from the n 
available partitions of the training data, until all possible 
choices for the test set have been exhausted. The n test set 
scores for each learning model are then averaged (or 
summed), and the model with the highest average test set 
score is chosen as the most likely to perform well on 
unseen data. The standard practice for MLP model 
selection is to use 10-fold CV, and this is the type of CV 
which is tested in this paper. 

The advantage of CV over other model selection strategies 
is that in its basic form it is entirely data driven. But in 
practice CV suffers from two major drawbacks. The first 
drawback is that when it is used to select between two or 
more models the estimate on model accuracy which CV 
provides tends to be higher than the true model accuracy, 
and this tendency becomes more pronounced as the number 
of models tested increases. The second and related problem 
is that, in general, the more models that are tested the 
higher the probability that CV will fail to select the best 
available model. 

Research that has been done on CV based MLP architecture 
selection includes a recent paper by Schenker and Agarwal 
[lo] where CV was found to be the better than a few other 
architecture selection strategies at choosing the optimal 
network architecture. However, the comparison was based 
on only a single type of artificial data and did not look at 
any real world problem domains, and so these can not be 
considered conclusive. Another paper by Kearns et. al. 
found that CV performs significantly better than Minimum 
Description Length (MDL) and Guaranteed Risk 
Minimization (GRM) [l 11 on the intervals model selection 
problem [3]. Unfortunately, the empirical results in this 
paper were also limited to a single type of artificial data, 
and did not explore any real world problem domains. 
SchafFer has also studied CV in [7l and [8]. 

CV is also employed in stopped training, weight decay, 
network construction algorithms, and network pruning 
methods. 

3. Data and Methods 

The main intent of this paper is to examine the 
performance of CV based MLP architecture selection on 
real world problems, and so 14 real world problems were 
selected from the UCI machine learning database repository 
as a basis for the experiments. The choice of which data 
sets to use was restricted to the binary classification (two 
output) problems for the sake of simplicity. The names 
and a short description of the 14 data sets are given in table 
1. 

The first column gives the name (or tag) used to identify 
the data set throughout the rest of this paper. The total 
number of attributes is listed in the third column, and the 
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tag 
bc 
bcW 
bupa 
credit 
echo 
sickeu 
hypoth 
ion 
promot 
sick 
sonar 
stger 
S t h W  
voting 

dumn gives the total number of examples 
in the data set. 

house votes 1984 
Table 1. Data sets. 

3.1 Experiments 

The MBP neural network simulator [ 11, which implements 
a fast conjugate gradient descent training algorithm, was 
used to train the various network architectures due to its 
speed of training and relative ease of use. Since there is a 
limited amount of available data for the real world data 
sets, the accuracy of the model which CV chooses must be 
estimated using CV. This implies that within each CV 
split used to estimate the accuracy of the chosen model, a 
secondary CV split must be performed in order to facilitate 
the choice of the MLP architecture. A formal explanation 
of this process follows. 

Each real world data set is first divided into 10 disjoint test 
(validation) sets of equal size (or as equal in size as 
possible). Let D be the entire set of available labeled data. 
We define Vi (the ith test set) to be the ith subset of D 
such that the following hold 

(Vi)(l I i I 10 + Vi c D)  (1) 
10 

i=l 
D =  u V i  

(Vi,k)(l I i,k S 10 A i # k 4 
(3) vi n V ,  = 0 A ~ ~ v i ~ - ~ v ~ ~ ~  I 1) 

Simply stated, equations 1 through 3 partition D into 10 
non-overlapping subsets any two of which differ in size by 
at most one element, and the union of which equals D.  
For each test set Vi we define an associated training set Ti 
as follows: 

let Ti = D-Vi (4) 

Each Ti is further subdivided into 10 disjoint holdout sets 
Hi, in precisely the same way as was done with the data set 
D. 

