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Combining Cross-Validation and Confidence to Measure Fitness 

D. Randall Wilson 
fonix corporation 

WilsonR @ fonix. corn 

Abstract 

Neural network and machine learning algorithms often 
have parameters that must be tuned for good pe$onname 
on a particular task. Leave-one-out cross-validation 
(LCV) accuracy is often used to measure the fitness of a set 
of parameter values. However, small changes in 
parameters often have no eflect on LCV accuracy. Many 
learning algorithms can measure the confidence of a 
classification decision, but often confidence alone is an 
inappropriate measure of fitness. This paper proposes a 
combined measure of Cross- Validation and Confidence 
(CVC) for obtaining a continuous measure of fitness for 
sets of parameters in learning algorithms. This paper also 
proposes the Refined Instance-Based (RIB) learning 
algorithm which illustrates the use of CVC in automated 
parameter tuning. Using CVC provides significant 
improvement in generalization accuracy on a collection of 
31 clussification tasks when compared to using LCV. 

1. Introduction 

Inductive learning algorithms are typically presented with 
n training examples (instances) from a training set, T, 
during learning. In classification tasks each instance has 
an input vector x, and an output class c. After learning is 
complete, these systems can be presented with new input 
vectors for classification, many of which were not in the 
original training set. The algorithm must generalize from 
the training set to determine the most likely output 
classification for each input vectory. 

Learning algorithms often have Parameters which affect 
how well they are able to generalize on a particular task. 
Section 2 explains how leave-one-out cross-validation 
(LCV) can be used to tune parameters, and shows why it is 
limited in some cases. Section 3 proposes a continuous 
measure of fitness using both confidence and cross- 
validation (CVC). Section 4 proposes a distance-weighted 
R@imd Instance-Based (RIB) learning algorithm that can 
use either LCV or CVC to refine various parameters. 
Section 5 presents empirical results on 31 classification 
tasks showing statistically significant improvemnt of CVC 
over LCV in tuning parameters in RIB. 

Tony R. Martinez 
Brigham Young University 

murtinez@ cs. byu. edu 

2. Leave-one-out Cross-Validation (LCV) 

One of the most popular methods of evaluating a set of 
parameter values is through the use of cross-validation [ 1, 
2,3]. In cross-validation, the training set Tis divided into 
J partitions, Ti ... TJ, and the instances in each of the 
partitions are classified by the instances in the remaining 
partitions using the proposed parameter setting. The 
average accuracy of these J trials is used to estimate what 
the generalization accuracy would be if the parameter 
value was used. The parameter value that yields the 
highest estimated accuracy is then chosen. When more 
than one parameter needs to be tuned, the combined 
settings of all of the parameters can be measured using 
cross-validation in the same way. 

When J is equal to the number of instances in T, the result 
is leave-one-out cross-validation (LCV), in which each 
instance i is classified by all of the instances in T except 
for i itself, so that almost all of the data is available for 
each classification attempt. LCV has been described as 
being desirable but computationally expensive [2]. 
However, in some situations it can be performed 
efficiently, as illustrated in Section 4. 

One problem with using LCV to fine-tune parameters in a 
classification system is that it can yield only a fixed 
number of discrete accuracy estimates. For each instance i 
in T, the accuracy is 1 if the instance is classified correctly 
and 0 if it is misclassified. Thus the average LCV 
accuracy over all n instances in T is r / n, where r is the 
number classified correctly. Since r is an integer from 0 to 
n, there are only n + 1 accuracy values possible with this 
measure, and often two different sets of parameter values 
will yield the same accuracy because they will classify the 
same number of instances correctly. This makes it 
difficult to tell which parameter values are better than 
another. This problem occurs quite frequently in some 
systems and limits the extent to which LCV can be used to 
finetune many classifiers. 

