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ABSTRACT 

 

 

 

CONTOUR ENCODED COMPRESSION AND TRANSMISSION 

 

 

 

Christopher B. Nelson 

Department of Computer Science 

Master of Science 

 

 

 

As the need for digital libraries, especially genealogical libraries, continues to 

rise, the need for efficient document image compression is becoming more and more 

apparent.  In addition, because many digital library users access them from dial-up 

Internet connections, efficient strategies for compression and progressive transmission 

become essential to facilitate browsing operations.  To meet this need, we developed a 

novel method for representing document images in a parametric form.  Like other 

“hybrid” image compression operations, the Contour Encoded Compression and 

Transmission (CECAT) system first divides images into foreground and background 

layers.  The emphasis of this Thesis revolves around improving the compression of the 

bitonal foreground layer.  The parametric vectorization approach put forth by the CECAT 

system compares favorably to current approaches to document image compression. 

Because many documents, specifically handwritten genealogical documents, 

contain a wide variety of shapes, fitting Bezier curves to connected component contours 



can provide better compression than current glyph library or other codebook compression 

methods.  In addition to better compression, the CECAT system divides the image into 

layers and tiles that can be used as a progressive transmission strategy to support 

browsing operations. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

 Ten years ago, when someone wanted to learn about a particular subject, they 

would typically travel to the local library or archive to find an appropriate book or 

periodical.  With the advent of the Internet, however, this process has changed 

dramatically.  In addition to the wealth of information that is growing daily on websites 

throughout the expanse of cyberspace, many books, newspapers, and periodicals have 

been scanned, indexed, and placed online to create “digital libraries” [1].  Now people 

can just log onto the Internet and go to one of these libraries to read through texts stored 

thousands of miles away.  Even rare “special collection” documents become more 

valuable as the number of people with access to them increases [2]. 

 To build up their collections, most current digital libraries scan documents, use 

Optical Character Recognition (OCR) to extract text, build transcripts, and publish these 

manuscripts on the web [3, 4, 5, 6].  This strategy works quite well when only textual 

information is involved.  Unfortunately, this does not work for documents containing 

handwriting and important “non-textual” information.  Document properties such as ink 

color, paper texture, drawings, and font information can be as important as text, 

especially for those of historical significance [7] as demonstrated in Figure 1.1.  To 

publish these documents on the Internet, digital libraries must use images instead of 

simple text-based transcripts [8, 9, 10, 11]. 

Genealogical documents often fall into the category described above.  These 

documents cannot be stored as simple text transcripts without losing some of their value 

and recognizing handwriting is outside the scope of current OCR engines.  In many cases, 
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(a) (b) 

Figure 1.1  Sample Document Images.  (a) Illuminated French Text  (b) Illustrated 

French Renaissance Document 

 

these are old, historical documents containing large amounts of handwritten text.  

Although most of the content is intended to be bitonal (i.e. black and white), grayscale 

information does provide clues to help viewers understand the document.  In addition, 

these document images should be stored at high resolutions (200-400 dpi) to allow the 

scanned image to be a faithful representation of the original and improve readability. 

Finding a needed genealogical document can be a challenge, especially if it is 

located inside a collection that has not been indexed.  In this case, finding a particular 

document requires the researcher to scan through a collection of documents as quickly as 

possible, looking for specific names or dates.  This process is commonly referred to as 

“browsing” [12].  Unfortunately, many Internet users still use 56K modem (dial-up) 

connections [13].  Even with higher bandwidth, waiting for large images to download can 

be a very exasperating exercise, especially when the image being downloaded does not 

contain the information needed.  Trying to “browse” through numerous genealogical 

documents using low-bandwidth network connections is unacceptable. 

To alleviate this problem, strategies such as image compression and progressive 

transmission can be used.  Improving image compression is the most obvious 

optimization: smaller image files sizes result in shorter download times.  The challenge 

facing the many image compression strategies lies in the fact that increased compression 

ratios often result in the loss of some important image data. 

The second strategy, progressive transmission, is the process of taking a large 
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image and sending it over the Internet in small pieces.  In some cases, coarse images are 

sent first, giving the researcher a general idea about the contents of the image.  If 

progressive transmission sends image pieces at full resolution, the researcher can begin to 

read through the pieces of the image that have already been sent while waiting for more 

to arrive.  This makes “browsing” through numerous documents much quicker, especially 

if the first few image pieces contain the names or dates needed by the researcher [12]. 

 

1.2 Solution: Contour Encoded Compression and Transmission 

This thesis presents a system called “Contour Encoded Compression and 

Transmission” (CECAT) which uses image compression and progressive transmission to 

improve browsing operations for document images.  Although any grayscale document 

image can be used, the algorithms created for the CECAT system were specifically 

designed to efficiently compress and transfer images containing handwriting. 

CECAT breaks an image into three layers:  foreground (bitonal text), residual 

(grayscale text), and background.  The emphasis of this thesis and the CECAT system 

lies in developing an efficient compression of the bitonal foreground layer.  This is done 

by detecting contours for the text and handwriting, replacing these contours with 

parametric curves, and storing these contours in tiles that can be transmitted 

progressively.  This approach has the following advantages: 

• Good, scalable image compression with the potential for lossless compression 

as the final step in the progressive transmission 

• Progressive transmission of full resolution tiles with readable resolution in the 

handwriting 

• High level curve data that can be used for subsequent pattern recognition 
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Chapter 2 

Background 

The CECAT system combines two technologies – document image compression 

and progressive transmission – to facilitate document image “browsing” suitable for even 

slow network connection speeds.  This chapter will review these two technologies. 

 

2.1 Document Image Compression 

Image compression, a very active field of research, is the process of taking image 

data and converting it into a more compact form.  This process, known as “encoding” 

reduces the size of an image by storing the data more efficiently.  “Decoding” is the 

process of taking this compact form and changing it back to a viewable format. 

Image compression saves storage space and thus reduces the required download 

time for retrieving images across the web.  For example, a document image showing a 

single page from the 1870 U.S. Census stored at a resolution of 200 dots-per-inch (dpi) is 

about 15 megabytes in size in its raw, uncompressed form.  Given dial-up network 

speeds, it would require over a half hour (15 MB at 56 Kbps = 36.6 minutes) to download 

this image.  In addition, only 45 such images could be stored on a standard CD-ROM. 

On the other hand, after applying a standard JPEG compression with a quality 

rating of 75 to this 15 megabyte image, the file size drops to about 800 kilobytes.  As a 

result, download time and storage space shrink to about 5% of that required for the 

uncompressed image.  This corresponds to a download time, over a standard dial-up 

connection, to a little less than two minutes and over 890 images can be stored on a CD-

ROM. 

Compression does not come without a cost.  First, time is required time to encode 

and decode compressed images.  For example, using a 2.39 GHz Pentium, performing 
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Figure 2.1 200 DPI Image from the 1870 U.S. Census 

 

JPEG compression and storing a large image of 3400 x 4600 pixels takes about 2.62 

seconds.  This example image is shown in Figure 2.1.  Second, compression can degrade 

the image.  The degree to which this occurs depends on the image compression strategy 

used.  Compression algorithms that do not alter the image are called “lossless” and those 

that alter the image are called “lossy”.  Lossy compression strategies often throw away 

pieces of data that are deemed unimportant or that may not be noticeable to the human 

eye, such as in the JPEG example mentioned earlier.  Lossy compression strategies 

generally reduce the image file size to a fraction of the size of their lossless counterparts.  

Most image compression operations follow one of four encoding strategies:  transform, 

context, dictionary, and hybrid.  These are reviewed in the following subsections. 

