
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-11-29

Contour Encoded Compression and Transmission Contour Encoded Compression and Transmission

Christopher B. Nelson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Nelson, Christopher B., "Contour Encoded Compression and Transmission" (2006). Theses and
Dissertations. 1096.
https://scholarsarchive.byu.edu/etd/1096

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1096?utm_source=scholarsarchive.byu.edu%2Fetd%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

CONTOUR ENCODED COMPRESSION AND TRANSMISSION

by

Christopher Nelson

A thesis submitted to the faculty of

Brigham Young University

In partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

 December 2006

Copyright © 2006 Christopher B. Nelson

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Christopher B. Nelson

This thesis has been read by each member of the following graduate committee and by

majority vote has been found to be satisfactory.

_____________________ _____________________________________

Date William Barrett, Chair

_____________________ _____________________________________

Date Thomas Sederberg

_____________________ _____________________________________

Date Eric Mercer

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Christopher B.

Nelson in its final form and have found that (1) its format, citations and bibliographical

style are consistent and acceptable and fulfill university and department style

requirements; (2) its illustrative materials including figures, tables and charts are in place;

and (3) the final manuscript is satisfactory to the graduate committee and is ready for

submission to the university library.

Date

 William A. Barrett
 Committee Chairman

Accepted for the Department

 Parris K. Egbert
 Graduate Coordinator

Accepted for the College

 Thomas W. Sederberg
 Associate Dean,

 College of Physical and Mathematical Sciences

ABSTRACT

CONTOUR ENCODED COMPRESSION AND TRANSMISSION

Christopher B. Nelson

Department of Computer Science

Master of Science

As the need for digital libraries, especially genealogical libraries, continues to

rise, the need for efficient document image compression is becoming more and more

apparent. In addition, because many digital library users access them from dial-up

Internet connections, efficient strategies for compression and progressive transmission

become essential to facilitate browsing operations. To meet this need, we developed a

novel method for representing document images in a parametric form. Like other

“hybrid” image compression operations, the Contour Encoded Compression and

Transmission (CECAT) system first divides images into foreground and background

layers. The emphasis of this Thesis revolves around improving the compression of the

bitonal foreground layer. The parametric vectorization approach put forth by the CECAT

system compares favorably to current approaches to document image compression.

Because many documents, specifically handwritten genealogical documents,

contain a wide variety of shapes, fitting Bezier curves to connected component contours

can provide better compression than current glyph library or other codebook compression

methods. In addition to better compression, the CECAT system divides the image into

layers and tiles that can be used as a progressive transmission strategy to support

browsing operations.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. William A. Barrett and the other members of my

committee who have been patient with me throughout the past few years as this Thesis

was drafted and provided aid when needed. I would also like to thank Michael Smith for

allowing me the use of his code and getting this research topic started. I would also like

to thank my wife Lydia for all her support and encouragement throughout this process.

vii

Contents

1 Introduction 1

 1.1 Motivation . 1

 1.2 Solution: Contour Encoded Compression and Transmission . . . 3

2 Background 5

 2.1 Document Image Compression 5

 2.1.1 Transform Encoding 6

 2.1.2 Context Encoding . 7

 2.1.3 Dictionary Encoding 8

 2.1.4 Hybrid Encoding . 9

 2.2 Bitonal Compression Strategies 11

 2.2.1 Pattern Matching . 11

 2.2.2 Vectorization . 12

 2.3 Progressive Image Transmission 13

 2.4 The CECAT Approach . 14

3 Contour Encoded Compression 17

 3.1 Binarization of Document Images 17

 3.1.1 Color to Grayscale . 18

 3.1.2 Grayscale to Bitonal 18

 3.2 Contour Detection and Rendering 19

 3.2.1 Layered Contour Detection 19

 3.2.2 Contour Filling Algorithm 22

 3.3 Fitting Parametric Curves to Contours 26

 3.3.1 Bezier Curves . 27

 3.3.2 Using First Degree Curves (Lines) 28

 3.3.3 Using Second Degree Curves (Quadratics) 38

 3.3.4 Combining First and Second Degree Curves 40

4 Encoding and Transmission of CECAT Images 45

 4.1 Localization of Contours . 45

 4.1.1 Storing Contours as Layers 46

 4.1.2 Tiling the Images . 46

 4.2 CECAT File Format . 48

 4.2.1 Encoded Contour Layer 48

 4.2.2 Residual Image Data Layer 50

 4.2.3 Background Image Data Layer 51

 4.3 Curve Segment Library . 52

viii

 4.4 Progressive Transmission . 53

 4.4.1 Sample Server Implementation 53

 4.4.2 Rendering the Contour Encoded Tiles 55

 4.4.3 Adding Residual and Background Layers 55

5 Compression Efficiency and Results 59

 5.1 Analysis of CECAT Bitonal Compression 59

 5.1.1 Getting the Settings for the CECAT System 60

 5.1.2 Bitonal Image Compression Results 64

 5.2 Analysis of CECAT Grayscale Compression 72

 5.3 “Hybrid” Image Layer Comparison 75

 5.4 Limitations of the CECAT System 77

6 Conclusion and Future Work 81

 6.1 Conclusion . 81

 6.2 Future Work . 82

A Image Datasets 87

 A.1 George Washington Papers 87

 A.2 James Madison Papers . 88

 A.3 US 1870 Census (200 dpi) 89

 A.4 US 1870 Census (300 dpi) 90

B User's Guide 93

 B.1 Compression Interface . 93

 B.2 CECAT Image Viewer . 96

C CECAT Code Base 101

D Bibliography 141

ix

List of Tables

3.1 File Size Price for Fixed Borders 32

3.2 Amount of Beziers Used During CECAT Compression 42

4.1 Average CECAT Tile Size . 47

4.2 Curve Segment Library Compression Enhancements 52

5.1 Relative CECAT File Size at Different Error Tolerance Settings . . . 60

5.2 CECAT Compression file sizes with various “despeckling” settings . . . 64

5.3 Bitonal compression comparisons for the George Washington Papers . . . 66

5.4 Bitonal compression comparisons for the James Madison Papers . . . 68

5.5 Bitonal compression comparisons for 200 dpi US 1870 Census . . . 70

5.6 Bitonal compression comparisons for 300 dpi US 1870 Census . . . 72

5.7 Compression comparisons for the George Washington Papers 74

5.8 Compression comparisons for the James Madison Papers 74

5.9 Compression comparisons for 200 dpi US 1870 Census 74

5.10 Compression comparisons for 300 dpi US 1870 Census 74

5.11 Comparison of “Hybrid” image layers for the George Washington Papers 78

5.12 Comparison of “Hybrid” image layers for the James Madison Papers . . . 78

5.13 Comparison of “Hybrid” image layers for 200 dpi US 1870 Census . . . 78

5.14 Comparison of “Hybrid” image layers for 300 dpi US 1870 Census . . . 78

x

xi

List of Figures

1.1 Sample Document Images . 2

2.1 200 DPI Image of 1870 U.S. Census 6

2.2 JPEG Compression Artifacting . 7

2.3 JBIG Encoded Image Slice . 8

2.4 Image Layers created from JPEG Source Image 10

3.1 Contour Example . 20

3.2 Contour Detection Example . 21

3.3 Contour Layers for Sample Image 23

3.4 Challenges for Contour Filling . 24

3.5 Contour Filling Algorithm Example 26

3.6 Suboptimal “Greedy” Algorithm Example 29

3.7 Segment Contour Mapping Example 30

3.8 Detected Border Edges . 32

3.9 First Candidate Line Segment . 34

3.10 Comparison of Deltas between Candidate Line and its Associated Contour 36

3.11 Determining the Best Line Mapping 38

4.1 Tiled Document Image . 47

4.2 CECAT File Structure . 50

4.3 CECAT Tiles . 51

4.4 First 11 Entries in Curve Segment Library 53

5.1 CECAT File Size verses Error Tolerance 61

5.2 Compressed Image Quality verses Amount of Error Tolerance . . . 62

5.3 CECAT Compression for the George Washington Papers 63

5.4 CECAT Compression for the James Madison Papers 63

5.5 CECAT Compression for 200 dpi U.S 1870 Census 63

5.6 CECAT Compression for 300 dpi U.S 1870 Census 63

5.7 Bitonal image compression for the George Washington Papers . . . 65

5.8 Bitonal image compression for the James Madison Papers 67

5.9 Bitonal image compression for 200 dpi U.S 1870 Census 69

5.10 Bitonal image compression for 300 dpi U.S 1870 Census 71

5.11 Grayscale image compression for 200 1870 US Census 73

5.12 “Hybrid” image compression for the George Washington Papers . . . 76

5.13 “Hybrid” image compression for 300 dpi U.S 1870 Census 77

1

Chapter 1

Introduction

1.1 Motivation

 Ten years ago, when someone wanted to learn about a particular subject, they

would typically travel to the local library or archive to find an appropriate book or

periodical. With the advent of the Internet, however, this process has changed

dramatically. In addition to the wealth of information that is growing daily on websites

throughout the expanse of cyberspace, many books, newspapers, and periodicals have

been scanned, indexed, and placed online to create “digital libraries” [1]. Now people

can just log onto the Internet and go to one of these libraries to read through texts stored

thousands of miles away. Even rare “special collection” documents become more

valuable as the number of people with access to them increases [2].

 To build up their collections, most current digital libraries scan documents, use

Optical Character Recognition (OCR) to extract text, build transcripts, and publish these

manuscripts on the web [3, 4, 5, 6]. This strategy works quite well when only textual

information is involved. Unfortunately, this does not work for documents containing

handwriting and important “non-textual” information. Document properties such as ink

color, paper texture, drawings, and font information can be as important as text,

especially for those of historical significance [7] as demonstrated in Figure 1.1. To

publish these documents on the Internet, digital libraries must use images instead of

simple text-based transcripts [8, 9, 10, 11].

Genealogical documents often fall into the category described above. These

documents cannot be stored as simple text transcripts without losing some of their value

and recognizing handwriting is outside the scope of current OCR engines. In many cases,

2

(a) (b)

Figure 1.1 Sample Document Images. (a) Illuminated French Text (b) Illustrated

French Renaissance Document

these are old, historical documents containing large amounts of handwritten text.

Although most of the content is intended to be bitonal (i.e. black and white), grayscale

information does provide clues to help viewers understand the document. In addition,

these document images should be stored at high resolutions (200-400 dpi) to allow the

scanned image to be a faithful representation of the original and improve readability.

Finding a needed genealogical document can be a challenge, especially if it is

located inside a collection that has not been indexed. In this case, finding a particular

document requires the researcher to scan through a collection of documents as quickly as

possible, looking for specific names or dates. This process is commonly referred to as

“browsing” [12]. Unfortunately, many Internet users still use 56K modem (dial-up)

connections [13]. Even with higher bandwidth, waiting for large images to download can

be a very exasperating exercise, especially when the image being downloaded does not

contain the information needed. Trying to “browse” through numerous genealogical

documents using low-bandwidth network connections is unacceptable.

To alleviate this problem, strategies such as image compression and progressive

transmission can be used. Improving image compression is the most obvious

optimization: smaller image files sizes result in shorter download times. The challenge

facing the many image compression strategies lies in the fact that increased compression

ratios often result in the loss of some important image data.

The second strategy, progressive transmission, is the process of taking a large

3

image and sending it over the Internet in small pieces. In some cases, coarse images are

sent first, giving the researcher a general idea about the contents of the image. If

progressive transmission sends image pieces at full resolution, the researcher can begin to

read through the pieces of the image that have already been sent while waiting for more

to arrive. This makes “browsing” through numerous documents much quicker, especially

if the first few image pieces contain the names or dates needed by the researcher [12].

1.2 Solution: Contour Encoded Compression and Transmission

This thesis presents a system called “Contour Encoded Compression and

Transmission” (CECAT) which uses image compression and progressive transmission to

improve browsing operations for document images. Although any grayscale document

image can be used, the algorithms created for the CECAT system were specifically

designed to efficiently compress and transfer images containing handwriting.

CECAT breaks an image into three layers: foreground (bitonal text), residual

(grayscale text), and background. The emphasis of this thesis and the CECAT system

lies in developing an efficient compression of the bitonal foreground layer. This is done

by detecting contours for the text and handwriting, replacing these contours with

parametric curves, and storing these contours in tiles that can be transmitted

progressively. This approach has the following advantages:

• Good, scalable image compression with the potential for lossless compression

as the final step in the progressive transmission

• Progressive transmission of full resolution tiles with readable resolution in the

handwriting

• High level curve data that can be used for subsequent pattern recognition

4

5

Chapter 2

Background

The CECAT system combines two technologies – document image compression

and progressive transmission – to facilitate document image “browsing” suitable for even

slow network connection speeds. This chapter will review these two technologies.

2.1 Document Image Compression

Image compression, a very active field of research, is the process of taking image

data and converting it into a more compact form. This process, known as “encoding”

reduces the size of an image by storing the data more efficiently. “Decoding” is the

process of taking this compact form and changing it back to a viewable format.

Image compression saves storage space and thus reduces the required download

time for retrieving images across the web. For example, a document image showing a

single page from the 1870 U.S. Census stored at a resolution of 200 dots-per-inch (dpi) is

about 15 megabytes in size in its raw, uncompressed form. Given dial-up network

speeds, it would require over a half hour (15 MB at 56 Kbps = 36.6 minutes) to download

this image. In addition, only 45 such images could be stored on a standard CD-ROM.

On the other hand, after applying a standard JPEG compression with a quality

rating of 75 to this 15 megabyte image, the file size drops to about 800 kilobytes. As a

result, download time and storage space shrink to about 5% of that required for the

uncompressed image. This corresponds to a download time, over a standard dial-up

connection, to a little less than two minutes and over 890 images can be stored on a CD-

ROM.

Compression does not come without a cost. First, time is required time to encode

and decode compressed images. For example, using a 2.39 GHz Pentium, performing

6

Figure 2.1 200 DPI Image from the 1870 U.S. Census

JPEG compression and storing a large image of 3400 x 4600 pixels takes about 2.62

seconds. This example image is shown in Figure 2.1. Second, compression can degrade

the image. The degree to which this occurs depends on the image compression strategy

used. Compression algorithms that do not alter the image are called “lossless” and those

that alter the image are called “lossy”. Lossy compression strategies often throw away

pieces of data that are deemed unimportant or that may not be noticeable to the human

eye, such as in the JPEG example mentioned earlier. Lossy compression strategies

generally reduce the image file size to a fraction of the size of their lossless counterparts.

Most image compression operations follow one of four encoding strategies: transform,

context, dictionary, and hybrid. These are reviewed in the following subsections.

2.1.1 Transform Encoding

Transform encoding techniques work by converting raw image data (an array of

three 8-bit color values for each pixel) into another format such as those created by

applying a Discrete Cosine Transform, Fourier Transform, Wavelet Transform or similar

transforms. This transformed data is an accurate representation of the image, except

color values are replaced by points or waves in an alternate spectrum. Some of this

transformed data has very little (if any) effect on the image after it is transformed back,

and can be removed, making the image smaller without changing much of the original

image. When decoded, the image data is transformed back for display purposes.

7

Figure 2.2 JPEG Compression Artifacting

The JPEG standard used to deliver images across the Internet uses a DCT

encoding to transform image data into the frequency domain. Sharp changes in color

(such as black letters touching white paper) require more transform coefficients to

represent the image in the frequency domain. As a result, JPEG compression works very

well for continuous-tone images like pictures and photographs but creates artifacts in

document images [7]. Sharp-edges contain “ringing” after images are decoded from

JPEG format, making JPEG encoding a conspicuous example of “lossy” image

compression as shown in Figure 2.2.

In addition to the DCT, other transformation strategies have emerged during the

past few years. By transforming image data into a Wavelet spectrum, the new JPEG2000

standard can create higher-quality images than the JPEG standard [24]. More Wavelet-

based transforms are emerging, including the proprietary IW44 [16] strategy used in the

popular DjVu compression standard.

2.1.2 Context Encoding

Context encoding encompasses a range of compression strategies that use

redundant information from groups of the pixels to reduce the size of the image. These

strategies represent a “neighborhood” of pixel data with a single piece of data. Run-

length encoding uses a “neighborhood” along one row of pixels to compress an image. In

its simplest form, run-length encoding strategies replace a series of similar bits (or pixels)

(11111111111111111111) with a count of how many are on (20 1s), and their values. In

this case, the “neighborhood” represents a pixel and all nineteen preceding it.

Although context encoding strategies do not compress images as well as other

encoding strategies, they are very fast to encode and decode. For this reason, one popular

8

Figure 2.3 JBIG Encoded Image Slice

run-length encoding strategy is the CCITT standard, which is used for sending and

receiving faxes [14]. The CCITT standard operates in two-dimensional mode using

differential run-length encoding of the difference between the current and previously sent

lines. By taking advantage of the similarities inherent between adjacent lines, CCITT can

achieve fast, reliable compression without processing the entire image. In this example,

the context of the last line is used to improve the encoding of the line following it.

Another well known context encoding strategy is JBIG, an older standard for

compressing bitonal images [14]. This context compression strategy uses lower

resolution copies and an approach similar to the CCITT standard to compress each image.

The lowest resolution layer, known as the base layer, is encoded using one of many

resolution reduction algorithms that, for example, reduce an image from 200 dpi to 100

dpi. JBIG also implements progressive transmission by sending a low resolution copy

first, then sending higher resolution layers, called differential layers. A small section of a

JBIG encoded image is shown in Figure 2.3. The dot patterns in the JBIG image are used

to represent various levels of gray using only a bitonal image.

2.1.3 Dictionary Encoding

Dictionary compression strategies collect sequences of pixels (or symbols) from

an image and store them into an indexed dictionary. These sequences can range in size

from a couple of pixel values to complicated connected components like typed letters. In

9

some cases, even full-color image tiles could be using as symbols in a dictionary. Once

this dictionary has been built, symbols found on the image are converted from raw pixel

data to indices referencing the dictionary. If the same symbol shows up many times in an

image, good compression can be achieved as the actual pixel representation for that

particular symbol need only be stored once (inside the dictionary) [14].

A good example of a general-purpose dictionary compression strategy an

“entropy” encoding strategy known as Huffman encoding. This compression strategy

takes ordered data and replaces frequently occurring sequences of data with indices to a

dictionary organized in a binary tree. By giving the most common sequence of pixels the

smallest index, this strategy can compress any kind of data. Although Huffman encoding

works best when compressing series of actual symbols such as text files, good

compression can be obtained in image data as well.

 JBIG2 and JB2 [15] standards are examples of dictionary-based compression

designed specifically for compressing bitonal images. The dictionaries created by these

compression strategies contain connected black components. These compression

strategies perform well, especially for documents containing machine printed characters.

By replacing each letter with a small index number pointing to one in the library of

glyphs, compression levels up to 100:1 or more can be achieved. These bitonal image

encoding strategies are discussed in Section 2.2.1.

 The limitations of dictionary encoding strategies depend on two things: the size

of the dictionary and the size of the indices to the dictionary. When an image is encoded

and stored, the dictionary must be kept along with the actual image data, making the

dictionary part of the total file size. When too many symbols are stored, the dictionary

and its indices can become large. In some cases, it is possible for the index to a shape to

become larger than the actual shape itself. In extreme examples, images can become

larger after compression, thereby defeating the purpose.

2.1.4 Hybrid Encoding

 Hybrid image compression strategies have sparked considerable interest during

the past few years. By splitting images into layers and using different compression

operations for each layer, high compression can be achieved. For most hybrid strategies,

10

(a)

(b)

(c)

Figure 2.4 DjVu Image Layers created from JPEG Source Image. (a) Bitonal Foreground

Mask. (b) Foreground Mask combined with Color Map. (c) All DjVu Layers Combined

images are divided into a foreground and a background layer. The foreground layer is a

bitonal image containing all the printed and handwritten text and simple drawings. The

background layer is a continuous tone grayscale/color layer containing pictures and

textured surfaces.

The compression operations applied to each layer are chosen to take advantage of

11

the nature of the layer. The foreground layer is often compressed with a dictionary-based

bitonal compression strategy. A transform compression strategy is usually used on the

background layer. By applying different compression strategies specialized for each

layer of the image, higher compression can be achieved than by applying the same

compression strategy to the whole image.

The popular DjVu hybrid strategy converts an image into a high resolution (300

dpi) bi-tonal foreground mask, a small color map referenced by the foreground mask, and

a lower resolution (100dpi) continuous-tone color background image [16] as shown in

Figure 2.4. The foreground mask is compressed with JB2, a dictionary encoding scheme

implementing the JBIG2 standard. The background image is compressed with IW44, a

wavelet-based transform encoding algorithm similar to JPEG2000. Other examples of

hybrid image compression are Microsoft’s SLIm [17], DigiPaper [18], and DEBORA [7].

2.2 Bitonal Image Compression Strategies

Because they do not contain extraneous shade of color, bitonal images can be

compressed at much higher rates than grayscale or color images. Pixels require eight bits

for an accurate representation in a grayscale image and twenty four bits for a color image.

Bitonal images use a single bit per pixel, which provides a large reduction in image size

without any extra compression. In addition to taking advantage of the “one bit” nature of

each pixel, bitonal compression strategies use techniques such as pattern matching or

vectorization to further compress images.

2.2.1 Pattern Matching

Pattern matching is a form of dictionary-based image compression using

connected components as symbols. For example, the JBIG2 standard uses pattern

matching. When a pattern matching strategy is used, the compressor analyzes the image

and creates a dictionary of commonly repeated patterns (pixel-by-pixel symbols). As a

result, the data stored in the image file are simply indices to entries in this dictionary. If

the entry does not match the current pattern exactly, the residual difference in encoded

using common bitonal image compression techniques [19].