3. Confidence and Cross-Validation (CVC) 

An alternative method for estimating generalization 
accuracy is to use the confidence with which each instance 
is classified. The average confidence over all n instances 
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in the training set can then be used to estimate which set of 
parameter values will yield better generalization. The 
confidence for each instance i is 

where weightcorrect is the weight received for the correct 
class of instance i ,  and weightc is the weight received for 
class c. This weight might be the sum from a weighted 
voting scheme as in distance-weighted instance-based 
learning algorithms or radial basis function neural 
networks. When the weight (i.e., summed activation or 
weighted votes) for each class is a continuous value, then 
confidence can provide a continuous measure of fitness for 
parameter settings. 

After learning is complete, the confidence can be used to 
indicate how confident the classifier is in its generalized 
output. In this case the confidence is the same as defined 
in Equation 1, except that weightcorrect is replaced with 
weightout, which is the amount of voting weight received 
by the class that is chosen to be the output class by the 
classifier. This is often equal to the maximum number of 
votes (or maximum sum of voting weights) received by 
any class, since the majority class is typically chosen as the 
output. 

Average confidence has the attractive feature that it 
provides a continuously valued metric for evaluating a set 
of parameter values. However, it also has drawbacks that 
make it inappropriate for direct use in measuring 
parameter fitness in some learning algorithms. For 
example, in the Refined Znsmce-Based learning algorithm 
presented in Section 4, using confidence alone favors any 
parameter settings that give nearer neighbors more weight 
than further ones, even if doing so degrades accuracy. 

The CVC accuracy cvci of a single instance i can also be 
computed as 

(3) 
n . cv + conf 

n+l 
cvci = 

where n is the number of instances in the training set; confi 
is as defined in Equation 1; and cv is 1 if instance i is 
classified correctly by its neighbors in T, or 0 otherwise. 
Note that CVCT can also be obtained by averaging cvcj for 
all n instances in T. 

This metric weights the cross-validation accuracy more 
heavily than the confidence by a factor of n. The LCV 
portion of CVC can be thought of as providing the whole 
part of the score, with codidence providing the fractional 
part. This metric gives LCV the ability to make decisions 
by itself unless multiple parameter settings are tied, in 
which case the confidence makes the decision. 

CVC can be used with a variety of classification 
algorithms in which parameters need to be tuned, a 
measure of confidence for the correct class is available and 
leave-one-out cross-validation is not computationally 
prohibitive. Section 4 presents an instance-bused learning 
algorithm with automatically-tuned parameters to illustrate 
the use of CVC and to provide empirical data. 

4. Instance-Based Learning 

Instance-Based Learning (IBL) [4] is a paradigm of 
learning in which algorithms typically store some or all of 
the n available training examples (instances) from the 
training set T during learning. During generalization, 
these systems use a distance function to determine how 
close a new input vector y is to each stored instance and 
use the nearest instance or instances to predict the output 
class of y (i.e., to classifyy). Some of the earliest instance- 
based learning aleorithms are referred to as nearest 

LCV works fairly well in general but suffers from not neighbor tecG'lues[59 6]* 
being a continuous measure, while confidence is 
continuous but suffers from problems of its own when 
used alone as mentioned above. we therefore combine 
cross~va~i~t ion and 
CVC. cvc uses LCV to count the number of instances 
classified correctly using a set of parameter 
values. It then adds the average confidence of the correct 

Instance-based learning algorithms Often have a parameter 
k that determines how many instances are used to decide 
the classification, as in the k-nearest neighbor rule [5] .  
The use of k > 1 can lessen the effect of noise in the 
system, but it also introduces a parameter to the system 
which must be chosen* 

into a single metric 

class, avgconf (where 0 I uvgconf I 1) to the LCV 

0 I and 0 I confI 1, the maximum sum is + 1. I,, 
order to get a metric in the range 0.~1, the sum 
is therefore divided by + Using CVC, the accuracy 
estimate CVCT of the entire training set T is therefore 
given as 

accuracy to get a continuous measure of fitness. Since Dudani 171 P ~ O P O S ~ ~  a distance-weighted nearest neighbor 
algorithm in which neighbors nearer to the input vector get 
more weight. This can reduce the sensitivity of the system 
to the parameter k, though a suitable value for k must still 
be found- 

