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ABSTRACT

DIGITAL RECEIPTS:

A SYSTEM TO DETECT THE COMPROMISE

OF DIGITAL CERTIFICATES

Nathaniel Seeley

Department of Computer Science

Master of Science

The ease of copying digital materials creates difficulty in detecting the theft of digital

certificates. Uneducated users frequently fail to protect their digital certificate keys

by not encrypting them, storing them in insecure places, and using them unwisely. In

addition, there is no way to prove that protocols involving certificates are completely

secure. This thesis introduces a system to ameliorate these problems by detecting

the compromise of digital certificates. It leverages dual logging messages sent via

side channels to a trusted third party. This third party correlates these messages and

automatically detects when an imposter presents a certificate based on the collected

evidence.
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Chapter 1 — Introduction

Knowledge of a secret, like a password, is a common form of authentication. Un-

like driver’s licenses and other physical credentials carried in one’s wallet, a secret

can be stolen and still remain in the owner’s possession. Digital certificates, which

are analogous to physical credentials, can be presented as evidence that the owner

possesses certain attributes. Digital certificates are in use in systems like Trans-

port Layer Security [7] and trust negotiation [18]. Proof of ownership of a digital

certificate requires an associated private key. Since ownership of digital certificates

involves secrets, it is difficult to detect when a digital certificate is stolen.

For that reason, this thesis presents an auditing system to detect when stolen

digital certificates are used. This system utilizes dual logging via messages sent

down side channels in order to detect compromise’. When an owner demonstrates

knowledge of a secret to an entity (hereafter called a verifier), side channel messages

are sent to an entity called the Receipt Resolution Server (RRS). The RRS analyzes

these messages for discrepancies and notifies owners if suspicious activity is discov-

ered. Although this thesis was designed specifically to protect the secrets associated

with digital certificates, it could be adapted to protect other types of secrets as well.

1.1 Digital Certificate Theft

Detecting the theft of a driver’s license or student ID is straightforward. If it

is not in the owner’s wallet, or if the wallet is missing, then there is a chance the

credential has been compromised.

Detecting the theft of a credit card or credit card number is slightly different

than detecting the theft of a driver’s license, because using a credit card does not

always involve presentation of the physical card. Ownership is assumed when one
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CHAPTER 1. INTRODUCTION

demonstrates knowledge of the number on the card, as is the case when one shops

online or makes purchases over the phone. Thus, it is more difficult to detect the

theft of a credit card number, since the number is a sequence of digits, not a physical

object. This is one reason why cardholders receive itemized monthly statements and

why credit card companies have fraud detection departments. If there are charges

on the monthly statement that the credit card owner did not make there is a chance

that someone has stolen the number.

As with a credit card, ownership of most digital certificates involves knowing a

sequence of numbers. For example, an X.509 certificate contains a public key that

corresponds to a private key which cannot be feasibly derived from the public key.

Proving ownership of this type of digital certificate involves proving knowledge of

the associated private key. Therefore, in order to avoid theft of an X.509 certificate

one must maintain the secrecy of the private key. The system developed in this

thesis focuses on protecting public/private key certificates.

There are two ways to steal these types of digital certificates. The first is learning

the private key. The second is more complicated, involving the manipulation of a

vulnerable certificate ownership protocol. In this second method, an attacker tricks

the certificate owner into performing an action that will allow the thief to feign

knowledge of the private key. For an example of a broken certificate ownership

protocol, see Section 2.2.

Compromise of a physical or digital certificate can lead to identity theft, a grow-

ing problem in the United States today. Identity theft occurs when someone steals

enough personal information about a victim to impersonate them in some context.

The FTC reports that identity theft is escalating, with incidents in over 246,000

households in the United States in 2004 [1]. Internet fraud losses totaled over

2



1.2. PRIVATE KEY COMPROMISE

$265,000,000 for that same year. As the use of digital certificates increases, it is

probable that identity theft with digital certificates will also increase. This the-

sis research explores the problem of digital identity theft and presents a system to

detect the compromise of a digital certificate.

1.2 Private Key Compromise

Frequently, digital certificate private keys are exposed through the actions of

uneducated or careless owners, resulting in the potential for theft. Whitten and

Tygar claim that the vast majority of computer security failures come from user

error [19]. Peter Gutmann, a security expert at the University of Auckland, dis-

cusses specific ways in which user error makes the private keys of digital certificates

vulnerable. Gutmann, who helped author the internationally recognized PGP and

Cryptlib products, is a respected security researcher who has broken various note-

worthy encryption systems, including the DES encryption used in Norton’s Diskreet

and the password file encryption used in Windows 3.1 and Windows 95.

Gutmann [9] claims that for practicality and usability reasons, system admin-

istrators often unwisely spread their private keys around numerous machines and

applications on the network, making them more likely to be stolen. For instance,

most system administrators make backup tapes of company data. These tapes often

include the company private key, since it would be costly for the key to be lost. The

backup tapes are often improperly secured, presenting opportunities for malicious

individuals to steal private keys. Gutmann gives an example of a company whose

backup tapes (containing a private key) were extensively scattered to various em-

ployees and assorted locations. These tapes were frequently transported by insecure

methods, such as the back seat of a car. Gutmann jokes, “the only way to securely

delete the [private] encryption key being used to protect large amounts of long-term

3



CHAPTER 1. INTRODUCTION

sensitive data would have been to carpet-bomb the city.”

In addition to the problems caused by carelessness, curiosity can also cause

unnecessary exposure of certificate private keys. For example, many applications

allow the private key to be exported as plaintext, rather than in a format that

requires a password to decrypt. When asking why anyone would want to make their

private key so vulnerable, Gutmann receives bizarre responses such as, “I don’t

know, I just want to do it.”

At other times, the private key is made vulnerable when users misunderstand

how certificates work. For example, one company distributed the private key of the

company’s root certificate to various company computers. They made the outra-

geous mistake of thinking that doing so would alleviate the error messages in web

browsers and mail programs that the company’s certificate was not trusted.

Although uneducated users have a higher risk of having their private keys com-

promised, even shrewd users and security minded companies are not completely

safe. Attackers are inventive and unpredictable; they may even be insiders in the

company whose certificates they attempt to steal. In situations like these, a method

of detecting digital certificate theft is highly desirable. The digital receipts system

is designed to detect compromise by noticing when an attacker attempts to use a

certificate without the owner’s knowledge.

1.3 Proving Protocol Security

An attacker does not necessarily need to know a digital certificate’s private key

to pretend ownership. Attackers can trick legitimate owners into disclosing mate-

rial that the attacker can later present as proof of ownership. This is accomplished

by manipulating insecure certificate ownership protocols. Designing a secure cer-

tificate ownership protocol is incredibly hard. Whitfield Diffie writes, “The design

4



1.3. PROVING PROTOCOL SECURITY

of cryptographic protocols in general, and authentication protocols in particular, is

extremely error prone” [8]. Ross Anderson compares writing such protocols to pro-

gramming Satan’s computer, and claims that even very short protocols have turned

out to contain security flaws which were not discovered for over a decade [3]. No

one has yet been successful in finding an airtight method for proving that a digital

certificate ownership protocol cannot be broken.

