
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

1999-07-16

Combining Cross-Validation and Confidence to Measure Fitness Combining Cross-Validation and Confidence to Measure Fitness

Tony R. Martinez
martinez@cs.byu.edu

D. Randall Wilson

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Wilson, D. R. and Martinez, T. R, "Combining Cross-Validation and Confidence to Measure

Fitness", Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN'99,

CD paper #163, 1999.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Martinez, Tony R. and Wilson, D. Randall, "Combining Cross-Validation and Confidence to Measure
Fitness" (1999). Faculty Publications. 1120.
https://scholarsarchive.byu.edu/facpub/1120

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1120?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Combining Cross-Validation and Confidence to Measure Fitness

D. Randall Wilson
fonix corporation

WilsonR @ fonix. corn

Abstract

Neural network and machine learning algorithms often
have parameters that must be tuned for good pe$onname
on a particular task. Leave-one-out cross-validation
(LCV) accuracy is often used to measure the fitness of a set
of parameter values. However, small changes in
parameters often have no eflect on LCV accuracy. Many
learning algorithms can measure the confidence of a
classification decision, but often confidence alone is an
inappropriate measure of fitness. This paper proposes a
combined measure of Cross- Validation and Confidence
(CVC) for obtaining a continuous measure of fitness for
sets of parameters in learning algorithms. This paper also
proposes the Refined Instance-Based (RIB) learning
algorithm which illustrates the use of CVC in automated
parameter tuning. Using CVC provides significant
improvement in generalization accuracy on a collection of
31 clussification tasks when compared to using LCV.

1. Introduction

Inductive learning algorithms are typically presented with
n training examples (instances) from a training set, T,
during learning. In classification tasks each instance has
an input vector x, and an output class c. After learning is
complete, these systems can be presented with new input
vectors for classification, many of which were not in the
original training set. The algorithm must generalize from
the training set to determine the most likely output
classification for each input vectory.

Learning algorithms often have Parameters which affect
how well they are able to generalize on a particular task.
Section 2 explains how leave-one-out cross-validation
(LCV) can be used to tune parameters, and shows why it is
limited in some cases. Section 3 proposes a continuous
measure of fitness using both confidence and cross-
validation (CVC). Section 4 proposes a distance-weighted
R@imd Instance-Based (RIB) learning algorithm that can
use either LCV or CVC to refine various parameters.
Section 5 presents empirical results on 31 classification
tasks showing statistically significant improvemnt of CVC
over LCV in tuning parameters in RIB.

Tony R. Martinez
Brigham Young University

murtinez@ cs. byu. edu

2. Leave-one-out Cross-Validation (LCV)

One of the most popular methods of evaluating a set of
parameter values is through the use of cross-validation [1,
2,3]. In cross-validation, the training set Tis divided into
J partitions, Ti ... TJ, and the instances in each of the
partitions are classified by the instances in the remaining
partitions using the proposed parameter setting. The
average accuracy of these J trials is used to estimate what
the generalization accuracy would be if the parameter
value was used. The parameter value that yields the
highest estimated accuracy is then chosen. When more
than one parameter needs to be tuned, the combined
settings of all of the parameters can be measured using
cross-validation in the same way.

When J is equal to the number of instances in T, the result
is leave-one-out cross-validation (LCV), in which each
instance i is classified by all of the instances in T except
for i itself, so that almost all of the data is available for
each classification attempt. LCV has been described as
being desirable but computationally expensive [2].
However, in some situations it can be performed
efficiently, as illustrated in Section 4.

One problem with using LCV to fine-tune parameters in a
classification system is that it can yield only a fixed
number of discrete accuracy estimates. For each instance i
in T, the accuracy is 1 if the instance is classified correctly
and 0 if it is misclassified. Thus the average LCV
accuracy over all n instances in T is r / n, where r is the
number classified correctly. Since r is an integer from 0 to
n, there are only n + 1 accuracy values possible with this
measure, and often two different sets of parameter values
will yield the same accuracy because they will classify the
same number of instances correctly. This makes it
difficult to tell which parameter values are better than
another. This problem occurs quite frequently in some
systems and limits the extent to which LCV can be used to
finetune many classifiers.