This section presents a new instance-based learning system 
called the Refined Instance-Based (RIB) learning 
algorithm that uses distance-weighted k-nearest neighbor 

n + l  voting. RIB automatically tunes several parameters, 
(2) 

r + avgconf cvc, = 
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including the value of k and the kernel shape for the 
distance weighting function. The distance-weighted voting 
allows decision boundaries to be fine-tuned with more 
precision than is allowed with simple majority voting. 
RTB also uses a heterogeneous distance function described 
below in Section 4.1 that is appropriate for domains with 
nominal attributes, linear attributes, or both. Section 4.2 
describes how distance-weighted voting is done in RIB, 
and Section 4.3 tells how parameters are automatically 
tuned in the system. 

4.1. Heterogeneous Distance Function 
A distance function is critical to the success of an instance- 
based algorithm. Euclidean Distance is the most 
commonly used distance function, but many applications 
have nominal (discrete, unordered) attributes for which 
Euclidean distance and other linear metrics are not 
appropriate. 

The Value Difference Metric (VDM) [8,9] is able to return 
a real-valued distance between each pair of values for 
nominal attributes based on statistics gathered from the 
training set. It does not, however, directly handle linear 
attributes but instead requires discretization [lo]. 

We previously introduced several new heterogeneous 
distance functions that substantially improved average 
generalization accuracy on a collection of 48 different 
datasets [l l] .  RIB uses one of the most successful 
functions, the Heterogeneous Value Difference Metric 
O M ) .  

The HVDM distance function defines the distance between 
two input vectors x and y as 

where m is the number of attributes. The function da(x,y) 
returns a distance between the two values x and y for 
attribute a and is defined as 

if x or y is unknown; else.. . 
if a is nominal (5) [e ifaisnumeric 

where a, is the sample standard deviation of the numeric 
values occurring for attribute a. Since 95% of the values 
in a normal distribution fall within two standard deviations 
of the mean, the difference between numeric values is 
divided by four standard deviations to scale each value into 
a range that is usually of width 1. The function vdm,(x,y) 

returns the distance between two nominal attribute values x 
and y for attribute a as 

where N4.+ is the number of times attribute a had value x 
in the W n g  set, Nqx,c is the number of times attribute a 
had value x and the output class was c, and C is the 
number of output classes. Using this distance measure, 
two nominal attribute values are considered to be closer if 
they have more similar classifications, regardless of the 
order of the values. More details on this distance function 
are available in [ 1 11. 

The HVDM distance function is used to find distances in 
the RIB algorithm, which in turn are used to weight voting 
and thus influence confidence, as discussed below. 

4.2. Vote Weighting 
Let y be the input vector to be classified and let nl ... nk be 
the k nearest neighbors of y in T.  Let Dj be the distance 
from y to the jth neighbor using some distance function D 
(such as HVDM). 

In the RIB algorithm, the voting weight of each of the k 
nearest neighbors depends on its distance from the input 
vector y .  The weight is 1 when the distance is 0 and 
decreases as the distance grows larger. The way in which 
the weight decreases as the distance grows depends on 
which keml function is used. The kernel functions used 
in RIB are: majority, linear, gaussian, and exponential. 

In majority voting, all k neighbors get an equal vote of 1. 
With the other three kernels, the voting weight of a 
neighbor ni is 1 when the distance to ni is 0 and drops to 
the value of a parameter wk at a distance Dk, where Dk is 
the distance to the kth nearest neighbor. 

Given wk and Dk, the amount of voting weight W j  for the 
jth neighbor that is a distance Dj from the input vector for 
each kernel is given in Equations 7-10. 