Some researchers have attempted to prove the security of these protocols by

using formal methods. These approaches fall into four categories [14]. The first

models a protocol using tools not specifically engineered for the analysis of pro-

tocols. The second method utilizes expert systems to analyze different scenarios

and draw conclusions about the protocol’s security. The third uses logics developed

specifically for the analysis of knowledge and belief. Burrows, Abadi, and Needham

pioneered this approach with BAN logic [6]. BAN logic assumes authentication is a

function of integrity and freshness and uses logic to evaluate both of these attributes

throughout the protocol. However, BAN logic cannot prove a protocol is secure; it

can only present an organized way to reason about authentication and detect flaws.

The fourth method models the protocols in an algebraic system and analyzes the

reachability of certain states. Of these four approaches, the most popular is the

third.

However, even specifically designed logics cannot prove security. According to

Anderson, “quite a few protocols which had been ‘proved’ secure have been success-

fully attacked” [3]. Additionally, Rubin and Honeyman claim [13] that:

. . . there is no technique known for proving that a protocol is secure.

The reason for this may be that security itself is not sufficiently well

defined. We can prove that a protocol is correct, or that it meets its

5



CHAPTER 1. INTRODUCTION

specification. We can even prove that under various assumptions, certain

attacks against a protocol will not work. However, we have no general

purpose method of proving that an arbitrary authentication protocol is

secure.

The nearly impossible task of proving protocol security makes a mechanism

that alerts users when someone else has presented and proved ownership of their

certificate immensely valuable.

1.4 Thesis Statement

The digital receipts auditing system can detect the usage of compromised digital

certificates, is secure against a wide variety of attacks, and has reasonable network

overhead.

1.5 Thesis Outline

Chapter 2 gives an overview of the system. Chapter 3 explains the details of

the different protocols used to set up and send side channel messages. Chapter

4 discusses the internals of the Receipt Resolution Server, the trusted third party

necessary for the operation of the system. Chapter 5 analyzes the system with

respect to known methods of attack. Chapter 6 explains the major design decisions

of the implementation and Chapter 7 analyzes how the system might affect a real

network. Finally, Chapter 8 contains conclusions and future work.

6



Chapter 2 — Overview

This chapter presents an overview of the digital receipts system, including what

parties are involved, what messages are communicated, and how the system detects

theft. The architecture of the digital receipts system is shown in Figure 2.1. The

principal parties are the certificate owner, the verifier, and the Receipt Resolution

Server (RRS).

To illustrate how the system works, consider the following hypothetical example.

Suppose Bob works for MedSoft, a company specializing in software used by hos-

pitals. MedSoft works closely with several partner companies, including LifeTech.

MedSoft allows developers with certificates signed by a partner company to view

source code. Alice, a LifeTech employee, wishes to access source code on the soft-

ware repository administered by Bob. In message 1 in Figure 2.1, Alice presents her

LifeTech certificate and a proof of ownership to Bob in order to gain access. In this

example Alice is the certificate owner and Bob is the verifier.

In message 2, Bob sends a receipt to the RRS, indicating that Alice has proven

ownership of her certificate to him. Receipts are simply records of transactions,

analogous to paper receipts from a grocery store.

Message 3 is a proof record sent from Alice to the RRS that contains the specifics

of the transaction. A proof record is analogous to a reverse monthly credit card state-

ment in that it contains a record of all of the transactions involving that certificate

during a particular time period. The difference is that instead of the credit card

company sending a statement to the certificate owner, a proof record is sent from

the certificate owner to the company. The RRS requires Alice to authenticate her-

self using a private key of a certificate registered with the RRS before accepting the

7



CHAPTER 2. OVERVIEW

Figure 2.1: Digital receipts system architecture

proof record. Requiring Alice to authenticate helps mitigate forged proof records,

as explained in section 5.1.3.

Receipts and proof records are sent to the RRS, which compares the transaction

entries in the proof record with the receipts. These messages are encrypted to protect

the privacy of the certificate owner. If there are receipts detailing transactions not on

the proof record, the RRS alerts Alice that someone may have stolen her certificate.

We assume that an attacker may have stolen any secret off of Alice’s machine,

but the RRS is secure. Therefore, the RRS machine should be different than the

one Alice uses her certificates on. This also frees Alice from the need for a machine

that is always on and always connected to the network to collect the receipts, which

could be sent at any time. In addition, it provides added security since an attacker

has to steal secrets from both Alice and the RRS, rather than just Alice, in order

8



2.1. DIGITAL CERTIFICATE THEFT EXAMPLE

to compromise the system.

2.1 Digital Certificate Theft Example

Suppose that someone steals Alice’s private key and proves ownership of her

certificate to Carol. When the RRS receives a receipt from Carol it will not find

a corresponding entry for that transaction on Alice’s proof record. The RRS then

informs Alice there is a possibility that her certificate has been stolen.

2.2 Insecure Authentication Example

The digital receipts system also detects when a certificate ownership protocol

has been broken. Suppose Alice proves ownership of her certificate to Mallory using

the simple, yet insecure challenge/response protocol shown in Figure 2.2. In this

protocol, Mallory sends a random number to Alice. Alice sends a message back to

Mallory containing this number encrypted with the private key corresponding to the

certificate she is presenting. Mallory verifies Alice’s certificate by decrypting this

message with the public key embedded in the certificate and making sure it matches

the original random number.

Figure 2.2: An insecure certificate ownership protocol

This protocol allows Mallory to masquerade as Alice. Mallory first entices Alice

9



CHAPTER 2. OVERVIEW

Figure 2.3: Mallory exploiting a flawed protocol to impersonate Alice to Dave

to connect and send a certificate. Mallory then presents Alice’s certificate to Dave

as her own. Dave sends Mallory a random number, which Mallory forwards to

Alice. Alice, seeking to prove ownership of her certificate to Mallory, then encrypts

this number with her private key and sends this to Mallory. Mallory then forwards

Alice’s encryption to Dave, making Dave believe Mallory owns Alice’s certificate.

The fraud is detected when the RRS receives Dave’s receipt, and Dave’s trans-

action does not appear on Alice’s proof record.

2.3 Assumptions

The digital receipts system makes five assumptions about the resources and

capabilities of an attacker. The intent of these assumptions is to not underestimate

Mallory so that the design will defend against probable attackers.

1. Mallory has complete control of the network between the entities in the system.

She is able to insert, delete, and modify network packets at will.

2. If Mallory has successfully stolen a certificate, she is assumed to have stolen

any other secret stored on Alice’s machine. Thus, digital receipts cannot rely

10



2.3. ASSUMPTIONS

on any secret stored on Alice’s machine.

3. Mallory does not have complete control over Alice’s machine. If Mallory has

complete control, she can influence everything that Alice sees on her computer

screen and record all input, including passwords. Mallory would be able to

modify or substitute any protection software that Alice might run. No system

could provide security under such circumstances.

