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Abstract: This paper describes a spatially disaggregated, economic agent-based model of urban land use 
that includes explicitly specified and coupled land and housing markets. The three types of agents—
consumer, farmer and developer—all make decisions based on underlying economic principles, and 
heterogeneity of both individuals and the landscape is represented. The model can be used to simulate the 
conversion of farmland to housing development over time, through the actions of the agents in the land and 
housing markets. Land and building structures in the housing bundle are treated explicitly, so the model can 
represent the effects of land and housing prices on housing density over time. We use the model to simulate 
the dynamics of land use changes as a representative suburban area grows. The presence of agent and 
landscape heterogeneity, stochastic processes, and path-dependence require multiple model runs, and the 
expression of spatial dispersion of housing types, overall housing density, and land prices over time in 
terms of the most likely, or ‘average’, patterns. We find that the model captures well both the general 
tendency for diminishing population density at greater distances from the center city, and dispersed 
leapfrog patterns of development evident in most suburban areas of the U.S.   
 
Keywords: Land-use; Agent-based modeling; Land markets; Housing markets; Coupled markets. 
 
 
1. Introduction 
 
Concerns over urban sprawl have led many state and local governments in the United States to institute 
land-use control policies to slow or halt land conversion. Many of these policies, have been ineffective 
however, and may even have unintentionally caused further development [Grimm et. al., 2008; Irwin and 
Bockstael, 2002]. The failure is primarily due to a limited understanding of or capacity to manage the 
forces that drive urban land-use change. Land-use patterns are the result of complex interactions among 
biophysical components of the natural landscape, economic activities endogenous and exogenous to urban 
land-use systems, and human decision-making processes, which all can span multiple spatial and temporal 
scales.  
 
Developing a model that captures these features of land use is difficult. One recent approach that appears to 
show promise is agent-based modeling. Agent-based models (ABMs) capture the activities and decisions 
made by multiple heterogeneous agents and explicitly include agent-agent and agent-environment 
interactions. Land-use ABMs offer several advantages over traditional planning and economic land-use 
models because they can explicitly model the spatial, path-dependent dynamics that characterize 
development patterns.  
 
Most ABMs fail to incorporate key economic features. Filatova et. al. [2009] and earlier papers [Filatova 
et. al., 2007; Parker and Filatova, 2008] present the fullest, economically-based implementation of an 
agent-based land market to date. The authors have formulated a bilateral agent-based land market that 
explicitly models differences between a buyer’s and seller’s willingness to pay and willingness to accept, 
respectively, and the resulting bid and asking prices that form the final transaction land price [Parker and 
Filatova, 2008]. The authors are then able to exogenously specify different market power scenarios and 
explore the resulting spatial structure of rents and the division of gains from trade. However, their model 
lacks a housing market and cannot capture the feedbacks between land and housing markets that influence 
spatial rent structures and housing density.   
 
This paper advances the ABM literature by explicitly incorporating a housing market with decentralized, 
bilateral transactions between heterogeneous agents to determine spatially explicit housing rents. We then 
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use the model to investigate the feedbacks that emerge from fully coupled land and housing markets, and 
how those feedbacks influence the transitional dynamics and density patterns of development. We 
explicitly model the conversion of farmland to development, including the location and the density (i.e. lot 
size) of that development, and housing size. The model can provide a useful tool for analyzing the impacts 
of a variety of land use policy instruments such as minimum lot size restrictions (see Magliocca et al, 
2009), impact fees, and purchase of development rights. Section 2 details our model structure, agent 
decision-making processes, and market interactions. Section 3 shows some results from model simulations. 
Section 4 concludes with a discussion of model capabilities and limitations and directions for future 
research.  
 
 
2. Model Description 
 
2.1 Model Structure 
 
The model represents a growing exurban area in which land is converted from farming to residential 
housing over time. Farmers compare the returns from farming to expected profit from selling their land to 
developers. Farmers differ in how they form expectations about future prices of their land, and they adapt 
those expectations according to the success of past predictions.  Farmers interact with developers in the 
land market. Developers determine the profitability of different types of housing that vary by both structure 
and lot size. Developers sell a housing good (i.e. a combination of a given house and lot size) to consumers 
who are differentiated by both income and preferences over different housing types. The model tracks 
development over time incorporating elements of path dependence and stochastic uncertainty that 
determine spatial development. A schematic of agent decision-making and market interactions is shown in 
Figure 1. 
 