 

2.1.1 Transform Encoding 

Transform encoding techniques work by converting raw image data (an array of 

three 8-bit color values for each pixel) into another format such as those created by 

applying a Discrete Cosine Transform, Fourier Transform, Wavelet Transform or similar 

transforms.  This transformed data is an accurate representation of the image, except 

color values are replaced by points or waves in an alternate spectrum.  Some of this 

transformed data has very little (if any) effect on the image after it is transformed back, 

and can be removed, making the image smaller without changing much of the original 

image.  When decoded, the image data is transformed back for display purposes. 
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Figure 2.2 JPEG Compression Artifacting 

 

The JPEG standard used to deliver images across the Internet uses a DCT 

encoding to transform image data into the frequency domain.  Sharp changes in color 

(such as black letters touching white paper) require more transform coefficients to 

represent the image in the frequency domain.  As a result, JPEG compression works very 

well for continuous-tone images like pictures and photographs but creates artifacts in 

document images [7].  Sharp-edges contain “ringing” after images are decoded from 

JPEG format, making JPEG encoding a conspicuous example of “lossy” image 

compression as shown in Figure 2.2. 

In addition to the DCT, other transformation strategies have emerged during the 

past few years.  By transforming image data into a Wavelet spectrum, the new JPEG2000 

standard can create higher-quality images than the JPEG standard [24].  More Wavelet-

based transforms are emerging, including the proprietary IW44 [16] strategy used in the 

popular DjVu compression standard. 

 

2.1.2 Context Encoding 

Context encoding encompasses a range of compression strategies that use 

redundant information from groups of the pixels to reduce the size of the image.  These 

strategies represent a “neighborhood” of pixel data with a single piece of data.  Run-

length encoding uses a “neighborhood” along one row of pixels to compress an image.  In 

its simplest form, run-length encoding strategies replace a series of similar bits (or pixels) 

(11111111111111111111) with a count of how many are on (20 1s), and their values.  In 

this case, the “neighborhood” represents a pixel and all nineteen preceding it. 

Although context encoding strategies do not compress images as well as other 

encoding strategies, they are very fast to encode and decode.  For this reason, one popular 
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Figure 2.3 JBIG Encoded Image Slice 

 

run-length encoding strategy is the CCITT standard, which is used for sending and 

receiving faxes [14].  The CCITT standard operates in two-dimensional mode using 

differential run-length encoding of the difference between the current and previously sent 

lines.  By taking advantage of the similarities inherent between adjacent lines, CCITT can 

achieve fast, reliable compression without processing the entire image.  In this example, 

the context of the last line is used to improve the encoding of the line following it. 

Another well known context encoding strategy is JBIG, an older standard for 

compressing bitonal images [14].  This context compression strategy uses lower 

resolution copies and an approach similar to the CCITT standard to compress each image.  

The lowest resolution layer, known as the base layer, is encoded using one of many 

resolution reduction algorithms that, for example, reduce an image from 200 dpi to 100 

dpi.  JBIG also implements progressive transmission by sending a low resolution copy 

first, then sending higher resolution layers, called differential layers.  A small section of a 

JBIG encoded image is shown in Figure 2.3.  The dot patterns in the JBIG image are used 

to represent various levels of gray using only a bitonal image. 

 

2.1.3 Dictionary Encoding 

Dictionary compression strategies collect sequences of pixels (or symbols) from 

an image and store them into an indexed dictionary.  These sequences can range in size 

from a couple of pixel values to complicated connected components like typed letters.  In 
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some cases, even full-color image tiles could be using as symbols in a dictionary.  Once 

this dictionary has been built, symbols found on the image are converted from raw pixel 

data to indices referencing the dictionary.  If the same symbol shows up many times in an 

image, good compression can be achieved as the actual pixel representation for that 

particular symbol need only be stored once (inside the dictionary) [14]. 

A good example of a general-purpose dictionary compression strategy an 

“entropy” encoding strategy known as Huffman encoding.  This compression strategy 

takes ordered data and replaces frequently occurring sequences of data with indices to a 

dictionary organized in a binary tree.  By giving the most common sequence of pixels the 

smallest index, this strategy can compress any kind of data.  Although Huffman encoding 

works best when compressing series of actual symbols such as text files, good 

compression can be obtained in image data as well. 

 JBIG2 and JB2 [15] standards are examples of dictionary-based compression 

designed specifically for compressing bitonal images.  The dictionaries created by these 

compression strategies contain connected black components.  These compression 

strategies perform well, especially for documents containing machine printed characters.  

By replacing each letter with a small index number pointing to one in the library of 

glyphs, compression levels up to 100:1 or more can be achieved.   These bitonal image 

encoding strategies are discussed in Section 2.2.1. 

 The limitations of dictionary encoding strategies depend on two things:  the size 

of the dictionary and the size of the indices to the dictionary.  When an image is encoded 

and stored, the dictionary must be kept along with the actual image data, making the 

dictionary part of the total file size.  When too many symbols are stored, the dictionary 

and its indices can become large.  In some cases, it is possible for the index to a shape to 

become larger than the actual shape itself.  In extreme examples, images can become 

larger after compression, thereby defeating the purpose. 

 

2.1.4 Hybrid Encoding 

 Hybrid image compression strategies have sparked considerable interest during 

the past few years.  By splitting images into layers and using different compression 

operations for each layer, high compression can be achieved.  For most hybrid strategies,  
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(a) 

 

(b) 

 

(c) 

Figure 2.4 DjVu Image Layers created from JPEG Source Image.  (a) Bitonal Foreground 

Mask.  (b) Foreground Mask combined with Color Map.  (c) All DjVu Layers Combined 

 

images are divided into a foreground and a background layer.  The foreground layer is a 

bitonal image containing all the printed and handwritten text and simple drawings.  The 

background layer is a continuous tone grayscale/color layer containing pictures and 

textured surfaces. 

The compression operations applied to each layer are chosen to take advantage of 



11 

the nature of the layer.  The foreground layer is often compressed with a dictionary-based 

bitonal compression strategy.  A transform compression strategy is usually used on the 

background layer.  By applying different compression strategies specialized for each 

layer of the image, higher compression can be achieved than by applying the same 

compression strategy to the whole image. 

The popular DjVu hybrid strategy converts an image into a high resolution (300 

dpi) bi-tonal foreground mask, a small color map referenced by the foreground mask, and 

a lower resolution (100dpi) continuous-tone color background image [16] as shown in 

Figure 2.4.  The foreground mask is compressed with JB2, a dictionary encoding scheme 

implementing the JBIG2 standard.  The background image is compressed with IW44, a 

wavelet-based transform encoding algorithm similar to JPEG2000.  Other examples of 

hybrid image compression are Microsoft’s SLIm [17], DigiPaper [18], and DEBORA [7]. 

 

2.2 Bitonal Image Compression Strategies 

Because they do not contain extraneous shade of color, bitonal images can be 

compressed at much higher rates than grayscale or color images.  Pixels require eight bits 

for an accurate representation in a grayscale image and twenty four bits for a color image.  

Bitonal images use a single bit per pixel, which provides a large reduction in image size 

without any extra compression.  In addition to taking advantage of the “one bit” nature of 

each pixel, bitonal compression strategies use techniques such as pattern matching or 

vectorization to further compress images. 

 

2.2.1 Pattern Matching 

Pattern matching is a form of dictionary-based image compression using 

connected components as symbols.  For example, the JBIG2 standard uses pattern 

matching.  When a pattern matching strategy is used, the compressor analyzes the image 

and creates a dictionary of commonly repeated patterns (pixel-by-pixel symbols).  As a 

result, the data stored in the image file are simply indices to entries in this dictionary.  If 

the entry does not match the current pattern exactly, the residual difference in encoded 

using common bitonal image compression techniques [19]. 