4. The RRS is not compromised. Clearly if the RRS software was compromised,

or if a malicious insider worked for the company administering the RRS, the

attacker could prevent the RRS from warning the certificate owner about

potential certificate thefts. This also means that the RRS certificate has not

been stolen

5. The proper usage of TLS provides confidentiality, message integrity, and end-

point authentication. TLS authentication ensures that a party knows the pri-

vate key of the certificate it presents during the initial TLS handshake. Both

server and client/server TLS authentication are assumed to be secure. Al-

though there have occasionally been vulnerabilities found in implementations

of TLS, major implementations like OpenSSL are patched quickly. Further-

more, TLS is the security protocol used by large banks and other financial

institutions and is a trusted protocol for protecting sensitive customer data.

11
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Chapter 3 — Protocol Design

There are three communication protocols in the digital receipts system. The first

permits Alice to send proof records to the RRS containing information recorded

by Alice about each transaction during a given time window. The second protocol

permits a verifier to send receipts, each of which contains information about a sin-

gle transaction as recorded by the verifier. The Receipt Resolution Server (RRS)

correlates the proof records with the receipts and identifies discrepancies that imply

a compromised certificate. The third protocol allows Alice to register her machine

to the RRS to send proof records at preestablished times.

3.1 Proof Record Protocol

Each machine Alice uses the certificate on sends regularly scheduled proof records

to the RRS containing information about all certificate transactions during the

reporting period. For example, Alice might send the RRS weekly reports detailing

all certificate transactions originating from her laptop.

3.1.1 Requirements

A proof record contains the information necessary for the RRS to correlate each

transaction with a receipt. It must be sent with confidentiality and integrity and

the RRS must be able to detect forged proof records. The certificate owner must

be guaranteed that the proof record reached the RRS intact.

3.1.2 Sending the Proof Record

Given that the method for sending a proof record requires both confidentiality

and integrity, there are two alternatives for protecting the transmission: TLS and a

custom protocol that utilizes the RRS public/private key.

13



CHAPTER 3. PROTOCOL DESIGN

3.1.2.1 TLS

The first method for transmitting the proof record is for Alice’s machine to

contact the RRS over TLS with the RRS acting as the server and with client au-

thentication. This uses the time-tested security of TLS to authenticate the RRS,

encrypt the proof record, and verify the integrity of the messages being sent. The

RRS responds with a hash of the proof record so Alice can be sure the RRS actu-

ally received it. The client authentication obviously does not prevent an attacker

who has stolen the private key from authenticating. The client authentication is to

prevent the RRS from receiving a lot of false proof records from people who neither

own nor have stolen certificates. Section 5.1.3 explains how false proof records from

attackers who have successfully stolen the certificate private key are discovered.

Figure 3.1: Sending proof records over TLS

One method for authenticating Alice to the RRS would have been to have Alice
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enter a password. The advantage of this approach is that an attacker who has stolen

Alice’s certificate might not know Alice’s password and thus not be able to forge a

proof record. The primary disadvantage is that either Alice must be present each

time a proof record is sent or the password must be stored on Alice’s machine. Alice

would be inconvenienced if she had to enter a password for every sent proof record

and might disable the proof records system. If the password were stored on Alice’s

machine, there is a chance an attacker could steal it, especially if the attacker has

already managed to steal one of Alice’s private keys. Therefore, we choose not to

consider password authentication as a option when sending proof records.

3.1.2.2 With Encryption by RRS Public Key

In this method, the certificate owner signs a hash of the proof record with his

private key and encrypts the proof record and hash with a symmetric encryption

key. This symmetric encryption key is then encrypted with the public key of the

RRS. The symmetric key and the encrypted message are then sent to the RRS. The

RRS responds with a hash of the proof record signed with its private key. This

second method is more efficient in that it does not require the parties to go through

the processor intensive TLS handshake protocol. For this reason it is used in the

implementation described in Chapter 6. However, it lacks the tested security of

TLS. This method is summarized in Figure 3.2.

3.1.3 Format of a Proof Record

Each proof record has a header that identifies the corresponding certificate. It

contains the fields found in Table 3.1. If two proof records arrive from the same

machine claiming to cover the same time period, the RRS alerts the owner that one

of them may be forged.

A proof record contains an entry for each transaction in which the certificate
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Figure 3.2: Sending proof records with encryption by RRS public key

was used during the time interval. Each transaction entry contains the fields shown

in Table 3.2.
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Field Description

Hash of Certificate The hash of the certificate with

which the transactions were

conducted

Machine Identifier A unique identifier assigned by

the RRS during the registration

of this machine (See Section 3.3 )

Activity Period The time interval for this proof

record

Padding (optional) Obfuscates the size of proof

records to prevent attackers from

inferring certificate activity

Table 3.1: Proof record header

Field Description

Signature Material The data Alice signed with her private key to prove ownership

Timestamp The time Alice recorded for this transaction

IP Address of Verifier Bob’s IP Address

Table 3.2: Fields in a transaction entry
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3.2 Receipt Protocol

Each time Bob receives a certificate and a certificate ownership proof, he sends a

receipt containing information about the transaction to the certificate owner’s RRS.

One motivation to do this might be that customers refuse to patronize sites that

do not send receipts. When receiving a certificate, Bob should check to see if the

certificate has been revoked by the authority that issued it before continuing the

transaction. Bob can be efficient by sending the receipt while making this check

(see Section 4.5). In this case, the receipt would be sent before the transaction with

Alice could continue.

In the real world, most verifiers do not check certification revocation lists and the

RRS may be unavailable during some transactions. Therefore, it is not a requirement

that a transaction be blocked until the receipt is sent. The verifier can send the

receipt asynchronously, or after the certificate transaction has ended. This causes

the certificate transaction to complete faster. However, it is slightly less efficient

for the RRS to match proof records and receipts. This is because asynchronous

receipts are not guaranteed to be in the RRS database when the proof record arrives.

Therefore, the RRS has to perform matches both when the proof record arrives and

when each late receipt arrives.

3.2.1 Requirements

A receipt must contain the information necessary to allow the RRS to correlate

each transaction with a proof record. It must be sent in such a way as to provide

confidentiality and integrity and the RRS must be able to mitigate false alarms

caused by fraudulent receipts. The verifier must also be guaranteed that the receipt

reached the RRS.
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Field Description

When to send receipts Under what circumstances should

a receipt be sent

URL and port of RRS Where to send the receipt

TLS required? (T or F) Whether the receipts should be

sent over TLS or encrypted with

the RRS public key

Hash of RRS public key Allows the verifier to authenticate

the RRS

Table 3.3: Extensions to a certificate necessary to enable the sending of receipts

3.2.2 Certificate Extensions

Bob must be given the information on where to send the receipt in a secure way.

Otherwise an attacker could cause a verifier to send receipts that never arrive at the

RRS. For example, say Mallory has stolen Alice’s certificate. Mallory presents the

certificate and a proof of ownership to Bob. Bob needs to know where to send the

receipt. Mallory provides him the address of a bogus RRS, and Bob’s receipt never

reaches Alice’s RRS. Alice is never warned that her certificate is stolen

To avoid this problem, the RRS information is embedded in the certificate. This

certificate extension contains the fields found in Table 3.3.