Patten matching algorithms come in two flavors: soft pattern matching and

12

pattern matching and substitution [20]. In pattern matching and substitution, if a symbol

is similar to one already stored in the library but not quite close enough for a match, a

new symbol must be added to the library. In soft pattern matching, the difference (delta)

between the symbol in the library and the one on the image is preserved instead [21].

Pattern matching works best when a document consisting of many images can be

referenced by only one dictionary. In some cases, the dictionary can be larger than the

actual image data, thus, using the same codebook for a collection of images is a way to

leverage greater compression efficiency [19]. Unfortunately, because of the variability in

handwritten document images, this technique can not be employed effectively.

2.2.2 Vectorization

Vectorization is the process of converting an image from pixel data (often called

“raster” format) into a vector-based file format. In its simplest case, a vector image is a

collection of line segments. For example, take an image containing one black line from

the upper-right corner of the image to the lower left. Instead of using one bit for each

pixel in the image, a vectorized copy of this image only stores the two endpoints and lets

the decoder plot the actual line.

In addition to image compression, vectorization has other advantages that make it

attractive. First, by converting raw pixel data to “higher order” data like lines, curves,

and shapes, it is much more feasible to perform pattern recognition or other computer

vision operations on the data. For handwritten text, vectorized letters provide a good

feature set for handwriting recognition. Second, vectors are represented by a sparse

collection of points, which can be used to perform various affine transformations

(rotation, scaling, and translation) on the image. Instead of manipulating the whole

image, these transformations can be limited to the points defining the vectors.

Basic vectorization techniques are divided into two categories: thinning and

nonthinning [22]. A thinning operation finds the midpoints of raster-based lines and

shapes and converts them into vectors. Because the shapes of varying thickness are

replaced by single pixel lines, this operation is referred to as creating a “skeleton” of the

image [23, 37]. Each vector has a specific width assigned to it, allowing lines of various

widths to be rendered accurately. Nonthinning operations use contours or the pixels

13

detected along the edge of each shape to represent the raster image.

Vectorization is used to convert engineering or architectural diagrams from

scanned images into a clean, elegant form composed of line vectors, giving engineers the

ability to manipulate the images easily using the aforementioned affine transformations.

Unfortunately, absolute pixel-by-pixel vectorization is quite expensive (although

preferable for engineering diagrams mentioned earlier). For document image

compression, vectorization is usually a lossy operation. Fortunately, vectorization tends

to smooth letter and shapes, including the curves associated with handwriting. This can

improve the readability of a document image.

2.3 Progressive Image Transmission

Progressive image transmission is the process of transmitting images piece-by-

piece across a network, so users with slow network connections can browse the image

without having to wait for the whole image. By sending the image in small chunks, it is

even possible for a user to finish reviewing the image or extract the needed information

before the whole image has been downloaded.

Current Internet browsers rarely perform progressive transmission by default. In

most cases, images are replaced by “alternate” text or an icon of a broken image until the

entire image is downloaded. At this point, the image suddenly appears in the browser.

Even if a “progressive” transmission strategy is activated for JPEG images, a raster-based

image is rendered row by row from top to bottom [12]. Although this is a progressive

transmission strategy, it only supports browsing if the data the researcher wants is at the

top of the image.

There are two approaches or issues to progressive image transmission: quality

and content. In “quality progressive transmission”, images are initially sent to the user at

a low resolution, with the resolution increasing as more data arrives. The JPEG standard

supports this using a “Progressive DCT-based Mode” which streams coarser images to

view first, improving the image by sending subsequent data [24]. For bitonal images, the

JBIG standard also supports a low-to-high resolution image transmission strategy using

base and differential layers [14]. The Just-In-Time-Browsing (JITB) uses the JBIG

standard by sending multiple bit-planes to the browser with each one adding different

14

colors values to the image. As more bit-planes arrive, the image is further refined [12].

Unfortunately, this coarse-to-fine strategy does not always work well for

document images. To be useful for a researcher, a document must be readable. Low

resolution images tend to leave fuzzy or blocky edges on handwritten and printed text. In

many cases, although sections of a coarse image can be quickly identified as text,

separate letters may be impossible to distinguish.

“Content progressive transmission”, on the other hand, sends full resolution image

pieces to the researcher one-by-one. In some cases, these pieces are layers such as the

background and foreground layers used by hybrid compression strategies (Section 2.1.4).

Other content progressive strategies involve chopping images into tiles and sending these

one at a time.

“Content progressive transmission” is the approach used by DjVu for its

transmission strategy. DjVu separates images into multiple layers [25]. The foreground

layer, consisting of text and darker sections of the document image, is sent to the user

first. Only after the foreground layer has been sent does the background layer start to be

sent to the user [16].

2.4 The CECAT Approach

The CECAT system provides a novel approach to the problem of document image

compression as well as a progressive transmission strategy. The CECAT compression

strategy is a “hybrid” compression strategy optimized for the bitonal foreground layer.

By converting this bitonal layer into a collection of contours represented by parametric

curves, the CECAT system uses vectorization for compression. As mentioned in Section

2.2.2, this vectorization prepares the image for future “higher-order” data manipulations.

The progressive transmission strategy provided by the CECAT system is a mixture of

two “content progressive” approaches. Like other “hybrid” approaches, the foreground

layer is sent first, followed by a residual and a background layer. In addition, the

CECAT system divides each layer into tiles that can be sent to the use one-by-one.

15

16

17

Chapter 3

Contour Encoded Compression

The main emphasis of this thesis and the CECAT compression strategy is creating

an effective method for compressing the foreground bitonal layer of a document image.

This section will cover the vectorization process used to convert image data from pixel

values to parametric curves, while Section 4 will discuss the encoding format of this and

the other grayscale image layers. Using parametric curves to represent contours

surrounding the black shapes in the image reduces the image size considerably. The

value this has for facilitating browsing is obvious: smaller file size equals shorter

download time.

 To accomplish this, the image is first converted from color to grayscale, followed

by a binarization operation (Section 3.1). This creates a bitonal, or black-and-white,

image. The pixels surrounding each of the shapes in the image are then detected and

labeled as contours. This detection operation and its associated contour filling operations

are presented in Section 3.2. Next, parametric curves (curves defined by two or more

“control points”) are fitted to each of the contours using a process discussed in Section

3.3. Lastly, these parametric curves are saved for later compression operations discussed

in Chapter 4.

3.1 Binarization of Document Images

Like any other foreground/background or “hybrid” compression strategy,

document images must be converted from color or grayscale to black and white (or

bitonal) images. This process, also known as “binarization”, is one of the more difficult

challenges in the field of document image processing. Because image quality varies

18

Gray = 0.3 * Red + 0.59 * Green + 0.11 * Blue (3.1)

among document images, no one strategy works best. Also, poor binarization can cause

important portions of a document image to be lost. The effectiveness of the CECAT

compression strategy hinges on selecting a good binarization strategy.

3.1.1 Color to Grayscale

The initial step, before binarization can take place, is the simple and well-

documented process for converting color images into their appropriate grayscale

representations. In the most common color representation, colored pixels are represented

by three 8-bit intensity values for the colors red, green, and blue. Every grayscale value

(from pure black to pure white) can be represented by a single 8-bit intensity value. As a

result, converting a document from color to grayscale reduces an image size by about

66%. By applying Equation 3.1 to each pixel in the image, color pixels are easily

converted into their grayscale equivalents [26].

3.1.2 Grayscale to Bitonal

 Now that we have a grayscale image, the binarization process can begin. The

goal of this operation is to separate the black text from the rest of the document image.

For the CECAT system, binarization is accomplished using a local thresholding

algorithm. Although the development of an “optimal” binarization algorithm remains an

area of active research, the algorithm proposed by Niblack in 1985 remains very

competitive with current approaches [27]. For the CECAT system, a modified version of

the Niblack thresholding algorithm is used. This modification was proposed by Zhang

and Tan [35] and adds two constants to reduce the algorithm’s sensitivity to noise. This

approach was implemented by Mike Smith for a class project at BYU in 2004 and

performs reasonably well for testing the CECAT system [28].

This binarization algorithm is a “local” thresholding operation because it creates a

threshold that can be different for each pixel in the image. If a pixel is greater than the

threshold value, it is changed to white; otherwise, the pixel is changed to black. Niblack

thresholding takes the mean (µ) and the standard deviation (σ) of the area around each

19

pixel and factors in two empirical constants (R and κ) to create a threshold T(x, y) as

described in Equation 3.2 [36].

For the CECAT system, the area used to create this threshold is a 19x19 square

region around each pixel. The value for κ, which adjusts the amount of boundary that

should be added to each black shape in the image [36], is set to -1. This removes extra

“padding” around the detected shapes. The other constant, R, is set to 100.

Even with this algorithm, the binarization doesn’t always perform well, especially

on some of the difficult documents analyzed. As an added measure, we added a simple

global minimum to the thresholding logic. If any pixel falls below this minimum value,

the system designates it as a white pixel, independent of T(x, y). This allowed us to test

the CECAT compression system on poor quality documents by tuning the thresholding

algorithm globally for each set of documents. This value is set to different values ranging

from 128 to 170, depending on the quality of the collection.

3.2 Contour Detection and Rendering

 A contour is an ordered list of pixels making up the outside edge of a shape. In

Figure 3.1, the yellow line marks the pixels that make up a contour. Because the contour

lies on the shape it represents, it is called an internal contour. If we have the contour, we

can recreate the shape that it represents. Using contours instead of actual space-filling

shapes is how CECAT images are compressed and rendered.

To use contours in image compression, two issues must be addressed. First, we

must have a process that identifies the contours. Second, to transform contours from

simple lines into human readable shapes, a contour-filling operation is needed. Although

many algorithms can be used to accomplish these operations, it is important, for our

purposes, to select two strategies that complement each other.

3.2.1 Layered Contour Detection

Using a bitonal image, it is possible to detect and mark the contours for each

T(x, y) = µ [1 + κ (1 − σ/R)] (3.2)

20

Figure 3.1 Contour Example.

shape, referred to as a connected component. For effective compression, we need to

mark the pixels along the inside edge of each shape, creating an “internal” contour.

When the shape is decompressed, the pixels that make up the contours become part of the

shape. Following this rule is especially important for recreating shapes that are one or

two pixels wide. Figure 3.1 shows an example of the “inside” edge our contour detection

algorithm is trying to find.

For our purposes, a simple counter-clockwise turn recursive contour detection

algorithm is used. Because we want to represent the contours with the smallest number

of pixels possible, the contour detection strategy looks for eight-connected components

(the contours can go diagonally as well as horizontally and vertically). The basic

algorithm used for tracing an eight-connected component contour is shown on the next

page.

Although this strategy will find the edges of the black connected components in

an image, it fails to identify any of the white “holes” inside these black components. To

capture all the necessary contour information, a strategy to detect these white “holes” is

also needed. In addition, these contours must be sorted in such a way as to preserve their

nested relationship, so that encompassing components are not rendered after any of their

internal connected components, overwriting them in the process.

To achieve these goals, the contour detection operation works on one “layer” of

the image at a time. First, an image, as shown in Figure 3.2a, is analyzed and the contour

detection algorithm is used to find the outside of each contour. Figure 3.2b shows the

contours detected using this operation. Once a contour has been detected, every pixel on,

21

(a) (b)

(c) (d)

Figure 3.2 Contour Detection Example. (a) Original Image (b) Detected Contours in

the First Layer (c) Filled Image Mask (d) Second Layer after Rendering Mask

procedure TRACECONNECTEDCOMPONENTS

 1: Inputs:

 2: Point start_point {black pixel found to right of a white pixel}

 3: Outputs:

 4: Array of points[] contour {sequence of points making up the contour}

 5: Variables:
 6: Point curr_point {marker for the current position on the contour}

 7: Enum direction {“north”, “northwest”, “west”, “southwest”, “south”…}

 8: Integer num_turns {number of 8-compass point turns made from curr_point}

 9: Begin

 10: curr_point = start_point

 11: direction = “northwest”

 12: do

 13: num_turns = 0

 14: while Pixel in direction from curr_point is “white” AND num_turns < 8 do

 15: direction = next clockwise 8-point compass direction

 16: number_turns = number_turns + 1

 17: Add curr_point to contour

 18: curr_point = next Pixel in the direction from curr_point

 19: if num_turns = 8 then

 20: curr_point = start_point

 21: direction = 3 steps counterclockwise on 8-point compass direction

 22: while curr_point != start_point

 23: End

22

and inside the contour is changed to gray using the contour filling algorithm described in

Section 3.2.2. After detecting and filling all these contours, we have an image like the

one Figure 3.2c.

 Detection of the first contour layer is now complete. Next, the second contour

layer makes up the “holes” in these first contours, appearing as white shapes on a black

background. To prepare this layer for the contour detection operation, we first create a

blank image of the same size as our original image with all the pixels set to black. Then,

using the gray image created earlier as a “mask” on the original image (Figure 3.2a), we

add all contents of the previously detected contour layer. This includes the white

contours that make up this second contour layer. Once all this is done, we have an image

like the one in Figure 3.2d.

 By simply reversing the foreground and background colors in the contour

detection operation, finding white contours on the black background of this new image is

straight forward. This creates counterclockwise contours that make up the second layer.

By filling these contours and repeating the process (simply swapping the background and

foreground colors each time), we can find all the contours, no matter how many nested

shapes there are. As an added bonus, these contours are sorted in the order we need to

render them.

Figure 3.3, on the next page, shows a portion of a census image divided up in

these layers. Because of all the nested shapes, four different contour layers are required

(shown as Figures 3.3b – 3.3e). When the image is displayed, the first layer (Figure 3.3b)

is rendered first. By adding each additional layer one-by-one, the internal contours are

drawn last, preventing one contour from overwriting another.

3.2.2 Contour Filling Algorithm

 Contour filling is the well-documented image processing problem of changing a

contour into its associated shape by setting the color of all the pixels inside the contour to

the color of the contour itself. Accurately performing this operation is essential for the

layered contour detection strategy mentioned earlier, as well as acting as the final step in

the process that converts encoded contours into a readable image.

Every contour-filling algorithm makes some assumptions, many of which do not

23

(a)

(b) (c)

(d) (e)

Figure 3.3 Contour Layers for Sample Image. (a) Original Image (b) First “Black”

Layer (c) Second “White” Layer (d) Third “Black” Layer (e) Fourth “White” Layer

work for encoded contours that may contain errors (as created by CECAT encoding). For

example, because the “inside” edge of each shape is used as a contour, the area inside the

contour is sometimes disconnected white as shown in Figure 3.4a. A “flood fill”

strategy, which changes one white pixel to black and recursively applies the same

operation to all the white pixels adjacent to that pixel, will only fill half the shape.

Another popular contour filling method follows the contour around the outside

edge in a clockwise direction. The left edge of the contour can be identified as locations

where the contour is moving up. By filling the contour in a “scan-line” from these points

to other contour edges on the right, the contour can be filled very quickly. Unfortunately,

the process of mapping parametric curves to contours sometimes introduces slight errors

24

 (a) (b)

Figure 3.4 Challenges for Contour Filling. (a) Unconnected Contour Area (b)

Transposed Edges

procedure FILLCONTOUR

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Outputs:

 4: Array of bits[][] canvas {pixel values as they appear after contour fill}

 5: Variables:
 6: Array of points[] spans {leftmost edges of each scan-line made by contour}

 7: Array of bytes[][] grid {plots points in spans and marks filled pixels}

 8: Integer total {running sum of labels on a given row}

 9: Begin

 10: for i � 0 to contour.length do

 11: if contour[i] is left-most pixel of a horizontal row of pixels then

 12: add contour[i] to spans

 13: grid = byte[contour.width][contour.height]

 14: for j � 0 spans.length do

 15: if spans[j] is a local minima or maxima then

 16: // Do Nothing

 17: else
 18: grid[span[j].x][span[j].y]++

 19: for k � grid.minY to grid.maxY do

 20: total = 0

 21: for l � grid.minX to grid.maxX do

 22: if total is odd then

 23: canvas[l][k] = 1 {fill in the pixel point on the resulting canvas}

 24: total = total + grid[l][k]

 25: for m � 0 to contour.length then {fill the points along the contour}

 26: canvas[contour[m].x][contour[m].y] = 1

 27: End

25

resulting in the edges being swapped as shown in Figure 3.4b, causing this contour filling

strategy to fail as well.

The contour filling algorithm used by the CECAT system is similar to the scan-

line parity based fill method mentioned earlier. Using contours stored as an array of x

and y coordinate pairs and a small byte array to map which pixels need to be filled, this

algorithm accurately fills each contour. The details for this algorithm are outlined in the

pseudocode on the previous page.

 As a first step, each horizontal row of black pixels in the contour is changed into a

single point corresponding to the leftmost pixel of the row. These collection of points

will be used later to mark the pixels that need to be filled. In the code below, these points

are called spans and have been marked blue in an example shown in Figure 3.5a. The

code shows this operation on lines 10-12.

Once these spans have been identified and marked, the algorithm steps through

the contour again, counting how many times these spans are crossed. This information is

stored on a byte array called a grid. Once the count has been made, any span found to be

a local minimum or maximum (i.e. spans before or after are both above or below) are

removed from the grid. This analysis occurs on lines 13-18 in the code and Figure 3.5b

displays the count inside each marked pixel with the local minimum/maximum crossed

out.

 Now that the grid has been created, the actual “contour filling” process takes place.

This operation, outlined on lines 19-24 of the code, is a simple scan-line parity fill. While

moving from left to right along each row in the grid, each time a number value is crossed,

a total variable is incremented by that amount. Whenever this total is odd, any pixel

passed over is “filled” in the image (called canvas in the code). Figure 3.5c shows the

results of applying this operation. At this point, all the pixels found inside the contour

have been marked as filled. As a final step, the algorithm goes through the contour a

third time and fills every point on the contour (lines 26-27). This concludes the contour

filling operation. Figure 3.5d shows the final filled contour.

We saw minor performance enhancements by using the list of horizontal objects

to represent spans instead of plotting everything onto the grid in the first place. This

algorithm requires the whole image section to be stored in memory, but this is not much

26

 (a) (b)

(c) (d)

Figure 3.5 Contour Filling Algorithm Example. (a) Horizontal Spans Marked Blue

(b) Span/Contour Crossing Points Counted and Local Minima/Maxima Removed

(c) Filled Contour using Scan-line Parity (d) Completely Filled Contour

of an issue due to the CECAT localization tactic of chopping up images and the

connected components associated with them into 512 x 512 tiles (see Section 4.1 for

more details). Because of this, the connected components associated with these contours

do not grow too large for memory to be an issue.

3.3 Fitting Parametric Curves to Contours

 One of the major contributions of this thesis is the process of converting contours

from an ordered list of pixel points into a collection of parametric curves. This

conversion has three major benefits: improved compression, componentization, and a

higher-order representation than raw contours.

27

 Compression is the most obvious reason for changing the image format into a

piecewise parametric representation. Instead of storing a list of points making up a

straight line, it is much more efficient to simply store the two endpoints and note that

they represent a line. By combining one or two more control points and a mapping

equation, a few points can represent a curve which can be used to represent a section of

contour even more efficiently than a collection of line segments. With parametric curves,

otherwise complex shapes can be represented with a few control points instead of a list of

points labeling each pixel on the contour one-by-one.

 Unlike compression strategies that transform an image into another representation

before compressing them (such as the discrete cosine transform used by JPEG), the

control points used to represent each contour remain in XY-coordinate space. Because of

this, contours can be sorted or chopped into smaller pieces using a process known as

componentization. This allows the CECAT format to be used in a variety of progressive

transfer strategies. In addition to componentization, changing contours into lists of

control points allows for much faster scaling, rotation, and translation. Instead of

applying an image-wide operation, only the control points need to be changed when

performing these affine transformations.

 Lastly, parametric curves provide a higher-order representation of the original

contours. As such, these curves can be used in subsequent pattern recognition algorithms

or further compressed by using a library of common curves. CECAT image provide a

new, higher order feature space for solving computer vision and image processing

problems.

3.3.1 Bezier Curves

 For the initial implementation of the CECAT system, Bezier spline curves are

used as the parametric form for representing contour segments. Named for the French

Mathematician Pierre Bezier who discovered them in the 1960s, this parametric

representation provides a simple way to define n-degree curves using n + 1 control points

[29]. Although one of the least sophisticated of the parametric curves, Bezier curves

provide an accurate and elegant way to compress curve data. They have been used by

many different drawing programs throughout the past few decades.

28

 Bezier curves are defined mathematically by the Bernstein polynomials (see

Equations 3.3 – 3.5). The value u ranges from 0.0 to 1.0, defining along with it the length

and location of each pixel on the curve. Bezier curves possess two useful properties, the

first of which being endpoint interpolation [30]. This means the first and last control

points lie upon the curve, simplifying the process of fitting parametric curves to contours.

Because of this property, important sections of the contour can be “fixed” and connected,

enclosing the contour completely. The second property is affine invariance which means

simple transformations (scaling, rotation, and translation) can be applied to the control

points, changing the resulting Bezier curves appropriately [30].

 The simplicity of Bezier curves made them prime candidates for use in the

CECAT system. Unfortunately, Bezier curves do not enforce any degree of continuity

that more sophisticated spline forms require. Because high compression is more

important than continuous transitions between splines, the CECAT system only enforces

C
0
 continuity. If the contour being mapped makes a sharp point, the extra cost of

preserving continuity does nothing to improve the later rendering of the contour.