(Vi, j ) ( l I  i, j 5 10 + Hii c Ti )  

Ti = u H i i  (6) 

(5) 
10 

j=l 

( V i , j , k ) ( l 5 i , j , k 5 1 0 A j # k 4  

For each holdout set H i j  we define an associated sub 
training set Tu as follows: 

let Ti = Ti - Hi, (8) 

Let A be a function which takes as inputs a network 
architecture cp and a set of labeled training examples T and 
returns a fully trained network. The general format for this 
function is then 

%e T )  (9) 

Where A is the training algorithm, cp is the network 
architecture, and T is the training set. For the network 
architectures tested in this paper it is sufficient to 
differentiate between them by expressing cp as an integer 
which is equal to the number of hidden nodes in the 
network, since the network architecture is restricted to be 
fully connected with a single hidden layer. Let p be a 
function which takes as arguments a fully trained network 
and a labeled data set and returns the performance of the 
network on that data set. There are several different error 
functions which can be used to measure the performance of 
a network. For this paper we use the percentage of correct 
predictions. The CV based procedure for choosing a 
network architecture is then for each Ti choose 4, which 

For a given Ti we define the network architecture chosen 
by CV to be pi. The actual performance of cpi is then 
estimated using the test set Vi. There are several ways 
which this can be done. One way is to retrain cpi using the 
entire training set Ti, in other words use p(m((cpz,TzQ)),V$ 
as the estimate for the actual performance of cpi. Another 
way is to combine the 10 separate networks obtained from 
training cpj on the 10 different sub training sets Tii with 
some type of voting scheme. The methd which was used 
to estimate the performance of a particular architecture cp is 
to average the test set performance of the 10 networks 
trained on the 10 sub training sets, as shown in equation 
11. 

4. Results 

4.1 Cross Validation and Real World Problems 
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Table 2 reports the average generalization accuracy of CV 
based architecture selection on the 14 real world data sets 
introduced in section 4.1. Each data set was tested on 
network architectures with a single hidden layer containing 
from 2 to 20 hidden nodes. Equation 10 was used to select 
the winning network architecture. The first column of 
table 2 lists the names for the data sets tested, and the third 
column (labeled CV) gives the average accuracy of the CV 
selected architecture on the test set for each of the data sets. 
The table also reports the best and worst possible scores, 
where the 'best' column is the average test set accuracy 
obtained by choosing 4 which maximizes 11, and the 
'worst' column reports the average test set accuracy 
obtained by choosing $ which minimizes 11. The best 
column is an upper bound on the performance which can 
be achieved with the architectures and training techniques 
used in this paper, and the worst column gives a lower 
bound. The 'avg' column reports the average score of all 
architectures tested for each data set, which is essentially 
the score that would be expected if an architecture was 
chosen at random for each training set. The last row of the 
table reports the average of each column. 

datasetln=2 ICV lbest lworst lavn 
bc I 69.141 66.301 70.901 59.541 64.65 
bcw 
bum 

I 95.381 94.921 96.051 93.41 I 94.61 
171.371 72.641 74.341 70.151 72.12 

credit 184.451 84.131 85.061 80.171 82.13 
echo 186.601 86.51) 89.421 84.141 86.71 

sick I 97.491 97.531 97.661 97.261 97.49 
sickeu I 96.641 96.801 96.931 96.461 96.75 

voting I 94.241 94.741 95.221 93.841 94.58 
AVG 185.931 85.711 87.321 83.271 85.16 

Table 2. Test results for CV. 

The average of all architectures across all data sets is 
85.16%, which is only slightly lower than the average 
score of the CV chosen architectures. This means that CV 
is on average only slightly better than random at choosing 
between the available network architectures, and is 1.61 
percentage points below the upper bound on performance. 
However, CV does appear to provide some insurance 
against the possibility of particularly poor performance by 
almost always scoring at or slightly above the average 
architecture score for each data set. When CV did score 
below the average architecture score, as it did with echo, 
hypoth and promot, it was at most 2 tenths of a percentage 
point lower than the average, but when it scored above the 
average it was as much as 2 percentage points higher. 
Interestingly, CV does not on average pedorm any better 
than the simplest (2 hidden nodes) network architecture 
tested. The second column of table 2 reports the average 
test set results of the 2 hidden node network on each of the 

data sets. The 2 hidden node network outperforms CV by 
0.22 percentage points on average at the 0.9 confidence 
level. 

