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Abstract

In this paper, we put forward and study the problem of
bounding an interval rational B́ezier curve with an inter-
val polynomial B́ezier curve. We propose three different
methods—Hybrid Method, Perturbation Method and Lin-
ear Programming Method to solve this problem. Exam-
ples are illustrated to compare the three different methods.
The empirical results show that the Perturbation Method
and the Linear Programming Method produce much tighter
bounds than the Hybrid Method, though they are computa-
tionally several times more expensive.

1 Introduction

In the communities of Approximation Theory and
Computer Aided Geometric Design(CAGD), there is
considerable interest in approximating functions (or
curves/surfaces) with functions (or curves/surfaces) of sim-
pler forms, for example, in approximating rational func-
tions (or curves) with polynomial functions (or curves).
Much literature has focused on these problems from differ-
ent points of views, e.g., from pure approximation theory
to applications in CAGD. However, as far as the authors
are aware, almost all the related work is concerned with
how accurate the approximation is and seldom consider the
problem of how to transfer the approximation errors into
subsequent applications. This problem can be important in
some applications, e.g., in tolerance analysis in CAD and
in numerical analysis. To solve this problem, Sederberg,
et. al. [2] introduced interval forms of curves and surfaces.
Based on the new representations of curves and surfaces,
several authors developed robust algorithms for geometric
operations such as curve/curve intersections in CAD/CAM

systems ([3]–[8]).
In this paper, we are interested in the following prob-

lem, a problem that has potential applications in CAD and
numerical analysis:

Given an interval rational function (or curve), bound it
with an interval polynomial function (or curve) such that
the bound is as tight as possible.

We will develop three different methods–Hybrid
Method, Perturbation Method and Linear Programming
Method to solve the problem in the following sections.
Testing and comparisons are made between the three dif-
ferent approaches through illustration of examples. The
empirical results show that the Hybrid Method generally
produces much looser bounds than the other two methods,
though it is computationally less expensive.

2. Interval Bézier Curves

An interval [a; b] is the set of real numbersfxja 6 x 6
bg. Interval arithmetic operations are defined by

[a; b] � [c; d] = fx � yjx 2 [a; b] andy 2 [c; d]g; (1)

where � represents an arithmetic operation,� 2
f+;�; �; =g. One can verify that

[a; b] + [c; d] = [a+ c; b+ d]
[a; b]� [c; d] = [a� d; b� c]
[a; b] � [c; d] = [min(ac; ad; bc; bd);

max(ac; ad; bc; bd)]
[a; b]=[c; d] = [a; b] � [1=d; 1=c]; 0 62 [c; d]:

(2)

Interval arithmetic is an important tool in numerical
analysis, and it has many applications in other areas. For
details, the reader is referred to Moore’s bookInterval
Analysis[1].



An interval polynomialis a polynomial whose coeffi-
cients are intervals:

[p](t) :=

nX
k=0

[ak; bk]B
n
k (t); 0 6 t 6 1; (3)

whereBn
k (t) =

�
n

k

�
tk(1�t)n�k, k = 0; 1; : : : ; n are Bern-

stein bases.
An interval polynomial can be also expressed in the

form

[p](t) = [pmin(t); pmax(t)]; 0 6 t 6 1; (4)

where

pmin(t) =
nX

k=0

akB
n
k (t)

and

pmax(t) =
nX

k=0

bkB
n
k (t)

pmin(t) andpmax(t) are calledlower bound(denoted
by lb([p](t)) ) andupper bound(denoted byub([p](t)) ) of
[p](t) respectively.

Thewidth of an interval polynomial can be defined by

W ([p](t)) = jjpmax(t)� pmin(t)jj; (5)

where the normjj:jj is the standard norm, such asjj:jj1,
jj:jj1 andjj:jj2.

An interval rational functionis defined

[r](t) :=

Pn

k=0[ak; bk]!kB
n
k (t)Pn

k=0 !kB
n
k (t)

; 0 6 t 6 1; (6)

where!k, k = 0; 1; : : : are weights (It is also possible to
define the weights to be intervals. Since the algorithms in
the following sections are similar for both cases, we assume
the weights are real numbers in this paper). It is similar to
define the upper bound, the lower bound and the width of
an interval rational function.