3.3.2 Using First Degree Curves (Lines)

 The simplest example of CECAT compression uses only first degree parametric

curves (i.e. straight line segments). Although this can lead to suboptimal results (no

smooth curves and extra required segments), the algorithm is almost identical to the one

used to fit higher order parametric curves to contour. Because line segments are easier to

visualize than quadratic splines, we will start by compressing an image with them.

Outline of the Contour Mapping Process

 The algorithm used by the CECAT system to map parametric curves onto

Line: pppp(u) = (1-u)pppp0 + upppp1 (3.3)

Quadratic: pppp(u) = (1-u)2 pppp0 + 2u(1-u)pppp1 + u2 pppp2 (3.4)

Cubic: pppp(u) = (1-u)3 pppp0 + 3u(1-u)2 pppp1 + 3u2(1-u)pppp2 + u3 pppp3 (3.5)

pppp(u) = points on the curve ppppn = Bezier control points u Є [0, 1]

29

Figure 3.6 Suboptimal “Greedy” Algorithm Example.

contours is sometimes referred to as a “greedy” algorithm because it maps the longest

curve available from its current point without regard to the consequences further down

the road. This “locally optimal” strategy operates quite well with significantly fewer

computations than a “globally optimal” strategy, because it need only deal with the

current piece of contour. Unfortunately, the results can be suboptimal. For example,

Figure 3.6 shows a map of four cities with the distance between each city labeled. If

someone was trying to get from City 1 to City 4 and used a “greedy” algorithm for each

leg of the journey, they would choose the shortest route first. Thus, they would travel to

City 3, but then pay for it later as the distance between City 3 to City 4 is extremely high.

Similar to the example above, the CECAT contour mapping process starts at a

given point and looks for the longest possible curve it can map and yet remain close

enough to the original contour. “Close enough” is defined by something called Error

Tolerance, a measurement defining how far (in pixels) from the contour any associated

curve is allowed to go. Once the longest acceptable line segment is found, it is stored

away and the algorithm repeats itself until it reaches the end of the contour. The

implementation of each step in this process is described later in this section. The

procedure MapNextLineToContour on lines 15 and 22 of the following pseudocode

handle the process of selecting the next line segment, and lines 14-20 and 21-26 describe

how these line segments are actually mapped.

Of course, there are a few exceptions to this “greedy” approach. First, contours

that touch the image or tile border are assigned “fixed” line segments where they meet.

30

(a) (b) (c)

Figure 3.7 Line Segment Contour Mapping Example. (a) Initial Contour with Fixed

Border Edges (b) Contour Mapping Complete for First Section (d) Contour Mapping

Complete

By allowing a small amount of error in the mapping process, small “gaps” can appear

inside an otherwise connected components when tiles are reassembled if these edges are

not mapped perfectly. Figure 3.7a shows these fixed contour edges, and the procedure

FindBorderEdges on line 12 is where this mapping takes place in the process.

After applying the “greedy” process outlined above to the area between the

starting point and the first “fixed” line segment, a number of line segments can be

mapped as shown in Figure 3.7b. At that point, the “fixed” line segment is added to the

contour mapping and the process repeats itself until the contour is completely covered by

line segments. The result of this mapping process is shown in Figure 3.7c. The

pseudocode on the following page outlines this basic process, using upper and lower

indices to specify where on the contour each line segment lays. The methods

FindBorderEdges and MapNextLine will be discussed in the next few sections.

Marking the Outside Edges

 Having every point on the parametric curves map perfectly to the pixels along the

contour is not always desirable. Such a mapping requires too many parametric curves,

reducing the efficiency of the compression strategy and removing the desirable

“smoothing” effect the contour mapping provides. With that said, there are a few places

on a contour where an exact pixel-by-pixel mapping is needed. The most important of

31

procedure MAPLINESTOCONTOUR

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Integer start {index for contour - first point of current section of contour}

 4: Integer end {index for contour - last point of current section of contour}

 5: Real error {max allowable distance between mapped line segment and contour}

 6: Outputs:

 7: Array of lines[] lines {Line segments that have been mapped to the contour}

 8: Variables:
 9: Array of lines[] edges {contour segments that touch tile borders}

 10: Bezier next {next mapped line; contains indices indicating endpoints}

 11: Begin

 12: edges = FINDBORDEREDGES(contour)

 13: for i � 0 to edge.length do

 14: while true do

 15: next = MAPNEXTLINE(contour, start, contour[edge[i].lowerIndex], error)

 16: add next to lines

 17: start = next.upperIndex

 18: if next.lowerIndex > edge[i].lowerIndex then break

 19: add edge to lines

 20: while true do

 21: next = MAPNEXTLINE(contour, start, end, error)

 22: add next to lines

 23: start = next.upperIndex

 24: if lower index of next > end then break

 25: End

these exist where the contour touches the border of the image or the edge of a tile.

 Absolute precision is needed when encoding these edges for two reasons. First,

slight deviations in mapping these edges have the potential to push the contour outside

the dimensions of the image. If this were to occur, the decoder would clip the tile when

trying to reconstruct the image. Second, because the progressive transfer strategy uses

tiles to localize and transmit images in a piecewise manner, imprecise edges can create

gaps when two tiles are pieced back together.

 To prevent both of these conditions, each contour is first analyzed and these

border segments are detected and saved (as shown by the blue segments in Figure 3.8).

By storing a list of segments along with indices indicating their starting and stopping

points, these line segments can be “fixed”. In this way, we are guaranteed to have precise

fitting edges between each tile, and no contour moves beyond the edge of the image.

 Adding these “fixed” border edges is not without cost. The smoothing effect

32

Figure 3.8 Detected Border Edges.

Error

Tolerance

(pixels)

Image

DPI

File Size

without Fixed

Borders (bytes)

File Size with

Fixed Borders

(bytes)

Difference

(bytes)

Difference

(percent)

1.5 200 86,690 88,504 1,814 2.1%

1.0 200 107,000 108,028 1,028 1.0%

0.75 200 131,694 132,447 753 0.6%

1.5 300 123,708 126,300 2,592 2.1%

Table 3.1 File Size Price for Fixed Borders.

provided by allowing a small amount of error in contour mapping is lost for these

particular edges. Table 3.1 shows the image size for various CECAT files compressed

with and without fixed border edges. As expected, the file size difference is less

pronounced when a more restrictive error tolerance value is used. At any rate, the small

cost of 0.5% – 3.0% is minor when compared to the “artifacts” this process prevents.

The process that marks these outside edges is straightforward. Because each

point on the contour is stored in an ordered list, finding which segments lie along a

particular edge is a matter of detecting spans where the contour touches and later leaves

the edge. The algorithm steps through the list of contour points until the contour touches

the edge of the tile (line 15 of the following code resolves to true). This edge is followed

until the contour leaves the tile’s edge or reverses direction (as in lines 30-32 and 26-29

respectively). Once this happens, a line from the start_point to the end_point is stored as

an edge line segment and “fixed” for the contour mapping process. The implementation

details behind this operation are shown in the pseudocode on the next page. This

33

function is run four times to discover and set edge line segments on all four border edges

(top, bottom, left, and right).

procedure FINDBORDEREDGES

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Outputs:

 4: Array of beziers[] edge_list {contour segments that touch bottom tile border}

 5: Variables:
 6: Integer start_point {index for contour - first point of current contour edge}

 7: Integer end_point {index for contour - last point of current contour edge}

 8: Integer start_x {first x coordinate for the current contour edge}

 9: Integer end_x {last x coordinate for the current contour edge}

 10: Enum direction {“unknown”, “left”, “right”; direction of current contour edge}

 11: Boolean following_edge {indicates that an edge is currently being followed}

 12: Begin
 13: following_edge = False

 14: for i � 0 to contour.length do

 15: if contour[i] is on the current edge of current tile then

 16: following_edge = True

 17: if contour[i-1] was not on the current edge of current tile then

 18: direction = “unknown”

 19: start_x = end_x = contour[i].x

 20: start_point = end_point = i

 21: else if direction = “unknown” then

 22: if start_x > contour[i].x

 23: direction = “left”

 24: else
 25: direction = “right”

 26: else if (direction = “left” AND end_x < contour[i].x) OR

 (direction = “right” AND end_x > contour[i].x) then

 27: add line from start_x to end_x to edge_list

 28: start_x = end_x

 29: start_point = end_point

 30: reverse direction {“left” becomes “right” and vice versa}

 31: end_point = i

 32: end_x = x coordinate of contour[i]

 30: else if following_edge = True

 31: add a line from start_x to end_x to edge_list

 32: following_edge = False

 33: End

Fitting a Line to a Contour Segment

 To ensure good curve-to-contour mapping, CECAT encoding requires the curve

34

Figure 3.9 First Candidate Line Segment.

segments it uses to begin and end on pixels found on the contour. By forcing the

endpoints of each segment onto the contour, “fixing” line segments to the edges

described above is much simpler. This rule also ensures an exact curve-to-contour

mapping at least two times per curve segment and prevents the mapped curve segments

from oscillating from one side of the contour to the other and simplifies the algorithm

that chooses how to map a line segment to a section of contour as shown below:

procedure MAPLINE

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Point start {starting point for the contour segment being examined}

 4: Point end {ending point for the contour segment being examined}

 5: Outputs:

 6: Line next {line segment that have been mapped to a section of contour}

 7: Begin

 8: next = line with endpoints start and end

 9: return next

 For the “first attempt” at a contour mapping, the system tries to map a single line

from the starting point to the beginning of the first “border edge” segment detected

earlier. An example of this is shown in Figure 3.9. If there are no “border edges” on the

contour, the algorithm’s initial attempt is a single point line at the starting point for the

contour.

35

Determining the How Close a Line Fits to the Contour

Once we have our first candidate line, it must be analyzed to determine the

accuracy of the curve mapping it provides. To do this, we must determine which points

on the contour map to which points on the mapped line. Fortunately, this operation turns

out to be simple thanks to the parametric equation for a first degree Bezier curve:

The value for u can be found by calculating the percentage distance between each

point on a contour segment and the contour segment’s starting point. After calculating

the distance between the points used to calculate u and its associated computed value for

p(u) in the equation above, the maximum distance between a point on the contour and its

associated point on the parametric curve can be determined (dx and dy calculated on lines

18 and 19 in the pseudocode below). This maximum distance, as shown in Figure 3.10,

is called the “error value” for the parametric curve.

procedure GETERRORFORLINE

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Point start {starting point for the candidate line being examined}

 4: Point end {ending point for the candidate line being examined}

 5: Array of integer[] distances {measured distances from each indexed point in

 contour to starting point}

 6: Outputs:

 7: Integer error {highest measured error between points on line and contour}

 8: Variables:
 9: Integer total_distance {distance measured following contour from start to end}

 10: Real U {relative distances along both contour and candidate line}

 11: Real dx {horizontal distance between points on the candidate line and contour}

 12: Real dy {vertical distance between points on the candidate line and contour}

 13: Begin
 14: total_distance = last value in distances

 15: error = 0

 16: for i � index of start to index of end on contour do

 17: U = distances[i] * 1 / total_distance

 18: dx = (1-U) * start_point.x + U * end.x – contour[i].x

 19: dy = (1-U) * start_point.y + U * end_point.y – contour[i].y

 20: if maxError < squareRoot(dx
2
 + dy

2
)

 21: maxError = squareRoot(dx
2
 + dy

2
)

 22: End

pppp(u) = (1-u)pppp0 + upppp1 (3.6)

36

Figure 3.10 Comparison of Deltas between Candidate Line and its Associated Contour.

 Throughout the process of mapping curves to contours, significant improvements

in both image quality and compression can be achieved by allowing the mapped Bezier

curves to depart from the contour by a small margin. This small amount of discrepancy

has the benefit of both smoothing the compressed contours and reducing the size of the

final image [32]. The smoothing effect can simplify the form of many handwritten

characters and improve the readability of the handwriting, especially important if curve-

mapped contours were ever used for tasks like automated handwriting recognition.

The maximum acceptable distance between a contour segment and its mapped

Bezier curve is known as “error tolerance”. If a curve is more than this number of pixels

away from its associated contour at any point, that curve is labeled as a bad match.

Reducing error tolerance naturally improves the accuracy of the match, but the smoothing

effect of contour mapping is reduced. In addition, more curves are needed to represent

contours when the error tolerance is low. The effect of error tolerance on the image is

discussed in Section 5.1.1.

Performing a Search of the Best Line Mapping

Now that we have a way to map line segments to contours and test the accuracy of

these line segments, we are ready to search for the longest line segment that follows the

contour from a start point. This operation is fundamentally a recursive binary tree similar

to a “divide and conquer” strategy search as shown in the following pseudocode:

37

procedure MAPNEXTLINE

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Integer start {index of initial point where the next Bezier is mapped from}

 4: Integer end {index of last point where the next Bezier can be mapped to}

 5: Real error_tolerance {max allowable distance between current_curve & contour}

 6: Outputs:

 7: Bezier current_curve {next candidate Bezier and ultimately the optimal Bezier}

 8: Variables:

 9: Array of integer[] distances {measured distances from each indexed point in

 contour to starting point}

 10: Integer min_index {index of last point of the shortest Bezier failing to pass}

 11: Integer max_index {index of last point of the longest Bezier that passed error test}

 12: Real error {maximum distance from a point on current_curve and contour}

 13: Begin

 14: max_index = end_point

 15: min_index = start_point

 16: calculate and fill values for distances

 17: FINDNEXTBEZIER(start_point, end_point, min_index, max_index)

 18: currentCurve = MAPLINE(contour, start_point, end_point)

 19: error = GETERRORFORLINE(contour, contour[start_point], contour[end_point],

 distances)

 20: if (error > error_tolerance) AND ((min_index + end_point) / 2 > 2)

 21: return FINDNEXTBEZIER(start_point, (min_index + end_point) / 2,

 min_index, endPoint)

 22: if (error < error_tolerance) AND ((end_point < max_index) > 2)

 23: return FINDNEXTBEZIER(start_point, (max_index + end_point) / 2, end_point,

 maxPoint)

 24: else
 25: return current_curve

 26: End

First, a line segment going from the start point to the last available point on the

contour is selected (this point is either at the end of the contour or the beginning of the

next “fixed” line segment). In the code above, the process of selecting the last available

point and getting the error is done on lines 14-19. Figure 3.11a illustrates this step with

the selected line and the largest error labeled red. If the error for this first line is more

than the error tolerance, this line fails the test and a line segment going to the “halfway”

point is tested instead as shown in lines 20-21 above and illustrated in Figure 3.11b.

 From this point, the binary search continues. The results of each test determine

the next candidate line to be tested. If a candidate line segment fails, the next candidate

38

(a) (b) (c)

Figure 3.11 Determining the Best Line Mapping. (a) Initial Candidate Line and

Associated Error Values (b) Second Candidate Line and Associated Error Values

(c) Selected Line Mapping

line is set as halfway between that point and a min_index value which is initialized to the

start point (line 15). If the candidate line segment passes the test, the next test takes place

halfway between that point and a max_index value which is initialized to the last

available point (line 14). Throughout the process, min_index and max_index values are

tracked and adjusted. Every time a test fails, the endpoint of the line is saved as the

current maximum distance for the optimal line segment. Each time a test succeeds, the

endpoint is saved as the current “minimum” distance. Eventually, the min_index and

max_index come together at which point the line segment that successfully maps to these

indeices is chosen as the optimal line mapping.

 This binary search operation was implemented to speed up the mapping process.

Admittedly, testing for the longest available candidate line and stepping back one pixel

each time a mapping fails does not take extremely long (it is a O(n) operation).

Unfortunately, to create a CECAT image, tens of thousands of these line segments must

be mapped. Using this binary search changed the operation to O(log n), which reduces

the time it takes to compress an image considerably.

3.3.3 Using Second Degree Curves (Quadratics)

Mapping quadratic Bezier curves instead of line segments to contours is similar to

39

the process described for line segments. The algorithm is the same with only two small

changes. First, the algorithm for fitting a curve to a contour is different. The endpoints

for each perspective quadratic curve appear on the contour, but the middle control point

needs to be calculated. This is done using a least squares fit algorithm. Second, the

algorithm for calculating the error between a candidate curve and a contour uses the

Bernstein polynomial for quadratics Beziers instead of line segments.

Fitting a Quadratic to a Contour Segment

 Because the endpoints of each quadratic Bezier curve are determined by the

curve-fitting process outlined for line segments in the previous section, the only question

that remains is where to place the middle control point. To do this, a computationally

expensive linear algebra operation known as “least squares fit” is used [30, 31]. This

operation takes the basis functions of the polynomial equation for the Bezier curve and

evaluates them for a selection of sample points (in this case, every point on the contour

from one end to another). These basis functions are plotted on a matrix and the

eigenvector for the matrix is calculated. This eigenvector is the “least squares fit” to the

data, which is actually the coordinates of the control point we are looking for. Because

the x and y coordinates can be determined independently, this operation is actually much

simpler than it sounds. The matrix can be reduced to a 1xN matrix, which greatly speeds

up the process of calculating eigenvectors. This operation, which was originally

implemented by Michael Smith [28], is shown in detail in the pseudocode on the next

page.

Determining how close a Quadratic fits the Contour

Similar to the procedure outlined for mapping line segments to contours in

Section 3.3.2, the algorithm for determining how accurately a quadratic Bezier curve

maps to a contour is a matter of applying the parametric equation for the second degree

Bezier curve and comparing it with the points on the contour.

As outlined in the procedure for measuring the distance between a line segment

pppp(u) = (1-u)2 pppp0 + 2u(1-u)pppp1 + u2 pppp2 (3.7)

40

 procedure MAPNEXTQUADRATIC

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Integer start {index for contour - first point of current section of contour}

 4: Integer end {index for contour - last point of current section of contour}

 5: Array of integer[] distances {measured distances from each indexed point in

 contour to starting point}

 6: Outputs:

 7: Line next_bezier {second degree Bezier that has been mapped to section of

 contour}

 8: Variables:
 9: Integer total_distance {distance measured following contour from start to end}

 10: Real U {relative distances along both contour and candidate Bezier}

 11: Real T {simple holding variable used to store results of equation 2*(1-U) * U}

 12: Real vx, vy, M {variables used to create and evaluate Least Squares Fit matrix}

 13: Begin

 14: total_distance = last value in distances

 15: vx = vy = M = 0

 16: for i � index of start to index of end on contour do

 17: U = contour[i] * 1 / totalDistance

 18: T = 2 * (1 – U) * U

 19: vx = vx + (T * (contour[i].x – (1 – U)
2
 * start_point.x – U

2
 * end_point.x))

 20: vy = vy + (T * (contour[i].y – (1 – U)
2
 * start_point.y – U

2
 * end_point.y))

 21: M = M + T
 2

 22: controlPoint = (vx / M, vy / M)

 23: next_bezier = quadratic with control points: startPoint, controlPoint, & endPoint

 24: return next_bezier

 25: End

and contours, the value for u is found by calculating the percentage distance between

each point on a contour segment and the contour segment’s starting point. This allows us

to compare the distance between u and the associated computed value for p(u). The

following pseudocode shows how this is done. Everything in this procedure aside from

degree of the Bernstein equation is the same as for generating errors from line segments.

3.3.4 Combining First and Second Degree Curves

 Because the steps required for mapping first and second degree Bezier curves are

so similar, another “greedy” approach is used by the CECAT system to determine

whether a line segment or a quadratic curve is the best choice for each piece of contour.

This algorithm is controlled by a simple cost function: the cost of encoding two line

41

procedure GETERRORFORQUADRATIC

 1: Inputs:

 2: Array of points[] contour {sequence of points making up the contour}

 3: Point start {first control point for candidate Bezier being examined}

 4: Point control {middle control point for candidate Bezier being examined}

 5: Point end {last control point for the candidate Bezier being examined}

 6: Array of integer[] distances {measured distances from each indexed point in

 contour to starting point}

 7: Outputs:

 8: Integer error {highest measured error between points on line and contour}

 9: Variables:
 10: Integer total_distance {distance measured following contour from start to end}

 11: Real U {relative distances along both contour and candidate Bezier}

 12: Real dx {horizontal distance between points on the candidate Bezier & contour}

 13: Real dy {vertical distance between points on the candidate Bezier & contour}

 14: Begin
 15: total_distance = last value in distances

 16: error = 0

 17: for i � index of start to index of end on contour do

 18: U = distances[i] * 1 / total_distance

 19: dx = (1-U)
2
 * start.x + 2 (1-U)U * control.x + U

2
 * end.x – contour[i].x

 20: dy = (1-U)
2
 * start.x + 2 (1-U)U * control.y + U

2
 * end.y – contour[i].y

 21: if max_error < squareRoot(dx
2
 + dy

2
)

 22: max_error = squareRoot(dx
2
 + dy

2
)

 23: return max_error

 24: End

segments is equal to the cost of encoding one quadratic curve.

Using this simple rule, the algorithm makes two measurements from each start

point. First, the longest quadratic curve is determined using the technique outlined in

Section 3.3.3. Second, the next two line segments are mapped to the contour using the

strategy shown in Section 3.3.2. If the quadratic curve reaches farther than the two line

segments, the quadratic curve is saved as the best choice. On the other hand, if the two

line segments reach farther the first of these two line segments is saved as the next

mapped curve.

There are a few benefits to this strategy. First, the algorithm is simple and easy to

implement. Second, the whole operation requires much less time to run than more

complicated and sophisticated algorithms such as “backtrack” or “branch-and-bound”.