 
 

Figure 1. Conceptual map of agent interactions through coupled housing and land markets. The red 
numbers indicate the (counter-clockwise) sequence of events within one simulated time period (t). Agents 
(italics) are labeled with the underlying conceptual model that governs their behavior. Inter-temporal 
processes (t+1) shown include updating developer’s rent prediction models, updating the farmers’ land 
price prediction models, and exogenous growth of the consumer population. 

 
 
2.2 Description of Model Agents  
 
2.2.1 Consumer Utility, Willingness-to-Pay (WTP), and Willingness-to-Bid (WTB) 
 
Each consumer c gets utility from a general consumption good and a housing good; a housing good can be 
considered a ‘bundle’ of one of eighteen different housing types, which are distinguished by different 
combinations of three different house sizes (h) and six different lot sizes (l). The utility of consumer c takes 
the standard Cobb-Douglas form: 
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(1) U (c, n)  Ic  Pask |n   n c
hn
c ln

 c ;   

 
where Ic is income, n is the travel cost from the location of house n to the CBD, c and c are the 
consumer’s idiosyncratic preferences for house and lot sizes, respectively, and c is the preference for the 
non-housing consumption good. Pask|n is the developer’s asking price for house n (see below). 
 
We determine the utility for each of  Hn existing or newly built houses for each consumer. The choice with 
the maximum utility for each consumer is defined as U*. Holding U* constant for all housing options 
facing each consumer, the R* rent that would produce the same utility as the consumer’s most preferred 
choice (i.e. an optimal rent such that the consumer would be indifferent between housing options) is 
calculated for each housing option. The difference between the rent being asked by the developer, Pask|n, 
and the optimal rent, R*, is used to form a WTB for each house.    

(2) 
WTB(c, n)  WTP(c, n)  Pask |n  R

*
(c, n) ;  

     
It is important to note that each WTB varies based on the consumer’s income and idiosyncratic preferences 
for house and lot sizes. Thus, the full heterogeneity of consumer preferences is captured, and bids reflect 
the relative utility of each housing option offered. 
 
2.2.2 Developer’s Rent and Return Projections and Willingness-to-Pay (WTP) for Land 
 
Developers make rent projections for every type of housing in every undeveloped cell based on distance 
from the established city, associated travel costs, and relevant local and regional rent information. If the 
housing type for which a projection is being made is present locally, the projected rent is the weighted 
combination of distance-weighted average rents from local and regional housing of the same type. In some 
cases, the housing type for which a projection is being made is not present locally. For these housing types, 
the rent projection is made based on regional rental information if it is available, or on average utilities of 
consumers occupying similar housing types if no other information exists.  
 
Based on projected rents, potential returns are calculated for every housing type in every undeveloped cell 
by subtracting the costs of construction and infrastructure, which vary by housing type, and the price of 
land for the given cell. The maximum return for each cell is calculated as the maximum return over all 
possible housing types for the given cell. Maximum returns are then projected onto the gridded landscape 
to be used by the developer to determine the type and location of housing construction that maximizes 
profit across all vacant holdings.  
 
The projected rent associated with the housing type that produces the maximum return in each cell i of farm 
F is specified as Rmax|i. The developer’s WTP for a given farm F is the average Rmax|I over the extent of the 
farm. 

(3) WTP(F, t ) 

Rmax| jjFi



AF

; where AF is the total acreage of farm F. 