3. Confidence and Cross-Validation (CVC)

An alternative method for estimating generalization
accuracy is to use the confidence with which each instance
is classified. The average confidence over all n instances

O-7803-5529-6/99/$10.00 0 1999 IEEE 1409

in the training set can then be used to estimate which set of
parameter values will yield better generalization. The
confidence for each instance i is

where weightcorrect is the weight received for the correct
class of instance i , and weightc is the weight received for
class c. This weight might be the sum from a weighted
voting scheme as in distance-weighted instance-based
learning algorithms or radial basis function neural
networks. When the weight (i.e., summed activation or
weighted votes) for each class is a continuous value, then
confidence can provide a continuous measure of fitness for
parameter settings.

After learning is complete, the confidence can be used to
indicate how confident the classifier is in its generalized
output. In this case the confidence is the same as defined
in Equation 1, except that weightcorrect is replaced with
weightout, which is the amount of voting weight received
by the class that is chosen to be the output class by the
classifier. This is often equal to the maximum number of
votes (or maximum sum of voting weights) received by
any class, since the majority class is typically chosen as the
output.

Average confidence has the attractive feature that it
provides a continuously valued metric for evaluating a set
of parameter values. However, it also has drawbacks that
make it inappropriate for direct use in measuring
parameter fitness in some learning algorithms. For
example, in the Refined Znsmce-Based learning algorithm
presented in Section 4, using confidence alone favors any
parameter settings that give nearer neighbors more weight
than further ones, even if doing so degrades accuracy.

The CVC accuracy cvci of a single instance i can also be
computed as

(3)
n . cv + conf

n+l
cvci =

where n is the number of instances in the training set; confi
is as defined in Equation 1; and cv is 1 if instance i is
classified correctly by its neighbors in T, or 0 otherwise.
Note that CVCT can also be obtained by averaging cvcj for
all n instances in T.

This metric weights the cross-validation accuracy more
heavily than the confidence by a factor of n. The LCV
portion of CVC can be thought of as providing the whole
part of the score, with codidence providing the fractional
part. This metric gives LCV the ability to make decisions
by itself unless multiple parameter settings are tied, in
which case the confidence makes the decision.

CVC can be used with a variety of classification
algorithms in which parameters need to be tuned, a
measure of confidence for the correct class is available and
leave-one-out cross-validation is not computationally
prohibitive. Section 4 presents an instance-bused learning
algorithm with automatically-tuned parameters to illustrate
the use of CVC and to provide empirical data.

4. Instance-Based Learning

Instance-Based Learning (IBL) [4] is a paradigm of
learning in which algorithms typically store some or all of
the n available training examples (instances) from the
training set T during learning. During generalization,
these systems use a distance function to determine how
close a new input vector y is to each stored instance and
use the nearest instance or instances to predict the output
class of y (i.e., to classifyy). Some of the earliest instance-
based learning aleorithms are referred to as nearest

LCV works fairly well in general but suffers from not neighbor tecG'lues[59 6]*
being a continuous measure, while confidence is
continuous but suffers from problems of its own when
used alone as mentioned above. we therefore combine
cross~va~i~t ion and
CVC. cvc uses LCV to count the number of instances
classified correctly using a set of parameter
values. It then adds the average confidence of the correct

Instance-based learning algorithms Often have a parameter
k that determines how many instances are used to decide
the classification, as in the k-nearest neighbor rule [5] .
The use of k > 1 can lessen the effect of noise in the
system, but it also introduces a parameter to the system
which must be chosen*

into a single metric

class, avgconf (where 0 I uvgconf I 1) to the LCV

0 I and 0 I confI 1, the maximum sum is + 1. I,,
order to get a metric in the range 0.~1, the sum
is therefore divided by + Using CVC, the accuracy
estimate CVCT of the entire training set T is therefore
given as

accuracy to get a continuous measure of fitness. Since Dudani 171 P ~ O P O S ~ ~ a distance-weighted nearest neighbor
algorithm in which neighbors nearer to the input vector get
more weight. This can reduce the sensitivity of the system
to the parameter k, though a suitable value for k must still
be found-

This section presents a new instance-based learning system
called the Refined Instance-Based (RIB) learning
algorithm that uses distance-weighted k-nearest neighbor

n + l voting. RIB automatically tunes several parameters,
(2)

r + avgconf cvc, =

1410

including the value of k and the kernel shape for the
distance weighting function. The distance-weighted voting
allows decision boundaries to be fine-tuned with more
precision than is allowed with simple majority voting.
RTB also uses a heterogeneous distance function described
below in Section 4.1 that is appropriate for domains with
nominal attributes, linear attributes, or both. Section 4.2
describes how distance-weighted voting is done in RIB,
and Section 4.3 tells how parameters are automatically
tuned in the system.