Third, it provides contour compression with locally optimal results. Fourth, and most

importantly, this strategy is easily extensible. This means that adding B-splines, higher

42

200 DPI Census Image

Compression Type Beziers Used
File Size
(bytes)

Line Segments 29,749 Lines 71,870

Quadratics
19,782
Quadratics 86,693

Mixed
Compression

24,033 Lines &
2,446
Quadratics 71,588

300 DPI Census Image

Compression Type Beziers Used
File Size
(bytes)

Line Segments 42,438 Lines 108,087

Quadratics
27,632
Quadratics 128,556

Mixed
Compression

32,691 Lines &
4115
Quadratics 107,184

Table 3.2 Amount of Beziers Used During CECAT Compression

degree Bezier curves, or another parametric representation to the contour mapping

process is simple. The only things needed are the following: a method for mapping a

curve to a contour, a method for determining the error between the mapped curve and the

contour, and a cost factor.

On the negative side, this strategy suffers from the same limitations that all

“greedy” algorithms face: the consequence of locally optimal vs. globally optimal

results. The final point for a particular quadratic may fall much shorter than the final

point for the similar two line segments, but it might provide a much better starting point

for the next step in the contour mapping.

 Table 3.2 compares the CECAT file sizes using only lines, only quadratics, and a

mix of the two. Although they help a little, quadratic Bezier curves do not provide much

in the way of improved compression rates, as line segments are clearly superior

compression-wise. On the other hand, the “smoothing” quality of the CECAT

compression strategy can be reduced when only line segments are used. Changing the

algorithm to allow for more quadratics and enhanced curve quality comes at the cost of

file size, which is a dilemma faced by most image compression operations. Despite the

43

scarce use of quadratics in the current algorithm, the improved “smoothing” effect and

the small improvement in compression makes mixing lines and quadratics still the best

course of action

44

45

Chapter 4

Encoding and Transmission of CECAT

Images

The CECAT system combines two technologies to facilitate document image

browsing: image compression and progressive transmission. Chapter 3 discussed the

process of encoding the document image “foreground mask” as a collection of first and

second degree Bezier curves. Chapter 4 will discuss the file format for these compressed

contours as well as the progressive transmission strategy used by the CECAT system.

Section 4.1 will introduce the tiling strategy used to separate images into manageable

chunks. Details about the file formats used to store the different layers of a CECAT-

encoded image are given in Section 4.2. Section 4.3 discusses the “Curve Segment

Library”, a tool used to improve compression of the “foreground mask” by creating a

lookup table of common line segments. Lastly, Section 4.4 will describe the progressive

transmission strategy used to send the encoded images to low-bandwidth users.

4.1 Localization of Contours

 The strategies employed by the CECAT system for localizing contours are quite

simple. First, contours in each tile must be sorted into different layers to prevent larger

contours from overwriting smaller ones. Additionally, each image is divided into tiles.

To improve the compression, a consistent tile size of 512 x 512 pixels is used. These

tiles can be transferred as a block and all their contents rendered in the same step. In this

way, an image viewer can easily display pieces of the image to the user without forcing

them to wait for the whole image to be transmitted.

46

4.1.1 Storing Contours as Layers

 The concept of storing sets of contours as distinct layers was mentioned in

Section 3.2.1. These layers are the first, and simplest, form of contour localization

employed by the CECAT system. Because some contours can be completely contained

inside others, it is imperative that outer contours are rendered before any contours

contained inside. If this is not enforced, the larger contour will simply write over the top

of the other “contained” contours. These contours represent the holes inside larger black

shapes or shapes inside these holes.

 Fortunately, because contour detection presorts these contours according to layer,

simply storing and rendering them in the default order keeps these contours from

overwriting each other. This is the strategy currently used by the CECAT system. It is

simple and requires no additional computation. If an advanced strategy for sorting

contours by priority inside each tile is developed, attention must be paid to prevent

rendering these layers out of order.

4.1.2 Tiling the Images

 The CECAT system uses a very simple tiling strategy: each tile is a 512 x 512

pixel block. The only exceptions to this are the tiles along the right and bottom edges of

the image, where they are simply cropped to fit the image. Figure 4.1 shows a sample

image and its associated tiles.

Fixing each tile to a maximum of 512 x 512 pixels provides several important

benefits. First, the average file size for a tile of this size is usually less than three

kilobytes. Table 4.1 shows the average tile size for CECAT images compressed at

various error tolerance levels. This size is appropriate for a single packet passed over a

dial-up internet connection. Second, fixing the size of the tile allows for some minor

improvements to the encoding of each tile. One piece of data, which is essential for each

contour, is a starting point in (x, y) coordinates. Because each starting point is relative to

the upper-left corner of its respective tile, the slot for each of these contours can be

limited to nine bits (representing coordinates ranging from 0-511) instead of the

previously used two bytes. This reduces the file size of a CECAT image by about

47

Figure 4.1 Tiled Document Image (using 512 x 512 pixel tiles).

Error Tolerance (pixels) Tile Size (KB)

1.5 1135

1.0 1409

0.75 1895

0.5 2558

Table 4.1 Average CECAT Tile Size

two bytes per contour. Given the number of potential contours in each image, this can

add up fast.

48

4.2 CECAT File Format

 The most significant aspect of the CECAT file system is the encoding strategy for

the “foreground” contour-encoded layer. This encoding strategy is a major contribution

of the CECAT system as well as the result of all the work described in Chapter 3. This is

described in detail in Section 4.2.1. The encoding strategy for the second two layers, the

residual and background layers were added to demonstrate the progressive transmission

strategy. These strategies are discussed in Sections 4.2.2 and 4.2.3 respectively. Because

grayscale image compression was not the emphasis of the CECAT system, these layers

have not been optimized for compression efficiency. As a result, a brief discussion about

optimizations added to the compression of the foreground, contour encoded, layer

continue in Section 4.3.

4.2.1 Encoded Contour Layer

One of the most important contributions of the CECAT system is the method by

which the control points for the various parametric curves used to represent contours are

compressed and represented in a data file. This data file format has a direct effect on the

compression ratio as well as the image data availability.

There are a few principles used by the CECAT file compression system that may

be useful to review before getting into the file structure. First and foremost, everything in

the CECAT file format is bit-oriented. For some pieces of data like the starting points

and number of Beziers per contours, the encoding strategy assigns them a particular

number of bits that may or may not be divided along the standard 8, 32, or 64 bit

partitions. Although this imposes a maximum value to each data slot, the amount of

unused space required for the image data is significantly reduced.

The second principle used by the encoding strategy system to reduce file size is

the use of “deltas” instead of fixed control points coordinates. Instead of storing absolute

X and Y coordinates for each control point, the relative distance from the previous

control point on the contour is stored instead. This significantly reduces file size and

makes it possible to improve compression by using techniques such as the curve segment

library discussed in Section 4.3.

49

The third principle involves the use of variable-length data elements. For

example, to represent the “deltas” mentioned above, four bits are used to tell the system

how many bits are needed to represent the required distances. By allowing a variation in

the number of bits required for these values, there can be a much higher maximum value

without the need for an excessive amount of unused “filler bits”. In addition, these four

bits actually represent the first ‘1’ bit for the “delta” they reference, removing the need

for repeating it in the next collection of bits. This does puts a limit to the size of the

deltas that can be represented. Because the tile size is restricted to 512 x 512 bits, this

does not pose a problem.

 As shown in Figure 4.2, the each contour-encoded foreground layer starts with a

basic image header. The image header gives basic information about the height and

width of the original image. 16-bit values limit the maximum dimensions of the image of

to little more than 65536 pixels and could be extended to allow for larger images, but that

did not seem necessary for the initial implementation of the CECAT system. The number

of bits needed to represent the height and width of each tile follow the image height and

width in the header. To reduce the file size by a few bits per contour, the tile width and

height are required to be factors of 2. As a result, the four bits can specify a tile edge

ranging from 2 to 65536 pixels in length. Using this information, the decoder can set the

correct tile boundaries.

After the image header, each contour has header that is 33 bits long. This header

contains data used to render its corresponding contour. The first bit marks the contour as

a black or white shape. Following this is the “Last Contour Flag” which, when set to

true, tells the decoder stops looking for more contours and moves onto the next tile. 13

bits are then used to store the number of Beziers required to render the contour. The

length of 13 bits was selected arbitrarily, setting the maximum number of curves used to

represent for a single shape to 8192.

For each Bezier, the degree is the only piece of data required. After that, the

“curve segment” data is represented by a 10-bit index to the curve segment library

described in Section 4.3 or data defining the delta from one control point to another.

50

Data Element Bits Used

Image Header

Total Image Width 16

Total Image Height 16

Tile Pixel Width (bits needed to represent) 4

Tile Pixel Height (bits needed to represent) 4

Contour Header

Internal Flag (is shape black or white?) 1

Last Contour Flag (is this the last contour?) 1

Number of Beziers 13

X Coordinate for Contour Starting Point Tile Width

Y Coordinate for Contour Starting Point Tile Height

Bezier Data

Degree of Bezier Curve 2

Segment Data

Stored Segment Flag (are deltas in library?) 1

If Stored Segment

Curve Segment Index 10

If Not Stored Segment

Delta Width (bits needed to represent) 4

Positive Flag (is delta X positive or negative?) 1

Delta X Delta Width - 1

Delta Height (bits needed to represent) 4

Positive Flag (is delta Y positive or negative?) 1

Delta Y Delta Height - 1

Figure 4.2 CECAT File Structure.

4.2.2 Residual Image Data Layer

 The encoding strategy for the residual image data layer is extremely simple, and

could benefit from more work (grayscale compression was not an emphasis of this

thesis). The residual layer contains grayscale data for every pixel that is rendered black

in the “foreground” contour layer as well as all the white pixels adjacent to these black

pixels. By supplementing these extra pixels, the residual layer adds a tremendous amount

of detail to an otherwise bitonal image, outlining and enhancing the handwritten content

with valuable grayscale data. This is a simple antialiasing operation.

51

(a) (b)

Figure 4.3 CECAT Tiles. (a) Foreground Mask (b) Residual Layer

 To improve compression for this image data, the grayscale values are converted

into one of the following eight levels of gray: 1, 36, 72, 108, 144, 180, 216, and 254.

Because only eight different levels of gray are used, each pixel can be represented by

three bits instead of the requisite eight bits required for a full grayscale pixel. This image

data is further compressed using a common run-length encoding strategy known as gzip.

 Like the contour-encoded “foreground” layer, this pixel information is stored in

tiles so it can be later transmitted after its associated contour layer. By requiring the

contour encoded layer to be transferred first, the data for the residual layer can be used to

“fill in” the grayscale information onto the “foreground” layer. As a result, location

references are not needed in the residual layer. As shown in Figure 4.3, the data in the

residual layer is organized by using the contour encoded layer as a mask and adding the

residual grayscale data sorted from upper left to lower right in regular scan-line order.

4.2.3 Background Image Data Layer

 The CECAT system uses the same compression strategy for the background layer

as it does for compressing the residual layer. In summary, each pixel not found in the

residual image layer is converted into one of the eight different grayscale values

mentioned in Section 4.3.2. These grayscale values are then stored as three-bit data

values, ordered in a standard scan line order from the top of the image to the bottom. As

a final touch, this data is compressed with a simple gzip compression algorithm. In short,

the background layer pixels are treated just like the residual layer pixels.

52

Index
Size

Max
Length
(pixels) Compression

% of Contours
in Library

10 15 5.07% 65%

11 22 4.57% 79%

12 31 1.45% 89%

13 44 -3.72% 94%

Table 4.2. Curve Segment Library Compression Enhancements

4.3 Curve Segment Library

 One of the more useful optimizations discovered while developing the CECAT

compression strategy was a curve segment library. As mentioned in section 4.2.1, aside

from the absolute starting point, contours are stored as a chain of deltas from one control

point to another. After analyzing various compressed contours, it was discovered that up

to 65% of these deltas were less that 16 pixels in size and the number of bits required to

represent them ranged from 10 to 18 bits.

 To take advantage of this redundancy, a curve segment library was created,

containing deltas ranging from (-15,-15) to (+15, +15), indexed by a 10-bit integer value.

The 10-bit index was chosen following a number of experiments with different index

sizes and compression improvements. Each index can only represent a range of deltas,

and Table 4.2 shows the maximum delta the each index can represent, the percent of

contours on the test images that fell within that range, and the overall compression

improvement each library provides.

 One of the big advantages of this library is that it can be created in the viewer

without having to send it from the server. The library consists of an exhaustive list of all

the deltas ranging from (-15, -15) to (15, 15). The CECAT image viewer is quite capable

of creating this library and storing it in RAM, where it can be referenced as needed. The

contents of the library are simple as demonstrated in Figure 4.4. This shows the first few

deltas stored in the curve segment library along with their associated indices.

 Two different types of curve segment libraries were implemented: one for

decoding images and the other for encoding images. The encoder library has a constant

time lookup of indices given two deltas. This greatly speeds up using this library while

encoding a contour. The decoder library, on the other hand, uses a constant time lookup

53

Index Delta X Delta Y

0 0 0

1 0 1

2 0 -1

3 1 0

4 -1 0

5 0 2

6 0 -2

7 1 1

8 -1 1

9 1 -1

10 -1 -1

Figure 4.4 First 11 Entries in Curve Segment Library.

For deltas given an index. Although both libraries can be used to look up deltas and

indexes, using them in the opposite direction takes much longer. The curve segment

library is built right into the CECAT file format detailed in Section 4.2, using a single bit

flag to tell the decoder if the contour is in the library or not.

4.4 Progressive Transmission

 By compressing the various image layers in a tiled format, it is possible to send

the image to a viewer a piece at a time. This process, known as progressive transmission,

is the second, albeit smaller, contribution made by this thesis. Because the images have

been “tiled” and broken into layers, it is possible to create a server and a viewer capable

of displaying these images as if they were in the process of being downloaded to a

viewer. Section 4.4.1 describes how the sample server was created to simulate

transmitting tiles from a CECAT file. In Section 4.4.2, the process of receiving contour

encoded tiles from a server and displaying them on a viewer is discussed. Finally, the

process for transmitting and adding the residual and background layers to an image is

discussed in Section 4.4.3.

4.4.1 Sample Server Implementation

 To demonstrate the potential of the progressive transmission of CECAT images, a

simple client-server system was set up to open compressed files. This server simulates

54

sending images tile-by-tile to a simple viewer. Although there is much work that can be

done to improve this operation, it does a reasonable job demonstrating the potential of the

CECAT file format. What follows is a brief description of the user experience associated

with this sample server as well as a few implementation details on how the server

operates.

User Experience with Sample Server

 There are currently two ways of “downloading” a CECAT image using the

sample server. One method is what might be considered the “manual” approach. The

server will send one tile each time the operator presses a button. As soon as the last tile

for the foreground layer image is sent, the first residual layer tile is added, followed by

the rest of that layer. The same thing happens with the background layer. This approach

shows how a CECAT image may appear during download, as well as what happens if the

download freezes or is cancelled.

 The second method for downloading a CECAT image involves something called

a “floating window viewer”. For this strategy, the viewer sends requests to the server for

tiles in the area of the image where the viewer is currently displaying. As a result,

scrolling around the image the first time sends a lot of tile requests to the server.

Fortunately, the tile information is saved in the viewer, so tiles do not need to be sent a

second time. This makes scrolling through the image a little jerky at first, however

subsequent scrolling operations are quite fluid. To request another image layer using this

viewing method, the user simply presses a button on the keyboard. This sets the

viewable layer to “residual” and then to “background” if the button is pressed again. If

the layer is set to one of these levels and the user scrolls into a section that has not had

any layers sent yet, the server sends all the necessary layers one-by-one.

Server Implementation Details

 As of the time of this implementation, CECAT images are composed of three

different files, one for each layer of the image. When a viewer requests an image, the

server first opens the data file containing the contour encoded layer, parses out the image

data and stores information for each tile into a large array. When the viewer makes

55

subsequent requests for specific tiles, a copy of the tile data is sent directly from the

array.

 To preserve memory, the other layers (residual and background) are not stored in

the server memory. After the array of contour-encoded tiles has been created, the server

then goes through both the residual and background layers creating an index to each tile.

Because each tile begins with a 32 bit number describing how many pixels of data it

contains, creating a list of indices for these tiles only requires a single pass through the

appropriate files. In response to a request for a particular tile containing one of these

layers, the server opens the appropriate file at the index location, reads the requested

image data, compresses it with a simple Gzip compression operation, and sends it to the

viewer.

4.4.2 Rendering the Contour Encoded Tiles

 Most of the steps required for the receiving and rendering of contour-encoded

tiles have been described in Section 3.2.2. The basic procedure for rendering a tile is

simple. The Image Server sends a CECAT tile to the CECAT Viewer, which then

converts the tile a list of contours. These contours are then filled using the algorithm

outlined in Section 3.2.2.

 The only part of the progressive transmission strategy that has not been covered

elsewhere is the ‘canvas’ upon which the image is painted. When the CECAT Viewer

requests a compressed image, the Image Server responds with a brief “header” file telling

the Viewer the height and width of the requested tile. The Viewer uses this information

to create a ‘canvas’ (a buffer of memory that stores the image data as byte-length pixel

values). The CECAT Viewer can only see this canvas, which gets updated each time a

tile is received. In addition, a simple map is used to keep track of which tiles have

already been received, preventing the CECAT Viewer from needlessly requesting image

data a second time.

4.4.3 Adding Residual and Background Layers

 Because the second two layers use the first as a mask, it is imperative that the

contour-encoded foreground layer be received and rendered first. This requirement

56

prompts the need for the map mentioned in Section 4.4.2. Once a contour-encoded tile is

rendered, the procedure for adding the other layers on top of it is simply a matter of

decompressing the gzipped pixel data, changing each pixel from 3-bit to its 8-bit

grayscale values, and filling over the appropriate portion of the contour-encoded mask

with pixel data in a scan-line order from top to bottom. These changes are made to the

‘canvas’ mentioned in Section 4.4.2 and are quickly reflected in the CECAT Viewer after

the image data has been received.

57

58

59

Chapter 5

Compression Efficiency and Results

The CECAT compression system compares favorably with other document image

compression algorithms, especially the compression of the bitonal foreground mask.

Although very little work was done on the grayscale compression (the residual and

background layers), the compression was competitive with other more sophisticated

compression algorithms once the image was reduced to eight levels of gray. In addition

to a study of compression efficiency, CECAT encoded images also provide a simple tiled

structure that allows for progressive transmission of portions of each image at full

resolution.

This chapter shows results of the compression and usability tests, comparing the

CECAT system to other freely available document image compression systems. These

compression systems include the JBIG and JPEG2000 standards as implemented by the

GraphicsMagick open-source imaging package [33]. In addition, the DjVuLibre package

(an open-source distribution of the DjVu encoding standard) was used to compress

images in DjVuBitonal, DjVuPhoto, and full DjVu files [34]. Section 5.1 presents the

results of the compression tests. Image quality and usability are discussed in Section 5.2.

Section 5.3 describes some of the inefficiencies and weaknesses in the CECAT system.

5.1 Analysis of CECAT Bitonal Compression

 To analyze the effectiveness of the CECAT compression system, a few common

compression formats were applied to four small sets of document images. Two of these

sets, the George Washington Papers and the James Madison Papers consist of

handwritten correspondence captured at 100 dpi resolution. The other two datasets

contained US Census pages that were extracted from microfilm at resolutions of 200 and

60

Error

Tolerance

(pixels)

Image

DPI

File Size

(bytes)

Error

Tolerance

(pixels)

Image

DPI

File Size

(bytes)

0.5 200 193,920 0.5 300 295,844

0.75 200 143,166 0.75 300 213,102

1.0 200 107,764 1.0 300 161,440

1.25 200 91,786 1.25 300 136,732

1.5 200 84,112 1.5 300 126,300

1.75 200 79,225 1.75 300 119,451

2.0 200 75,174 2.0 300 113,725

3.0 200 66,004 3.0 300 100,396

Table 5.1 Relative CECAT File Size at Different Error Tolerance Settings

300 dpi. For more details on each of these sets of images as well as thumbnails of each

image, consult Appendix A.

Because the compression enhancements were focused around the bitonal

foreground mask, most of the improvements in compressions were seen at that level as

shown in Section 5.1.1. By combining the cost of all the layers of the CECAT image,

further tests were made against common color image compression standards in Section

5.1.2. Lastly, compression effectiveness between “hybrid” compression strategies is

discussed in Section 5.1.3.

5.1.1 Getting the Settings for the CECAT System

 The CECAT system has two parameters that control the amount of lossy data:

error tolerance (which was discussed in Section 3.3.2) and “despeckling” which removes

the small contours such as single pixel points and stray dots. By using these two settings,

the CECAT bitonal image file size can be reduced considerably. Care must be taken,

however, when choosing the appropriate settings, because they remove data from the

image.

Error Tolerance

 As discussed in Section 3.3.2, error tolerance is the maximum distance allowed

between a contour and the Beziers mapped to it. Table 5.1 shows the comparative file

size for a 200 and a 300 dpi image compressed using different error tolerances values

61

Figure 5.1 CECAT File Size verses Error Tolerance.

ranging from 0.5 to 3.0 pixels. In conjunction with Table 5.1, Figure 5.1 shows a plot

comparing file size and different error tolerance values. One of the goals of this thesis is

to identify the point of diminishing return (also called the “knee of the curve”) with

regard to error tolerance. According to this data, an error tolerance setting ranging from

0.75 – 1.25 appears to produce the best results.

Although, some substantial gains in compression efficiency can be obtained by

using a large error tolerance value, this is not without cost. If the compression routine is

set to allow too much error, serious artifacts can occur. The “smoothing” effect created

by nicely matched quadratic Bezier curves can end up being replaced by block-like line

segments. Figure 5.2 shows a few examples of the same name from a 200 dpi image

compressed with different error tolerance settings. Obviously, an error tolerance setting

above 2.0 appears to create some blocky hard-to-read text when applied to 200 dpi

images.