3.2.3 Sending the Receipt

A receipt contains the fields shown in Table 3.4. Future research may reveal

that additional fields, such as the business name or service being authenticated to,

could help the RRS better determine patterns that could lead to the capture of an

attacker. For example, if the RRS noticed that the certificates were only presented
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Field Description

Hash of Certificate Which certificate this receipt corresponds to.

Signature Material What the certificate owner signed to prove

ownership of the certificate.

Signature The private key signature of the signature

material.

Timestamp The time that the certificate owner recorded

for this transaction.

Certificate Owner Machine ID The RRS assigned unique ID of the

certificate owner’s machine sending the

proof record.

Certificate Owner IP Address The IP address of the certificate owner.

Table 3.4: Fields found in a receipt

to gain access to open source companies that specialize in medical software, the

RRS might be able to use that information to determine clues about the attacker’s

identity.

The verifier can send the receipt in one of two ways, over TLS or using the RRS

public key to encrypt the receipt.

3.2.3.1 TLS

Bob, the verifier, can open a TLS connection with client authentication to the

RRS URL and port listed in the certificate with the RRS acting as server and using

client authentication. Bob then

• sends the receipt
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• waits for an acknowledgement from the RRS, which is a hash of the receipt

signed by the RRS private key

• waits for the RRS to send a CRL (optional, see Section 4.5 for more details)

Because it relies on the strong security of TLS, this is the recommended method.

This method is summarized in Figure 3.3.

Figure 3.3: Sending receipts over TLS

3.2.3.2 Encryption by RRS Public Key

The overhead in setting up a TLS session is considerable. Therefore, a faster,

yet less proven method involves using the RRS public key to encrypt the receipt.

For efficiency, this is the method used in the implementation described in Chapter

6. In this method, Bob opens a connection the the RRS URL and port listed in the

certificate. Bob then
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• sends his own certificate

• sends the receipt concatenated with a hash of the receipt signed with the public

key of Bob’s certificate. This data is encrypted with a symmetric key.

• sends the symmetric key, encrypted by the RRS public key

• waits for the RRS to send an acknowledgement, which is a hash of the receipt

concatenated with the timestamp. This acknowledgement is signed by the

RRS private key.

• waits for the RRS to send a CRL (optional, see Section 4.5 for more details)

Figure 3.4: Sending receipts with encryption by RRS public key

There are different possibilities for allowing Bob to obtain the RRS public key.

One method is to include the domain of the RRS on the certificate and trust that
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only the RRS has a certificate for that domain, as is done in setting up TLS con-

nections with banks and credit card companies. However, if an attacker managed to

obtain a valid certificate for the RRS domain, the attacker could masquerade as the

RRS. A more secure method is to embed a hash of the public key of the RRS into

the certificate whose ownership is being proven, as shown in Table 3.3. The imple-

mentation described in Chapter 6 uses certificates with an embedded RRS public

key hash.

3.3 Registration

The RRS must ensure that each proof record received actually came from the

certificate owner. A naive approach for verifying the authenticity of the proof records

would be to rely on a secret known only to the RRS and Alice. If an attacker like

Mallory is able to gain one secret from the user, like a certificate private key, it is

highly probable that she can obtain others. Therefore it is unwise for the RRS to

rely solely on a shared secret with the user to authenticate the proof records.

To mitigate this problem, each certificate owner’s machine sends the RRS a

schedule of when to expect proof records. If Mallory forges a proof record, it will

conflict with the authentic proof record when it arrives. Due to the server authenti-

cation property of TLS, the certificate owner can verify that the entity he is sending

the proof record to is, in fact, the RRS. Therefore, the certificate owner can be sure

no forged proof records have been accepted for a particular time period after the

genuine proof records for that period are acknowledged for each machine.

3.3.1 Requirements

The RRS must be informed when and how often each certificate owner’s ma-

chine will send proof records and what time intervals these records will cover. The

certificate owner must be assured that the RRS has received that knowledge.
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3.3.2 Establishing a Business Relationship

Before registering certificates, Alice must establish a business relationship with

the RRS. To do this, she submits her name, contact information, and method of

payment. If the RRS is to act as Alice’s certificate authority (CA), the RRS will

generate certificates for her. Alice may then register these certificates. If the RRS is

not a CA, Alice sends her certificates to the RRS. Alice then selects a passphrase for

online access to her account to examine registrations, warnings, and certificate ac-

tivity. However, because an attacker may be able to read secrets on Alice’s machine

and thus obtain her passphrase, one cannot cancel registrations, suppress warnings,

or make permanent changes from the online account. Alice should not store her

passphrase on any of her machines in order to reduce the chance of theft. Even

if the passphrase is stolen, the attacker will not be able to make any changes that

might affect the system’s ability to detect the usage of stolen certificates.

3.3.3 Registering a Machine

Each machine that uses the certificate is registered with the RRS in advance and

scheduled to make regular interval proof record reports. The RRS notifies Alice of

each machine registration. The machine to be registered opens a TLS connection

with the RRS with client authentication and sends a message containing the fields

shown in Table 3.5. The RRS responds with an acknowledgement message that

contains a hash of the registration message signed with the RRS private key and a

unique machine identifier. These messages are summarized in Figure 3.5. The RRS

then sends a message to Alice via a different channel (like a phone call) informing her

of the registration. In addition, the list of registered machines is available to Alice at

any time. If Alice sees a registration acknowledgement message for a machine that

she never registered, she should be wary that someone has stolen her certificate.
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The RRS waits a certain, owner defined time period after the end of the reporting

period for a particular proof record. If a certificate owner’s machine fails to send a

proof record by that time, the RRS notifies the certificate owner.

Field Description

Hash of Certificate Used to identify the certificate

Start Date When to expect the first proof

record

Interval How often to expect proof

records

Table 3.5: Machine registration data

3.3.4 Canceling a Registration

To cancel a machine registration, Alice sends a request to the RRS. The RRS

then contacts Alice out-of-band for confirmation. Cancellations are also displayed

in her online account. If a machine with a cancelled registration continues to send

proof records, the RRS notifies Alice, who should then be concerned that the her

communication channel with the RRS has been compromised.
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Figure 3.5: The registration protocol over TLS
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This chapter discusses how the Receipt Resolution Server (RRS) analyzes the proof

records and receipts for unusual activity. At a high level, the RRS stores the re-

ceipts from Bob until the associated proof record arrives from Alice. Then, for each

transaction in the proof record, the RRS finds the matching receipt. The verifier

public key listed in the proof record helps the RRS to determine that the receipt

came from the verifier that Alice interacted with at the specified time. If a receipt

does not correspond to any proof record transaction, the RRS alerts Alice of possible

theft.

4.1 Requirements

The RRS must acknowledge receipt of all proof records, receipts, and registra-

tions and ensure the confidentiality and integrity of these messages. It must also be

able to match proof records and receipts.

4.2 Matching Proof Records and Receipts

The RRS attempts to match each transaction in a proof record with a receipt. It

assumes that the same machine will not present multiple copies of a certificate with

the same signature material to the same verifier at the same time. Therefore, the

RRS searches for a receipt that has the same certificate hash, machine id, timestamp,

verifier public key, and signature material as the proof record transaction.