(a) Majority: w j  = 1  

(c) Gaussian: wj  = wkDj2IDk2 (9) 
(d) Exponential: w j  = wkDjIDk (10) 

Note that the majority voting scheme does not require the 
wk parameter. Also note that if k = 1 or wk = 1, then all 
four of these schemes are equivalent. As Dk approaches 0, 
the weight in Equations 8-10 all approach 1. Therefore, if 
the distance Dk is equal to 0, then a weight of 1 is used for 
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consistency and to avoid dividing by 0. These four kernels 
are illustrated in Figure 1. 

(a)Majority ; 

0 .5 1 1.5 

(b) Linear 

.4 

.2 :?L 0 0 0.5 1 1.5 

0 5 1 1.5 0 0.5 1 1.5 
DiStaoce Distance 

Figure 1. Distance-weighting kernels, shown with 
&=2.oandWk=.O1. 

Sometimes it is preferable to use the average distance of 
the k nearest neighbors instead of the distance to the kth 
neighbor to determine how fast voting weight should drop 
off. This can be done by computing what the distance Di 
of the kth nearest neighbor would be if the neighbors were 
distributed evenly. This can be done by setting Di to 

and using Di in place of Dk in Equations 8-10. When 
k = 1, Equation 11 yields 4 = 2Dd2 = Dk, as desired. 
When k > 1, this method can be more robust in the 
presence of changes in the system such as changing 
parameters or the removal of instances from the classifier. 

4.3. RIB Learning Algorithm 

Several parameters in have been mentioned in the above 
discussion without specifying how they are set. 
Specifically, for a given classification task, RIB must set k, 
the number of neighbors that vote on the class of a new 
input vector; kernel, the kernel of the distance-weighted 
voting function; wk, the weight of the kth neighbor (except 
in majority voting); and uvgk, the flag determining whether 
to use Dk or 4. 

These parameters are set as described in the remainder of 
this section. RIB begins by finding the first maxk nearest 
neighbors of every instance i, where maxk is the maximum 
value of k being considered. (In our experiments we used 
mark = 30 to leave a wide margin of error, and values of k 
greater than 10 were rarely if ever chosen by the system.) 
The nearest neighbors of each instance i, notated 
i.ni ... i . n d ,  are stored in a list ordered from nearest to 
furthest for each instance, so that i.nl is the nearest 
neighbor of i and i.nk is the kth nearest neighbor. The 
distance i.dj to each of instance i’s neighbors is also stored 
to avoid continuously recomputing this distance. This is 
the most computationally-intensive step of the process and 
takes O(mn2) time, where m is the number of input 
attributes and n is the number of instances in the training 
set. 

CVC is used in the RIB system to evaluate values for the 
parameters k, wk, kernel, and avgk. None of these 
parameters affect the distance between neighbors but only 
affect the amount of voting weight each neighbor gets. 
Thus, changes in these parameters can be made without 
requiring a new search for nearest neighbors or even an 
update to the stored distance to each neighbor. This allows 
a set of parameter values to be evaluated in O(kn) time 
instead of the O(mn2) time required by a naive application 
of LCV. 

To evaluate a set of parameter values, cvc; as defined in 
Equation 3 is computed as follows. For each instance i, 
the voting weight for each of its k nearest neighbors is 
found according to its stored distance and the current 
settings of S wb kernel and avgk, as described in Section 
4.2. These weights are summed in their respective classes, 
and the confidence of the correct class is found as in 
Equation 1. If the majority class is the same as the true 
output class of instance i, CY in Equation 3 is 1. Otherwise, 
it is 0. The average value of cvci over all n instances is 
used to determine the fitness of the parameter values. 

The search for parameter values proceeds in a greedy 
manner as follows. For each iteration, one of the four 
parameters is chosen for adjustment, with the restriction 
that no parameter can be chosen twice in a row, since 
doing so would simply rediscover the same parameter 
value. The chosen parameter is set to various values as 
explained below while the remaining parameters are held 
constant. For each setting of the chosen parameter, the 
CVC fitness for the system is calculated, and the value that 
achieves the highest fitness is chosen as the new value for 
the parameter. 