4.1. Heterogeneous Distance Function
A distance function is critical to the success of an instance-
based algorithm. Euclidean Distance is the most
commonly used distance function, but many applications
have nominal (discrete, unordered) attributes for which
Euclidean distance and other linear metrics are not
appropriate.

The Value Difference Metric (VDM) [8,9] is able to return
a real-valued distance between each pair of values for
nominal attributes based on statistics gathered from the
training set. It does not, however, directly handle linear
attributes but instead requires discretization [lo].

We previously introduced several new heterogeneous
distance functions that substantially improved average
generalization accuracy on a collection of 48 different
datasets [l l] . RIB uses one of the most successful
functions, the Heterogeneous Value Difference Metric
O M) .

The HVDM distance function defines the distance between
two input vectors x and y as

where m is the number of attributes. The function da(x,y)
returns a distance between the two values x and y for
attribute a and is defined as

if x or y is unknown; else.. .
if a is nominal (5) [e ifaisnumeric

where a, is the sample standard deviation of the numeric
values occurring for attribute a. Since 95% of the values
in a normal distribution fall within two standard deviations
of the mean, the difference between numeric values is
divided by four standard deviations to scale each value into
a range that is usually of width 1. The function vdm,(x,y)

returns the distance between two nominal attribute values x
and y for attribute a as

where N4.+ is the number of times attribute a had value x
in the W n g set, Nqx,c is the number of times attribute a
had value x and the output class was c, and C is the
number of output classes. Using this distance measure,
two nominal attribute values are considered to be closer if
they have more similar classifications, regardless of the
order of the values. More details on this distance function
are available in [1 11.

The HVDM distance function is used to find distances in
the RIB algorithm, which in turn are used to weight voting
and thus influence confidence, as discussed below.

4.2. Vote Weighting
Let y be the input vector to be classified and let nl ... nk be
the k nearest neighbors of y in T. Let Dj be the distance
from y to the jth neighbor using some distance function D
(such as HVDM).

In the RIB algorithm, the voting weight of each of the k
nearest neighbors depends on its distance from the input
vector y . The weight is 1 when the distance is 0 and
decreases as the distance grows larger. The way in which
the weight decreases as the distance grows depends on
which keml function is used. The kernel functions used
in RIB are: majority, linear, gaussian, and exponential.

In majority voting, all k neighbors get an equal vote of 1.
With the other three kernels, the voting weight of a
neighbor ni is 1 when the distance to ni is 0 and drops to
the value of a parameter wk at a distance Dk, where Dk is
the distance to the kth nearest neighbor.

Given wk and Dk, the amount of voting weight W j for the
jth neighbor that is a distance Dj from the input vector for
each kernel is given in Equations 7-10.

(a) Majority: w j = 1

(c) Gaussian: wj = wkDj2IDk2 (9)
(d) Exponential: w j = wkDjIDk (10)

Note that the majority voting scheme does not require the
wk parameter. Also note that if k = 1 or wk = 1, then all
four of these schemes are equivalent. As Dk approaches 0,
the weight in Equations 8-10 all approach 1. Therefore, if
the distance Dk is equal to 0, then a weight of 1 is used for

141 1

consistency and to avoid dividing by 0. These four kernels
are illustrated in Figure 1.

(a)Majority ;

0 .5 1 1.5

(b) Linear

.4

.2 :?L 0 0 0.5 1 1.5

0 5 1 1.5 0 0.5 1 1.5
DiStaoce Distance

Figure 1. Distance-weighting kernels, shown with
&=2.oandWk=.O1.

Sometimes it is preferable to use the average distance of
the k nearest neighbors instead of the distance to the kth
neighbor to determine how fast voting weight should drop
off. This can be done by computing what the distance Di
of the kth nearest neighbor would be if the neighbors were
distributed evenly. This can be done by setting Di to

and using Di in place of Dk in Equations 8-10. When
k = 1, Equation 11 yields 4 = 2Dd2 = Dk, as desired.
When k > 1, this method can be more robust in the
presence of changes in the system such as changing
parameters or the removal of instances from the classifier.