Patten matching algorithms come in two flavors:  soft pattern matching and 
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pattern matching and substitution [20].  In pattern matching and substitution, if a symbol 

is similar to one already stored in the library but not quite close enough for a match, a 

new symbol must be added to the library.  In soft pattern matching, the difference (delta) 

between the symbol in the library and the one on the image is preserved instead [21].  

Pattern matching works best when a document consisting of many images can be 

referenced by only one dictionary.  In some cases, the dictionary can be larger than the 

actual image data, thus, using the same codebook for a collection of images is a way to 

leverage greater compression efficiency [19].  Unfortunately, because of the variability in 

handwritten document images, this technique can not be employed effectively. 

 

2.2.2 Vectorization 

Vectorization is the process of converting an image from pixel data (often called 

“raster” format) into a vector-based file format.  In its simplest case, a vector image is a 

collection of line segments.  For example, take an image containing one black line from 

the upper-right corner of the image to the lower left.  Instead of using one bit for each 

pixel in the image, a vectorized copy of this image only stores the two endpoints and lets 

the decoder plot the actual line. 

In addition to image compression, vectorization has other advantages that make it 

attractive.  First, by converting raw pixel data to “higher order” data like lines, curves, 

and shapes, it is much more feasible to perform pattern recognition or other computer 

vision operations on the data.  For handwritten text, vectorized letters provide a good 

feature set for handwriting recognition.  Second, vectors are represented by a sparse 

collection of points, which can be used to perform various affine transformations 

(rotation, scaling, and translation) on the image.  Instead of manipulating the whole 

image, these transformations can be limited to the points defining the vectors. 

Basic vectorization techniques are divided into two categories:  thinning and 

nonthinning [22].  A thinning operation finds the midpoints of raster-based lines and 

shapes and converts them into vectors.  Because the shapes of varying thickness are 

replaced by single pixel lines, this operation is referred to as creating a “skeleton” of the 

image [23, 37].  Each vector has a specific width assigned to it, allowing lines of various 

widths to be rendered accurately.  Nonthinning operations use contours or the pixels 
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detected along the edge of each shape to represent the raster image. 

Vectorization is used to convert engineering or architectural diagrams from 

scanned images into a clean, elegant form composed of line vectors, giving engineers the 

ability to manipulate the images easily using the aforementioned affine transformations.  

Unfortunately, absolute pixel-by-pixel vectorization is quite expensive (although 

preferable for engineering diagrams mentioned earlier).   For document image 

compression, vectorization is usually a lossy operation.  Fortunately, vectorization tends 

to smooth letter and shapes, including the curves associated with handwriting.  This can 

improve the readability of a document image. 

 

2.3 Progressive Image Transmission 

Progressive image transmission is the process of transmitting images piece-by-

piece across a network, so users with slow network connections can browse the image 

without having to wait for the whole image.  By sending the image in small chunks, it is 

even possible for a user to finish reviewing the image or extract the needed information 

before the whole image has been downloaded. 

Current Internet browsers rarely perform progressive transmission by default.  In 

most cases, images are replaced by “alternate” text or an icon of a broken image until the 

entire image is downloaded.  At this point, the image suddenly appears in the browser.  

Even if a “progressive” transmission strategy is activated for JPEG images, a raster-based 

image is rendered row by row from top to bottom [12].  Although this is a progressive 

transmission strategy, it only supports browsing if the data the researcher wants is at the 

top of the image. 

There are two approaches or issues to progressive image transmission:  quality 

and content.  In “quality progressive transmission”, images are initially sent to the user at 

a low resolution, with the resolution increasing as more data arrives.  The JPEG standard 

supports this using a “Progressive DCT-based Mode” which streams coarser images to 

view first, improving the image by sending subsequent data [24].  For bitonal images, the 

JBIG standard also supports a low-to-high resolution image transmission strategy using 

base and differential layers [14].  The Just-In-Time-Browsing (JITB) uses the JBIG 

standard by sending multiple bit-planes to the browser with each one adding different 
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colors values to the image.  As more bit-planes arrive, the image is further refined [12]. 

Unfortunately, this coarse-to-fine strategy does not always work well for 

document images.  To be useful for a researcher, a document must be readable.  Low 

resolution images tend to leave fuzzy or blocky edges on handwritten and printed text.  In 

many cases, although sections of a coarse image can be quickly identified as text, 

separate letters may be impossible to distinguish. 

“Content progressive transmission”, on the other hand, sends full resolution image 

pieces to the researcher one-by-one.  In some cases, these pieces are layers such as the 

background and foreground layers used by hybrid compression strategies (Section 2.1.4).  

Other content progressive strategies involve chopping images into tiles and sending these 

one at a time. 

“Content progressive transmission” is the approach used by DjVu for its 

transmission strategy.  DjVu separates images into multiple layers [25].  The foreground 

layer, consisting of text and darker sections of the document image, is sent to the user 

first.  Only after the foreground layer has been sent does the background layer start to be 

sent to the user [16]. 

 

2.4 The CECAT Approach 

The CECAT system provides a novel approach to the problem of document image 

compression as well as a progressive transmission strategy.  The CECAT compression 

strategy is a “hybrid” compression strategy optimized for the bitonal foreground layer.  

By converting this bitonal layer into a collection of contours represented by parametric 

curves, the CECAT system uses vectorization for compression.  As mentioned in Section 

2.2.2, this vectorization prepares the image for future “higher-order” data manipulations.  

The progressive transmission strategy provided by the CECAT system is a mixture of 

two “content progressive” approaches.  Like other “hybrid” approaches, the foreground 

layer is sent first, followed by a residual and a background layer.  In addition, the 

CECAT system divides each layer into tiles that can be sent to the use one-by-one. 
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Chapter 3 

Contour Encoded Compression 

The main emphasis of this thesis and the CECAT compression strategy is creating 

an effective method for compressing the foreground bitonal layer of a document image.  

This section will cover the vectorization process used to convert image data from pixel 

values to parametric curves, while Section 4 will discuss the encoding format of this and 

the other grayscale image layers.  Using parametric curves to represent contours 

surrounding the black shapes in the image reduces the image size considerably.  The 

value this has for facilitating browsing is obvious:  smaller file size equals shorter 

download time. 

 To accomplish this, the image is first converted from color to grayscale, followed 

by a binarization operation (Section 3.1).  This creates a bitonal, or black-and-white, 

image.  The pixels surrounding each of the shapes in the image are then detected and 

labeled as contours.  This detection operation and its associated contour filling operations 

are presented in Section 3.2.  Next, parametric curves (curves defined by two or more 

“control points”) are fitted to each of the contours using a process discussed in Section 

3.3.  Lastly, these parametric curves are saved for later compression operations discussed 

in Chapter 4. 

 

3.1 Binarization of Document Images 

Like any other foreground/background or “hybrid” compression strategy, 

document images must be converted from color or grayscale to black and white (or 

bitonal) images.  This process, also known as “binarization”, is one of the more difficult 

challenges in the field of document image processing.  Because image quality varies 
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Gray = 0.3 * Red + 0.59 * Green + 0.11 * Blue                      (3.1) 

among document images, no one strategy works best.  Also, poor binarization can cause 

important portions of a document image to be lost.  The effectiveness of the CECAT 

compression strategy hinges on selecting a good binarization strategy. 

 

3.1.1 Color to Grayscale 

The initial step, before binarization can take place, is the simple and well-

documented process for converting color images into their appropriate grayscale 

representations.  In the most common color representation, colored pixels are represented 

by three 8-bit intensity values for the colors red, green, and blue.  Every grayscale value 

(from pure black to pure white) can be represented by a single 8-bit intensity value.  As a 

result, converting a document from color to grayscale reduces an image size by about 

66%.  By applying Equation 3.1 to each pixel in the image, color pixels are easily 

converted into their grayscale equivalents [26].  