At that point, another iteration begins, in which a different 
parameter is chosen at random and the process is repeated 
until 10 attempts at tuning parameters does not improve 
the best CVC fitness found so far. In practice, only a few 
iterations are required to find good settings, after which 
improvements cease and the search soon terminates. The 
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set of parameters that yield the best CVC fitness found at 
any point during the search are used by RIB for 
classification. The four parameters are tuned as follows. 

1. Choosing k. To pick a value of k, all values from 2 to 
llzaxk (=30 in our experiments) are tried, and the one that 
results in maximum CVC fitness is chosen. Using the 
value k = 1 would make all of the other parameters 
irrelevant, thus preventing the system from tuning them, so 
only values 2 through 30 are used until all iterations are 
complete. 

2. Choosing a kernel function. Picking a vote-weighting 
kernel function proceeds in a similar manner. The kernel 
functions linear, gaussian, and exponential are tried, and 
the kernel that yields the highest CVC fitness is chosen. 
Using majoriry voting would make the parameters wk and 
avgk irrelevant, so this setting is not used until all 
iterations are complete. At that point, majority voting is 
tried with values of k from 1 to 30 to test both k =  1 and 
majority voting in general, to see if either can improve 
upon the tuned set of parameters. 

3. Setting avgk. Selecting a value for the flag avgk 
consists of simply trying both settings, i.e., using Dk and 
D[ and seeing which yields higher CVC fitness. 

4. Searching for wk. Finding a value for wk is more 
complicated because it is a real-valued parameter. The 
search for a good value of wk begins by dividing the range 
0..1 into ten subdivisions and trying all eleven endpoints of 
these divisions. For example, on the first pass, the values 
0, -1, -2, ..., .9, and 1 .O are used. The value that yields the 
highest CVC fitness is chosen, and the range is narrowed 
to cover just one division on either side of the chosen 
value, with the constraint that the range cannot go outside 
of the range 0..1. For example, if .3 is chosen in the first 
round, then the new range is from .2 to .4. The process is 
repeated three times, at which point the effect on 
classification becomes negligible. 

Pseudo-code for the parameter-finding portion of the 
learning algorithm is shown in Figure 2. This routine 
assumes that the nearest mark neighbors of each instance T 
have been found and returns the parameters that yield the 
highest CVC fitness found during the search. Once these 
parameters have been found, the neighbor lists can be 
discarded, and only the raw instances and best parameters 
need to be retained for use during subsequent 
classification. 

In Figure 2, to ''try'' a parameter value means to set the 
parameter to that value, find the CVC fitness of the 
system, and, if the fitness is better than any seen so far, set 
bestCVC to this fitness, and remember the current set of 
parameter values in bestparams. 

The time spent tuning parameters is done just once during 

learning, and is dominated by the first O(mn2) step 
required to find the nearest neighbors of each instance. 
During execution, classification takes O(mn) time, which 
is the same as the basic nearest neighbor rule. 

Finw- maxTime, mmng set 7): bestYarums 
Assume that the mark nearest neighbors have been 

Let timeSinceImprovement. 
Let bestCVC=O. 
While timeSinceImprovement < maxTime 

found for each instance i in T. 

Choose a random parameter p to adjust. 
If (p="L?) try k=2..30. and set k to best value found. 
If (p="shupe") try linear, gwssiun, and eponentiul. 
If (p="Wgk") try Dk and D'b 
If (p=%k") 

Let m i d  and nuu=l 
For iterution=l to 3 

Let width=(min-max)/lO. 
Try wFmin..m in steps of width. 
Let min=best wk-width (if m h o ,  let min=0) 
Let max=best wk+width (if -1, let max=l) 

Endfor 

then let timeSinceImprovement=O, 
and let bestPuramr-cumnt parameter settings. 