The inclusion of timestamps in a protocol is discouraged by Abadi and Needham

[2] due to the difficulty of synchronizing clocks on different machine. For this reason,

Bob, the verifier, obtains from Alice the timestamp Alice recorded for the transaction

and includes this timestamp in the receipt. If Mallory successfully steals Alice’s

certificate, she might set the timestamp to be months in the future. The RRS
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would not realize the receipt was unmatched until the proof record for that time

period came in, causing the theft to be undetected for months. Therefore, the

RRS will do a sanity check on the timestamps of incoming receipts. Any receipt

whose timestamp is more than several days off will be flagged as suspicious and the

certificate owner will be notified.

4.3 Alarm Side Channels

Any unmatched receipts or duplicate, conflicting proof records cause a warning

to be sent to Alice over a side channel. The most secure side channel is a courier sent

to the physical address of Alice. Unfortunately, sending a courier is very expensive.

The RRS may also opt to telephone Alice or send a letter as a potentially less

secure but more affordable channel. The problem with these methods is that an

attacker might be able to intercept the warning message by hijacking the phone line

or removing the letter. For this reason, all warnings are available to the certificate

owner upon request by periodically connecting to the RRS via HTTPS to view

warnings, machine registration data, and other information.

4.4 Investigation

If an alarm is raised, the RRS can investigate to see if more information can

be gained about the attack. It can first examine the IP address of the unmatched

receipt and attempt to gain further information about where the stolen certificate

was used. It can also search other transactions on the proof record to see whether the

unmatched signature material was used in any legitimate transactions in a nearby

time window. If so, there is a possibility that an ownership protocol was breached

and that the verifier in the proof record transaction should not be trusted. Future

research is needed to identify additional data and methods of forensic analysis.
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4.5 Certificate Revocation Lists

When a verifier receives a certificate, he or she should consult the certificate

authority (CA) that issued the certificate to see if it has been revoked. This is

possible by checking a certificate revocation list (CRL), a list of serial numbers of

revoked certificates. According to RFC 3280 [11]:

. . . various circumstances may cause a certificate to become invalid prior

to the expiration of the validity period. Such circumstances include

change of name, change of association between subject and CA (e.g., an

employee terminates employment with an organization), and compro-

mise or suspected compromise of the corresponding private key. Under

such circumstances, the CA needs to revoke the certificate.

Therefore, a verifier should check with the CA to see if any certificate presented

to him has been revoked before accepting it. Instead of requiring the verifier to make

two connections each time a certificate is received, the RRS can couple sending the

CRL with the receipt acknowledgment. This is possible whether or not the RRS

is the issuing certificate authority so long as the CRL is signed by the CA. If the

RRS is not the CA, the RRS must keep updated, signed CRLs on hand from the

CAs issuing the certificates that the RRS handles or fetch them on demand for the

verifier.

4.6 Database Design

The RRS stores all necessary data in a database consisting of six tables. The

owner information table is shown in Table 4.1. It keeps track of the certificate

owners’ contact information, including their names, phone numbers, addresses, etc.

Table 4.2 describes the certificates table, which stores the certificate and links it to
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Field Description

Owner ID primary key

Name

Phone

Email

Address

Table 4.1: The owner information table

an owner. Each certificate may have only one owner, although an owner may have

more than one certificate.

Each entry in the proof records table corresponds to a proof record. As described

in Table 4.3, each proof record entry contains a reference to the certificate, the time

window, and a reference to the machine the proof record came from. Each trans-

action in the transaction records table, described in Table 4.4, contains information

about an instance where a certificate ownership proof was sent. Each transaction

record references exactly one proof record, although proof records typically reference

many transactions. Transaction records contain information recorded by the certifi-

cate owner such as the timestamp, the signature material used to prove ownership

of the certificate, and the public key and IP address of the verifier.

Table 4.5 describes the receipts table, which contains information recorded by

a verifier about a certificate ownership proof. Each receipt should reference at

most one transaction record. Receipts that do not reference a transaction records

may indicate a stolen certificate, as the certificate owner was not aware that the

certificate was presented. The machines table, described in Table 4.6, maps machines

to owners.
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Field Description

Certificate Hash primary key

Owner ID foreign key references Owner Information

Certificate

Table 4.2: The certificates table

Field Description

Proof Record ID primary key

Certificate Hash foreign key references Certificates

Start Time

End Time

Machine ID foreign key references Machines

Table 4.3: The proof records table

Field Description

Transaction Record ID primary key

Proof Record ID foreign key references Proof Records

Signature Material

Verifier Public Key

Timestamp

Verifier IP

Table 4.4: The transaction records table
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Field Description

Certificate Hash foreign key references Certificates

Transaction Record ID foreign key references Transaction Records

Signature Material

Timestamp

Owner Machine ID foreign key references Machines

Owner IP Address

Verifier IP

Table 4.5: The receipts table

Field Description

Machine ID primary key

Owner ID foreign key references Owner Information

Table 4.6: The machines table
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Section 1.3 explains how it is impossible to create an airtight proof that a protocol is

secure, as can be done in other areas of computer science and mathematics. Schneier

discusses how security in real world systems is often vulnerable to the vagaries of

hardware, buggy software, economics, and uneducated users [15]. Rather than a

proof, security researchers frequently perform a threat analysis of the system to

be scrutinized. Schneier calls it “a way to start making sense of the vulnerability

landscape” [15]. A threat analysis lists relevant categories of attack and explains

how the digital receipts system guards against those attacks. This chapter lists those

attacks which are most likely to be executed and discusses how the system thwarts

those attacks.

5.1 Attacks

This section explains the protection that the digital receipts system provides

against various types of attack. For each attack, the motivation for the attack is

explored and the protection the digital receipts system provides is discussed.

5.1.1 Directing the Verifier to a False RRS

Attack: Mallory presents a stolen certificate and attempts to trick the verifier

into sending the receipt to the wrong RRS.

Motivation: If the receipt is sent to the wrong RRS, the real RRS will never

receive the receipt and thus never detect that the certificate was used without the

owner’s consent.

Protection: The RRS IP address and a hash of the RRS public key are embed-

ded inside the certificate. The certificate is guaranteed to have integrity since it is

signed by a trusted certification authority. The verifier can check the integrity of a
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certificate to avoid being fooled into sending the receipt to the wrong entity.

5.1.2 Forging Machine Registration

Attack: Mallory registers a machine that does not belong to Alice.

Motivation: If Mallory can falsely register a machine, she can send fabricated

proof records from that machine to cover her transactions with a stolen certificate.

The RRS will assume Alice is aware of these transactions and will not send Alice

any warnings.

Protection: Because machine registration is performed over a TLS connection

using client authentication, Mallory cannot register a machine to send proof records

for a certificate that she does not own. In order for Mallory to successfully register

a machine to send proof records for some certificate, she must either own that

certificate or have successfully stolen the private key. Alice becomes aware of the

bogus registration when she receives notification of the registration via a side channel

or when she connects to the RRS to view the registration history.

5.1.3 Forging Proof Records

Attack: Mallory uses a stolen certificate and then submits a fake proof record

to the RRS.