Using this as a guide, the compression tests were run using the following error

tolerances: 0.0, 0.5, 0.75, and 1.0. This gives a good accounting of file size vs. image

quality as controlled by error tolerance settings.

CECAT File Size vs Error Tolerance

0

50

100

150

200

250

300

350

0.5 0.75 1 1.25 1.5 2 3

Error Tolerance (pixels)

200 DPI

300 DPI

F
il
e
s
iz
e
 (
K
B
)

62

Figure 5.2 Compressed Image Quality verses Amount of Error Tolerance.

 “Despeckling” Operation

 To reduce the overhead of using contours to compress small (1 – 4 pixels long)

shapes, a “despeckling” operation is used to remove any contours that are less than a

fixed length. To determine a good value for this fixed number, a series of compression

tests were run on sample images from each of the datasets. Interestingly enough,

changing this value didn’t affect the image quality as much as expected, although the file

size definitely took a hit.

63

(a) (b) (c)

Figure 5.3 CECAT Compression from 100 dpi George Washington Papers. (a) 16

Pixel Length Despeckling (b) 12 Pixel Length Despeckling (c) No Despeckling

(a) (b) (c)

Figure 5.4 CECAT Compression from 100 dpi James Madison Papers. (a) 16 Pixel

Length Despeckling (b) 12 Pixel Length Despeckling (c) No Despeckling

(a) (b) (c)

Figure 5.5 CECAT Compression from 200 dpi U.S 1870 Census. (a) 16 Pixel Length

Despeckling (b) 12 Pixel Length Despeckling (c) No Despeckling

(a) (b) (c)

Figure 5.6 CECAT Compression from 300 dpi U.S 1870 Census. (a) 16 Pixel Length

Despeckling (b) 12 Pixel Length Despeckling (c) No Despeckling

 Figures 5.3 – 5.6 shows the result of despeckling the images by removing

contours with less than 16 and 12 pixels in length. Further tests were done using a

“despeckling” operation with 8 and 4 as the minimum pixel length, but the resulting

64

Despeckling
Settings

GW
Papers

JM
Papers

200 DPI
Census

300 DPI
Census

None 33 42 143 168

4 Pixels 32 42 137 162

8 Pixels 31 41 126 153

12 Pixels 30 40 115 145

16 Pixels 29 40 107 139

Table 5.2: CECAT Compression file sizes (using 0.5 error tolerance) for sample

images with various “despeckling” settings. The file sizes are given in Kilobytes.

images were very close those using 12 pixel despeckling. The file sizes for these CECAT

images (which were compressed with a 0.5 error tolerance) are shown on Table 5.2.

Given the file sizes and the overall quality improvement, a default setting of 12 pixels

was selected for the compression tests.

5.1.2 Bitonal Image Compression Results

 The foreground mask layer for a CECAT image is a bitonal representation of the

document image. As such, the compression effectiveness can be compared to other

bitonal image compression algorithms. As mentioned in Section 5.1.1, for the purposes

of these tests, the CECAT compression was done using four error tolerance settings: 0.0,

0.5, 0.75 and 1.0 and the “minimum contour length” controlling the “despeckling”

operation was set to remove contours containing less than 12 pixels.

Two common document image compression standards were used for these bitonal

image compression tests: JBIG and DjVuBitonal. The JBIG images were compressed

using default settings in the GraphicsMagick [33] software package. Although not a

commercial image compression package, GraphicsMagick accurately implements the

JBIG standard. The DjVu bitonal images were created using the DjVuLibre open source

package [34]. The CECAT foreground masks generally ranged in size from one-third to

one-half the size of both JBIG and DjVuBitonal compression. All in all, very favorable

file size and quality comparisons were made despite some binarization problems. The

results of a few of these tests along with sample images taken from each data set follow.

65

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.7 Bitonal image compression for a portion of the George Washington Papers

(reduced in size). (a) JBIG (b) DjVu Bitonal (c) CECAT [1.0 error] (d) CECAT

[0.75 error] (e) CECAT [0.5 error] (f) CECAT [no error] (g) Original JPEG copy

Dataset 1: George Washington Papers

The first dataset tested was taken from the George Washington Papers, an online

collection of George Washington’s handwriting stored as digital JPEG images. These

100 dpi resolution images had good contrast, allowing the binarization algorithm to

66

Page
Contours
No Error

Contours
0.5

Contours
0.75

Contours
1.0

DjVuBitonal JBIG Raw

2 161 65 45 38 111 111 782

5 190 79 53 45 125 124 764

10 171 71 48 41 135 135 797

Table 5.3: Bitonal compression comparisons for 100 dpi images from the George

Washington Papers. The file sizes are given in Kilobytes.

operate effectively. Unfortunately, the fact that the original images were low quality

JPEG images introduces artifacts in the images that would not be present if clean copies

were used. Figure 5.7 shows the results of applying JBIG, DjVu Bitonal, and the

CECAT compression at error tolerances of 0.0, 0.5 0.75 and 1.0. The relative file sizes

for these four different compressed images are shown on Table 5.3.

 Although the letters in the CECAT-encoded images were not as “thinned out” as

the JBIG and DjVu Bitonal images (which appear to be very similar to each other), all

four images are quite readable. The thickness of the letters is a result of poor

binarization, likely the result of using low quality JPEG images as a source. In this case,

the binarization algorithm padded each letter with the darker sections of the document

surrounding it.

On the other hand, the CECAT images are also free from the dithering effect that

JBIG and DjVu Bitonal compression algorithms add to darker sections of the image.

This dithering effect is removed by the “despeckling” operation performed on the

CECAT images before encoding begins. This operation reduces the background noise

considerably. This does not come without some cost, however. With the “despeckling”

operation set to remove shapes with less than 12 total pixels in the contour, a few small

holes tend to be lost as well (such as in the A’s or O’s in the CECAT images).

As far as file size is concerned, the CECAT images ranged from about a fifty

percent increase in size (for no error) to less than one-third of the size of the other image

files for an error tolerance of one pixel. Although the images shown in Figure 5.7 were

somewhat reduced in size, the differences between the CECAT image without error and

the 0.5 pixel error CECAT image appears quite miniscule. All in all, this was a very

favorable compression comparison, demonstrating the power as well as some limitations

of the CECAT system.

67

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.8 Bitonal image compression for a portion of the James Madison Papers.

(reduced in size). (a) JBIG (b) DjVu Bitonal (c) CECAT [1.0 error] (d) CECAT

[0.75 error] (e) CECAT [0.5 error] (f) CECAT [no error] (g) Original JPEG copy

Dataset 2: James Madison Papers

The second dataset contains images from the James Madison Papers, another

online collection of 100 dpi low-quality JPEG encoded images of handwriting. This

68

Page
Contours
No Error

Contours
0.5

Contours
0.75

Contours
1.0

DjVuBitonal JBIG Raw

11 149 71 53 45 171 169 515

16 93 41 30 26 107 108 501

20 118 52 38 32 108 107 488

Table 5.4: Bitonal compression comparisons for images from the James Madison

Papers. The file sizes are given in Kilobytes.

collection contains poorer quality images than the George Washington Papers, especially

considering the contrast and readability of the images. The limitations of the binarization

algorithm as well as the results of the “despeckling” operation on the bitonal image are

more pronounced in these images. Despite this, the CECAT image file sizes were less

than a third of the file sizes for DjVuBitonal and JBIG encoded images. Table 5.4 shows

the relative file sizes of each of these images.

 Figure 5.8 shows the compressed images from this dataset. The poor image

quality of the original images in the James Madison Papers has an effect on the

readability of the bitonal representations of this image. The JBIG and DjVuBitonal

images represent some portions of letters with small collections of dots while the CECAT

images fail to capture those pieces of the image. This demonstrates the danger

associated with the “despeckling” operation. Like the inside of the A’s and O’s in the

George Washington Papers, pieces of the letters found throughout this document may

have been lost because the connected components were all too small. This shows the

need for a more intelligent (or at least human-adjustable) “despeckling” operation.

After performing a couple more tests with the “despeckling” on the image above,

it appears that the root cause of this problem is the binarization algorithm, not the

“despeckling” operation. The pieces of the letters missing from the CECAT images were

removed when the image was converted to a binary image before any contour

compression took place. The words, which were converted correctly into foreground /

background layers, are quite readable even on the CECAT images shown in Figure 5.8

(such as the words “to confer on”). On the other hand, poorly segmented words (like

“army”) are much more difficult to read. Improving the binarization algorithm would

help this dataset considerably.

69

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.9 Bitonal image compression for a portion of the 1870 US Census 200 dpi.

(reduced in size). (a) JBIG (b) DjVu Bitonal (c) CECAT [1.0 error] (d) CECAT

[0.75 error] (e) CECAT [0.5 error] (f) CECAT [no error] (g) Original JPEG copy

Dataset 3: US 1870 Census (200 DPI Resolution)

As the resolution of the images increase, the quality and readability of CECAT

images improves. The next dataset used consists of images from the 1870 U.S. Census.

These images were taken directly from microfilm and were scanned as 200 dpi images.

Due to a limitation in the scanning operation at the time these images were taken, the

70

Page
Contours
No Error

Contours
0.5

Contours
0.75

Contours
1.0

DjVuBitonal JBIG Raw

3 370 163 126 106 392 375 1904

8 403 170 131 108 362 344 1889

9 401 175 135 111 410 399 1985

Table 5.5: Bitonal compression comparisons for 200 dpi images from the US 1870

Census. The file sizes are given in Kilobytes.

contrast for these images was poor. This gave the binarization algorithm some difficulty

with these with these images, but the results shown in Figure 5.9 display some promise.

Although a few pieces of letters were lost (such as pieces of the letter ‘l’ and ‘S’ on the

second line) due to poor binarization, overall image quality looks good. The dithering

effect of the DjVuBitonal and JBIG images was replaced by smooth, solid strokes in the

CECAT images, enhancing the readability and overall “crispness” of the image.

In addition to the enhanced image quality, the CECAT compression distanced

itself even farther in the lead for image file size. Table 5.5 shows these compression

differences for US Census images saved at a 200 dpi resolution. Since the resolution

doubled, the CECAT image file size allowing 1.0 error tolerance images was about one

fourth of the file size for DjVu and JBIG compressed images. As the error tolerance

shrank, the CECAT image file sizes remained competitive with 0.5 error tolerance

CECAT images having less than half the size of the next compression algorithm. Even

more exciting than that, at this resolution the “no error tolerance” CECAT images finally

come to about the same file sizes as the DjVu and JBIG images.

Dataset 4: US 1870 Census (300 DPI Resolution)

 The fourth and last dataset also contains images from the US Census, only these

images were captured at 300 dpi. Unfortunately, the contrast problem inherent in the

previous dataset was more severe in these 300 dpi images, resulting in poor binarization.

As shown in Figure 5.10, small pieces of handwritten strokes were lost: the connecting

stroke between the ‘a’ and ‘r’ in the word “Farmer”, the ‘m’ in the word “Farmer”, and

the connecting stroke between the ‘e’ and ‘p’ in the work “Keeper”. Because of the size

of the pieces missing, problems with the “despeckling” operation can be ruled out,

leaving the binarization algorithm as the culprit. Aside from the inefficiencies with the

71

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.10 Bitonal image compression for a portion of the 1870 US Census 300 dpi.

(reduced in size). (a) JBIG (b) DjVu Bitonal (c) CECAT [1.0 error] (d) CECAT

[0.75 error] (e) CECAT [0.5 error] (f) CECAT [no error] (g) Original JPEG copy

binarization algorithm, the CECAT images contain sharp, fluid letters when compared to

the “dithering” effect that blurs the handwriting in the JBIG and DjVuBitonal images.

72

Page
Contours
No Error

Contours
0.5

Contours
0.75

Contours
1.0

DjVuBitonal JBIG Raw

8 496 221 165 135 730 693 3791

12 678 277 204 163 825 769 3706

15 696 275 199 156 777 734 3681

Table 5.6: Bitonal compression comparisons for 300 dpi images from the US 1870

Census. The file sizes are given in Kilobytes.

In addition to nice contrast and overall image quality, the CECAT images

continued to outperform the other compression strategies in terms of image file size. As

shown in Table 5.6, the file size of the CECAT images with a 1.0 pixel error tolerance

was less than one-fifth of the size of the other file formats and the 0.5 pixel error

tolerance images was less than one-third the size for these higher resolution images. The

most exciting result, however, is the fact that the “no error” CECAT images were actually

smaller than the DjVuBitonal and JBIG images. It is important to note, however, that if

the binarization algorithm was more accurate, the size of the CECAT files might be

higher as more shapes appear in the image.

5.2 Analysis of CECAT Grayscale Compression

 The focus of this Thesis has been the encoding of a bitonal foreground mask using

contours and tiles. This is fine if only a bitonal representation of the image is needed. As

explained in Section 4.2.2 and 4.2.3, the CECAT image consists of three layers: the

bitonal foreground mask, the grayscale residual layer, and the grayscale background

layer. This section discusses the effectiveness of the grayscale compression (all three

layers of the CECAT image added together) against the following standards: JPEG,

JPEG2000, DjVuPhoto, DjVu, and the raw pixel data.

 The compression used for the residual and background layer was not fully

developed during the course of this Thesis. Despite this, the basic strategy used is

somewhat competitive with the other compression standards. The biggest limitation of

the residual and background layers lies in the fact that the CECAT system reduces the 8-

bit grayscale to 3-bit grayscale. Of course, this is the primary reason for good

compression rates (the compression starts at 3/8 of the original image size without any

extra treatment). The only other compression strategy used is the standard Gzip

73

(a) (b)

(c) (d)

(e) (f)

Figure 5.11 Grayscale image compression for a portion of the 1870 US Census

captured at 200 dpi. (a) JPEG (b) JPEG2000 (c) DjVuPhoto (d) DjVu (e) CECAT

residual layer with an error tolerance of 0.75 (f) CECAT full image

encoder. As a slight bonus to the compression, chopping the image into the residual and

background layers tends to group similar shades of gray together (this improves the Gzip

operation). As for the foreground mask, after the entire image has been transferred the

visible pixels only come from the residual and background layers. In many respects, the

contour-encoded foreground mask only adds to the final file size as it is overwritten by

these other two layers in the end.

With that in mind, the CECAT grayscale images compared favorably to the other

compression standards. As Figure 5.11 shows, reducing the color number of shades of

gray from 256 to 8 does not impact the readability of the images very much. In some

ways, the residual layer, with its white background and grayscale foreground is more

readable than the other, more sophisticated, approaches. Of course, the strength of the

74

Page JPEG JPEG2000
CECAT
0.75

CECAT
1.0 DjVuPhoto DjVu Raw

2 217 391 359 355 398 601 6240

5 237 381 429 425 448 736 6086

10 229 399 419 414 419 657 6360

Table 5.7: Compression comparisons for 100 dpi images from the George Washington

Papers. The file sizes are given in Kilobytes.

Page JPEG JPEG2000
CECAT
0.75

CECAT
1.0 DjVuPhoto DjVu Raw

11 352 258 439 431 199 607 4117

16 300 251 276 272 179 600 4000

20 336 244 376 370 217 683 3884

Table 5.8: Compression comparisons for 100 dpi images from the James Madison

Papers. The file sizes are given in Kilobytes.

Page JPEG JPEG2000
CECAT
0.75

CECAT
1.0 DjVuPhoto DjVu Raw

3 1070 953 806 793 530 1350 15230

8 1106 945 832 813 579 1547 15106

9 1114 993 849 832 562 1223 15878

Table 5.9: Compression comparisons for 200 dpi images from the US 1870 Census.

The file sizes are given in Kilobytes.

Page JPEG JPEG2000
CECAT
0.75

CECAT
1.0 DjVuPhoto DjVu Raw

8 1619 1896 1232 1204 637 1548 30326

12 1745 1854 1398 1362 699 1845 29648

15 1790 1841 1433 1393 734 2307 29447

Table 5.10: Compression comparisons for 300 dpi images from the US 1870 Census.

The file sizes are given in Kilobytes.

other compression standards is the fact that they are representing the image with all 8

bits, providing the potential for finer detail.

 Tables 5.7 – 5.10 show the differences in file size between the CECAT grayscale

images and the other various file formats, with Table 5.9 showing the file sizes of the

images shown in Figure 5.11. Quantitatively speaking, the CECAT grayscale

compression performed consistently better than DjVu with 50% – 60% less file size. At

resolutions of 200 dpi and higher, the CECAT grayscale images also outperformed JPEG

75

and JPEG2000 images. DjVuPhoto turned out to perform much better on all but the

George Washington Papers dataset.

5.3 “Hybrid” Image Layer Comparison

 Using the “out of the box” DjVu compression routine found in the open-source

DjVuLibre project [34], hybrid DjVu files containing multiple layers similar to the

CECAT encoded images were created. Both formats, DjVu and CECAT, consist of a

bitonal foreground mask, a grayscale layer containing color information, and an encoded

background color layer. These layered images facilitate a content progressive

transmission by sending one or more layers at a time, allowing the user to view to

contents of these earlier layers without having to wait for the whole image to be

transmitted.

One advantage that the CECAT system has over the DjVu progressive

transmission strategy lies in the fact that each layer of the image is further subdivided

into tiles that can be transmitted one by one. For a simple comparison of progressive

transmission strategies, the DjVuLibre encoder and viewer was used to show the three

layers of the DjVu file. Figure 5.12 shows the different layers of a CECAT encoded

image and DjVu images side-by-side using samples from the George Washington papers

dataset.

Apparently, the DjVu foreground mask suffers from poor binarization just like the

CECAT system, although from the look of Figure 10b, the results of the foreground mask

is too “blocky” to read. In its defense, the DjVu was not specifically designed for

handling grayscale images, having more of a focus on color images. Even so, the

CECAT foreground bitonal mask is superior to the DjVu image in terms of readability

and size. Of course, some of the distortion in the DjVu foreground mask could spring

from the fact that this dataset contains low-quality JPEG images as its source.

Once the residual grayscale layer has been transmitted, the DjVu image is just as

readable as the CECAT residual image (see Figures 10c and 10d), especially since the

DjVu residual layer contains the background pixels covered by the “blocky” foreground

mask. The CECAT image, however, does contain a much higher contrast as the

background remains mostly white. This sharp contrast can make it easier to follow the

76

(a) (b)

(c) (d)

(e) (f)

Figure 5.12 “Hybrid” image compression comparison for a portion of the George

Washington Papers. (a) CECAT Foreground Layer (b) DjVu Bitonal Foreground

Layer (c) CECAT Residual Layer (d) DjVu Grayscale Foreground Layer (e) CECAT

Background Layer (f) DjVu Background Layer

strokes of the letters with the human eye.

 For a second example, the foreground image masks from the 300 dpi resolution

copy of the 1870 U.S. dataset are shown in Figure 5.13. Obviously, the binarization

algorithm failed, leaving the foreground image mask as an opaque black square. In these

cases, the foreground mask and the residual color layer are needed before any image

details can be made out.

 In addition to comparing these various layers qualitatively, the tools found in the

DjVuLibre package can provide the file sizes for each of the three DjVu layers. By

analyzing these images and the file size of each layer, some interesting trends were seen.

77

(a) (b)

Figure 5.13 “Hybrid” image compression comparison for a portion of the 1870 US

Census scanned at 300 dpi. (a) CECAT Foreground Layer (b) DjVu Bitonal

Foreground Layer

First of all, the DjVu background and foreground color layers were extremely well

encoded. The foreground mask, on the other hand, made up for most of the total file size

(around 95%) and was larger than the whole CECAT image.

 Looking at these results layer-by-layer, the CECAT system outperformed the

DjVu encoding for the bitonal layer, resulting in contour-encoded image files which were

less than 10% of the DjVu foreground layer (called the JB2 Bilevel layer). The DjVu

encoding, however, outperformed the CECAT system in the residual/JB2 color layers. It

is possible that DjVu uses context information from the first layer to render the next

layers. Quantitatively, the DjVu JB2 color layer was less that 20% of the CECAT

residual layer. Of course, the biggest gain in the DjVu encoding was seen in the IW4

background layer which never exceeded 1 KB in size. Tables 5.11 – 5.14 show how the

DjVu and CECAT images compare in size, layer-by-layer.

5.4 Limitations of the CECAT System

 Despite the compression efficiency of the CECAT system, these tests revealed a

few of its limitations as well. The most glaring of these is the dependency on an

underdeveloped binarization algorithm for detecting the foreground mask. As mentioned

in Section 3.1.2, the bitonal conversion process was limited to a basic localized

binarization algorithm with a tunable threshold. In the case of the US Census images, the

threshold had to be changed from 64 to 128 to achieve reasonable binarization.

78

 CECAT (Error 0.75 / Error 1.0) DjVu

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4

2 43 / 36 214 / 212 102 / 107 571 32 1

5 50 / 42 264 / 263 115 / 120 698 39 1

10 45 / 37 242 / 241 132 / 136 626 31 1

Table 5.11: Comparison of “Hybrid” image layers for 100 dpi images from the George

Washington Papers. The file sizes are given in Kilobytes.

 CECAT (Error 0.75 / Error 1.0) DjVu

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4

11 56 / 47 188 / 188 195 / 196 579 29 1

16 30 / 26 111 / 110 135 / 136 573 28 1

20 40 / 33 140 / 140 196 / 197 651 32 1

Table 5.12: Comparison of “Hybrid” image layers for 100 dpi images from the James

Madison Papers. The file sizes are given in Kilobytes.