If bestCVC was improved during this iteration, 

Endwhile. 
Let shupe=majority, and try t1. .30.  
if bestCVC was improved during this search, 

then let bestPurums=current parameter settings. 
Return bestParums. 

Figure 2. Learning algorithm for RIB. 

5. Experimental Results 

The Refined Instance-Based (RIB) learning algorithm was 
implemented and tested on 31 applications from the 
Machine Leaming Database Repository at the University 
of California, b i n e  [12]. RIB was compared to a static 
instance-based learning algorithm that is identical to RIB 
except that it uses k = 3 and majority voting and thus does 
not fine-tune parameters. RIB was also compared to an 
otherwise identical algorithm that uses leave-one-out 
cross-validation (LCV) instead of CVC to decide on the 
various parameters. (Experiments were also run using 
confidence alone to decide on parameters, but as expected, 
values were almost always chosen that favored nearer 
neighbors, i.e., k = 1, wk = 0, and an exponential kernel. 
Results using confidence alone were thus worse than doing 
no parameter tuning at all, and are therefore not included 
here.) 

For each dataset each algorithm was trained using 90% of 
the available data. The remaining 10% of the data was 
classified using the instances in T and the best parameter 
settings found during training. The average accuracy over 
10 such trials (i.e., 10-fold cross-validation accuracy) is 
reported for each dataset in Table 1. 
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RIB (using CVC) had the highest generalization accuracy 
in 18 out of these 31 datasets, LCV was highest in 10 
datasets and the static majority-voting algorithm was 
highest in 7 cases. RIB was an average of over 1% higher 
than the static algorithm in generalization accuracy on 
these datasets. LCV fell almost exactly halfway between 
the static and RIB methods. All of these algorithms have 
substantially higher generalization accuracy than the basic 
nearest neighbor rule using a Euclidean distance function 
VI]. 

In order to see if the average generalization accuracy for 
CVC was significantly higher than the others, a Wilcoxon 
signed ranks test [13] was used on the accuracy values 
listed in Table 1. As shown at the bottom of Table 1, CVC 
had a significantly higher average generalization accuracy 
on this set of classification tasks than both the static and 
LCV methods at a 99% confidence level or higher. 

6. Conclusions 

The RIB leaming algorithm combines the use of cross- 
validation accuracy and confidence (CVC) to generate an 
evaluation function that returns real-valued differences in 
fitness in response to even small changes in parameters. It 
avoids the problem of frequent ties that occurs when using 
cross-validation alone. It also does not suffer from the 
strong bias towards heavily weighting nearer neighbors 
that occurs when using confidence alone. 

In our experiments on a collection of 31 datasets, RIB was 
able to successfully use the new CVC evaluation method 
in conjunction with a distance-weighted voting scheme to 
improve average accuracy over a static majority-voting 
algorithm or a distance-weighted algorithm using only 
cross-validation to make decisions. 

Dstaset 
Anneal 
AUStralian 
Breast C a n c e r 0  
Bridges 
CrX 
Echocardiogram 
Flag 
Glass 
Heart 
Heart(Cleve1and) 
Heart(Hungarian) 
Heartwng Beach) 
Heartmore) 
Heart(Swiss) 
Hepatitis 
Horse Colic 
Image Segmentation 
Ionosphere 
Iris 
LED Creator+ 1 7 
LED Creator 
Liver (Bupa) 
Pima Diabetes 
Promoten 
Sonar 
SOY- (Large) 
Vehicle 
Voting 
Vowel 
Wine 