Motivation: An attacker able to forge a proof record can make it appear to

the RRS that the certificate owner was aware of transactions performed with a

stolen certificate. The RRS never flags the receipts from Mallory’s transactions as

suspicious because they correspond to transactions on a proof record. Therefore

Alice may not realize her certificate has been stolen.

Protection: Each proof record is initially authenticated with the private key

of the certificate it represents. This prevents those who have not successfully stolen

the certificate and the machine identifier from submitting fake proof records. As
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explained in Section 3.3, it is unwise to rely on any secret that Alice possesses to

authenticate the proof records. If Mallory is able to lift a private key off Alice’s

machine, there is a chance Mallory has stolen other secrets as well. This is why

authentication of proof records does not rely solely on secrets shared between Alice

and the RRS. Each owner’s machine also registers with the RRS in advance and

specifies a schedule for sending proof records. A forged proof record from a successful

thief only fools the RRS until the legitimate one arrives. Mallory cannot prevent

Alice from attempting to send a proof record (see the assumptions in Section 2.3).

Because Alice receives a signed hash of the proof record as acknowledgement from

the RRS, she can be sure her legitimate proof record arrived. When it does, the RRS

will realize that it has received conflicting proof records for the same time interval

and warn Alice.

5.1.4 Altering Proof Records

Attack: Mallory alters a proof record in transit.

Motivation: An attacker able to alter a proof record can make it appear to

the RRS that the certificate owner is aware of transactions performed with a stolen

certificate. The RRS never flags these transactions as suspicious, and Alice never

realizes her certificate has been stolen.

Protection: If Alice sends the proof record over TLS as described in Section

3.1.2.1, the RRS will discover the proof record has been altered due to the properties

of TLS. If she chooses to send it by encrypting it with the RRS public key, as

described in Section 3.1.2.2, she will receive an acknowledgement from the RRS

which includes a hash of the proof record signed with the RRS private key. Alice

then knows whether the proof record received by the RRS has been altered.
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5.1.5 Hijacking the Proof Records

Attack: Mallory prevents the proof records from arriving at the RRS.

Motivation: If Mallory can submit a fake proof record and then prevent the

genuine one from arriving, the RRS will not discover the fake.

Protection: Alice’s machine, which sends the proof records automatically ac-

cording the schedule established in the registration process, receives an acknowl-

edgement from the RRS which includes a hash of the proof record signed with the

RRS private key. If this acknowledgement never arrives Alice’s machine knows the

proof record was never received by the RRS. If after several tries Alice’s machine is

still does not receive an acknowledgement, it warns Alice.

5.1.6 Forging a Receipt

Attack: Mallory forges a receipt.

Motivation: Forged receipts will not match a transaction on any proof record.

They set off false alarms, causing genuine alarms to go unnoticed.

Protection: Unfortunately, the certificate verifiers have no preexisting relation-

ship with the RRS and thus no way to authenticate. Verifiers must prove previous

interaction with Alice. The only real evidence of this transaction is the signature

on the signature material Alice used to prove ownership. For this reason, the sig-

nature material and the signature are included on receipts. This allows the RRS to

do an internal consistency check on all incoming receipts and immediately discard

those where the signature does not match the signature material. An attacker that

possesses a signature material/signature pair can fabricate many receipts based on

that one pair. For that reason the RRS has an option which can be set to reject

receipts with duplicate signature material.
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5.1.7 Altering a Receipt

Attack: Mallory alters a receipt before it reaches the RRS.

Motivation: An attacker capable of altering a receipt could make the RRS think

the receipt belonged to another certificate, causing the RRS to have an unmatched

receipt for a certificate other than the stolen one. The RRS subsequently sends a

warning that the wrong certificate has been stolen.

Protection: Both methods described in Section 3.2 for sending a receipt pre-

serve integrity. If the receipt is sent over TLS it can be assumed to have integrity

due to the properties of TLS. If the receipt is sent using the encryption by RRS

public key method, a hash of the receipt is signed by the verifier before encryption

takes place. This hash lets the RRS verify integrity. In both methods the verifier

receives a hash of the receipt signed by the RRS private key as an acknowledgement.

If the acknowledgement does not match the receipt the verifier knows the receipt

was altered in transit.

5.1.8 Hijacking a Receipt

Attack: Mallory removes the receipt from the network before it reaches the

RRS.

Motivation: If Mallory prevents a receipt from reaching the RRS, the RRS

will never discover the unmatched receipt. Alice will not be warned if someone else

starts using her certificate.

Protection: After sending the receipt, the verifier receives a hash of the receipt

signed by the RRS private key as an acknowledgement. If the acknowledgement

does not come, the verifier should assume that the RRS never received the receipt.

The verifier may retry up to a designated number of times. If the verifier is still

unable to send the receipt it should warn Alice via a side channel (See Section 4.3).
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If Alice is warned of an aborted receipt for a transaction she did not perform, she

should be suspicious someone has stolen her credential.

5.1.9 Forging the Timestamp on a Receipt

Attack: Mallory presents a stolen certificate and sends the verifier a fabricated

timestamp indicating that the transaction happened in the distant future.

Motivation: If Mallory fools the RRS into thinking that the receipt is for a

transaction that is months in the future, the RRS will not discover it is unmatched

until the proof record for that month arrives, causing a successful theft to go unde-

tected for months.

Protection: The RRS does a sanity check on the timestamps of incoming re-

ceipts. Any receipt whose timestamp is more than several days off will be flagged

as suspicious and Alice will be notified.

5.1.10 Denial of Service Attacks

Attack: Mallory floods the RRS with fake receipts.

Motivation: A legitimate receipt that exposes a certificate theft is dropped due

to insufficient RRS resources.

Protection: The RRS makes a receipt validation check by making sure that

the signature over the signature material is correct. This causes invalid receipts to

be discarded rapidly. The only way for Mallory to generate valid receipts is to have

a signature material/signature pair. She can get this in one of two ways. First, she

can replay signature material/signature pairs received from a previous transaction

with Alice. This is why the RRS checks to see if the signature material/signature

pair has been used before. Second, Mallory could create pairs if she had stolen the

certificate private key. However, Mallory would have little motivation to forge a

receipt for a certificate she had stolen, because the receipt will be unmatched with
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any transactions and Alice will be alerted, something Mallory wants to avoid.