4.2 Improving CV 
This poor showing by CV is surprising, but there are areas 
where improvement can be made. The standard approach of 
choosing the architecture which maximizes the CV score 
may be overly optimistic in its trust of the scores which 
CV produces. A very slight difference in holdout scores is 
probably not much better than zero difference in 
determining the best architecture. Rather than selecting the 
network which maximizes the holdout set score as with 
equation 10, it may be better to accept a network of size n 
only if it significantly outperforms all other smaller 
networks. We consider a score to be significantly better if, 
using the Student T-test, it can be said to be better at the 
0.9 confidence level. This approach does offer significant 
improvement over standard CV, with an average 
generalization accuracy of 86.03% (versus 85.71% for CV) 
on the data sets tested. 

I I 8 7 . 1 ~  

2 3 4 5 6 7 8 9 1011121314151617181920 

Figure 1. Average accuracy by architecture. 

Figure 1 gives the average generalization (test set) accuracy 
over all of the data sets tested for each network architecture. 
As the complexity of the archi- increases the average 
generalization accuracy decreases rapidly until it levels off 
at the 7 hidden node architecture. It is interesting to look 
at the performance of CV (given in table 8) when it is 
limited to choosing between only those architectures which 
have either 2 or 20 hidden nodes (the maximum difference 
possible for the architectures tested), hereafter referred to as 
CV(2.20). Intuitively, the results given in figure 1 would 
seem to imply that the poor average generalization 
performance of the 20 hidden node network will cause 
CV(2.20) to perform worse than the simple 2 hidden node 
network. However, there is a higher probability that CV 
will choose the best architecture for CV(2,20) than for any 
other possible comparison due to the fact that CV is better 
at distinguishing between highly &similar architectures 
than it is at distinguishing between similar architectures. 
In fact, CV(2,20) does have a higher average generalization 
accuracy than the 2 hidden node network as shown in table 
3. The improvement is significant at the .95 confidence 
level. 
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cv 2,20 86.07 
CV 2,3,4,5 85.81 

CV 2,3,4,5,20 85.80 
CV 2,3 85.97 EEH CV 2,6,10 Table 3. 15 Average 20 accuracy 86.01 

The performance of CV quickly drops off when more than 
2 or 3 similar networks are tested. But when testing 
networks that differ somewhat in their structure, more 
networks can be tested before it degrades the performance. 
For example, it would appear that restricting CV to the 
simplest 4 network architectures should produce good 
results, since the vast majority of significantly high test 
set scores occur with the 4 simplest architectures. The 
second row of table 2 (CV(2,3,4,5)) gives the results for 
restricting CV to the 4 simplest architectures tested. The 
confidence that this result is worse than CV(2,20) is .975. 
Adding the 20 hidden node network to the mix, 
CV(2,3,4,5,20), does not improve the average score of 
CV(2,3,4,5). Once too many similar networks have been 
included in the CV comparison the addition of more 
network architectures does not generally improve 
performance. Dropping the 4 and 5 hidden node networks 
(row 4 of table 3) leads to significant improvement. 
CV(2.20) still has a higher generalization accuracy on 
these data sets than CV(2,3), but the confidence that 
CV(2,20) is better than CV(2,3) is only 0.8. The results 
for CV(2,6,10,16,20) show that if a reasonable difference 
between network architectures is maintained, more 
architectures can be tested before performance degrades. 