 CECAT (Error 0.75 / Error 1.0) DjVu

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4

3 117 / 98 319 / 320 370 / 375 1292 57 1

8 124 / 101 352 / 353 356 / 359 1487 61 1

9 126 / 103 345 / 347 378 / 382 1171 52 1

Table 5.13: Comparison of “Hybrid” image layers for 200 dpi images from the US 1870

Census. The file sizes are given in Kilobytes.

 CECAT (Error 0.75 / Error 1.0) DjVu

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4

8 156 / 126 380 / 382 696 / 696 1509 40 1

12 196 / 156 530 / 532 672 / 674 1772 72 1

15 194 / 151 631 / 635 608 / 607 2218 89 1

Table 5.14: Comparison of “Hybrid” image layers for 300 dpi images from the US 1870

Census. The file sizes are given in Kilobytes.

Although grayscale-to-bitonal conversions were not the emphasis of this thesis,

poor binarization severely affects the usefulness of the CECAT contour layer. Letters

can be chopped into disconnected pieces and sometimes entire words can be missing

from the bitonal representation of the image. Admittedly, these missing pieces do

reappear when the background layer is added to the image, but if the user is required to

79

wait for the final layer to transmit in order to read the document the progressive

transmission strategy is marginalized.

The other limitation of the CECAT system is the 8-bit to 3-bit grayscale

conversion. Because of this operation, fully downloaded CECAT images are lossy

images, at least until further work is done to improve the compression of the residual and

background layers.

Lastly, the CECAT images can take up to three minutes to compress. This may

limit the usability of this compression strategy, especially for large collections that could

take years to convert. Hopefully further improvements can speed up this process,

especially since a large portion of the time is spent reading tiles from the original

“uncompressed” image.

80

81

Chapter 6

Conclusion and Future Work

6.1 Conclusion

 The Curve-Encoded Compression and Transmission (CECAT) system provides

significant compression improvements to the bitonal foreground image layer, especially

those containing large amounts of handwriting. The bitonal foreground layer of CECAT

images were only 20% - 30% of the size of the JBIG and DjVuBitonal and yet still quite

readable. This shows significant improvement. In addition, when binarization was good,

this image layer has more fluid, continuous lettering with background noise removed by a

“despeckling” operation.

 To add readability and demonstrate the usefulness of the encoded images, the

residual and background layers were encoded as 3-bit grayscale image data. As a result,

a fully transmitted CECAT image shows the image data as it appears on the document

(after this 8-to-3 bit quantization) without distortions or artifacts that appear on other

lossy compression algorithms.

 In addition, the layers created by the CECAT system facilitate progressive

transmission functionality. Compared with the open source implementation of the

popular DjVu standard, the bitonal foreground layer is much more readable and

appropriate for browsing through multiple documents quickly. As an extra level of

functionality, the CECAT image layers are segmented into 512 x 512 bit tiles which can

be streamed to a viewer one piece at a time, providing another form of progressive

transmission.

82

6.2 Future Work

The CECAT system introduces a novel method for compressing and transmitting

document images. As is often the case with new approaches to old problems, new areas

for study as well as further enhancements are made available.

One very important enhancement revolves around the binarization algorithm used

to separate the foreground from the background. Because the intent of this thesis

revolved around parametric compression and progressive transmission, the operation of

converting grayscale image into good bitonal images was only lightly touched. However,

the usefulness of the first “contour compressed” layer of CECAT images is determined

by the effectiveness of the binarization algorithm. Many such operations have been

developed throughout the past few years and this problem remains an active area of

research. On a positive note, the CECAT system has been architected so that a new

binarization operation can easily be swapped in, with the only change being a simple

method call. One such operation is using an approach known as graph cut for segmenting

text from background, rather than applying a thresholding algorithm. By seeding the

foreground and background, good binarization can be achieved.

 Another obvious enhancement involves the residual and background layers.

Although eight color grayscale images are quite readable, there are better algorithms

available for reducing the size of these two layers without reducing the color palette.

These layers can easily be further compressed using sophisticated one-dimensional signal

compression techniques such as an arithmetic encoder. Because some locality

information is preserved in those layers, some two-dimensional encoding strategies might

be useful as well. Future tests may even discover that only two layers of an image are

needed, allowing the residual and the background layer to merge in some tightly

compressed lossless format. At the very least, the simple gzip encoding done as a last

step could be changed to a more effective arithmetic encoder. There are many

possibilities enhancing the compression efficiency of these other layers, including a

combination of CECAT foreground layer with the tightly compressed DjVu background

layer.

 As mentioned in Section 3.3, the currently implemented CECAT system only uses

quadratic and linear Bezier curves. More experimentation could be done to determine if

83

there exists a better choice for this purpose. Although the gain between linear and

quadratic curve representations turned out to be small, further gains might be possible if

cubic or even higher-order Bezier curves are used. Another set of experiments could be

performed to determine the value of using B-Splines, NURBS, or another parametric

form. Because compression efficiency was more important than parametric curve

connectivity, Bezier curves were chosen. The advantages of good curve connectivity

may outweigh a slight increase in file size as these experiments may show.

 Another enhancement, which was pursued lightly during the course of this thesis,

was something akin to a shape library. The CECAT system combined vectorization

(mapping lines and curves to contours) with codebook (segment library) compression

strategies quite effectively. Another challenge faced by the CECAT system is the need

for a good method for encoding small contours. Since the segment library successfully

reduced the overall CECAT file size by about 5%, a good shape library may compress

these images even farther.

 Enhancements to the CECAT system are not the only avenues for future work.

Having readable copies of document images stored as parametric curves makes new

options available in the field of image manipulation. Because Bezier curves are affine

invariant, scaling, translations, and rotation operations can be safely performed on the

CECAT control points. Building a viewer to take advantage of this would be beneficial

as a first step. Rotation and zooming operations would not require very intensive

calculations in this case.

 Image manipulation is not the only field of research than can benefit from using

the CECAT system. Because shapes have been converted to parametric curves, it is

possible to use those curves as a feature set to identify content in the image. Pattern

recognition is always a difficult problem. At the extreme end, handwriting recognition

may benefit from the sequence of encoded curve information the compressed contours

can supply. In the short term, form recognition or other such operations could benefit

from the additional features provided by the CECAT-encoded contours.

 The CECAT server can also be developed further. The implementation of the

server was only meant for demonstration purposes. The challenges associated with

making a connection, streaming data, and adding image data into the viewer as it is

84

transferred have not been addressed during the course of this thesis. Third party software

may provide a great fit here, such as the server used in the JITB system.

 The CECAT viewer is also in its infancy. Only simple operations like 90 degree

rotations and mirroring can be performed on the image while it is being displayed at the

viewer. Tools such as a progress meter, pan window, and interactive zoom could go a

long way to improve the overall browsing experience. In the best case, a browser plug-in

could be developed to viewer CECAT images transmitted over http.

 Resolving the issues mentioned above could advance the CECAT system, making

it a much more powerful method for encoding and delivering document images across

potentially low bandwidth connections for browsing operations.

85

86

87

Appendix A

Image Datasets

To test the effectiveness of the CECAT compression system, images from four

different sources were taken, compressed, and compared. What follows are thumbnails

and a brief description of each of these sets of images.

A.1 George Washington Papers

 This first dataset was published by the Library of Congress and contains the

collected writings of George Washington. This dataset provided a number of documents

consisting of mostly handwriting. As such, these documents lay squarely in the “target”

as it were of the CECAT compression system. Unfortunately, these images were JPEG

images before performing the various compression tests, creating at least two generations

of image degradation. Full details for the images in this dataset are as follows:

George Washington Papers at the Library of Congress, 1741-1799: Series

3a Varick Transcripts; George Washington to Continental Congress, July

10, 1775; http://memory.loc.gov/ammem/gwhtml/gwseries3.html

(Subseries A Continental Congress LetterBook 1)

Page 02 Page 03 Page 04 Page 05 Page 06 Page 07

88

Page 08 Page 09 Page 10 Page 11 Page 12

Full Resolution Snapshot of Page 02

A.2 James Madison Papers

 The second dataset was also published by the Library of Congress, consisting of

number of James Madison’s writings. Like the George Washington Papers, these images

consisting of mostly handwriting as well as the JPEG image degradation. Also, like the

George Washington Papers, these documents lay squarely in the “target” area for the

CECAT compression system. Full details for this collection are as follows:

The James Madison Papers; Series 3: Madison-Armstrong

Correspondence, 1813-1836; James Madison. Review 1824;

http://memory.loc.gov/ammem/collections/madison_papers/mjmser3.html;

Credit Line: Library of Congress, Manuscript Division.

Page 11 Page 12 Page 13 Page 14 Page 15

89

Page 16 Page 18 Page 19 Page 20

Full Resolution Snapshot of Page 11

A.3 US 1870 Census (200 dpi)

 The third dataset consists of records from the 1870 United States Census. These

images were scanned directly off microfilm and saved off as uncompressed images,

reducing the amount of image degradation. In addition, these census images were saved

at 200 dpi resolution. Although the Census form is not handwriting, it still compresses

fairly well.

Population Schedules of the Ninth Census of the United States 1870;

National Archive Microfilm Publications; Roll 110, Connecticut Vol. 7,

New Haven County, New Haven City, Wards 4-8

Roll Titleboard 1 Titleboard 2 Page 01 Page 02 Page 03

90

Page 04 Page 05 Page 06 Page 07 Page 08 Page 09

 Page 10 Page 11 Page 12 Page 13 Page 14

Full Resolution Snapshot of Page 01

A.4 US 1870 Census (300 dpi)

 The fourth and final dataset consists of a few more pages from the 1870 United

States Census, also scanned directly from microfilm. These images were saved at a

resolution of 300 dpi.

Population Schedules of the Ninth Census of the United States 1870;

National Archive Microfilm Publications; Alabama, Jackson County

91

Page 08 Page 09 Page 10 Page 11 Page 12

Page 13 Page 14 Page 15

Full Resolution Snapshot of Page 08

92

93

Appendix B

User’s Guide

 Two graphical user interfaces where created to support the CECAT system, one to

compress images and the other to view them. What follows is a summary of each of

these interfaces as well as how to use them to perform their appropriate function.

B.1 Compression Interface

 The primary purpose of this interface is to perform the actual CECAT

compression on a tiled image. In addition, some methods have been added to allow the

user to view contours as well as each layer of an image tile. The interface is simple

consisting of an image viewer, a dropdown menu and a couple simple widgets.

File Menu

This menu offers basic options for opening and saving image files. The initial

implementation supports the following image formats: jpeg, gif, png, ppm, pgm, and

pbm.

Open First Tile:

This option allows the user to open and view the 512 x 512 pixel tile

located in the upper-left corner of the image. This tile can then be compressed

using different options from the compression menu and viewed at different levels

using the display menu.

94

Open and Compress Tile Image:

This option runs the entire CECAT compression algorithm on an image

file, creating all three layers using the parameters specified on the interface

controls (error tolerance and minimum contour length). Simply put, to compress

an entire image, use this option. The three different layers of the CECAT Image

will be saved under the same name, in the same directory as the original file

except that the extensions will be cec, res, and bkg for the CECAT layer, residual

layer, and background layer respectively.

Encode Entire Image:

After selecting this option, the user is prompted to select an image. Once

an image is selected, the CECAT compression will compress the entire image as

one large tile (instead of segmenting them out into smaller tiles). Only the

CECAT layer is created in this manner, and the cec file is saved in the same

directory as the original file.

Quit:

 This exits the compression interface.

Compression Menu

Once a single tile has been opened, this menu allows the user the opportunity to

see the results of applying different types of CECAT compression approaches.

Line Compress:

This displays the contours that result from applying CECAT compression

but restricting the curve mapping to line segments only.

Quad Compress:

This displays the contours that are rendered after applying CECAT

compression with only quadratic Bezier curves (no line segments allowed).

95

Mixed Compress:

This option allows the user to view the results of applying a normal

CECAT operation to an open tile.

Display Menu

After a tile has been opened using the File menu and compressed using one of the

options found in the Compression menu, this menu will give the user the opportunity to

view different layers of the CECAT image.

Contours:

This option forces the display to show only the currently active contours.

If a compression algorithm has been run, these contours are the result of the

CECAT compression operation; otherwise, the results of the contour detection

algorithm are displayed.

Filled Contours:

By selecting this option, the display shows the results of applying the

contour fill operation to the list of current contours (either CECAT compressed

contours or the currently detected, uncompressed, contours). When applied to

CECAT compressed contours, this option displays the foreground mask.

Foreground:

Choosing this option displays the residual layer created during CECAT

compression (assuming that a CECAT operation has already be performed).

Background:

Choosing this option displays the background layer created during

CECAT compression is displayed, assuming that a CECAT operation has already

been performed on the current image.

96

CECAT Compression Controls

Only three parameters are currently exposed for changing the quality and size of

CECAT compressed files: error tolerance, minimum contour length, and a global

binarization minimum threshold. Three controls are present on the Compression

Interface to allow the user to change these settings. Once the compression operation is

complete, the name of the original file and the final size of the CECAT compressed layer

are displayed in a text area.

B.2 CECAT Image Viewer

 For the most part, the options offered by the CECAT viewer are self explanatory.

Basic file open/save and rotation/mirroring operations make up most of the viewer’s

exposed functionality. The only unusual controls allow the user to request a different

layer of the image from the server.

 To view a CECAT image, simply open the image using the File menu and use the

view window to scroll around the image. Each time the user looks at a new part of the

image in the viewer, the appropriate tile is downloaded (of it does not already exist in

memory). The viewer starts out displaying the CECAT-encoded foreground layer. If

another image layer is requested, those tiles are downloaded to the viewer.

File Menu

This is another standard file menu with the standard open, save, and quit options

available.

97

Open Image:

This allows the user to specify a CECAT image to view. Note that JPEG,

GIF, and PNG file formats are also supported in this viewer.

Save Current Image:

By selecting this option, the user can save a JPEG, GIF, or PNG copy of

the image currently displayed in the viewer.

Quit:

This closes the CECAT viewer window and exits the system.

Edit Menu

This menu allows the user some basic control over the ninety degree rotation and

the mirroring of the current image.

Rotate Clockwise:

Selecting this option rotates the image currently displayed in the viewer

ninety degrees clockwise.

Rotate CCW:

Selecting this option rotates the image currently displayed in the viewer

ninety degrees counter-clockwise.

Flip Horizontal:

Selecting this option mirrors the image currently displayed in the viewer

from left to right.

Flip Vertical:

98

Selecting this option mirrors the image currently displayed in the viewer

from top to bottom.

Progressive Menu

This menu allows the user to simulate some of the progressive transmission

features available through the CECAT compression format. By default, when a CECAT

image is opened, the only layer currently viewable is the CECAT-encoded foreground

layer. By using this menu, other layers (residual and background) can be viewed as well

as single tiles can be requested from the server.

Get Next Layer:

This option sets the viewer to download and display the next layer of a

CECAT encoded image. If the current layer is the foreground layer, the residual

layer is downloaded after selecting this option. If the residual layer is currently

being viewed, the background layer is downloaded. If tiles from the previous

layers have not been downloaded from the server yet, they will be downloaded as

needed before the residual or background layers tiles.

Get Next Tile:

Instead of scrolling around the image viewer, additional image tiles can be downloaded

from the server by selecting this option. As a rule, tiles from the current layer will be

downloaded first.

99

100

101

Appendix C

CECAT Code Base

C.1 CECAT Package

 This is the root package for the CECAT system contains the GUI interfaces used

to compress or view CECAT images.

CECATViewer

Description:

This is the first implementation of a CECAT image viewer. Details

behind using this interface are given in Appendix B.

CompressionInterface

Description:

This provides a graphical interface for compressing jpg or pgm/ppm/pbm

images into CECAT form. Appendix B contains details on how to use this

application.

C.2 CECAT.compression Package

 This package is primarily responsible for running the operations associated with

detecting contours and mapping Bezier curves using the strategies outlined in Sections

3.2 and 3.3. Most of these classes possess static methods and might more easily be

thought of as simple C style procedures. The only data object in this package is the

ContourDetails class, which was a recent addition used to track the number of Beziers

being mapped to each contour as part of an experiment.

BorderMarker

Description:

102

The methods contained inside this class have only one function, detecting

where contours meet the edge of the tile/image. Essentially a static method, this

operation uses a few helper functions to detect and return a list of spans indicating

these locations. This class is primarily a “holding location” for all the code used

in this operation (as opposed to a true object-oriented data class).

Public Methods:

findEdges (static)

This is the primary (and only) operation performed by this class,

which gets contour information and image boundaries as input. Edges are

detected, marked, and stored off as an ArrayList of BezierMappings.

Using these mappings as “fixed” parametric curves, seamless connection

from one tile to another is achieved.

Inputs:

contour (Contour) – the contour to be tested

maxX (int) – coordinate for the right edge of the tile/image

maxY (int) – coordinate for the left edge of the tile/image

Output:

ArrayList of cecat.contour.BezierMappings representing first

degree Bezier curves lying on the edge of the tile or image

ContourDetails

Description:

This is a simple data object stores the count of how many first, second,

and third degree Bezier curves are needed to represent a contour. This is returned

as output from a contour compression operation.

Public Variables:

lineCount (int) – number of first degree Bezier curves used

quadCount (int) – number of second degree Bezier curves used

cubicCount (int) – number of third degree Bezier curves used

Public Methods:

Constructors

103

The constructors available for this object allow you to initialize all

the public variables or allow them to default to zero.

ContourDetector

Description:

All contour detection operations run from inside this class. Unlike other

operators in this package, current implementation requires a constructor followed

by a call to the method “getContours”. Details behind the strategy for breaking

down the image into “layers” and detecting them are outlined in Section 3.2.

Public Methods:

Constructor

This constructor takes an image (in the form of a byte array) and

computes the image height, width, and initialized the detected contour

array.

Input:

image (byte[][]) – image from where the contours are to be

detected

getContours

Contours are detected using the image data entered in the

constructor detecting a contour, filling it in, and creating a map. This map

represents the first contour “layer”. After all the contours on that layer are

detected, the map is used to create an image of the next contour “layer”

and the process repeats. This operation is described in detail in Section

3.2.

Output:

ArrayList of Contour objects representing the contours

detected for this operation.

ContourLineFitter

Description:

This is the outward face for a CECAT compression strategy described in

detail in Section 3.3.2. Mapping only first degree Bezier curves (line segments)

to the contour, this class is somewhat limited in its capabilities but provides useful

104

experiments. The Contour objects inputted into this class are assumed to have

their points array set, as this class maps Beziers to these points and stores the

resulting Beziers in the Contour’s curves array.

Public Methods:

fitBorderContours (static)

One of multiple strategies for running this first degree Bezier

mapping strategy, this one goes through the process of detecting and

setting the border segments before going through the process of mapping

line segments to the rest of the Contour. The results of this operation are

stored in the Contours’ curves arrays, thus no actual output exists.

Input:

contours (ArrayList) – list of contours to be processed

maxX (int) – coordinate for right edge of the tile/image

maxY (int) – coordinate for bottom edge of the tile/image

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

minimumContourSize (int) – contours consisting of fewer

pixels than this are not processed

fitContours (static)

Another strategy for mapping first degree Beziers to contours, this

strategy ignores border cases and simply goes through the process of

mapping line segments each piece of the Contour. The results of this

operation are stored in the Contours’ curves arrays, thus no actual output

exists.

Inputs:

contours (ArrayList) – list of contours to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

minimumContourSize (int) – contours consisting of fewer

pixels than this are not processed

fitEntireContour (static)

105

Although used by the previous two methods, this method can be

called by itself to map line segments to a single contour using the CECAT

mapping strategy outlined in Section 3.3.2.

Inputs:

contours (Contour) – contour to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

Output:

CompressionDetails describing how many line segments

were needed to represent the contour.

fitContourSections (static)

This third contour compression method performs the CECAT

compression on one contour using first degree Bezier curves; however, it

allows an outside operation to determine and “fix” particular Beziers to

the contour. The fitBorderContours operation uses this method,

although other strategies could be developed which use other “fixed”

Bezier curves.

Input:

contour (Contour) – contour to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

fixedCurves (ArrayList) – a list of BezierMappings

describing which sections of contour are to be replaced by

which Bezier curve

ContourMixtureFitter

Description:

This is the outward face for a CECAT compression strategy described in

detail in Section 3.3.4. This class maps both first and second degree Bezier

curves to the contour, creating a CECAT compressed image (or tile). The

Contour objects inputted into this class are assumed to have their points array set,

106

as this class maps Beziers to these points and stores the resulting Beziers in the

Contour’s curves array.

Public Methods:

fitBorderContours (static)

One of multiple strategies for running this Bezier mapping

strategy, this one goes through the process of detecting and setting the

border segments before going through the process of mapping line

segments or quadratic Bezier curves to the rest of the Contour. The results

of this operation are stored in the Contours’ curves arrays, thus no actual

output exists.

Input:

contours (ArrayList) – list of contours to be processed

maxX (int) – coordinate for right edge of the tile/image

maxY (int) – coordinate for bottom edge of the tile/image

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

minimumContourSize (int) – contours consisting of fewer

pixels than this are not processed

fitContours (static)

Another strategy for mapping first and second degree Beziers to

contours, this strategy ignores border cases and simply goes through the

process of mapping line segments and quadratic Bezier curves to each

piece of the Contour. The results of this operation are stored in the

Contours’ curves arrays, thus no actual output exists.