An interval polynomial B́ezier curveis a polynomial
Bézier curve whose control points are vector-valued inter-
vals (i.e., rectangular regions in a plane):

[P](t) =

nX
i=0

[Pi]B
n
i (t); (7)

where [Pi] = [ai; bi] � [ci; di] = ([ai; bi]; [ci; di]), i =
0; 1; : : : ; n are the interval control points.

Similarly, aninterval rational B́ezier curveis defined

[R](t) =

Pn

i=0[Ri]!iB
n
i (t)Pn

i=0 wiBn
i (t)

; (8)

where[Ri] andwi > 0, i = 0; 1; : : : ; n are interval control
points and weights respectively.

An interval (polynomial or rational) B´ezier curve de-
fines a region (a slender tube) in the plane which consists of
all the Bézier curves whose control points satisfyPi 2 [Pi]
for i = 0; 1; : : : ; n. Figure 1 shows a sample cubic interval
polynomial Bézier curve. An interval polynomial (or ratio-

Figure 1. A sample interval B ézier curve

nal) Bézier curve can be viewed as a vector-valued interval
polynomial (or rational function). For example, the interval
polynomial Bézier curve (7) can be rewritten in the form

[P](t) = ([x](t); [y](t)); (9)

where[x](t) and[y](t) are interval polynomials:

[x](t) =
nX

k=0

[ak; bk]B
n
k (t) (10)

[y](t) =

nX
k=0

[ck; dk]B
n
k (t) (11)

With this form, the problem of bounding interval ratio-
nal Bézier curves with interval polynomial B´ezier curves
can be conveniently converted to the problem of bounding
interval rational functions with interval polynomials.

3. Bounding Interval Rational Bézier Curves
with Interval Polynomial B ézier Curves

Before dealing with the problem of bounding inter-
val rational Bézier curves with interval polynomial B´ezier
curves, we solve the problem of bounding an interval ratio-
nal function with an interval polynomial.

Problem 1Given an interval rational function

[r](t) :=

Pn

k=0[rk]!kB
n
k (t)Pn

k=0 wkBn
k (t)

; (12)

find an interval polynomial

[p](t) :=

mX
k=0

[pk]B
n
k (t) (13)



such that[p](t) bounds[r](t)

[r](t) � [p](t); for 0 6 t 6 1; (14)

and that the width of[p](t) is as tight as possible. [p](t) is
called aninterval polynomial boundof [r](t).

Since the process of finding an upper bound is similar to
that of finding a lower bound, we can solve the following
problem instead

Problem 2 Given a rational function of degreen

R(t) :=

Pn

k=0 Rk!kB
n
k (t)Pn

k=0 !kB
n
k (t)

; (15)

find a polynomial of degreem

P (t) :=

mX
k=0

PkB
n
k (t) (16)

such that

P (t) > R(t); 0 6 t 6 1 (17)

and

jjP (t)�R(t)jj (18)

is minimized.
In the following, we will propose three different

methods–Hybrid Method, Perturbation Method and Linear
Programming Method to solve the above problem.

3.1. Hybrid Method

In [2], Sederberg, et al proposed a method called the
hybrid curve methodto approximate rational functions with
polynomials. Indeed, this method also provides a way to
compute an upper polynomial bound of a rational function.
The main idea of the Hybrid Method is as follows.

Any rational functionR(t) can be expressed as a poly-
nomial, one of whose coefficients is a rational function:

R(t) =

Pn

k=0 rk!kB
n
k (t)Pn

k=0 !kB
n
k (t)

�

mX
k=0;k 6=l

PkB
m
k (t) +M(t)Bm

l (t); (19)

whereM(t) is a rational function of degreen:

M(t) =

Pn

k=0Mk!kB
n
k (t)Pn

k=0 !kB
n
k (t)

; (20)

andl = [m=2] is an integer.
The coefficients ofPi, i = 0; 1; : : : ;m; i 6= l andMi,

i = 0; 1; : : : ; n can be computed as follows:

For i = 0; 1; : : : ; l � 1,

P0 = R0;

P1 = R0 +
n!1(R1�P0)

m!0
;

...