                           

 

 

3.1.2 Grayscale to Bitonal 

 Now that we have a grayscale image, the binarization process can begin.  The 

goal of this operation is to separate the black text from the rest of the document image.  

For the CECAT system, binarization is accomplished using a local thresholding 

algorithm.  Although the development of an “optimal” binarization algorithm remains an 

area of active research, the algorithm proposed by Niblack in 1985 remains very 

competitive with current approaches [27].  For the CECAT system, a modified version of 

the Niblack thresholding algorithm is used.  This modification was proposed by Zhang 

and Tan [35] and adds two constants to reduce the algorithm’s sensitivity to noise.  This 

approach was implemented by Mike Smith for a class project at BYU in 2004 and 

performs reasonably well for testing the CECAT system [28]. 

This binarization algorithm is a “local” thresholding operation because it creates a 

threshold that can be different for each pixel in the image.  If a pixel is greater than the 

threshold value, it is changed to white; otherwise, the pixel is changed to black.  Niblack 

thresholding takes the mean (µ) and the standard deviation (σ) of the area around each 
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pixel and factors in two empirical constants (R and κ) to create a threshold T(x, y) as 

described in Equation 3.2 [36].  

 

 

For the CECAT system, the area used to create this threshold is a 19x19 square 

region around each pixel.  The value for κ, which adjusts the amount of boundary that 

should be added to each black shape in the image [36], is set to -1.  This removes extra 

“padding” around the detected shapes.  The other constant, R, is set to 100. 

Even with this algorithm, the binarization doesn’t always perform well, especially 

on some of the difficult documents analyzed.  As an added measure, we added a simple 

global minimum to the thresholding logic.  If any pixel falls below this minimum value, 

the system designates it as a white pixel, independent of T(x, y).  This allowed us to test 

the CECAT compression system on poor quality documents by tuning the thresholding 

algorithm globally for each set of documents.  This value is set to different values ranging 

from 128 to 170, depending on the quality of the collection. 

 

3.2 Contour Detection and Rendering 

 A contour is an ordered list of pixels making up the outside edge of a shape.  In 

Figure 3.1, the yellow line marks the pixels that make up a contour.  Because the contour 

lies on the shape it represents, it is called an internal contour.  If we have the contour, we 

can recreate the shape that it represents.  Using contours instead of actual space-filling  

shapes is how CECAT images are compressed and rendered. 

To use contours in image compression, two issues must be addressed.  First, we 

must have a process that identifies the contours.  Second, to transform contours from 

simple lines into human readable shapes, a contour-filling operation is needed.  Although 

many algorithms can be used to accomplish these operations, it is important, for our 

purposes, to select two strategies that complement each other. 

 

3.2.1 Layered Contour Detection 

Using a bitonal image, it is possible to detect and mark the contours for each 

T(x, y) = µ [1 + κ (1 − σ/R)]                                         (3.2)         
 



20 

 

Figure 3.1 Contour Example. 

 

shape, referred to as a connected component.  For effective compression, we need to 

mark the pixels along the inside edge of each shape, creating an “internal” contour.  

When the shape is decompressed, the pixels that make up the contours become part of the 

shape.  Following this rule is especially important for recreating shapes that are one or 

two pixels wide.  Figure 3.1 shows an example of the “inside” edge our contour detection 

algorithm is trying to find. 

For our purposes, a simple counter-clockwise turn recursive contour detection 

algorithm is used.  Because we want to represent the contours with the smallest number 

of pixels possible, the contour detection strategy looks for eight-connected components 

(the contours can go diagonally as well as horizontally and vertically).  The basic 

algorithm used for tracing an eight-connected component contour is shown on the next 

page. 

Although this strategy will find the edges of the black connected components in 

an image, it fails to identify any of the white “holes” inside these black components.  To 

capture all the necessary contour information, a strategy to detect these white “holes” is 

also needed.  In addition, these contours must be sorted in such a way as to preserve their 

nested relationship, so that encompassing components are not rendered after any of their 

internal connected components, overwriting them in the process. 

To achieve these goals, the contour detection operation works on one “layer” of 

the image at a time.  First, an image, as shown in Figure 3.2a, is analyzed and the contour 

detection algorithm is used to find the outside of each contour.  Figure 3.2b shows the 

contours detected using this operation.  Once a contour has been detected, every pixel on,  
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(a)                                                     (b) 

        

(c)                                                     (d) 

Figure 3.2  Contour Detection Example.  (a) Original Image  (b) Detected Contours in 

the First Layer  (c) Filled Image Mask  (d) Second Layer after Rendering Mask 

 

procedure TRACECONNECTEDCOMPONENTS  

   1: Inputs:  

   2:    Point start_point {black pixel found to right of a white pixel} 

   3: Outputs: 

   4:    Array of points[] contour {sequence of points making up the contour} 

   5: Variables: 
   6:    Point curr_point {marker for the current position on the contour} 

   7:    Enum direction {“north”, “northwest”, “west”, “southwest”, “south”…} 

   8:    Integer num_turns {number of 8-compass point turns made from curr_point} 

   9: Begin 

 10: curr_point = start_point 

 11: direction = “northwest” 

 12: do 

 13:    num_turns = 0 

 14:    while Pixel in direction from curr_point is “white” AND num_turns < 8 do 

 15:       direction = next clockwise 8-point compass direction 

 16:       number_turns = number_turns + 1 

 17:    Add curr_point to contour 

 18:    curr_point = next Pixel in the direction from curr_point 

 19:    if num_turns = 8 then 

 20:       curr_point = start_point 

 21:    direction = 3 steps counterclockwise on 8-point compass direction 

 22: while curr_point != start_point 

 23: End 
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and inside the contour is changed to gray using the contour filling algorithm described in 

Section 3.2.2.  After detecting and filling all these contours, we have an image like the 

one Figure 3.2c. 

 Detection of the first contour layer is now complete.  Next, the second contour 

layer makes up the “holes” in these first contours, appearing as white shapes on a black 

background.  To prepare this layer for the contour detection operation, we first create a 

blank image of the same size as our original image with all the pixels set to black.  Then, 

using the gray image created earlier as a “mask” on the original image (Figure 3.2a), we 

add all contents of the previously detected contour layer.  This includes the white 

contours that make up this second contour layer.  Once all this is done, we have an image 

like the one in Figure 3.2d. 

 By simply reversing the foreground and background colors in the contour 

detection operation, finding white contours on the black background of this new image is 

straight forward.  This creates counterclockwise contours that make up the second layer.  

By filling these contours and repeating the process (simply swapping the background and 

foreground colors each time), we can find all the contours, no matter how many nested 

shapes there are.  As an added bonus, these contours are sorted in the order we need to 

render them. 

Figure 3.3, on the next page, shows a portion of a census image divided up in 

these layers.  Because of all the nested shapes, four different contour layers are required 

(shown as Figures 3.3b – 3.3e).  When the image is displayed, the first layer (Figure 3.3b) 

is rendered first.  By adding each additional layer one-by-one, the internal contours are 

drawn last, preventing one contour from overwriting another. 

 

3.2.2 Contour Filling Algorithm 

 Contour filling is the well-documented image processing problem of changing a 

contour into its associated shape by setting the color of all the pixels inside the contour to 

the color of the contour itself.  Accurately performing this operation is essential for the 

layered contour detection strategy mentioned earlier, as well as acting as the final step in 

the process that converts encoded contours into a readable image. 