 
2.2.3 Formation of Farmer’s Willingness-to-Accept (WTA) 
 
Farmer expectations of land prices are formed using a randomly allocated set of twenty prediction models. 
Each prediction model uses one of six different methods for forming predictions based on up to ten years of 
past land prices from which to extrapolate next period's price expectation [Magliocca et al., 2009]. A 
farmer’s decision to sell to a developer or continue farming is based on the expected return from selling his 
farm relative to the value of the farm’s agricultural return per acre in perpetuity. The farmer’s WTA is set 
to the greater of the two values. This enables the farmer to capture speculative gains from sale of his land 
when development pressure is high, while enforcing rational threshold below which the farmer would be 
better-off farming. 
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2.3 The Land Market 
 
Following Parker and Filatova [2008], we use information on acreage demanded by the developer and 
supplied by farmers to define a “market power” parameter, :  

(4)  
dLand  A

F* 
dLand  A

F* ;          

where dLand is the acreage demanded by the developer and AF* is the acreage supplied by participating 
farmers. F* is the subset of all farmers for which the developer’s WTP is greater than or equal to the 
farmer’s WTA. If the developer demands more land than farmers supply,  is positive and farmers bid 
above their WTA. If farmers supply more land than is demanded by developers,  is negative and the 
developer will bid below his initial WTP. However, neither the farmer/developer will bid below/above his 
WTA/WTP, respectively. Both farmers and developers adjust their ask/bid prices from their WTA/WTP to 
maximize gains from trade. If the bid from the developer is exceeded by the farmer’s asking price, then the 
transaction is cancelled and the farmer returns to the farmer pool. Market power is dynamic because the 
amount of land supplied by farmers depends on the initial WTP of developers. The developer’s WTP for a 
given farm depends on the level of rents in the housing market. Thus, the housing and land markets are 
explicitly linked.  
 
2.4 The Housing Market  
 
The developer and consumers interact in the housing market, determining the type of houses purchased and 
the rents in each period in each location, as shown in Figure 1. Houses enter the housing market in each 
period as either new construction or as pre-existing, recently vacated houses. For existing housing (Hold), 
the asking price is the expected rent associated with the location. For newly constructed houses, the asking 
price equals the developer’s projected rent in the location of the newly constructed house,  Hnew. 
 
Similar to the market power concept in the land market, we define a housing market competition factor, 
HMC, which describes the competition for housing each consumer faces in the housing market.  
 

(5) HMCc 
NCHc

 NH Hc 
NCHc

 NH Hc ;    

   
NHHc is the number of houses in the subset (Hc) of all existing houses that consumer c will bid on, and 
NCHc is the number of other consumers bidding on the subset of houses Hc. The subset of houses that 
consumer c will bid on, Hc, is defined as the subset of all vacant houses for which consumer c’s willingness 
to bid is greater than or equal to the asking price multiplied by the bid level for a particular housing type. 
The bid level is the average percentage that local sale prices for the same housing type were above/below 
the original asking price. 
 
After HMC is observed, a consumer sets his bid in relation to the asking price of each house in the subset 
Hc in response to market conditions.  
 

(6) 
Pbid (c, Hc )  R

*
(c, Hc )  HMCc WTB(c, H c )  R

*
(c, Hc )  ;     

 
If HMCc is positive, competition for housing for consumer c is high and the bid price will be set above the 
asking price. If HMCc, is negative, competition for housing for consumer c is low and the bid will be set 
below the asking price. The adjustment of a consumer’s bid price in response to market conditions allows 
the consumer to try to simultaneously maximize their gains from trade and the likelihood that they will be 
the highest bidder. 
 



	

After the bidding process is completed, the highest bidder on each house is identified. Since consumers bid 
on multiple houses, it is possible that some consumers are the highest bidders on multiple houses while 
other consumers are not the highest bidder on any house. We thus match consumers that possess at least 
one ‘winning bid’ with the house that gives them the highest utility. The consumer’s winning bid is 
recorded as the transaction price. The market is cleared by repeating this matching process with each of the 
remaining bids (which are kept constant) until all consumers are matched, all houses are occupied, or all 
positive bids are exhausted. 
 