Pi = R0 +

min(n;i)P

j=1
(nj)(

m

i�j)!j(Rj�Pi�j)

(mi )!0
:

(21)

For i = m+ n; : : : ; n+ l+ 1,

Pm = Rn;

Pm�1 = Rn + n!n�1(Rn�1�Pm)
m!n

;
...

Pi�n = Rn +

n�1P

j=max(0;i�m)
(nj)(

m

i�j)!j(Rj�Pi�j)

( m

i�n)!n
;

(22)

and

Mi =

min(i+l;n)X
j=max(0;i+l�m)

�
n

j

��
m

i+l�j

�
!j(Rj � Pi+l�j)�
m

l

��
n

i

�
!i

;

i = 0; 1; : : : ; n: (23)

Theorem 1 Let Mmax = max06k6nMk and Mmin =
min 06k6nMk. Then polynomial

P (t) =

mX
k=0;k 6=l

PkB
m
k (t) +MmaxB

m
l (t) (24)

is an upper bound ofR(t), and

jjP (t)�R(t)jj1 6 c(Mmax�Mmin); (25)

wherec is a constant:

c =

�
m

l

��
l

m

�l�
m� l

m

�m�l

: (26)

Proof: Since

M(t) 6Mmax; 0 6 t 6 1;

from (19), one has

R(t) 6
mX

k=0;k 6=l

PkB
m
k (t) +MmaxBm

l (t) = P (t);

i.e., P(t) is a polynomial upper bound ofR(t).
On the other hand,

jjP (t)�R(t)jj1 6 (Mmax�Mmin)max06t61Bm
l (t):

SinceBm
l (t) attains maximum value att = l

m
in [0; 1],

(25) follows immediately.
The Hybrid Method generally provides a loose bound

for a rational function, and it has the disadvantage that there
is a restricted condition under which the polynomial con-
verges to the rational function whenm!1. For the spe-
cific convergence condition, the reader is referred to [10].



3.2. Perturbation Method

The Hybrid Method presented in the last subsection gen-
erally produces quite a loose bound. In this subsection, we
will propose an improved algorithm to solve Problem 2.

Given rational function (15), we perturbR(t) with an-
other rational function�(t) such thatR(t) + �(t) is a poly-
nomial

R(t) + �(t) = P (t) :=

mX
k=0

PkB
m
k (t); (27)

where

�(t) =

Pm+n
k=0 �k!

0
kB

m+n
k (t)Pm+n

k=0 !0kB
m+n
k (t)

(28)

and

!0k =
1�

m+n
m

� X
i+j=k

!i

�
k

i

��
m+ n� k

m� i

�
: (29)

From (27), we have

nX
k=0

Rk!kB
n
k (t) +

m+nX
k=0

�k!
0
kB

m+n
k

=

mX
i=0

PiB
m
i (t)

nX
j=0

!jB
n
j (t): (30)

Writing both sides of the above equation in Bernstein form
and comparing the coefficients, one get

�k =

min(k;m)X
i=max(k�n;0)

(Pi �Rk�i)�k;i; (31)

k = 0; 1; : : : ;m + n, where for max(k � n; 0) 6 i 6
min(k;m),

�k;i =
!k�i

�
k
i

��
m+n�k
m�i

�
P

j+l=k

!l
�
k

j

��
m+n�k
m�j

� ; (32)

otherwise,�k;i = 0. Now we wish to make the perturba-
tion �(t) is as small as possible. To this end, we minimizePm+n

k=0 �2k. Let

L(P0; : : : ; Pm) :=

m+nX
k=0

�2k

:=

0
@ min(k;m)X

i=max(k�n;0)
(Pi �Rk�i)�k;i

1
A

2

(33)

From

@L
@Pl

= 2
m+nX
k=0

min(k;m)X
i=max(k�n;0)

(Pi �Rk�i)�k;i�k;l

= 0; l = 0; 1; : : : ;m; (34)

we obtain a system of linear equations forPi, i =
0; 1; : : : ;m:

mX
i=0

0
@min(i+n;l+n)X

k=max(i;l)
�k;i�k;l

1
APi

=

mX
i=0

0
@min(i+n;l+n)X

k=max(i;l)
�k;i�k;l

1
ARk�i; (35)

l = 0; 1; : : : ;m: By solving the above equations and sub-
stitutingPi into (31), the values of�i are obtained.