4.3. RIB Learning Algorithm

Several parameters in have been mentioned in the above
discussion without specifying how they are set.
Specifically, for a given classification task, RIB must set k,
the number of neighbors that vote on the class of a new
input vector; kernel, the kernel of the distance-weighted
voting function; wk, the weight of the kth neighbor (except
in majority voting); and uvgk, the flag determining whether
to use Dk or 4.

These parameters are set as described in the remainder of
this section. RIB begins by finding the first maxk nearest
neighbors of every instance i, where maxk is the maximum
value of k being considered. (In our experiments we used
mark = 30 to leave a wide margin of error, and values of k
greater than 10 were rarely if ever chosen by the system.)
The nearest neighbors of each instance i, notated
i.ni ... i . n d , are stored in a list ordered from nearest to
furthest for each instance, so that i.nl is the nearest
neighbor of i and i.nk is the kth nearest neighbor. The
distance i.dj to each of instance i’s neighbors is also stored
to avoid continuously recomputing this distance. This is
the most computationally-intensive step of the process and
takes O(mn2) time, where m is the number of input
attributes and n is the number of instances in the training
set.

CVC is used in the RIB system to evaluate values for the
parameters k, wk, kernel, and avgk. None of these
parameters affect the distance between neighbors but only
affect the amount of voting weight each neighbor gets.
Thus, changes in these parameters can be made without
requiring a new search for nearest neighbors or even an
update to the stored distance to each neighbor. This allows
a set of parameter values to be evaluated in O(kn) time
instead of the O(mn2) time required by a naive application
of LCV.

To evaluate a set of parameter values, cvc; as defined in
Equation 3 is computed as follows. For each instance i,
the voting weight for each of its k nearest neighbors is
found according to its stored distance and the current
settings of S wb kernel and avgk, as described in Section
4.2. These weights are summed in their respective classes,
and the confidence of the correct class is found as in
Equation 1. If the majority class is the same as the true
output class of instance i, CY in Equation 3 is 1. Otherwise,
it is 0. The average value of cvci over all n instances is
used to determine the fitness of the parameter values.

The search for parameter values proceeds in a greedy
manner as follows. For each iteration, one of the four
parameters is chosen for adjustment, with the restriction
that no parameter can be chosen twice in a row, since
doing so would simply rediscover the same parameter
value. The chosen parameter is set to various values as
explained below while the remaining parameters are held
constant. For each setting of the chosen parameter, the
CVC fitness for the system is calculated, and the value that
achieves the highest fitness is chosen as the new value for
the parameter.

At that point, another iteration begins, in which a different
parameter is chosen at random and the process is repeated
until 10 attempts at tuning parameters does not improve
the best CVC fitness found so far. In practice, only a few
iterations are required to find good settings, after which
improvements cease and the search soon terminates. The

1412

set of parameters that yield the best CVC fitness found at
any point during the search are used by RIB for
classification. The four parameters are tuned as follows.

1. Choosing k. To pick a value of k, all values from 2 to
llzaxk (=30 in our experiments) are tried, and the one that
results in maximum CVC fitness is chosen. Using the
value k = 1 would make all of the other parameters
irrelevant, thus preventing the system from tuning them, so
only values 2 through 30 are used until all iterations are
complete.

2. Choosing a kernel function. Picking a vote-weighting
kernel function proceeds in a similar manner. The kernel
functions linear, gaussian, and exponential are tried, and
the kernel that yields the highest CVC fitness is chosen.
Using majoriry voting would make the parameters wk and
avgk irrelevant, so this setting is not used until all
iterations are complete. At that point, majority voting is
tried with values of k from 1 to 30 to test both k = 1 and
majority voting in general, to see if either can improve
upon the tuned set of parameters.

3. Setting avgk. Selecting a value for the flag avgk
consists of simply trying both settings, i.e., using Dk and
D[and seeing which yields higher CVC fitness.

4. Searching for wk. Finding a value for wk is more
complicated because it is a real-valued parameter. The
search for a good value of wk begins by dividing the range
0..1 into ten subdivisions and trying all eleven endpoints of
these divisions. For example, on the first pass, the values
0, -1, -2, ..., .9, and 1 .O are used. The value that yields the
highest CVC fitness is chosen, and the range is narrowed
to cover just one division on either side of the chosen
value, with the constraint that the range cannot go outside
of the range 0..1. For example, if .3 is chosen in the first
round, then the new range is from .2 to .4. The process is
repeated three times, at which point the effect on
classification becomes negligible.