Every contour-filling algorithm makes some assumptions, many of which do not 
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(a) 

    

(b) (c) 

    

(d)                                                                   (e) 

Figure 3.3  Contour Layers for Sample Image.  (a) Original Image  (b) First “Black” 

Layer  (c) Second “White” Layer  (d) Third “Black” Layer  (e) Fourth “White” Layer  

 

work for encoded contours that may contain errors (as created by CECAT encoding).  For 

example, because the “inside” edge of each shape is used as a contour, the area inside the 

contour is sometimes disconnected white as shown in Figure 3.4a.  A “flood fill” 

strategy, which changes one white pixel to black and recursively applies the same 

operation to all the white pixels adjacent to that pixel, will only fill half the shape. 

Another popular contour filling method follows the contour around the outside 

edge in a clockwise direction.  The left edge of the contour can be identified as locations 

where the contour is moving up.  By filling the contour in a “scan-line” from these points 

to other contour edges on the right, the contour can be filled very quickly.  Unfortunately, 

the process of mapping parametric curves to contours sometimes introduces slight errors  
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                       (a)                                                                         (b) 

Figure 3.4  Challenges for Contour Filling.  (a) Unconnected Contour Area  (b) 

Transposed Edges 

 

procedure FILLCONTOUR 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3: Outputs: 

   4:    Array of bits[][] canvas {pixel values as they appear after contour fill} 

   5: Variables: 
   6:    Array of points[] spans {leftmost edges of each scan-line made by contour} 

   7:    Array of bytes[][] grid {plots points in spans and marks filled pixels} 

   8:    Integer total {running sum of labels on a given row} 

   9: Begin 

 10: for i � 0 to contour.length do 

 11:    if contour[i] is left-most pixel of a horizontal row of pixels then 

 12:       add contour[i] to spans 

 13: grid = byte[contour.width][contour.height] 

 14: for j � 0 spans.length do 

 15:    if spans[j] is a local minima or maxima then 

 16:       // Do Nothing 

 17:    else 
 18:       grid[span[j].x][span[j].y]++ 

 19: for k � grid.minY to grid.maxY do 

 20:    total = 0 

 21:    for l � grid.minX to grid.maxX do 

 22:       if total is odd then 

 23:           canvas[l][k] = 1 {fill in the pixel point on the resulting canvas} 

 24:       total = total + grid[l][k] 

 25: for m � 0 to contour.length then {fill the points along the contour} 

 26:    canvas[contour[m].x][contour[m].y] = 1 

 27: End 
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resulting in the edges being swapped as shown in Figure 3.4b, causing this contour filling 

strategy to fail as well. 

The contour filling algorithm used by the CECAT system is similar to the scan-

line parity based fill method mentioned earlier.  Using contours stored as an array of x 

and y coordinate pairs and a small byte array to map which pixels need to be filled, this 

algorithm accurately fills each contour.  The details for this algorithm are outlined in the 

pseudocode on the previous page. 

 As a first step, each horizontal row of black pixels in the contour is changed into a 

single point corresponding to the leftmost pixel of the row.  These collection of points 

will be used later to mark the pixels that need to be filled.  In the code below, these points 

are called spans and have been marked blue in an example shown in Figure 3.5a.  The 

code shows this operation on lines 10-12. 

Once these spans have been identified and marked, the algorithm steps through 

the contour again, counting how many times these spans are crossed.  This information is 

stored on a byte array called a grid.  Once the count has been made, any span found to be 

a local minimum or maximum (i.e. spans before or after are both above or below) are 

removed from the grid.  This analysis occurs on lines 13-18 in the code and Figure 3.5b 

displays the count inside each marked pixel with the local minimum/maximum crossed 

out. 

            Now that the grid has been created, the actual “contour filling” process takes place.  

This operation, outlined on lines 19-24 of the code, is a simple scan-line parity fill.  While 

moving from left to right along each row in the grid, each time a number value is crossed, 

a total variable is incremented by that amount.  Whenever this total is odd, any pixel 

passed over is “filled” in the image (called canvas in the code).  Figure 3.5c shows the 

results of applying this operation.  At this point, all the pixels found inside the contour 

have been marked as filled.  As a final step, the algorithm goes through the contour a 

third time and fills every point on the contour (lines 26-27).  This concludes the contour 

filling operation.  Figure 3.5d shows the final filled contour. 

We saw minor performance enhancements by using the list of horizontal objects 

to represent spans instead of plotting everything onto the grid in the first place.  This 

algorithm requires the whole image section to be stored in memory, but this is not much  
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 (a)                                                                     (b) 

                       

(c)                                                                     (d) 

Figure 3.5  Contour Filling Algorithm Example.  (a) Horizontal Spans Marked Blue 

(b) Span/Contour Crossing Points Counted and Local Minima/Maxima Removed       

(c) Filled Contour using Scan-line Parity  (d) Completely Filled Contour 

 

of an issue due to the CECAT localization tactic of chopping up images and the 

connected components associated with them into 512 x 512 tiles (see Section 4.1 for 

more details).  Because of this, the connected components associated with these contours 

do not grow too large for memory to be an issue. 

 

3.3 Fitting Parametric Curves to Contours 

 One of the major contributions of this thesis is the process of converting contours 

from an ordered list of pixel points into a collection of parametric curves.  This 

conversion has three major benefits:  improved compression, componentization, and a 

higher-order representation than raw contours. 
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 Compression is the most obvious reason for changing the image format into a 

piecewise parametric representation.  Instead of storing a list of points making up a 

straight line, it is much more efficient to simply store the two endpoints and note that 

they represent a line.  By combining one or two more control points and a mapping 

equation, a few points can represent a curve which can be used to represent a section of 

contour even more efficiently than a collection of line segments.  With parametric curves, 

otherwise complex shapes can be represented with a few control points instead of a list of 

points labeling each pixel on the contour one-by-one. 

 Unlike compression strategies that transform an image into another representation 

before compressing them (such as the discrete cosine transform used by JPEG), the 

control points used to represent each contour remain in XY-coordinate space.  Because of 

this, contours can be sorted or chopped into smaller pieces using a process known as 

componentization.  This allows the CECAT format to be used in a variety of progressive 

transfer strategies.  In addition to componentization, changing contours into lists of 

control points allows for much faster scaling, rotation, and translation.  Instead of 

applying an image-wide operation, only the control points need to be changed when 

performing these affine transformations. 

 Lastly, parametric curves provide a higher-order representation of the original 

contours.  As such, these curves can be used in subsequent pattern recognition algorithms 

or further compressed by using a library of common curves.  CECAT image provide a 

new, higher order feature space for solving computer vision and image processing 

problems. 

 

3.3.1 Bezier Curves 

 For the initial implementation of the CECAT system, Bezier spline curves are 

used as the parametric form for representing contour segments.  Named for the French 

Mathematician Pierre Bezier who discovered them in the 1960s, this parametric 

representation provides a simple way to define n-degree curves using n + 1 control points 

[29].  Although one of the least sophisticated of the parametric curves, Bezier curves 

provide an accurate and elegant way to compress curve data.  They have been used by 

many different drawing programs throughout the past few decades. 
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 Bezier curves are defined mathematically by the Bernstein polynomials (see 

Equations 3.3 – 3.5).  The value u ranges from 0.0 to 1.0, defining along with it the length 

and location of each pixel on the curve.  Bezier curves possess two useful properties, the 

first of which being endpoint interpolation [30].  This means the first and last control 

points lie upon the curve, simplifying the process of fitting parametric curves to contours.  

Because of this property, important sections of the contour can be “fixed” and connected, 

enclosing the contour completely.  The second property is affine invariance which means 

simple transformations (scaling, rotation, and translation) can be applied to the control 

points, changing the resulting Bezier curves appropriately [30]. 