An attacker with an enormous amount of processing power like a botnet might

still be able to send enough invalid receipts to overload the RRS with validation

checks. A botnet is a large collection of compromised machines running under the

command of an attacker. Botnets can include thousands of nodes and harness an

enormous amount of processing power. Preventing these type of attacks is outside

the scope of this thesis. However, further research into anti-spam measures can

be done to explore ways of mitigating such a problem. For example, Back [5] in-

troduces a measure called hashcash. Based on requiring clients to compute partial

hash collisions, Back claims that hashcash defends server resources from premature

depletion. Hashcash provides “graceful degradation of service with fair allocation

across users in the face of a DoS attack where one user attempts to deny service to

the other users by consuming as many server resources as he can.”
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Attack Defense

Redirecting the verifier RRS URL and hash of RRS

public key included in certificate

Forging machine registration Certificate owner notified of all

registrations, registrations

available upon request

Forging proof records Proof record protocol requires

certificate ownership proof,

regularly scheduled proof records

Altering proof records Proof record protocol provides

message integrity

Hijacking proof records Certificate owner receives signed

hash of proof record from RRS

Forging receipts Receipt cryptographic

consistency check

Altering receipts Receipt protocol provides

message integrity

Hijacking receipts Verifier receives signed hash of

receipt from RRS

Forging timestamps Verifier performs timestamp

sanity check

Denial of service Receipt cryptographic

consistency check

Table 5.1: Summary of attacks
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5.2 Privacy Concerns

The digital receipts system preserves the privacy of certificate owners from eaves-

droppers who control the network and wish to glean information about who a certifi-

cate owner is transacting with. All of the receipts and proof records are encrypted

either using TLS or using a symmetric key which is in turn encrypted with the public

key of the RRS. Both of these methods provide confidentiality, preventing Mallory

from snooping through these messages to see who Alice has transacted with. Be-

cause the proof records are sent in regular time intervals with the option of padding

to obfuscate the length, an attacker would have difficulty even knowing how many

transactions a certificate owner made in a given time period. Since the RRS services

many different users and certificates, and since receipts are also encrypted, it would

be difficult for an attacker to use the receipt exchanges to infer certificate activity

for any single user or certificate.

5.3 Hardware and Network Failures

If Alice’s machine, due to hardware failure or some other reason, does not send

its proof record, the RRS waits a certain amount of time and then warns Alice via

a side channel (see Section 4.3) that no proof record has been received.

If a proof record is sent, but does not arrive at the RRS due to network failure,

Alice’s machine that is sending the proof records knows because it does not receive

an acknowledgement hash from the RRS. Alice’s machine retries for a certain time

period and then warns Alice that the RRS appears to be down. If the condition

persists, Alice should contact the RRS administrators.

If a receipt does not get delivered, the verifier knows because no acknowledgment

has been received from the RRS. The verifier may retry or inform Alice that the

RRS or the network appears to be down. If a verifier chooses not to send a receipt,
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the RRS will have an unmatched proof record transaction. Though this does not

necessarily cause an alarm, it could cause a stolen certificate to go undetected. If

Mallory only uses a stolen certificate at places that do not send receipts, obviously

there will be no unmatched receipts and the RRS will not detect the compromise.

For this reason Alice may refuse to conduct business with a verifier that consistently

refuses to send receipts. Boycotts by certificate owners might give such businesses

an incentive to send receipts.

If the RRS computers go down, no receipts, proof records, or registrations can

be delivered. Having the RRS computers go down would prevent stolen certificates

from being discovered for at least the duration of the outage.
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In order to demonstrate the feasibility of a digital receipts system, we created a

software prototype that integrates the system into TrustBuilder, a middleware trust

agent that uses digital certificates and policies to facilitate the establishment of trust

between strangers. The remainder of this chapter includes the major design issues

addressed during prototype creation.

6.1 TrustBuilder

TrustBuilder is under development at the Internet Security Research Lab at

Brigham Young University. Written in Java, TrustBuilder manages keys, credentials,

and policies for a negotiation party and determines which credentials and policies

should be released at any point during a negotiation. TrustBuilder is built around

IBM’s Trust Establishment system, which maps attributes contained in X.509v3 cre-

dentials to roles. Trust Establishment can be obtained at www.alphaworks.ibm.com.

TrustBuilder also handles the process of proving certificate ownership. Signature

material is exchanged in hello messages at the start of each negotiation.

During negotiation, TrustBuilder checks a user’s policies see which certificates

can be released to fulfill the other negotiating party’s policies. It uses the private

keys corresponding to these certificates to sign the signature material associated with

the trust negotiation session. We extended TrustBuilder with methods to facilitate

the sending of proof records and receipts.

When TrustBuilder receives a certificate sent by the other negotiating party, it

first verifies that the signature material is signed correctly. If so, it will place it in

a cache of certificates used to determine if the other negotiating party fulfills the

current policy. The modified version of TrustBuilder sends a receipt to the Receipt
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Resolution Server (RRS) at this point. TLS connections are made using the Java

Secure Sockets Extension library and make use of Java KeyStores.

Another modification to TrustBuilder ensures that the timestamp on the proof

record matches the timestamp in the receipt. The negotiating parties agree before-

hand on a single timestamp that proof record transactons and receipts associated

with the trust negotiation will bear. The client selects the timestamp and sends it

to the server in the hello message.

6.2 X.509v3 Certificates

In order to work with receipts, the certificates must contain some additional

information about where to send the receipt and how to authenticate the RRS, as

described in Section 3.2.2. X.509v3 certificates are capable of having such exten-

sions through the addition of custom fields. These fields, called OID fields, include

a key/value pair where the key is a sequence of numbers separated by dots, like

1.2.3.4.1. Therefore, the attributes in Table 3.3 were mapped to OID keys and

each certificate used in the modified TrustBuilder is required to contain appropriate

values mapped to those keys.

6.3 Proof Record Sender (PRS)

We could have implemented the sending of the proof records into TrustBuilder

itself. However, there are two major problems with this. First, TrustBuilder would

always have to be running so that it could send proof records at the appropriate

intervals. Second, TrustBuilder would have to be made aware of certificate transac-

tions using other applications. Therefore, we created a separate module to handle

the sending of the proof records. This module also handles machine registration

with the RRS as described in Section 3.3.

This proof record sender module runs constantly and collects certificate transac-
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tion information from any application using a certificate. It stores this information

in a MySQL 5.0 database. Communications to this database are made using the

Java Database Connectivity JDBC libraries. To create a proof record, the proof

record sender uses SQL queries to collect all the transaction information from the

database for the time window of the proof record and sends it to the RRS. It also

keeps track of which proof records were not successfully received by the RRS in

order to attempt resending them at a later time.

6.4 Receipt Resolution Server (RRS)

The RRS software always has threads running to handle the reception of regis-

trations, proof records, and receipts. Like the proof record sender, the RRS stores

the receipt and proof record information in a MySQL 5.0 database which it connects

to over JDBC. The proof record sender uses SQL queries to match the transaction

information in the proof record with the receipts. In the prototype, unmatched

receipt alerts are printed to the screen. In a real world system such alerts would

cause the RRS employees to make efforts to contact the certificate owner. These

alerts could also be automated.
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One potential drawback of the digital receipts system is that it increases network

traffic. To see how the system would impact network congestion, a queuing theory

analysis was performed using data from Brigham Young University’s network and

from the implementation of the digital receipts system into trust negotiation as

explained in Chapter 6. This performance analysis first discusses traffic loads on the

BYU network. Then, a queuing theory analysis is performed on the most saturated

link in the network under atypically busy conditions. This analysis shows the effects

on queuing time, queuing size, and utilization as the percentage of trust negotiation

traffic to total traffic ranges from 0 to 100%.

7.1 BYU’s Network

Due to security concerns, we do not include detailed information about the BYU

network topology. By far the busiest link a packet would traverse en route from the

Computer Science building to the Internet is a 500 Mbps duplex link. The peak

inbound traffic across this link in a 60 day period during a busy semester was 373

Mbps and outbound traffic peaked at 333 Mbps. Peaks generally occur between 10

a.m. and 6 p.m. Network traffic decreases by roughly 50% from this peak during 2

a.m. to 7 a.m. An employee at BYU’s Office of Information Technology estimated

that the percentage of authentication traffic to total traffic is less than 1%.