&a& 
93.11 
84.78 
96.28 
66.09 
83.62 
94.82 
61.34 
73.83 
81.48 
81.19 
79.55 
70.00 
73.78 
92.69 
80.62 
57.84 
93.10 
84.62 
94.00 
67.10 
73.40 
65.57 
73.56 
93.45 
87.55 
88.59 
71.76 
95.64 
96.57 
94.93 

u x l m  
94.49 94.62 
85.08 8536 
96.71 96.42 
65.09 65.09 
84.78 85.07 
96.07 96.07 
62.39 63.37 
67.81 69.20 
81.85 83.34 
81.48 83.15 
80.60 80.93 
73.50 73.00 
77.03 78.52 
92.63 92.63 
83.00 81.79 
59.51 65.15 
91.67 91.91 
86.91 86.62 
95.33 95.33 
71.80 71.90 
72.30 72.90 
61.77 61.41 
73.58 75.26 
94.09 93.09 
83.57 84.10 
90.54 90.86 
72.13 71.54 
95.85 95.85 
98.29 98.29 
96.01 97.71 

zoo 94.44 94.44 97.78 
Average 82.11 82.59 83.17 
Wilcoxon 99.50 99.00 d u  

Table 1. Generalization accuracy of IBL algorithms 
using static majority voting (Static), cross-validation to 

make decisions (UN), and CVC as used in RIB. 

References 

[I] Schaffer, Cullen. 1993. Selecting a Classification Method 
by Cross-Validation. Machine Learning.lS1. 

[2] Moore, Andrew W., and Mary S. Lee. 1993. Efficient 
Algorithms for Minimizing Cross Validation Error. In 
Machine Learning: Proceedings of the Eleventh 
International Conference, Morgan Kaufmann. 

[3] Kohavi, Ron. 1995. A Study of Cross-Validation and 
Bootstrap for Accuracy Estimation and Model Selection, 
In Proceedings of the International Joint Conference on 
Artificial Intelligence (uCAI'9.5). 

[4] Aha, David W., Dennis Kibler, Marc K. Albert. 1991. 
Instance-Based Learning Algorithms. Machine Learning. 

[5] Cover, T. M., and P. E. Hart. 1967. Nearest Neighbor 
Pattern Classification, Institute of Electrical and 
Electronics Engineers Transactions on Information 

[6] Dasarathy. Belur V. 1991. Nearest Neighbor (NN) Norms: 
NN Pattern Classification Techniques, Los Alamitos, 
CA IEEE Computer Society Press. 

[7] Dudani, Sahibsingh A. 1976. The Distance-Weighted k- 
Nearest-Neighbor Rule, IEEE Transactions on Systems, 
Man and Cybernetics. 64,1976. pp. 325-327. 

[8] Stanfill, C., and D. Waltz. 1986. Toward memory-based 
reasoning. Communications of the ACM. 29. 1986. pp. 

[9] Cost, Scott, and Steven Salzberg. 1993. A Weighted 
Nearest Neighbor Algorithm for Learning with Symbolic 
Features, Machine Learning. 10. pp. 57-78. 

[lo] Lebowitz, Michael. 1985. Categorizing Numeric 
Information for Generalization. Cognitive Science. 9. 

[Ill Wilson, D. Randall, and Tony R. Martinez. 1997. 
Improved Heterogeneous Distance Functions. Journal of 
Artificial Intelligence Research. 6-1. pp. 1-34. 

[12] Men, C. J., and P. M. Murphy. 1996. UCI Repository of 
Machine Learning Databases. Irvine, CA: University of 
California Irvine, Department of Information and 
Computer Science. http://www .ics.uci.edu/-mlead 

[13] Conover, W. J. 1971. Practical Nonparametric Statistics. 
New York John Wiley, pp. 206-209.383. 

6, pp. 37-66. 

Thm. 13-1, January 1967. p ~ .  21-27. 

1213-1228. 

pp. 285-308. 

1414 

http://www

	Combining Cross-Validation and Confidence to Measure Fitness
	Original Publication Citation
	BYU ScholarsArchive Citation

	Combining cross-validation and confidence to measure fitness - Neural Networks, 1999. IJCNN '99. International Joint Conference on