 The simplicity of Bezier curves made them prime candidates for use in the 

CECAT system.  Unfortunately, Bezier curves do not enforce any degree of continuity 

that more sophisticated spline forms require.  Because high compression is more 

important than continuous transitions between splines, the CECAT system only enforces 

C
0
 continuity.  If the contour being mapped makes a sharp point, the extra cost of 

preserving continuity does nothing to improve the later rendering of the contour. 

 

3.3.2 Using First Degree Curves (Lines) 

 The simplest example of CECAT compression uses only first degree parametric 

curves (i.e. straight line segments).  Although this can lead to suboptimal results (no 

smooth curves and extra required segments), the algorithm is almost identical to the one 

used to fit higher order parametric curves to contour.  Because line segments are easier to 

visualize than quadratic splines, we will start by compressing an image with them. 

 

Outline of the Contour Mapping Process 

 The algorithm used by the CECAT system to map parametric curves onto 

Line:   pppp(u) = (1-u)pppp0 + upppp1        (3.3) 

 

Quadratic: pppp(u) = (1-u)2 pppp0 + 2u(1-u)pppp1 + u2 pppp2      (3.4) 

 

Cubic:  pppp(u) = (1-u)3 pppp0 + 3u(1-u)2 pppp1 + 3u2(1-u)pppp2 + u3 pppp3    (3.5) 
 

pppp(u) = points on the curve  ppppn = Bezier control points  u Є [0, 1] 
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Figure 3.6  Suboptimal “Greedy” Algorithm Example. 

 

contours is sometimes referred to as a “greedy” algorithm because it maps the longest 

curve available from its current point without regard to the consequences further down 

the road.  This “locally optimal” strategy operates quite well with significantly fewer 

computations than a “globally optimal” strategy, because it need only deal with the 

current piece of contour.  Unfortunately, the results can be suboptimal.  For example, 

Figure 3.6 shows a map of four cities with the distance between each city labeled.  If 

someone was trying to get from City 1 to City 4 and used a “greedy” algorithm for each 

leg of the journey, they would choose the shortest route first.  Thus, they would travel to 

City 3, but then pay for it later as the distance between City 3 to City 4 is extremely high. 

Similar to the example above, the CECAT contour mapping process starts at a 

given point and looks for the longest possible curve it can map and yet remain close 

enough to the original contour.  “Close enough” is defined by something called Error 

Tolerance, a measurement defining how far (in pixels) from the contour any associated 

curve is allowed to go.  Once the longest acceptable line segment is found, it is stored 

away and the algorithm repeats itself until it reaches the end of the contour.  The 

implementation of each step in this process is described later in this section.  The 

procedure MapNextLineToContour on lines 15 and 22 of the following pseudocode 

handle the process of selecting the next line segment, and lines 14-20 and 21-26 describe 

how these line segments are actually mapped. 

Of course, there are a few exceptions to this “greedy” approach.  First, contours 

that touch the image or tile border are assigned “fixed” line segments where they meet.   
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(a)                               (b)                              (c) 

Figure 3.7  Line Segment Contour Mapping Example.  (a) Initial Contour with Fixed 

Border Edges  (b) Contour Mapping Complete for First Section  (d) Contour Mapping 

Complete  

 

By allowing a small amount of error in the mapping process, small “gaps” can appear 

inside an otherwise connected components when tiles are reassembled if these edges are 

not mapped perfectly.  Figure 3.7a shows these fixed contour edges, and the procedure 

FindBorderEdges on line 12 is where this mapping takes place in the process. 

After applying the “greedy” process outlined above to the area between the 

starting point and the first “fixed” line segment, a number of line segments can be 

mapped as shown in Figure 3.7b.  At that point, the “fixed” line segment is added to the 

contour mapping and the process repeats itself until the contour is completely covered by 

line segments.  The result of this mapping process is shown in Figure 3.7c.  The 

pseudocode on the following page outlines this basic process, using upper and lower 

indices to specify where on the contour each line segment lays.  The methods 

FindBorderEdges and MapNextLine will be discussed in the next few sections. 

 

Marking the Outside Edges 

 Having every point on the parametric curves map perfectly to the pixels along the 

contour is not always desirable.  Such a mapping requires too many parametric curves, 

reducing the efficiency of the compression strategy and removing the desirable 

“smoothing” effect the contour mapping provides.  With that said, there are a few places 

on a contour where an exact pixel-by-pixel mapping is needed.  The most important of 
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procedure MAPLINESTOCONTOUR 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3:    Integer start {index for contour - first point of current section of contour} 

   4:    Integer end {index for contour - last point of current section of contour} 

   5:    Real error {max allowable distance between mapped line segment and contour} 

   6: Outputs: 

   7:    Array of lines[] lines {Line segments that have been mapped to the contour} 

   8: Variables: 
   9:    Array of lines[] edges {contour segments that touch tile borders} 

 10:    Bezier next {next mapped line; contains indices indicating endpoints}  

 11: Begin 

 12: edges = FINDBORDEREDGES(contour) 

 13:  for i � 0 to edge.length do 

 14:    while true do  

 15:       next = MAPNEXTLINE(contour, start, contour[edge[i].lowerIndex], error) 

 16:       add next to lines 

 17:       start = next.upperIndex 

 18:       if next.lowerIndex > edge[i].lowerIndex then break 

 19:    add edge to lines 

 20: while true do 

 21:    next = MAPNEXTLINE(contour, start, end, error) 

 22:    add next to lines 

 23:    start = next.upperIndex 

 24:    if lower index of next > end then break 

 25: End 

 

these exist where the contour touches the border of the image or the edge of a tile. 

 Absolute precision is needed when encoding these edges for two reasons.  First, 

slight deviations in mapping these edges have the potential to push the contour outside 

the dimensions of the image.  If this were to occur, the decoder would clip the tile when 

trying to reconstruct the image.  Second, because the progressive transfer strategy uses 

tiles to localize and transmit images in a piecewise manner, imprecise edges can create 

gaps when two tiles are pieced back together. 

 To prevent both of these conditions, each contour is first analyzed and these 

border segments are detected and saved (as shown by the blue segments in Figure 3.8).  

By storing a list of segments along with indices indicating their starting and stopping 

points, these line segments can be “fixed”.  In this way, we are guaranteed to have precise 

fitting edges between each tile, and no contour moves beyond the edge of the image. 

 Adding these “fixed” border edges is not without cost.  The smoothing effect 
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Figure 3.8  Detected Border Edges. 

 

Error 

Tolerance 

(pixels) 

Image 

DPI 

File Size 

without Fixed 

Borders (bytes) 

File Size with 

Fixed Borders 

(bytes) 

Difference 

(bytes) 

Difference 

(percent) 

1.5 200 86,690 88,504 1,814 2.1% 

1.0 200 107,000 108,028 1,028 1.0% 

0.75 200 131,694 132,447 753 0.6% 

1.5 300 123,708 126,300 2,592 2.1% 
 

Table 3.1  File Size Price for Fixed Borders. 

 

provided by allowing a small amount of error in contour mapping is lost for these 

particular edges.  Table 3.1 shows the image size for various CECAT files compressed 

with and without fixed border edges.  As expected, the file size difference is less 

pronounced when a more restrictive error tolerance value is used.  At any rate, the small 

cost of 0.5% – 3.0% is minor when compared to the “artifacts” this process prevents. 

The process that marks these outside edges is straightforward.  Because each 

point on the contour is stored in an ordered list, finding which segments lie along a 

particular edge is a matter of detecting spans where the contour touches and later leaves 

the edge.  The algorithm steps through the list of contour points until the contour touches 

the edge of the tile (line 15 of the following code resolves to true).  This edge is followed 

until the contour leaves the tile’s edge or reverses direction (as in lines 30-32 and 26-29 

respectively).  Once this happens, a line from the start_point to the end_point is stored as 

an edge line segment and “fixed” for the contour mapping process.  The implementation 

details behind this operation are shown in the pseudocode on the next page.  This  
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function is run four times to discover and set edge line segments on all four border edges 

(top, bottom, left, and right). 