Now a polynomial upper bound ofR(t) can be com-
puted as follows.

Theorem 2 Let �max = max06i6m+n�i and �min =
min 06i6m+n�i. Then polynomialP (t) � �min is an up-
per bound ofR(t), and

jjP (t)� �min�R(t)jj1 6 �max� �min: (36)

Proof: From (27), we have

R(t) 6 P (t)� �min;

which meansP (t)� �min is an upper bound ofR(t).
To get (36), one need only notice thatP (t) � R(t) =

�(t).

3.3. Linear Programming Method

In this approach, we take

jjP (t)�R(t)jj1 =
1

m+ 1

mX
k=0

Pk � c (37)

as the minimization target, wherec =
R 1
0
R(t)d t is a con-

stant.
To satisfy condition (17), one must have

mX
k=0

PkB
m
k (t)

nX
k=0

!kB
n
k (t) >

nX
k=0

Rk!kB
n
k (t); (38)

for anyt 2 [0; 1]: Or equivalently,

m+nX
k=0

X
i+j=k

Pi!j

�
k

i

��
m+ n� k

m� i

�
Bm+n
k (t)

>

m+nX
k=0

X
i+j=k

Rj!j

�
k

i

��
m+ n� k

m� i

�
Bm+n
k (t):



Thus a sufficient condition for (17) to hold is

dk :=
X

i+j=k

(Pi �Rj)!j

�
k

i

��
m+ n� k

m� i

�
> 0; (39)

k = 0; 1; : : : ;m + n. An immediate consequence of the
above discussion is the following

Theorem 3 LetPi, i = 0; 1; : : : ;m be the solutions of the
following linear programming problem

�
Min

Pm

i=0 Pi
s.t. dk > 0; k = 0; 1; : : : ;m+ n:

(40)

Then polynomialP (t) defined in (16) is an upper bound of
R(t), and

jjP (t)�R(t)jj1 6 max06k6m+n
dk
!00k

; (41)

where

!00k =

min(k;m)X
i=max(k�n;0)

!k�i

�
k

i

��
m+ n� k

m� i

�
; (42)

k=0,1, : : : ,m+n.

Proof: We need only prove the second part of the theorem.
To estimatejjP (t) � R(t)jj1, we writeP (t) � R(t) in a
rational Bernstein polynomial:

P (t)�R(t) =

Pm+n
k=0

1

(m+n
m )

dkB
m+n
k (t)

Pm+n
k=0 !0kB

m+n
k (t)

;

wherew0k is defined as in (29). Now (41) follows directly
from the above equation.

Remarks: The Hybrid Method automatically solves the
constrained upper bound problem, i.e., in addition to satis-
fying (15—18), the following constraints must be held:

8<
:

P (i)(0) = R(i)(0)

P (i)(1) = P (i)(1)
i = 0; 1; : : : ; �; (43)

where� 6 [m�12 ]. The Perturbation Method and the Lin-
ear Programming Method can also be adapted to solve the
constrained upper bound problem. For the Perturbation
Method, just set�k = 0, k = 0; 1; : : : ; �;m � �; : : : ;m,
and solve for the correspondingPk from (31). The re-
maining Pk can be obtained from (35) withl = � +
1; : : : ;m � � � 1. For the Linear Programming Method,
Pk, k = 0; 1; : : : ; �;m � �; : : : ;m can be solved by set-
ting the correspondingdk = 0, and the remainingPk are
obtained by solving the linear programming problem (40).