7.2 Queuing Theory Analysis

In order to adequately predict the impact of receipts on a network, the analysis

of the network is performed under a peak load. Therefore, we assume the link usage

is 373 Mbps. Then the maximum utilization, signified by p, over the 60 day period
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is calculated as follows

p = (373 ∗ 106 bits/second)/(500 ∗ 106 bits/second)

= .746

Trust negotiation packets have an average size of 276 bytes. Assuming packet

size follows an exponential distribution, the arrival rate λ of packets to the link can

be calculated as

λ = 373 ∗ 106 bits/second ∗ 1 byte/8 bits ∗ 1 packet/276 bytes

= 168, 931 packets/second

Then, given λ and p, the average service time Ts, average queue size w, and average

waiting time Tw of packets at the link can be calculated.

Ts = p/λ

= .746/(168, 931 packets/second)

= 4.416 ∗ 10−6 seconds

w = p2/(1− p)

= .7462/(1− .746)

= 2.19

Tw = p ∗ Ts/(1− p)

= .746 ∗ 4.416 ∗ 10−6 seconds/(1− .746)

= 1.297 ∗ 10−5 seconds
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A typical trust negotiation that involves the exchange of two certificates and

two policies results in 8,108 bytes being sent over the network. This total does not

include the actual transfer of the resource. Each certificate proof requires that a

receipt be sent, adding an additional 1,480 bytes per certificate. Thus, the total

number of bytes exchanged for such a receipts enabled trust negotiation is 11,068.

We can calculate the ratio of bytes sent during a receipts enabled trust negotiation

to a trust negotiation not using the receipt system as 11,068/8,108, which equals

1.365.

Let us consider the ratio of trust negotiation traffic to total traffic as a variable

h, which will range from 0 to 1. The ratio of non-trust negotiation traffic to total

traffic is then (1-h). If all of the trust negotiation traffic began using the digital

receipts system it would increase the packet-arrival rates to the network links. Let

λ be the packet-arrival rate with no traffic implementing the digital receipts system.

Let us call the packet-arrival rate with h fraction of traffic being trust negotiations

implementing the digital receipts system λ′. Then

λ′ = (1.365λh + λ(1− h))

= (1.365 ∗ (168, 931 packets/second)h + (168, 931 packets/second)(1− h))

= 61, 659.8h + 168, 931

This would increase our utilization according to the function

p′ = λ′ ∗ Ts

= (61, 659.8h + 168, 931) ∗ 4.416 ∗ 10−6 sec

= .272h + .746
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We can then calculate what ratio of trust negotiation traffic using the digital

receipts system to total traffic would cause p to exceed 1, causing the queues to

permanently overflow. This is calculated by solving the equation for h.

1 = .272h + .746

h = .934

This means that if 93.4% of the traffic across the link was trust negotiation traffic

and all trust negotiation traffic began using the digital receipts system, the queues

would permanently overflow. We can also calculate the effect on queue sizes and

waiting time.

w′ = p′2/(1− p′)

= (.272h + .746)2/(1− (.272h + .746))

= −.272(h + 2.74)2/(h− .934)

The graph in Figure 7.1 shows that as the percentage of trust negotiation traffic

increases, the average number of packets queued when receipts is used ranges from

2.18 to infinity.

One can also calculate the average queuing time as a function of h.

T ′
w = p′ ∗ Ts/(1− p′)

= (.272h + .746) ∗ 4.416 ∗ 10−6 seconds/(1− (.272h + .746))

= −4.416 ∗ 10−6 ∗ (h + 2.743) /(x− .934)

T ′
w produces the graph shown in Figure 7.2, time which shows that as the per-

centage of trust negotiation traffic increases, the average queuing time varies from

1.297 ∗ 10−5 seconds to infinity.
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Figure 7.1: Average queue size as a function of h

Figure 7.2: Average queue time as a function of h
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7.2.1 Conclusions

This section has shown some of the effects of the digital receipts system on traffic

based on a real network under peak loads. Queuing theory has been used to show

the effect on utilization, average queue sizes, and average queue times for the busiest

link a packet would traverse between a Computer Science department workstation

and the Internet in the BYU network. Figures 7.1 and 7.2 show that queue sizes

and waiting times remain manageable so long as trust negotiation traffic is less

than half of all traffic. As the percentage of trust negotiation traffic to total traffic

approaches 93.4%, the queue sizes approach infinity. Since an employee at BYU’s

Office of Information Technology estimates that authentication traffic is less than 1%

of total traffic, implementing the digital receipts system should not seriously affect

queue times and sizes. Furthermore, these calculations were made under worst case

scenarios using the busiest link under a peak load for a 60 day period. This link had

a utilization of .746, while most other links in the network are very underutilized,

having a utilization ranging from .012 to .024 during peak loads. Therefore, the

impact of the receipts system on BYU’s network is likely to be minimal.
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The three pillars of security are prevention, detection, and response. The vast

majority of the research in cryptography and protocols focuses on prevention. CRLs,

as described in section 4.5, deal with response. This system addresses detection, an

area that has been largely ignored in the realm of private key compromise. It does

this by introducing a system that alerts owners when evidence suggests that their

private keys may have been stolen.

The digital receipts system can detect the usage of stolen digital certificates, is

secure against a wide variety of attacks, and has minimal network overhead given the

topology and typical loads of a real network. It detects both stolen private keys and

breaches in certificate ownership protocols, mitigating the fact that proving protocol

security is currently infeasible. The system cannot completely secure transactions

that use digital certificates, but does ameliorate some of the common problems

associated with using these certificates.

This thesis has identified several important areas for future work.

1. Currently, protection against denial of service attacks is limited to the internal

consistency check on the receipt. It would be interesting to explore how to use

a system like hashcash to thwart denial of service attacks.

2. As mentioned in Section 3.2, research could reveal additions to the system that

would allow the Receipt Resolution Server (RRS) to more accurately pinpoint

the source of a stolen certificate.

3. More studies on the performance impact of digital receipts could be done.

Research projects could include the following:
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• How would the system affect the load on a busy web server?

• What system load would make it more efficient to restructure the RRS

as a back-end database with several front-end web servers?

• How much effort would it take to overwhelm an RRS?

• How does this system contribute to self-similar network traffic patterns?

• Would granting the packets from this system a high priority cause more

dropped packets from other traffic flows?

4. The concepts introduced in this thesis can be extended to other systems that

use knowledge of a secret to authenticate. For example, suppose a certain

system requires a username and password to login. One can detect password

theft by comparing system login records to user login records. If extra logins

appear in the system record, someone may have stolen the password.

Ultimately, the decision whether or not to use receipts is an extension of the

classic tradeoff between security and performance. Network administrators should

consider whether the additional network traffic is worth early detection of a com-

promised private key. Further research could create a cost model to compare the

economic cost of the loss of a private key with the cost of increased network over-

head to demonstrate whether or not receipts would be justified from a financial

standpoint.
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