Inputs:

contours (ArrayList) – list of contours to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

minimumContourSize (int) – contours consisting of fewer

pixels than this are not processed

fitEntireContour (static)

107

Although used by the previous two methods, this method can be

called by itself to map Bezier curves to a single contour using the CECAT

mapping strategy outlined in Section 3.3.4.

Inputs:

contours (Contour) – contour to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

Output:

CompressionDetails describing how many line segments

were needed to represent the contour.

ContourQuadraticFitter

Description:

This is the outward face for a CECAT compression strategy described in

detail in Section 3.3.3. Mapping only second degree Bezier curves (quadratics) to

the contour, this class is somewhat limited in its capabilities but provides useful

experiments. The Contour objects inputted into this class are assumed to have

their points array set, as this class maps Beziers to these points and stores the

resulting Beziers in the Contour’s curves array.

Public Methods:

fitBorderContours (static)

One of multiple strategies for running this second degree Bezier

mapping strategy, this one goes through the process of detecting and

setting the border segments before going through the process of mapping

quadratic Bezier curves to the rest of the Contour. The results of this

operation are stored in the Contours’ curves arrays, thus no actual output

exists.

Input:

contours (ArrayList) – list of contours to be processed

maxX (int) – coordinate for right edge of the tile/image

maxY (int) – coordinate for bottom edge of the tile/image

108

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

minimumContourSize (int) – contours consisting of fewer

pixels than this are not processed

fitContours (static)

Another strategy for mapping second degree Beziers to contours,

this strategy ignores border cases and simply goes through the process of

mapping quadratic Bezier curves to each piece of the Contour. The results

of this operation are stored in the Contours’ curves arrays, thus no actual

output exists.

Inputs:

contours (ArrayList) – list of contours to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

minimumContourSize (int) – contours consisting of fewer

pixels than this are not processed

fitEntireContour (static)

Although used by the previous two methods, this method can be

called by itself to map quadratic Bezier curves to a single contour using

the CECAT mapping strategy outlined in Section 3.3.3.

Inputs:

contours (Contour) – contour to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

Output:

CompressionDetails describing how many line segments

were needed to represent the contour.

fitContourSections (static)

This third contour compression method performs the CECAT

compression on one contour using second degree Bezier curves; however,

it allows an outside operation to determine and “fix” particular Beziers to

109

the contour. The fitBorderContours operation uses this method,

although other strategies could be developed which use other “fixed”

Bezier curves.

Input:

contour (Contour) – contour to be processed

errorTolerance (double) – error (in pixels) allow by the

CECAT mapping system

fixedCurves (ArrayList) – a list of BezierMappings

describing which sections of contour are to be replaced by

which Bezier curve

C.3 CECAT.contour

 The contour package contains a number of data objects used to represent

contours, Beziers, and points. These classes are used throughout the CECAT code base

to store and transfer information used to represent these fundamental units of a contour-

compressed file.

Bezier

Description:

This is the “in memory” representation of a line, quadratic, or cubic Bezier

curve. In this data object are the degree of the Bezier curve represented and the

coordinates of the control points used.

Public Variables:

degree (int) – degree of the Bezier curves represented

x0, x1, x2, x3 (double) – x-coordinates for the Bezier curves represented

y0, y1, y2, y3 (double) – x-coordinates for the Bezier curves represented

Public Methods:

Constructors

The four constructors available for this object allow you to

initialize an empty data object or set up a first, second, or third degree

Bezier by initializing 2, 3, or 4 control points.

BezierComparator

110

Description:

This is an extremely simple Java comparator used to sort lists of

BezierMapping objects according to their position in the contour.

Public Methods:

compare

This method is used indirectly when a collection of BezierMapping

objects are sorted. It takes two BezierMappings compares their

lowerPointIndex variables, returning a sort priority accordingly.

BezierMapping

Description:

In most cases, this is a wrapper for a Bezier object used to map a Bezier

curve to the points contained on a contour. By using upper and lower indices to

the list of points in a contour, this mapping is accomplished. This allows Bezier

curves to be sorted in order of the contour and compared during the CECAT

mapping process.

Public Variables:

upperPointIndex (int) – point on the contour mapping to the last control

point of the Bezier curve

lowerPointIndex (int) – point on the contour mapping to the first control

point of the Bezier curve

curve (Bezier) – Bezier curve that has been mapped to the contour

Public Methods:

Constructor

Only one constructor is available for this data object, which is used

to initialize the Bezier curve and both indices.

CECATImage

Description:

The CECATImage object can holds all the data contained in the first layer

of a CECAT compressed file. To be more specific, general information about the

image and tile dimensions coupled with the contours contained on those tiles is

stored in this data object.

111

Public Variables:

contours (ArrayList[][]) – lists of contours for each tile whose coordinates

are identified by the 2D array indices

width (int) – width of the entire image in pixels

height (int) – height of the entire image in pixels

tileWidth (int) – width, in pixels, of each tile in the CECAT image

tileHeight (int) – height, in pixels, of each tile in the CECAT image

Public Methods:

Constructor

Only one constructor is available for this data object, which is used

to initialize the contour lists and the CECAT image/tiles dimensions.

Contour

Description:

Entire contours, whether they are represented by a list of points or a list of

Bezier curves, are encapsulated in this data object. In addition to acting as a

simple data object, there are a couple methods used to generate statistics about the

contour or convert Bezier curves to a list of points.

Public Variables:

internal (boolean) – flag marking the contour as surrounding a black or

white connected component

points (ArrayList) – list of PixelPoints marking each point on the contour

curves (ArrayList) – list of Beziers used to represent the contour

maxY (int) – y-coordinate the bottommost pixel on the contour

maxX (int) – x-coordinate of the rightmost pixel on the contour

minX (int) – x-coordinate the leftmost pixel on the contour

minY (int) – y-coordinate the topmost pixel on the contour

Public Methods:

Constructor

Only one constructor is available for this data object, which

initializes a contour as internal or not and takes a list of PixelPoints or

Beziers, initializing the appropriate list in the contour. If a list of

112

PixelPoints is used to initialize the contour, the min/max variables are

determined and set.

calculatePointsFromCurves

If the contour is represented by Bezier curves, this operation

converts them into PixelPoints, filling the appropriate list and setting the

min/max variables in the process.

countCurves

Although used by the previous two methods, this method can be

called by itself to map line segments to a single contour using the CECAT

mapping strategy outlined in Section 3.3.2.

Inputs:

degree (int) – degree of Bezier to be used in the count

Output:

Int identifying the number of Bezier curves of the specified

degree used to represent this contour.

HorizontalSpan

Description:

The process of filling contours accurately requires small data objects that

represent horizontal spans of pixels encompassed by these contours. Each “span

is represented by this data object.

Public Variables:

start (int) – relative x-coordinate for the start of this span

end (int) – relative x-coordinate for the end of this span

yValue (int) – absolute y-coordinate for this span

xValue (int) – absolute x-coordinate for the start of this span

Public Methods:

Constructor

Only one constructor is available for this data object, which is used

to initialize the absolute x and y coordinates for the start of this span.

PixelPoint

Description:

113

To prevent the use of the large java Point class, this simple data object was

created to hold a pair of x and y coordinates representing a pixel on an image.

Public Variables:

x (int) – x-coordinate for this pixel

y (int) – y-coordinate for this pixel

Public Methods:

Constructor

Only one constructor is available for this data object, which is used

to initialize the x and y coordinates for this pixel.

C.4 CECAT.decoder

 All the algorithms used to decode the different layers of a CECAT file are

included in this package. In addition to this, the initial implementation of the CECAT

server (which essentially decodes, indexes, and sends out portions of images to an image

viewer). On top of this, a utility used to read data in bit-sized portions from a data source

appears in this package.

BackgroundDecoder

Description:

As mentioned in Section 4.2.3, the background layer of a CECAT image

consists of three bit values stored for each pixel not contained or adjacent to

pixels in the foreground mask. This class contains methods used to decode this

background layer using the foreground mask as a guide to determine the

coordinates of these pixels.

Public Methods:

decodeBackground (static)

This method is used to decode a background tile that has been

completely transferred.

Inputs:

mask (byte[][]) – foreground mask for the CECAT image

encodedImage (byte[]) – background layer for CECAT

image

114

decodeBackground (static)

This method is just like the previous method except that the image

data currently resides in a file instead of in memory.

Inputs:

mask (byte[][]) – foreground mask for the CECAT image

decoder (FileBitDecoder) – reader which reads background

CECAT data from a file

BitDecoder (interface)

Description:

Simply put, this in an interface for a file input stream, designed to allow

access to individual bits. These bits can be read one-by-one or many at a time. If

more than one is read at once, the results are converted into integer value.

Public Methods:

close

This closes the file input stream and cleans up the connection.

startMeasurement

This method sets a flag that starts measuring the number of bits

that have been read from the input stream.

stopMeasurement

This method stops the process of measuring the number of bits that

have been read from the input stream and reports.

Output:

Long describing how many bits have been read from this

input stream since measuring has begun.

getBufferData

When a large amount of raw data is needed from a data file, this

method is used.

Inputs:

size (long) – number of bits to read from the data file

Output:

Byte[] with the requested data from the input stream.

115

getData

Unlike the previous method, this method reads a smaller number of

bits and translates it into a single number before sending it back. This is

used for reading a single piece of data from the input stream.

Inputs:

numBits (int) – number of bits to read for the data file

Output:

Int translated from the data from the input stream.

CECATDecoder

Description:

When a CECAT-encoded foreground layer needs to be decoded, this class

must be used. It contains all the methods associated with transforming Bezier

curves into their representative contours and eventually shapes.

Public Methods:

decodeEntireImage (static)

Taking an input file, this method is used for decoding an entire

CECAT-encoded foreground layer (without regard to tiles).

Inputs:

in (BitDecoder) – data stream from a CECAT file

Output:

CECATImage that holds image data and statistics used for

displaying a grayscale representation of the CECAT image.

decodeNextTile (static)

This method is used to decode the next tile from a CECAT file.

Inputs:

in (BitDecoder) – data stream from a CECAT file

tileSizeX (int) – width (in pixels) of the tiles used

tileSizeY (int) – height (in pixels) of the tiles used

Output:

ArrayList of contours found on the CECAT tile.

measureEntireImage (static)

116

This method returns the file size of a CECAT-encoded foreground

layer.

Inputs:

in (BitDecoder) – data stream from a CECAT file

tileSizeX (int) – width (in pixels) of the tiles used

tileSizeY (int) – height (in pixels) of the tiles used

Output:

Long showing the file size of the CECAT foreground layer.

CECATImageServer

Description:

To demonstrate the CECAT progressive transmission strategy, this simple

“server” was implemented. While not a server in any sense of the word, this class

pretends by reading and indexing a CECAT file and sending requested tile data to

image viewers. This class was described in Section 4.4.1.

Public Variables:

width (int) – width (in pixels) of the CECAT image

height (int) – height (in pixels) of the CECAT image

tileWidth (int) – width (in pixels) of the tiles used by the CECAT image

tileHeight (int) – height (in pixels) of the tiles used by the CECAT image

tileSizeX (int) – width (in pixels) of the tiles used by the CECAT image

tileSizeY (int) – height (in pixels) of the tiles used by the CECAT image

tilesX (int) – number of tiles

tilesY (int) – number of tiles

Public Methods:

Constructor

This class has a simple constructor: a one parameter method that

tells the “server” where the CECAT file is by passing in a filename.

Inputs:

 fileName (String) – name of the CECAT file to open

getCECATTile

117

Using simple coordinates, this method sends a tile from the

CECAT-encoded foreground layer to the attached viewer.

Inputs:

col (int) – index to the column where the CECAT-encoded

tile can be found

row (int) – index to the row where the CECAT-encoded tile

can be found

Output:

Byte[] holding the CECAT-encoded representation of the

desired tile. A decoding operation must be performed on this data

to recreate the foreground mask.

getResidualTile

Using simple coordinates, this method sends a tile from the

encoded residual layer to the attached viewer.

Inputs:

col (int) – index to the column where the residual tile can

be found

row (int) – index to the row where the residual tile can be

found

Output:

Byte[] holding the residual of the desired tile. A decoding

operation must be performed on this data to recreate the

residual layer completely (pixels are still stored in three

bits).

getBackgroundTile

Using simple coordinates, this method sends a tile from the

encoded background layer to the attached viewer.

Inputs:

col (int) – index to the column where the background tile

can be found

118

row (int) – index to the row where the background tile can

be found

Output:

Byte[] holding the background of the desired tile. A

decoding operation must be performed on this data to

recreate the background layer completely (pixels are still

stored in three bits).

ContourFiller

Description:

The contour filling algorithm described in Section 3.2.2 is implemented by

static methods contained in this class. Each method requires image data and

contours as input, returning image data for a “filled contour”.

Public Methods:

fillSingleContour (static)

Although this method is used by the “fillAllContours()”, it can be

used separately to simply fill a single contour.

Inputs:

image (byte[][]) – image data where the contour is to be

filled

filledContour (Contour) – contour to be filled

color (int) – grayscale value the contour is to be filled with

Output:

Byte[][] representing the image data with the filled contour.

fillAllContours (static)

This method fills a list of contours and returns image data with the

results of this operation.

Inputs:

contours (ArrayList) – collection of contours to be filled

image (byte[][]) – image data where the results of the filled

contours is stored

Output:

119

Byte[][] representing the image data with all the contours

filled.

ResidualDecoder

Description:

As mentioned in Section 4.2.2, the residual layer of a CECAT image

consists of three bit values stored for each pixel contained or adjacent to pixels in

the foreground mask. This class contains methods used to decode this “residual”

layer using the foreground mask as a guide to determine the coordinates of these

pixels.

Public Methods:

decodeResidual (static)

This method is used to decode a residual tile that has been

completely transferred.

Inputs:

mask (byte[][]) – foreground mask for the CECAT image

encodedImage (byte[]) – residual layer for CECAT image

decodeResidualFromFile (static)

This method is just like the previous method except that the image

data currently resides in a file instead of in memory.

Inputs:

mask (byte[][]) – foreground mask for the CECAT image

decoder (FileBitDecoder) – reader which reads residual

CECAT data from a file

C.5 CECAT.decoder.io

 This package contains different implementations of the BitDecoder class, each

implementing readers for a different source of data.

ArrayBitDecoder (implements CECAT.decoder.BitDecoder)

Description:

120

This implementation of BitDecoder allows bits to be extracted from an

array of bytes.

FileBitDecoder (implements CECAT.decoder.BitDecoder)

Description:

This implementation of BitDecoder opens a stream to a file and extracted

bits from there.

C.6 CECAT.encoder

All the algorithms used to encode the different layers of a CECAT file are

included in this package. This includes those processes described in Section 3.3, some

simple utilities used to facilitate these operations, and methods to encode the file formats

described in Section 4.2. On top of this, a utility used stream data into bit-sized portions

and place them in a data file appears in this package. Internally, this encoder uses a gzip

compression algorithm as a final step when saving off a background file.

BackgroundEncoder

Description:

This class contains a number of static methods used to encode the

background layer of an image and create a ‘background layer’ image data file. Of

course, this requires access to the foreground mask encoded as a CECAT file first,

but once that is in place, the methods provided in this class can do the rest.

Public Methods:

encodeEntireImageAsTiles (static)

The primary operation of this class is brought into effect using this

method, which performs the background layer encoding operation for an

entire image.

Inputs:

fileName (String) – name of the file where the background

layer is to be saved

cecatImageStream (ImageReader) – image data stream

from a CECAT-encoded foreground image layer

121

originalImageStream (ImageReader) – image data stream

from the original grayscale image

Output:

Int denoting the size-encoded background image layer (in

bytes).

encodeTile (static)

Although primarily used internally, this method encodes a single

tile from an image and returns the encoded results as a data array.

Inputs:

image (byte[][]) – grayscale representation for the tile

mask (byte[][]) – foreground mask associated with this tile

Output:

Byte[] used to hold the encoded background layer for the

image tile in question.

CECATEncoder

Description:

As described in Section 3.3, this class performs the CECAT encoding

operation, creating a CEC file containing the compressed foreground layer of the

encoded image. It only contains two static methods, one for encoding the

foreground layer using tiles and one without tiles.

Public Methods:

encodeEntireImageAsTiles (static)

This method performs a CECAT encoding operation using

512x512 pixel tiles.

Inputs:

fileName (String) – name of the file to which the CECAT

data will be saved

imageStream (ImageReader) – image data input stream

errorTolerance (double) – number of pixels a mapped

Bezier can be off from the absolute contour

122

minimumContourSize (int) – only contours with a size

equal to or greater than this will be compressed

Output:

Int describing the size of the CECAT encoded foreground

layer.

encodeEntireImage (static)

This method performs the CECAT compression operation treating

the entire image as one large tile. Unlike the previous method, this

requires the contours to be detected prior to the encoding operation and

passed to it.

Inputs:

fileName (String) – name of the file to which the CECAT

data will be saved

imageWidth (int) – width of the image in pixels

imageHeight (int) – height of the image in pixels

contours (ArrayList) – contours found on the image

Output:

Int describing the size of the CECAT encoded foreground

layer.

EncodingUtilities

Description:

These utilities are used by both the BackgroundEncoder and the

ResidualEncoder to distinguish between the two layers and convert the 8-bit

grayscale values into smaller 3-bit values.

Public Variables:

eightGrayValues (int[]) – (static) u{1, 36, 72, 108, 144, 180, 216, 254};

Public Methods:

findClosestGrayLevel8 (static)

This method takes a pixel intensity value and returns the closest

intensity stored in the “eightGrayValues” array.

Inputs:

123

pixelValue (byte) – pixel intensity value

Output:

Byte representing the index to which of the

“eightGrayValues” the input pixel intensity value is closest.

isMasked (static)

This utility uses the mask and coordinates to determine if a

particular pixel is part of the foreground mask (or adjacent to it).

Inputs:

mask (byte[][]) – foreground mask applied to the image

xPosition (int) – x-coordinate for the pixel in question

yPosition (int) – y-coordinate for the pixel in question

Output:

Boolean value indicating if the pixel is part of or adjacent

to the foreground mask.

FileBitEncoder

Description:

This utility class is used to write data to a file bit-by-bit. This means that

integers, booleans, and strings of 1’s and 0’s can be written to a data file using a

minimum number of bits. In addition, integer data can be “padded” with zeros,

which cab force a particular encoding size.

Public Variables:

size (int) – number of bits written to the data file (can be reset at any time)

currentLocation (byte) – current location inside the current byte (1-8

bits)

currentFilePosition (long) – total number of bits written to the data file

Public Methods:

Constructor

This constructor initializes the data stream (applying a gzip output

stream where necessary) and attaches it to a file, the name of which is

passed in as its only parameter.

save

124

This method finishes the data file by padding the last byte with

zeros and closes out the data stream.

Output:

Long describing the total number of bits written to the data

file.

addBit

This method writes a single bit (0 or 1) to the data file.

Inputs:

bit (boolean) – bit to write out to the file

addByte

This method writes an entire byte to the data file.

Inputs:

newData (byte) – byte to write out to the file

addInt

This method writes an integer to the data file using the minimum

number of bits to represent it.

Inputs:

newData (int) – integer value to write out to the file

addInt

This method writes an integer to the data file; however, it forces

the number of written bits to be a particular size, by padding the number

with leading zeros. This is the primary method used by the CECAT

encoder to store data into a file.

Inputs:

newData (int) – integer value to write out to the file

absoluteSize (int) – number of bits to use to write the

integer

DEBUG (boolean) – flag which prints out the data to the

screen (for debugging purposes)

addString

This method writes a string of 1’s and 0’s as bits to the data file.

125

Inputs:

newData (String) – string to write out to the file

ResidualEncoder

Description:

This class contains a number of static methods used to encode the residual

layer of an image and create a ‘residual layer’ image data file. Of course, this

requires access to the foreground mask encoded as a CECAT file first, but once

that is in place, the methods provided in this class can do the rest. Internally, this

encoder uses a gzip compression algorithm as a final step when saving off a

residual file.

Public Methods:

encodeEntireImageAsTiles (static)

The primary operation of this class is brought into effect using this

method, which performs the residual layer encoding operation for an

entire image.

Inputs:

fileName (String) – name of the file where the residual

layer is to be saved

cecatImageStream (ImageReader) – image data stream

from a CECAT-encoded foreground image layer

originalImageStream (ImageReader) – image data stream

from the original grayscale image

Output:

Int denoting the size-encoded residual image layer (in

bytes).

encodeTile (static)

Although primarily used internally, this method encodes a single

tile from an image and returns the encoded results as a data array.

Inputs:

image (byte[][]) – grayscale representation for the tile

mask (byte[][]) – foreground mask associated with this tile

126

Output:

Byte[] used to hold the encoded residual layer for the image

tile in question.

C.7 CECAT.images

 This package contains most of the utility methods used to read image data from an

image file. In addition to input streams, the data structures used inside the CECAT code

base to represent images and tiles are included in this package as well.

ImageReader (interface)

Description:

This interface provides outside access to the contents of an image file

using a variety of different methods. Because different image formats gather this

information using a variety of encoders, this interface was made as generic as

possible.

Public Methods:

getHeight

This ‘getter’ returns the total height of the image.

Output:

Int representing the height of the image.

getWidth

This ‘getter’ returns the total width of the image.

Output:

Int representing the width of the image.

getTileHeight

This ‘getter’ returns the height of the tiles used by this image.

Output:

Int representing the height of the image tiles.

getTileWidth

This ‘getter’ returns the width of the tiles used by this image.

Output:

Int representing the width of the image tiles.

127

getImageContours

This ‘getter’ returns a list of contours found in the image.