4.3 CV vs Other Learning Algorithms 

Table 4 compares the average generalization accuracy of 
CV(2,20) on the 14 data sets tested in this paper against 
several other well-known learning algorithms. The 
comparison shows that CV and MLPs are capable of 
performing better than many of the learning algorithms 
which are frequently employed in the fields of machine 
learning and neural networks. The other learning methods 
compared against are c4 [4][121, c4.5 121, ib1[31[6], mml 
[4][12], and cn2 [5][10]. The results for these algorithms 
are taken from [13]. The average generalization accuracy 
for CV is better than any of the other learning algorithms 
compared against (> .95 confidence level). 

crl /c45 lib1 imml Icn2 iCV(2,20) 
84.57 ~ .. i 84.68 I 84.00 1 85.85 1 80.74 1 86.07 

Table 4. CV vs other learning algorithms 

5. Discussion and Conclusion 
There are three general strategies that can be applied to CV 
based architecture selection to significantly improve its 
performance. Through applying these strategies, CV based 
MLP architecture selection outperforms several other 
learning algorithms which are commonly used in the 
machine learning and neural network communities. These 
strategies are: 

0 Only choose a more complex network architecture if 
all simpler network architectures perform significantly 
worse. 
Restrict the set of networks which CV is choosing 
from to only the 2 or 3 simplest possible networks. 
Restrict the set of networks so that none of the 
networks in the set are too similar in their structure. 

Each of these strategies individually produces significant 
improvement in the generalization accuracy of the network 
architectures which CV selects. Various combinations of 
these strategies were tested, but for the data sets and 
architectures tested in this paper none of the combinations 
improved the performance over individual application of 
the strategies. 

Surprisingly, there is another strategy that performs almost 
as well on the real world data sets as the three listed above, 
which is to just use the simplest architecture. The 
simplest network tested had a single hidden layer 
containing 2 hidden nodes. This architecture had an 
average generalization accuracy of 85.93%. Ofthe various 
combinations tested, the best result obtained with CV was 
86.12% for CV(2,6,10,15). The confidence that 
CV(2,5,10,15) is better than the simplest network is 
relatively high at 0.975, but with an improvement of only 
0.19% the large amount of extra computation required by 
CV might not be worth it for many problems. 

The low correlation of the CV and test set scores, and the 
low probability that CV will choose the best architecture 
are causes for concern. Experiments on artificial data 
support the notion that one reason for this poor 
performance may be that there is simply not enough 
available data to reliably train andor determine the optimal 
network architecture for the data sets tested in this paper. 
In such a case, the simplest network architectures tend to 
perform as well or better than the more complex network 
arChiteCtllES. 

0 

0 

There are several promising. areas for future work. One of 
these is the choice of which network architectures to 
include in the CV comparison. For this study, the 
network architectures that were tested, which were fully 
connected with a single layer of 2 to 20 hidden nodes, are 
relatively similar in structure. It should be advantageous 
to use CV to test network architectures which exhibit even 
greater diversity between them, such as architectures with 
many more hidden nodes, or multiple hidden layers. It 
would also be informative to extend the study to much 
larger data sets. Another area which we plan to explore is 
the question of what to do once an architecture has been 
selected. It is common practice to retrain the architecture 
with the entire available data set, but this approach runs 
the risk of generating a weight setting with poor 
generalization performance. A better approach might be to 
use all of the 10 trained copies of the network architecture 
that CV produces in some sort of voting scheme such as 
Bagging. 

In conclusion, using the strategies proposed in this paper, 
CV based MLP architecture selection performed 
significantly better on average than several other learning 
algorithms. From the analysis of the results on both the 
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real world and the artificial data sets it appears that many of 
the real world data sets tested have insufficient numbers of 
training data, which undermines the reliability of the CV 
holdout set scores. On larger data sets with adequate 
numbers of training instances it is likely that the 
correlation of the CV holdout set score with the true 
generalization performance will be even greater, and that 
CV will exhibit an even greater performance improvement 
over other learning models. 
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