Pseudo-code for the parameter-finding portion of the
learning algorithm is shown in Figure 2. This routine
assumes that the nearest mark neighbors of each instance T
have been found and returns the parameters that yield the
highest CVC fitness found during the search. Once these
parameters have been found, the neighbor lists can be
discarded, and only the raw instances and best parameters
need to be retained for use during subsequent
classification.

In Figure 2, to ''try'' a parameter value means to set the
parameter to that value, find the CVC fitness of the
system, and, if the fitness is better than any seen so far, set
bestCVC to this fitness, and remember the current set of
parameter values in bestparams.

The time spent tuning parameters is done just once during

learning, and is dominated by the first O(mn2) step
required to find the nearest neighbors of each instance.
During execution, classification takes O(mn) time, which
is the same as the basic nearest neighbor rule.

Finw- maxTime, mmng set 7): bestYarums
Assume that the mark nearest neighbors have been

Let timeSinceImprovement.
Let bestCVC=O.
While timeSinceImprovement < maxTime

found for each instance i in T.

Choose a random parameter p to adjust.
If (p="L?) try k=2..30. and set k to best value found.
If (p="shupe") try linear, gwssiun, and eponentiul.
If (p="Wgk") try Dk and D'b
If (p=%k")

Let m i d and nuu=l
For iterution=l to 3

Let width=(min-max)/lO.
Try wFmin..m in steps of width.
Let min=best wk-width (if m h o , let min=0)
Let max=best wk+width (if -1, let max=l)

Endfor

then let timeSinceImprovement=O,
and let bestPuramr-cumnt parameter settings.

If bestCVC was improved during this iteration,

Endwhile.
Let shupe=majority, and try t1. .30.
if bestCVC was improved during this search,

then let bestPurums=current parameter settings.
Return bestParums.

Figure 2. Learning algorithm for RIB.

5. Experimental Results

The Refined Instance-Based (RIB) learning algorithm was
implemented and tested on 31 applications from the
Machine Leaming Database Repository at the University
of California, b i n e [12]. RIB was compared to a static
instance-based learning algorithm that is identical to RIB
except that it uses k = 3 and majority voting and thus does
not fine-tune parameters. RIB was also compared to an
otherwise identical algorithm that uses leave-one-out
cross-validation (LCV) instead of CVC to decide on the
various parameters. (Experiments were also run using
confidence alone to decide on parameters, but as expected,
values were almost always chosen that favored nearer
neighbors, i.e., k = 1, wk = 0, and an exponential kernel.
Results using confidence alone were thus worse than doing
no parameter tuning at all, and are therefore not included
here.)

For each dataset each algorithm was trained using 90% of
the available data. The remaining 10% of the data was
classified using the instances in T and the best parameter
settings found during training. The average accuracy over
10 such trials (i.e., 10-fold cross-validation accuracy) is
reported for each dataset in Table 1.

1413

RIB (using CVC) had the highest generalization accuracy
in 18 out of these 31 datasets, LCV was highest in 10
datasets and the static majority-voting algorithm was
highest in 7 cases. RIB was an average of over 1% higher
than the static algorithm in generalization accuracy on
these datasets. LCV fell almost exactly halfway between
the static and RIB methods. All of these algorithms have
substantially higher generalization accuracy than the basic
nearest neighbor rule using a Euclidean distance function
VI].

In order to see if the average generalization accuracy for
CVC was significantly higher than the others, a Wilcoxon
signed ranks test [13] was used on the accuracy values
listed in Table 1. As shown at the bottom of Table 1, CVC
had a significantly higher average generalization accuracy
on this set of classification tasks than both the static and
LCV methods at a 99% confidence level or higher.

6. Conclusions

The RIB leaming algorithm combines the use of cross-
validation accuracy and confidence (CVC) to generate an
evaluation function that returns real-valued differences in
fitness in response to even small changes in parameters. It
avoids the problem of frequent ties that occurs when using
cross-validation alone. It also does not suffer from the
strong bias towards heavily weighting nearer neighbors
that occurs when using confidence alone.

In our experiments on a collection of 31 datasets, RIB was
able to successfully use the new CVC evaluation method
in conjunction with a distance-weighted voting scheme to
improve average accuracy over a static majority-voting
algorithm or a distance-weighted algorithm using only
cross-validation to make decisions.