Output:

ArrayList containing Contour objects corresponding to

each contour found in the image.

getEntireImage

This ‘getter’ returns the image as a large array of grayscale pixel

intensity values.

Output:

Byte[][] containing all the grayscale pixel data values found

on the image.

getEntireImage

This ‘getter’ returns the image as a large array of grayscale pixel

intensity values rotated and/or mirrored using a particular orientation code.

Inputs:

orientation (String) – two-character orientation code which

describe which corners of the image are found at the top

corners of the viewer

Output:

Byte[][] containing all the grayscale pixel data values found

on the image.

getImageRegion

Used primarily for extracting tiles from an image, this method

returns an array of grayscale pixel intensities for a specified region of the

image.

Inputs:

x (int) – x-coordinate of the upper left corner of the region

of interest

y (int) – x-coordinate of the upper left corner of the region

of interest

width (int) – width of the region of interest

128

height (int) – height of the region of interest

Output:

Byte[][] representing the grayscale pixel data values found

in the region of interest on the image.

getImageRegion

Used primarily for extracting tiles from an image, this method

returns an array of grayscale pixel intensities for a specified region of the

image, which has been rotated and/or mirrored according to a particular

orientation code.

Inputs:

x (int) – x-coordinate of the upper left corner of the region

of interest

y (int) – x-coordinate of the upper left corner of the region

of interest

width (int) – width of the region of interest

height (int) – height of the region of interest

orientation (String) – two-character orientation code which

describe which corners of the image are found at the top

corners of the viewer

Output:

Byte[][] representing the grayscale pixel data values found

in the region of interest on the image.

setTileSize

Tile sizes (although they default to 512x512) are adjustable using

this method.

Inputs:

width (int) – new width for each tile in pixels

height (int) – new height for each tile in pixels

getNextLayer

129

By calling this method, the ImageReader begins to transfer the

next CECAT layer (residual or background). If the image is not a CECAT

encoded image, this does nothing.

getNextTile

This is the front-end to a simple tile iterator used to get tiles in

order from left to right, top to bottom.

Output:

ImageTile object containing the next tile and its associated

graphic.

getTile

This method allows outside access to any particular tile given its

row and column.

Inputs:

row (int) – row where the requested tile is found

col (int) – column where the requested tile is found

Output:

ImageTile object containing the requested tile and its

associated graphic.

getNextRawTile

Same as getNextTile, this is the front-end to a simple tile iterator.

The only difference is that the Java-viewable graphic is not generated.

Output:

RawImageTile object containing the next tile.

getRawTile

Same as getTile, this allows outside access to a specific tile. The

only difference is that the Java-viewable graphic is not generated.

Inputs:

row (int) – row where the requested tile is found

col (int) – column where the requested tile is found

Output:

130

ImageTile object containing the requested tile and its

associated graphic.

resetTileCounters

This restarts the tile counter used by getNextTile and

getNextRawTile to run the tile iterator.

close

This closes the data input streams and frees up the resources.

ImageReaderFactory

Description:

The purpose of this class is to provide a central location from which to

find the appropriate ImageReader for any image file type (even if that

ImageReader is the UnsupportedImageReader).

Public Methods:

getImageReader

Using the file extension, this method determines the appropriate

ImageReader, instantiates one, and passes it back to the calling method.

Input:

 fileName (String) – name of the file where the image is

stored

Output:

ImageReader that can be used to access the image.

ImageTile

Description:

This data object stores coordinate, pixel data, and a Java-viewable image

object used to render an image tile. This information is used primarily by Java-

based image viewers to display the tile to a user.

Public Variables:

xPosition (int) – absolute x-coordinate of the upper left corner of the tile

with respect to the original image

yPosition (int) – absolute y-coordinate of the upper left corner of the tile

with respect to the original image

131

image (byte[][]) – image grayscale pixel data

graphic (Image) – java-based image object used to display the image

gridX (int) – column where the tile is found on the original image

gridY (int) – row where the tile is found on the original image

width (int) – width of the tile

height (int) – height of the tile

Public Methods:

Constructor

This constructor uses a RawImageTile data object to initialize all

the variables and create the java-based image object for viewing purposes.

RawImageTile

Description:

This data object stores coordinate and raw pixel data about an image tile.

This information is used by encoders, image processing operations, and viewers.

Public Variables:

xPosition (int) – absolute x-coordinate of the upper left corner of the tile

with respect to the original image

yPosition (int) – absolute y-coordinate of the upper left corner of the tile

with respect to the original image

image (byte[][]) – image grayscale pixel data

gridX (int) – column where the tile is found on the original image

gridY (int) – row where the tile is found on the original image

width (int) – width of the tile

height (int) – height of the tile

Public Methods:

Constructors

Two constructors exist for filling the data inside this class, both of

which initialize the image data array, coordinates and size. The second

construction, however, also allows the initialization of the gridX and

gridY values.

132

C.8 CECAT.images.readers

 In the CECAT.images package, there is an interface called ImageReader. The

goal behind this interface is to provide a general API for all image input streams. In

addition to traditional “read the whole image into memory” approaches, this interface

provides the functionality required to chop the image into tiles (of a customizable size)

and read them in, piece-by-piece. Each implementation deals with a different file format

or approach as described below.

CECATImageReader (implements CECAT.images.ImageReader)

Description:

This ImageReader implements methods for decoding CECAT compressed

files (.cec) and performs contour filling operation to present the completely

decoded CECAT foreground.

CECATImageReceiver (implements CECAT.images.ImageReader)

Description:

Although similar to the CECATImageReader, this ImageReader does not

use files as its input. Instead, this reader is receives blocks of array data (usually

from the prototype CECAT server) and organizes the image for consumption by

other classes.

StandardImageReader (implements CECAT.images.ImageReader)

Description:

Java contains built-in functionality to decode JPEG, GIF, and PNG file

formats. This ImageReader makes use of this functionality to allow tiling of these

“common” file formats.

UncompressedImageReader (implements CECAT.images.ImageReader)

Description:

Adapted from the JIGL library created at BYU, this is a “bare-bones”

decoder for the following “raw” image formats: PGM, PPM, PBM, and PRGM.

UnsupportedImageReader (implements CECAT.images.ImageReader)

Description:

133

This default interface returns empty data sets and is used as a placeholder

for file formats currently not implemented.

C.9 CECAT.images.viewers

 This package contains the Java Swing components used to create scrollable

windows that can be used to view an image. These images are represented fed into the

viewer using the ImageReader interface, making these viewers independent of file

format.

ColorModels

Description:

This class contains static color models used by Java to render grayscale

images. They are stored here to prevent declaring them in multiple places.

FloatingImageViewer

Description:

This viewer, used by CompressionViewer, is a complex grayscale image

viewer used to render a grayscale image as a collection of tiles inside a scroll

pane. Simply put, this viewer creates a virtual canvas for the image and adds tiles

and layers of image data as it receives them. This canvas is displayable at any

stage in the process.

Public Methods:

Constructor

Only one constructor is available for this data object, which is used

to set the height and width of the viewer window as well as initialize the

viewer.

displayVisibleTiles

By calling this method, the viewer is forced to repaint its contents

for the user.

setNewImage

134

This operation sets the viewer to receive a new image from an

ImageReader, initializing the virtual canvas size and connecting to the

image source.

Inputs:

imageStream (ImageReader) – input stream for the image

pixel data

rotateLeft

This rotates the image contained in the viewer 90 degrees counter-

clockwise.

rotateRight

This rotates the image contained in the viewer 90 degrees

clockwise.

flipHorizontal

This mirrors the image contained in the viewer from left to right.

flipVertical

This mirrors the image contained in the viewer from top to bottom.

invert

This operation essentially creates a ‘negative’ copy of the currently

displayed image (white pixels become black).

changeOrientation

This method can be used to change the 90 degree rotation and/or

mirroring of the currently displayed image using internal orientation

codes.

Inputs:

orientation (String) – two-character orientation code which

describe which corners of the image are found at the top corners of

the viewer

requestNextLayer

By calling this method, the viewer starts requesting the next layer

of the CECAT encoded image (residual or background). If tiles from the

135

previous layer have not been sent yet, they will be transmitted when

needed.

requestNextTile

This method sends a request to the image source for the next

available tile.

GrayscaleImageViewer

Description:

This viewer, used by CompressionInterface, is a very simple grayscale

mage viewer used to render a grayscale image inside a scroll pane. Essentially a

merging of an array of pixel data and a display pane, this viewer can be used to

convert grayscale data into a more viewable form.

Public Methods:

Constructor

Only one constructor is available for this data object, which is used

to set the height and width of the viewer window as well as initialize the

viewer.

setImage

This operation displays a grayscale image in the viewer.

Inputs:

image (byte[][]) – grayscale image data

C.10 CECAT.preprocess

 Most image manipulation operations, many of whom are applied to images before

the CECAT encoding occurs, are stored in this package. Most of these operations are

implemented as static methods for performance reasons.

BitonalThresholding

Description:

The thresholding operation described in Section 3.1 is implemented in this

package. Although designed to be a holding place for a variety of binarization

algorithms, the modified Niblack operation is the only one currently implemented.

136

Public Methods:

NiblackThreshold (static)

This method actually performs the binarization operation described

in detail in Section 3.1, a modified Niblack thresholding operation with a

fixed global threshold.

Inputs:

image (byte[][]) – a grayscale image map (each byte

corresponding to a pixel)

ImageProcessing

Description:

Most of the different image processing operations used by the CECAT

system are consolidated into this one package. These operations range from the

simple “open” operation to the application of image masks to create residual and

background layers. Any further “stand-alone” image processing operations

should be added to this class.

Public Methods:

MaskImage (static)

This operation applies a mask to the image and “whites out” the

grayscale pixel values not covered by it.

Inputs:

image (byte[][]) – original (pre-encoded) image data

mask (byte[][]) – bitonal foreground mask after it has been

decoded from its CECAT form

GenerateBackground (static)

The inverse operation of the “MaskImage” method, this operation

applies a mask to the image and “whites out” the grayscale pixel values

covered by it.

Inputs:

image (byte[][]) – original (pre-encoded) image data

mask (byte[][]) – bitonal foreground mask after it has been

decoded from its CECAT form

137

ApplyMorphOpen (static)

This is a basic image processing “open” operation used on bitonal

image to remove small pixel noise.

Inputs:

image (byte[][]) – bitonal image data

C.11 CECAT.segments

 This package contains all the code required to implement the Curve Segment

Library described in Section 4.3.

CurveSegmentLibrary (interface)

Description:

This interface exposes the main functionality of the curve segment library,

namely looking up curve segments, indices, or identifying the size of the curve

segment library.

Public Methods:

lookupCurveSegment

This method converts a library index into a curve segment.

Inputs:

index (int) – index for the curve segment desired

Outputs:

Segment object representing the curve segment that has

been found using the inputted index.

lookupIndex

This method finds the library index for a particular curve segment.

Inputs:

deltaX (int) – change in the x direction for curve segment

deltaY (int) – change in the y direction for curve segment

Outputs:

Int which provides an index to the library where the curve

segment with the inputted deltas is found.

getSize

138

Used most encoding operations, this method returns the maximum

bit size a curve segment can possess and still be indexed in this library. Its

primary purpose is to determine if a given curve segment should be

represented by an index to this library or not.

Outputs:

Int showing the maximum bit size of curve segments

indexed in this instance of the curve segment library.

DecoderSegmentLibrary (implements CECAT.segments.CurveSegmentLibrary)

Description:

This is one of two implementations of the CurveSegmentLibrary and is

optimized for the process of decoding curve segments given an index. Simply

put, this library creates a large array of segment objects, all of which can be

retrieved in constant time given a particular index. Finding an index given a

curve segment, on the other hand, requires a full search once through the table.

EncoderSegmentLibrary (implements CECAT.segments.CurveSegmentLibrary)

Description:

The second implementation of the CurveSegmentLibrary, this is optimized

for encoding curve segments by providing a constant time lookup of an index

given a curve segment. Going the opposite direction (looking up a curve segment

given an index) requires a search through the whole library.

Segment

Description:

Curve segments are, simply put, the x and y coordinate deltas from one

control point to another. This data object represents this curve segment.

Public Variables:

deltaX (int) – change in the x direction from one control point to another

deltaY (int) – change in the y direction from one control point to another

Public Methods:

Constructor

139

The constructor for this object allows you to initialize the deltas when creates an instance

of this object.

140

141

Bibliography

 [1] Simone Marinai, Emmanuele Marino, Francesca Cesarini, and Giovanni Soda. A

General System for the Retrieval of Document Images from Digital Libraries. In

Proceedings of the IEEE First International Workshop of Document Image Analysis

for Libraries (DIAL), Palo Alto, CA, pages 150-173, January 2004.

[2] Charles Cullen. Special Collections Libraries in the Digital Age: A Scholarly

Perspective. Impact of Digital Technology on Library Collections and Resource

Sharing. Haworth Information Press, New York, NY, 2001.

[3] Project Gutenberg. Found at URL http://www.promo.net/pg/, visited on 22

September 2005.

[4] Carnegie Mellon Million Books Project. Project summary and proposal found at

URL http://www.ulib.org, visited on 22 September 2005.

[5] The Newton Project. Found at URL http://www.newtonproject.ic.ac.uk/index.html,

visited on 21 September 2005.

[6] The Internet Text Archive. Found at URL http://www.archive.org/details/texts,

visited on 21 September 2005.

[7] F. Le Bourgeois, E. Trinh, B. Allier, V. Eglin, H. Emptoz. Document Image

Analysis solutions for Digital Libraries. In Proceedings of the IEEE First

International Workshop of Document Image Analysis for Libraries (DIAL), Palo

Alto, CA, pages 2-24, January 2004.

142

[8] Gutenberg Bible, The British Library. Found at URL

http://www.bl.uk/treasures/gutenberg/homepage.html, visited on 21 September

2005.

[9] International Children’s Digital Library. University of Maryland. Found at URL

http://www.icdlbooks.org/, visited on 23 September 2005.

[10] Mountain West Digital Library, Utah Academic Library Consortium. Found at

http://www.lib.utah.edu/digital/mwdl/, visited on 4 October 2005.

[11] The 1901 Census of England and Wales. Found at URL

http://www.1901census.nationalarchives.gov.uk/, visited on 23 September 2005.

[12] Douglas J. Kennard. Just-In-Time Browsing for Digital Images. Thesis Presented

to BYU: February 2003.

[13] National Telecommunications and Information Administration. A nation online:

Entering the Broadband Age. September 2004. Found at URL

http://www.ntia.doc.gov/ntiahome/dn/, visited on 10 October 2005.

[14] Ian H. Witten, Alistair Moffatt, Timorthy C. Bell. Managing Gigabytes. Van

Nostrand Reinhold: New York. 1994

[15] Yan Ye, Pamela Cosman. Dictionary Design for Text Image Compression with

JBIG2. URL: http://code.ucsd.edu/~yye/TransIP2001.pdf, visited on 6 March

2004.

[16] Leon Bottou, Patrick Haffner, Paul G. Howard, Partice Simard, Yoshua Bengio,

Yann Le Cun. High Quality Document Image Compression with DjVu. Journal of

Electronic Imaging, Vol 7, No 3, pp 410-425, SPIE, 1998.

[17] MicroSoft SLIm (Segmented Layered Image) project summary found at URL

http://research.microsoft.com/dpu/, visited 17 October 2005.

143

[18] Dan Huttenlocher, Angela Moll. On DigiPaper and the Dissemination of Electronic

Documents. D-Lib Magazine, Vol 6, No 1. Found at URL

http://www.dlib.org/dlib/january00/moll/01moll.html, visited 17 October 2005.

[19] Qin Zhang, John M, Danskin. A Pattern-Based Lossy Compression Scheme for

Document Image. Dartmouuth College Department of Computer Science.

Electronic Publishing-Origination, Dissemination and Design. June 24, 1996.

Found at URL: http://citeseer.ist.psu.edu/43442.html

[20] Overview of JBIG2. A Presentation by PlanetDjVu, June 10, 2003. Originially

presented by Xerox Parc a couple years previous. Found at

http://www.planetdjvu.com/overview_of_jbig2.htm

[21] Paul G. Howard. Text Image Compression Using Soft Pattern Matching. The

Computer Journal. Vol. 40, No. 2/3, 1997

[22] Dov Dori, Wenyin Liu. Sparse Pixel Vectorization: An Algorithm and Its

Performance Evaluation. IEEE Transactions on Pattern Analysis and Machine

Intelligence. Vol. 21, No. 3. March 1999.

[23] Karl Tombre, Christian Ah-Soon, Philippe Dosch, Gerald Masini, Salvatore

Tabbone. Stable and Robust Vectorization: How to Make the Right Choices.

Found at URL: http://citeseer.ist.psu.edu/tombre99stable.html.

[24] Tinku Acharya, Ping-Sing Tsai. JPEG2000 Standard for Image Compression

Concepts, Algorithms and VLSI Architectures. Wiley-Interscience: New Jersey.

2005.

[25] P. Haffner, L. Bottou, Y. LeCun, L. Vincent. A General Segmentation Scheme for

DjVu Document Compression. In Proceedings of the International Symposium on

Memory Management (ISMM), Berlin, Germany, June 2002.

[26] Carey Bunks. Grokking the Gimp. New Riders Publishing, 2000. Found at URL:

http://gimp-savvy.com/BOOK/index.html, visited 6 March 2004.

144

[27] Wayne Niblack. An Introduction to Digital Image Processing. Prentice-Hall

International, 1985.

[28] Michael D. Smith. Handwriting Compression Using Quadratic Curves. Brigham

Young University Computer Science 750 Projct Write-Up. November 29, 2003.

[29] The Mathematics of String Art: A Tribute to Pierre Bezier (1910-1999). The

Glossary of Mathematical Mistakes Archive (5/2000). Found at URL:

http://members.cox.net/mathmistakes/bezier.htm

[30] Tim Andrew Pastva. Bezier Curve Fitting. Thesis submitted to Naval Postgraduate

School, Monterey, California. September 1998.

[31] Carlos F. Borges, Tim Pastva. Total Least Squares Fitting of Bezier and B-spline

Curves to Ordered Data. Computer Aided Geometric Design 19. 2002.

[32] Lauralea Otis. Project 2 My Handwriting Library. Brigham Young University

Computer Science 750 Project Write-Up. November 2003.

[33] GraphicsMagick Image Processing System. Found at URL

http://www.graphicsmagick.org, visited on 1 March 2006.

[34] DjVuLibre: Open Source DjVu Library and Viewer. Found at URL

http://djvulibre.djvuzone.org, visited on 1 March 2006.

[35] Z. Zhang and C. L. Tan. Restoration of images scanned from thick bound

documents”. In Proceedings of International Conference of Image Processing, Vol.

1, 2001, pages 1074-1077.

[36] Graham Leedham, Chen Yan, Kalyan Takru, Joie Hadi Nata Tan, Li Mian.

Comparison of Some Thresholding Algorithms for Text/Background Segmentation

in Difficult Document Images. In Proceedings of 7
th
 International Conference on

Document Analysis and Recognition, 2003.

145

[37] David Tam, William Barrett, Bryan Morse and Eric Mortensen. Breakpoint

Skeletal Representation and Compression of Document Images. In IEEE Data

Compression Conference (DCC ’98), page 75. Snowbird, Utah, March 1998.

	Contour Encoded Compression and Transmission
	BYU ScholarsArchive Citation

	Title Page
	Department Approval Page
	University Approval Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Solution: Contour Encoded Compression and Transmission

	Background
	Document Image Compression
	Transform Encoding
	Context Encoding
	Dictionary Encoding
	Hybrid Encoding

	Bitonal Image Compression Strategies
	Pattern Matching
	Vectorization

	Progressive Image Transmission
	The CECAT Approach

	Contour Encoded Compression
	Binarization of Document Images
	Color to Grayscale
	Grayscale to Bitonal

	Contour Detection and Rendering
	Layered Contour Detection
	Contour Filling Algorithm

	Fitting Parametric Curves to Contours
	Bezier Curves
	Using First Degree Curves (Lines)
	Outline of the Contour Mapping Process
	Marking the Outside Edges
	Fitting a Line to a Contour Segment
	Determining the How Close a Line Fits to the Contour
	Performing a Search of the Best Line Mapping

	Using Second Degree Curves (Quadratics)
	Fitting a Quadratic to a Contour Segment
	Determining how close a Quadratic fits the Contour

	Combining First and Second Degree Curves

	Encoding and Transmission of CECAT Images
	Localization of Contours
	Storing Contours as Layers
	Tiling the Images

	CECAT File Format
	Encoded Contour Layer
	Residual Image Data Layer
	Background Image Data Layer

	Curve Segment Library
	Progressive Transmission
	Sample Server Implementation
	User Experience with Sample Server
	Server Implementation Details

	Rendering the Contour Encoded Tiles
	Adding Residual and Background Layers

	Compression Efficiency and Results
	Analysis of CECAT Bitonal Compression
	Getting the Settings for the CECAT System
	Error Tolerance
	“Despeckling” Operation

	Bitonal Image Compression Results
	Dataset 1: George Washington Papers
	Dataset 2: James Madison Papers
	Dataset 3: US 1870 Census (200 DPI Resolution)
	Dataset 4: US 1870 Census (300 DPI Resolution)

	Analysis of CECAT Grayscale Compression
	“Hybrid” Image Layer Comparison
	Limitations of the CECAT System

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix A: Image Datasets
	George Washington Papers
	James Madison Papers
	US 1870 Census (200 dpi)
	US 1870 Census (300 dpi)

	Appendix B: User's Guide
	Compression Interface
	CECAT Image Viewer

	Appendix C: CECAT Code Base
	Bibliography