3.4. Bounding Interval Rational Bézier Curves with
Interval Polynomial Bézier Curves

In the previous subsections, we derived three different
methods to bound an interval rational function with an in-
terval polynomial. These three methods lead directly to al-
gorithms of bounding an interval rational B´ezier curve with
an interval polynomial B´ezier curve. The main results are
based on the following fact.

Theorem 4 Given an interval rational B́ezier curve of de-
green

[R](t) = ([x](t); [y](t)): (44)

If

[�x](t) =

mX
i=0

[�xi]B
m
i (t) (45)

and

[�y](t) =

mX
i=0

[�yi]B
m
i (t) (46)

are degreem interval polynomial bounds of[x](t) and
[y](t) respectively, then interval polynomial Bézier curve

[P](t) = ([�x](t); [�y](t)) =

mX
i=0

([�xi]; [�yi])B
m
i (t) (47)

bounds interval rational B́ezier curve[R](t), i.e.,[R](t) �
[P](t).

Proof: Straightforward.
To measure how tight a bound is, we define thebounding

error as follows

e([x](t); [�x](t)) = max(jjub([x](t)) � ub([�x](t))jj1;
jjlb([x](t))� lb([�x](t))jj1)

e([y](t); [�y](t)) = max(jjub([y](t))� ub([�y](t))jj1;
jjlb([y](t))� lb([�y](t))jj1)

e([R](t); [P](t)) = max(e([x](t); [�x](t));
e([y](t); [�y](t)))

(48)

It is a little hard to compute the bounding errors by the
above definitions. Fortunately, Theorems 1, 2 and 3 give a
good estimation for the bounding error by each of the three
methods.

For a given interval rational B´ezier curve[R](t) and tol-
erance� > 0, we use one of the three methods to find an
interval polynomial Bézier curve[P](t) to bound[R](t).
If the bounding error is larger than�, we subdivide[R](t)
at parameter valuet = 1=2 and then bound each segment



with an interval polynomial B´ezier curve respectively. This
process is continued until the bounding error is less than
� for each segment. At last, we find a piecewise interval
polynomial Bézier curve which bound the original interval
rational Bézier curve[R](t).

4. Examples and Comparison

In this section, we will compare the bounding errors and
the computational costs between the three methods–Hybrid
Method (HM), Perturbation Method (PM) and Linear Pro-
gramming Method (LPM) for bounding an interval ratio-
nal Bézier curve with an interval polynomial B´ezier curve
through illustration of examples. We implemented these
examples on a 266 MHZ Pentium PC.

Example 1 Let [r](t) be a cubic interval rational func-
tion with the following interval coefficients and weights:

[a0; b0] = [0; 1=4]; !0 = 1;
[a1; b1] = [1; 6=5]; !1 = 2;
[a2; b2] = [�1;�3=4]; !2 = 2;
[a3; b3] = [1; 7=6]; !3 = 1

We use degreem = 4; 5 and6 interval polynomials to
bound[r](t) respectively. The bounding errors (B.E.) and
the computational time (C.T.) in CUP seconds for the three
methods are list in Table.1. Figure.2–Figure.10 show the
corresponding figures.

Table 1. Comparison of the bounding errors
and the computational costs (I)

H M P M L P M
m

B.E. C.T. B.E. C.T. B.E. C.T.
m = 4 3.00 0.02 0.53 0.11 1.02 0.17
m = 5 3.68 0.02 0.33 0.11 0.13 0.22
m = 6 2.25 0.02 0.22 0.16 0.10 0.22
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Figure 2. Hybrid Method m = 4
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Figure 3. Hybrid Method m = 5
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Figure 4. Hybrid Method m = 6
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Figure 5. Perturbation Method m = 4

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

Figure 6. Perturbation Method m = 5
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Figure 7. Perturbation Method m = 6
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Figure 8. Linear Programming Method m = 4

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

Figure 9. Linear Programming Method m = 5
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Figure 10. Linear Programming Method m = 6

Example 2 In this example, we consider a case where
the Hybrid Method diverges while the other two methods
converges. The interval rational function[r](t) is defined
by

[a0; b0] = [�1=8; 1=8]; !0 = 1;
[a1; b1] = [7=8; 1]; !1 = 3;
[a2; b2] = [7=4; 2]; !2 = 8;
[a3; b3] = [7=8; 1]; !3 = 2;
[a4; b4] = [�1=8; 1=8]; !4 = 1

The degree4, 5 and6 interval polynomial bounds by the
three methods are shown in Figure 11-Figure 19. The cor-
responding bounding errors and computational time are list

in Table 2.