Dstaset
Anneal
AUStralian
Breast C a n c e r 0
Bridges
CrX
Echocardiogram
Flag
Glass
Heart
Heart(Cleve1and)
Heart(Hungarian)
Heartwng Beach)
Heartmore)
Heart(Swiss)
Hepatitis
Horse Colic
Image Segmentation
Ionosphere
Iris
LED Creator+ 1 7
LED Creator
Liver (Bupa)
Pima Diabetes
Promoten
Sonar
SOY- (Large)
Vehicle
Voting
Vowel
Wine

&a&
93.11
84.78
96.28
66.09
83.62
94.82
61.34
73.83
81.48
81.19
79.55
70.00
73.78
92.69
80.62
57.84
93.10
84.62
94.00
67.10
73.40
65.57
73.56
93.45
87.55
88.59
71.76
95.64
96.57
94.93

u x l m
94.49 94.62
85.08 8536
96.71 96.42
65.09 65.09
84.78 85.07
96.07 96.07
62.39 63.37
67.81 69.20
81.85 83.34
81.48 83.15
80.60 80.93
73.50 73.00
77.03 78.52
92.63 92.63
83.00 81.79
59.51 65.15
91.67 91.91
86.91 86.62
95.33 95.33
71.80 71.90
72.30 72.90
61.77 61.41
73.58 75.26
94.09 93.09
83.57 84.10
90.54 90.86
72.13 71.54
95.85 95.85
98.29 98.29
96.01 97.71

zoo 94.44 94.44 97.78
Average 82.11 82.59 83.17
Wilcoxon 99.50 99.00 d u

Table 1. Generalization accuracy of IBL algorithms
using static majority voting (Static), cross-validation to

make decisions (UN), and CVC as used in RIB.

References

[I] Schaffer, Cullen. 1993. Selecting a Classification Method
by Cross-Validation. Machine Learning.lS1.

[2] Moore, Andrew W., and Mary S. Lee. 1993. Efficient
Algorithms for Minimizing Cross Validation Error. In
Machine Learning: Proceedings of the Eleventh
International Conference, Morgan Kaufmann.

[3] Kohavi, Ron. 1995. A Study of Cross-Validation and
Bootstrap for Accuracy Estimation and Model Selection,
In Proceedings of the International Joint Conference on
Artificial Intelligence (uCAI'9.5).

[4] Aha, David W., Dennis Kibler, Marc K. Albert. 1991.
Instance-Based Learning Algorithms. Machine Learning.

[5] Cover, T. M., and P. E. Hart. 1967. Nearest Neighbor
Pattern Classification, Institute of Electrical and
Electronics Engineers Transactions on Information

[6] Dasarathy. Belur V. 1991. Nearest Neighbor (NN) Norms:
NN Pattern Classification Techniques, Los Alamitos,
CA IEEE Computer Society Press.

[7] Dudani, Sahibsingh A. 1976. The Distance-Weighted k-
Nearest-Neighbor Rule, IEEE Transactions on Systems,
Man and Cybernetics. 64,1976. pp. 325-327.

[8] Stanfill, C., and D. Waltz. 1986. Toward memory-based
reasoning. Communications of the ACM. 29. 1986. pp.

[9] Cost, Scott, and Steven Salzberg. 1993. A Weighted
Nearest Neighbor Algorithm for Learning with Symbolic
Features, Machine Learning. 10. pp. 57-78.

[lo] Lebowitz, Michael. 1985. Categorizing Numeric
Information for Generalization. Cognitive Science. 9.

[Ill Wilson, D. Randall, and Tony R. Martinez. 1997.
Improved Heterogeneous Distance Functions. Journal of
Artificial Intelligence Research. 6-1. pp. 1-34.

[12] Men, C. J., and P. M. Murphy. 1996. UCI Repository of
Machine Learning Databases. Irvine, CA: University of
California Irvine, Department of Information and
Computer Science. http://www .ics.uci.edu/-mlead

[13] Conover, W. J. 1971. Practical Nonparametric Statistics.
New York John Wiley, pp. 206-209.383.

6, pp. 37-66.

Thm. 13-1, January 1967. p ~ . 21-27.

1213-1228.

pp. 285-308.

1414

http://www

	Combining Cross-Validation and Confidence to Measure Fitness
	Original Publication Citation
	BYU ScholarsArchive Citation

	Combining cross-validation and confidence to measure fitness - Neural Networks, 1999. IJCNN '99. International Joint Conference on