 
3. Model Experiments 
 
The model was created using MATLAB programming language. Simulations were run on an 80x80 
gridded landscape with each cell representing an acre for a total region of 6,400 acres, or 10 square miles. 
The CBD was set in the middle of the top row at coordinates (1,40) with an established developed area 
shown as the dark blue half-moon at the top of Figure 2. Initial development consists of randomly placed 
housing types 1 through 12 (see Table 1). Fifty farms surround the initial development and are shown as 
different colored patches in Figure 2. Initially, 334 consumers participate in the housing market, and an 
exogenous population growth rate of 10 percent a year is assumed. Incomes of incoming households are 
assumed to vary from $20,000 for the lowest quintile to $200,000 for the highest quintile.1 Travel costs for 
households are assumed to depend both on time and monetary costs.  Time costs are assumed to be 
$1.30/mile2 and monetary costs are $0.54/mile (BTS, 2007). As new households move to the region, they 
demand housing; a single developer for the region responds by buying land from farmers and building 
houses. Thus, farmland is gradually converted to developed uses over time. 

 
The model was run 30 times with the same set of experimental parameters, and each run tracks growth over 
a 20-year period (model years 11 through 30, with the first 10 years used for prediction model calibration). 
Farmers’ locations and agricultural returns were held constant across all runs. The distribution and location 
of housing types in the initial city were also held constant across all runs. Draws from income and 
consumer preference distributions and the initial assignment of all prediction models (i.e. for land and 
housing price predictions and distance discounting) were allowed to vary randomly across each of the 30 
runs. Holding landscape features constant across runs eliminates sources of geographic variability, while 
exploring the effects of path-dependence and stochastic processes on development patterns. 
 
Table 1 provides a description of housing and lot sizes associated with each housing type, and summary 
statistics across 30 model runs. Even though the landscape was held constant across runs, the housing types 
built across runs showed a good deal of variation. This variation reflected the importance of heterogeneity 
in consumer demand. The most frequently developed housing types were those with small or medium sized 
houses on 1- and 2-acre lots, which were affordable for most consumers. No 5-acre lots were built over the 
entire period, but there were likely to be some 10-acre lots. The absence of 5-acre lots was due to the 
combined effects of high construction costs relative to expected rents, and the wealthiest consumers opting 
for houses on 10-acre lots. 
 
Stochastic elements in the model (i.e. random draws from consumer income and preference distributions 
and assignment of prediction models) limit the insight of any single model realization. Instead, maps of the 
most likely, or ‘average’, development patterns were constructed (Fig. 3a-d). For each time step displayed, 
the development pattern consists only of cells that were developed in at least 60 percent of runs and 
approximates the average percent area developed observed across all 30 runs. Within each of those cells, 
the housing type with the highest probability of occurrence is mapped. Thus, we can reconstruct the most 
likely location and density of development. 
 

                                                 
1 These data were based on median household incomes for suburban counties in the Mid-Atlantic region (Delaware, Maryland, 
Pennsylvania, and Virginia) from the 2000 Census. 
2 We assumed time costs to be a function of average road speed (30 mph), average number of workers per house (2), average wage per 
person ($30/hour), value of time as a percent of wage (50%), and the road network indirectness coefficient (0.3) (this is the ratio of 
network distance to the Euclidian distance). 
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Table 1.  Number of lots by type of house/lot combination, at t=30. 

 
 

Housing 
Type 

Lot Size 
(acres) 

 
 

Housing Type 
Description 

Mean 
Number of 

Lots Std. Dev. 

 
Mean Annual 

Rents 
(2007 $) Std. Dev. 

1 ¼ ac lots Small house 96 12 8,899.29 482.79 
2  Medium house 58 46 12,186.06 1,022,20 

3  Large house 128 74 15,119.46 1,006.69 

4 ½ ac lots Small house 175 113 10,097.02 1,069.66 

5  Medium house 180 124 13,204.93 1,129.09 
6  Large house 172 74 16,692.85 889.26 
7 1 ac lots Small house 506 120 12,675.49 497.69 

8  Medium house 220 88 15,471.26 621.07 
9  Large house 163 68 19,595.76 676.23 

10 2 ac lots Small house 589 104 19,794.96 575.73 
11  Medium house 375 92 21,823.79 544.95 
12  Large house 141 34 25,719.98 976.22 
13 5 ac lots Small house 0 0 0 0 