Table 2. Comparison of the bounding errors
and the computational costs (II)

H M P M L M
m

errorstimeerrorstimeerrorstime
m = 4 4.32 0.02 0.68 0.10 1.18 0.24
m = 5 12.990.02 0.54 0.14 0.97 0.24
m = 6 5.54 0.02 0.46 0.16 0.22 0.28
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Figure 11. Hybrid Method m = 4
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Figure 12. Hybrid Method m = 5
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Figure 13. Hybrid Method m = 6
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Figure 14. Perturbation Method m = 4
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Figure 15. Perturbation Method m = 5
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Figure 16. Perturbation Method m = 6
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Figure 17. Linear Programming Method m = 4
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Figure 18. Linear Programming Method m = 5
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Figure 19. Linear Programming Method m = 6

Example 3 In the last example, we use piecewise inter-
val polynomial curves to bound an interval rational curve.
Let the control points and weights of the interval rational
curve be:

[R0] = ([50; 70]; [340; 355]); !0 = 1;
[R1] = ([190; 220]; [100; 120]); !1 = 2;
[R2] = ([340; 360]; [330; 340]); !2 = 2;
[R3] = ([430; 455]; [120; 130]); !3 = 1

We recursively subdivide the interval rational curve at
the parameter valuet = 1

2 and then bound each segment
using an interval polynomial curve of degreem = 4 and5
respectively. Table 3 and 4 list the corresponding bounding
errors and the computational time for the three methods.

Table 3. Comparison of the bounding errors
and computational costs (III) ( m = 4)

number of H M P M L M
subdivisionserrorstime errorstime errors time

0 423.750.03 74.680.22 123.3 0.44
1 31.820.05 11.060.33 6.89 0.71
2 3.240.11 1.280.71 0.73 1.38
3 0.230.27 0.0931.32 0.051 2.69
4 0.0120.44 0.00512.69 0.0026 5.44
5 0.00120.880.000495.380.0002610.93

From the above examples, we can draw a conclusion
that the bounding errors by the Perturbation Method and
the Linear Programming Method are much smaller than
those by the Hybrid Method, even though they are com-
putationally several times more expensive. Consequently,
if we use a piecewise interval polynomial curve to bound
an interval rational curve such that the bounding error is
less than some given tolerance, the Hybrid Method will
generally need more segments than the other two methods.
Furthermore, examples show that the Hybrid Method has
a much more restrict convergence condition than the other
two methods do.



Table 4. Comparison of the bounding errors
and computational costs (III) ( m = 5)

number of H M P M L M
subdivisionserrorstime errorstime errors time

0 386.730.03 36.770.22 15.83 0.38
1 29.740.05 5.410.44 3.19 0.77
2 1.530.11 0.400.88 0.25 1.59
3 0.0550.27 0.0171.76 0.011 3.13
4 0.00180.490.000593.460.00042 6.32
5 .000121.05.0000416.97.00002912.58

5. Conclusions

In this paper, we put forward a new problem in CAD and
interval analysis communities–bounding an interval ratio-
nal function (or Bézier curve) with an interval polynomial
function (or Bézier curve). We proposed three different
methods to solve the problem, and comparisons of bound-
ing errors and computational costs are made between these
three methods. The experimental results show that the
Perturbation Method and the Linear Programming Method
produce much tighter bounds than the Hybrid Method does,
although they are computationally several times more ex-
pensive.

Further research problems include: (1) for the Pertur-
bation Method and the Linear Programming Method, ex-
plore whether the interval polynomial bounds converge to
the original interval rational curve whenm goes to infin-
ity; and (2) generalizing the results in this paper to surface
cases.
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