 

procedure FINDBORDEREDGES 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3: Outputs: 

   4:    Array of beziers[] edge_list {contour segments that touch bottom tile border} 

   5: Variables: 
   6:    Integer start_point {index for contour - first point of current contour edge} 

   7:    Integer end_point {index for contour - last point of current contour edge} 

   8:    Integer start_x {first x coordinate for the current contour edge} 

   9:    Integer end_x {last x coordinate for the current contour edge} 

 10:    Enum direction {“unknown”, “left”, “right”; direction of current contour edge} 

 11:    Boolean following_edge {indicates that an edge is currently being followed} 

 12: Begin  
 13: following_edge = False 

 14: for i � 0 to contour.length do 

 15:    if contour[i] is on the current edge of current tile then 

 16:       following_edge = True 

 17:       if contour[i-1] was not on the current edge of current tile then 

 18:          direction = “unknown” 

 19:          start_x = end_x = contour[i].x 

 20:          start_point = end_point = i 

 21:       else if direction = “unknown” then 

 22:           if start_x > contour[i].x 

 23:             direction = “left” 

 24:          else 
 25:             direction = “right” 

 26:       else if (direction = “left” AND end_x < contour[i].x) OR 

                         (direction = “right” AND end_x > contour[i].x) then 

 27:          add line from start_x to end_x to edge_list 

 28:          start_x = end_x 

 29:          start_point = end_point 

 30:          reverse direction {“left” becomes “right” and vice versa} 

 31:       end_point = i 

 32:       end_x = x coordinate of contour[i] 

 30:    else if following_edge = True 

 31:       add a line from start_x to end_x to edge_list 

 32:       following_edge = False 

 33: End 

 

Fitting a Line to a Contour Segment 

 To ensure good curve-to-contour mapping, CECAT encoding requires the curve 
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Figure 3.9  First Candidate Line Segment. 

 

segments it uses to begin and end on pixels found on the contour.  By forcing the 

endpoints of each segment onto the contour, “fixing” line segments to the edges 

described above is much simpler.  This rule also ensures an exact curve-to-contour 

mapping at least two times per curve segment and prevents the mapped curve segments 

from oscillating from one side of the contour to the other and simplifies the algorithm 

that chooses how to map a line segment to a section of contour as shown below: 

procedure MAPLINE 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3:    Point start {starting point for the contour segment being examined} 

   4:    Point end {ending point for the contour segment being examined} 

   5: Outputs: 

   6:    Line next {line segment that have been mapped to a section of contour} 

   7: Begin 

   8:   next = line with endpoints start and end 

   9:   return next 

 

 For the “first attempt” at a contour mapping, the system tries to map a single line 

from the starting point to the beginning of the first “border edge” segment detected 

earlier.  An example of this is shown in Figure 3.9.  If there are no “border edges” on the 

contour, the algorithm’s initial attempt is a single point line at the starting point for the 

contour. 
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Determining the How Close a Line Fits to the Contour 

Once we have our first candidate line, it must be analyzed to determine the 

accuracy of the curve mapping it provides.  To do this, we must determine which points 

on the contour map to which points on the mapped line.  Fortunately, this operation turns 

out to be simple thanks to the parametric equation for a first degree Bezier curve: 

 

 

The value for u can be found by calculating the percentage distance between each 

point on a contour segment and the contour segment’s starting point.  After calculating 

the distance between the points used to calculate u and its associated computed value for 

p(u) in the equation above, the maximum distance between a point on the contour and its 

associated point on the parametric curve can be determined (dx and dy calculated on lines 

18 and 19 in the pseudocode below).  This maximum distance, as shown in Figure 3.10, 

is called the “error value” for the parametric curve. 

procedure GETERRORFORLINE 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3:    Point start {starting point for the candidate line being examined} 

   4:    Point end {ending point for the candidate line being examined} 

   5:    Array of integer[] distances {measured distances from each indexed point in 

           contour to starting point} 

   6: Outputs: 

   7:    Integer error {highest measured error between points on line and contour} 

   8: Variables: 
   9:    Integer total_distance {distance measured following contour from start to end} 

 10:    Real U {relative distances along both contour and candidate line} 

 11:    Real dx {horizontal distance between points on the candidate line and contour} 

 12:    Real dy {vertical distance between points on the candidate line and contour} 

 13: Begin  
 14: total_distance = last value in distances 

 15: error = 0 

 16: for i � index of start to index of end on contour do 

 17:    U = distances[i]  * 1 / total_distance 

 18:    dx = (1-U) * start_point.x + U * end.x – contour[i].x  

 19:    dy = (1-U) * start_point.y + U * end_point.y – contour[i].y 

 20:    if maxError < squareRoot(dx
2
 + dy

2
) 

 21:       maxError = squareRoot(dx
2
 + dy

2
) 

 22: End 

 

pppp(u) = (1-u)pppp0 + upppp1                                             (3.6) 
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Figure 3.10  Comparison of Deltas between Candidate Line and its Associated Contour. 

 

 Throughout the process of mapping curves to contours, significant improvements 

in both image quality and compression can be achieved by allowing the mapped Bezier 

curves to depart from the contour by a small margin.  This small amount of discrepancy 

has the benefit of both smoothing the compressed contours and reducing the size of the 

final image [32].  The smoothing effect can simplify the form of many handwritten 

characters and improve the readability of the handwriting, especially important if curve-

mapped contours were ever used for tasks like automated handwriting recognition.   

The maximum acceptable distance between a contour segment and its mapped 

Bezier curve is known as “error tolerance”.   If a curve is more than this number of pixels 

away from its associated contour at any point, that curve is labeled as a bad match.  

Reducing error tolerance naturally improves the accuracy of the match, but the smoothing 

effect of contour mapping is reduced.  In addition, more curves are needed to represent 

contours when the error tolerance is low.  The effect of error tolerance on the image is 

discussed in Section 5.1.1. 

 

Performing a Search of the Best Line Mapping 

Now that we have a way to map line segments to contours and test the accuracy of 

these line segments, we are ready to search for the longest line segment that follows the 

contour from a start point.  This operation is fundamentally a recursive binary tree similar 

to a “divide and conquer” strategy search as shown in the following pseudocode: 
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procedure MAPNEXTLINE 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3:    Integer start {index of initial point where the next Bezier is mapped from} 

   4:    Integer end {index of last point where the next Bezier can be mapped to} 

   5:    Real error_tolerance {max allowable distance between current_curve & contour} 

   6: Outputs: 

   7:    Bezier current_curve {next candidate Bezier and ultimately the optimal Bezier} 

   8: Variables: 

   9:    Array of integer[] distances {measured distances from each indexed point in 

           contour to starting point} 

 10:    Integer min_index {index of last point of the shortest Bezier failing to pass} 

 11:    Integer max_index {index of last point of the longest Bezier that passed error test} 

 12:    Real error {maximum distance from a point on current_curve and contour} 

 13: Begin 

 14: max_index = end_point 

 15: min_index = start_point 

 16: calculate and fill values for distances 

 17: FINDNEXTBEZIER(start_point, end_point, min_index, max_index) 

 18:    currentCurve = MAPLINE(contour, start_point, end_point) 

 19:    error = GETERRORFORLINE(contour, contour[start_point], contour[end_point], 

             distances) 

 20:    if (error > error_tolerance) AND ( (min_index + end_point) / 2 > 2) 

 21:       return FINDNEXTBEZIER(start_point, (min_index + end_point) / 2, 

                min_index, endPoint) 

 22:    if (error < error_tolerance) AND ( (end_point < max_index ) > 2) 

 23:       return FINDNEXTBEZIER(start_point, (max_index + end_point) / 2, end_point, 

                maxPoint) 

 24:    else 
 25:       return current_curve 

 26: End 

 

First, a line segment going from the start point to the last available point on the 

contour is selected (this point is either at the end of the contour or the beginning of the 

next “fixed” line segment).  In the code above, the process of selecting the last available 

point and getting the error is done on lines 14-19.  Figure 3.11a illustrates this step with 

the selected line and the largest error labeled red.  If the error for this first line is more 

than the error tolerance, this line fails the test and a line segment going to the “halfway” 

point is tested instead as shown in lines 20-21 above and illustrated in Figure 3.11b. 