14  Medium house 0 0 0 0 
15  Large house 0 0 0 0 
16 10 ac lots Small house 40 32 33,008.27 4,228.99 
17  Medium house 36 29 35,303.91 3,889.41 
18  Large house 8 12 34,579.29 7,626.81 

 
 
The model also allowed us to capture the time path of development. Farmland was increasingly converted 
to development as demand for housing grew. By 30 years out, about 60% of the land area is developed. 
However, development spread in a dispersed, or ‘leapfrog’, manner. This is a result of both spatially 
heterogeneous agricultural productivity and heterogeneity in how farmers formed expectations about future 
prices. Early development occurred at distant locations because land prices were relatively low and farmers 
in these areas sold first. Later, development filled-in closer to the initially developed area, due to rising land 
prices (Fig. 4) and increasing development pressure (Figs. 3b and 3c) close to the initial ‘city’.  
 
Another evident trend was the decrease in the average density as distance from the CBD increased. As 
population and consequent demand for housing increased, prices for land close to existing development 
also increased (Fig. 5) over time. Concurrently, increased rents enabled the developer to bid more on land 
close to existing development, but the developer was also constrained by profit-maximization to develop 2-
acre or smaller lots (Fig. 3b and 3c). As time progressed, large lots became relatively scarce and demand 
for them grew. Given the level of expected rent for large lots and decreasing land prices with distance from 
the CBD, new construction becomes more likely far from the CBD in the last 5 years of simulation (Fig. 
3d). The observed density gradient and increasing trend in land prices over time indicate that this ABM can 
reproduce trends expected by urban economic theory [Irwin, 2009] (Fig.4). 
 
 
4. Discussion and Conclusions 
 
In this paper, we described an ABM of urban growth and land-use that integrates microeconomic 
fundamentals into a framework capable of capturing full heterogeneity and spatially explicit development 
patterns. At this point in the model’s development, we are most interested in the qualitative behaviors that 
emerge from explicitly coupling housing and land markets.



	

 
Fig. 2. Initial landscape configuration.  
 

 

 

 

Figure 3: ‘Average’ development pattern maps 
for time steps a) 15, b) 20, c) 25, and d) 30. 
Housing types are color-coded from 1 (dark 
blue) to 18 (dark red). 
 

 
Figure 4: Mean lot size by distance from CBD, at 
30 years.  
 

 
Figure 5: Mean land price ($/acre) at each time 
step. Ordinary least squares line (R2 value of 
0.8133) indicates an increasing trend in land 
prices over time. 
 

  



	

 
Our results demonstrate the effects of this coupling. We observe how housing demands from heterogeneous 
consumers can drive up rents for particular housing types and/or in particular locations. The developer 
reacts by increasing his willingness to pay for land in those locations, which is then countered by reactive 
farmers increasing their asking prices. The interplay between markets and agents’ heterogeneous 
preferences and perceptions results in a dispersed, ‘leapfrog’ development pattern (Fig. 3) that is consistent 
with what we observe in actual practice.  In addition the model also reproduces the general trends in land 
prices and land uses over time predicted by economic theory (Figs 4 and 5). 
 
Although our results are promising, there is a need for further testing of model sensitivities and outcomes. 
Advances in methods for testing ABMs have been made such as pattern-oriented modeling [Grimm et. al., 
2005] and the ‘invariant-variant’ method [Brown et. al., 2005] and will be applied to this model in future 
work. In addition, the current version is simulated on a featureless plain. Proximity-based environmental 
amenities are not represented, which have been shown to significantly influence development patterns 
[Filatova et. al., 2009; Irwin and Bockstael, 2002; Wu and Plantinga, 2003]. Future model iterations will 
incorporate proximity-based amenities to explore their effects on development patterns. The model can be 
used to assess a range of policy options for achieving land use goals. We plan to assess a range of policies 
for preserving land from development, for protecting environmental resources from the effects of 
development, and for increasing infill and higher density development. 
 
Acknowledgements: Partial support of the first author was provided by NSF Grant #0549469 as a UMBC 
IGERT trainee. All authors are grateful for financial support from US EPA Science to Achieve Results 
(STAR) program. 
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