 From this point, the binary search continues.  The results of each test determine 

the next candidate line to be tested.  If a candidate line segment fails, the next candidate  
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(a)                                      (b)                                         (c) 

Figure 3.11  Determining the Best Line Mapping.  (a) Initial Candidate Line and 

Associated Error Values  (b) Second Candidate Line and Associated Error Values   

(c) Selected Line Mapping 

 

line is set as halfway between that point and a min_index value which is initialized to the 

start point (line 15).  If the candidate line segment passes the test, the next test takes place 

halfway between that point and a max_index value which is initialized to the last 

available point (line 14).  Throughout the process, min_index and max_index values are 

tracked and adjusted.  Every time a test fails, the endpoint of the line is saved as the 

current maximum distance for the optimal line segment.  Each time a test succeeds, the 

endpoint is saved as the current “minimum” distance.  Eventually, the min_index and 

max_index come together at which point the line segment that successfully maps to these 

indeices is chosen as the optimal line mapping. 

 This binary search operation was implemented to speed up the mapping process.  

Admittedly, testing for the longest available candidate line and stepping back one pixel 

each time a mapping fails does not take extremely long (it is a O(n) operation).  

Unfortunately, to create a CECAT image, tens of thousands of these line segments must 

be mapped.  Using this binary search changed the operation to O(log n), which reduces 

the time it takes to compress an image considerably. 

 

3.3.3 Using Second Degree Curves (Quadratics) 

Mapping quadratic Bezier curves instead of line segments to contours is similar to 
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the process described for line segments.  The algorithm is the same with only two small 

changes.  First, the algorithm for fitting a curve to a contour is different.  The endpoints 

for each perspective quadratic curve appear on the contour, but the middle control point 

needs to be calculated.  This is done using a least squares fit algorithm.  Second, the 

algorithm for calculating the error between a candidate curve and a contour uses the 

Bernstein polynomial for quadratics Beziers instead of line segments. 

 

Fitting a Quadratic to a Contour Segment 

 Because the endpoints of each quadratic Bezier curve are determined by the 

curve-fitting process outlined for line segments in the previous section, the only question 

that remains is where to place the middle control point.  To do this, a computationally 

expensive linear algebra operation known as “least squares fit” is used [30, 31].  This 

operation takes the basis functions of the polynomial equation for the Bezier curve and 

evaluates them for a selection of sample points (in this case, every point on the contour 

from one end to another).  These basis functions are plotted on a matrix and the 

eigenvector for the matrix is calculated.  This eigenvector is the “least squares fit” to the 

data, which is actually the coordinates of the control point we are looking for.  Because 

the x and y coordinates can be determined independently, this operation is actually much 

simpler than it sounds.  The matrix can be reduced to a 1xN matrix, which greatly speeds 

up the process of calculating eigenvectors.  This operation, which was originally 

implemented by Michael Smith [28], is shown in detail in the pseudocode on the next 

page. 

 

Determining how close a Quadratic fits the Contour 

Similar to the procedure outlined for mapping line segments to contours in 

Section 3.3.2, the algorithm for determining how accurately a quadratic Bezier curve 

maps to a contour is a matter of applying the parametric equation for the second degree 

Bezier curve and comparing it with the points on the contour. 

 

 

As outlined in the procedure for measuring the distance between a line segment 

pppp(u) = (1-u)2 pppp0 + 2u(1-u)pppp1 + u2 pppp2                                       (3.7) 
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 procedure MAPNEXTQUADRATIC 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3:    Integer start {index for contour - first point of current section of contour} 

   4:    Integer end {index for contour - last point of current section of contour} 

   5:    Array of integer[] distances {measured distances from each indexed point in 

           contour to starting point} 

   6: Outputs: 

   7:    Line next_bezier {second degree Bezier that has been mapped to section of 

           contour} 

   8: Variables: 
   9:    Integer total_distance {distance measured following contour from start to end} 

 10:    Real U {relative distances along both contour and candidate Bezier} 

 11:    Real T {simple holding variable used to store results of equation 2*(1-U) * U} 

 12:    Real vx, vy, M {variables used to create and evaluate Least Squares Fit matrix} 

 13: Begin 

 14: total_distance = last value in distances 

 15: vx = vy = M = 0 

 16: for i � index of start to index of end on contour do 

 17:    U = contour[i] * 1 / totalDistance 

 18:       T = 2 * (1 – U) * U 

 19:       vx = vx + (T * (contour[i].x – (1 – U)
2
 * start_point.x  – U 

2
 * end_point.x) ) 

 20:       vy = vy + (T * (contour[i].y – (1 – U)
2
 * start_point.y – U 

2
 * end_point.y) ) 

 21:       M = M + T
 2
 

 22:    controlPoint = (vx / M, vy / M) 

 23: next_bezier = quadratic with control points: startPoint, controlPoint, & endPoint 

 24: return next_bezier 

 25: End  

 

and contours, the value for u is found by calculating the percentage distance between 

each point on a contour segment and the contour segment’s starting point.  This allows us 

to compare the distance between u and the associated computed value for p(u).  The 

following pseudocode shows how this is done.  Everything in this procedure aside from 

degree of the Bernstein equation is the same as for generating errors from line segments. 

 

3.3.4 Combining First and Second Degree Curves 

 Because the steps required for mapping first and second degree Bezier curves are 

so similar, another “greedy” approach is used by the CECAT system to determine 

whether a line segment or a quadratic curve is the best choice for each piece of contour.   

This algorithm is controlled by a simple cost function:  the cost of encoding two line  
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procedure GETERRORFORQUADRATIC 

   1: Inputs: 

   2:    Array of points[] contour {sequence of points making up the contour} 

   3:    Point start {first control point for candidate Bezier being examined} 

   4:    Point control {middle control point for candidate Bezier being examined} 

   5:    Point end {last control point for the candidate Bezier being examined} 

   6:    Array of integer[] distances {measured distances from each indexed point in 

           contour to starting point} 

   7: Outputs: 

   8:    Integer error {highest measured error between points on line and contour} 

   9: Variables: 
 10:    Integer total_distance {distance measured following contour from start to end} 

 11:    Real U {relative distances along both contour and candidate Bezier} 

 12:    Real dx {horizontal distance between points on the candidate Bezier & contour} 

 13:    Real dy {vertical distance between points on the candidate Bezier & contour} 

 14: Begin 
 15: total_distance = last value in distances 

 16: error = 0 

 17: for i � index of start to index of end on contour do 

 18:    U = distances[i]  * 1 / total_distance 

 19:    dx = (1-U)
2
 * start.x + 2 (1-U)U  * control.x + U 

2
 * end.x – contour[i].x 

 20:    dy = (1-U)
2
 * start.x + 2 (1-U)U  * control.y + U 

2
 * end.y – contour[i].y 

 21:    if max_error < squareRoot(dx
2
 + dy

2
) 

 22:       max_error = squareRoot(dx
2
 + dy

2
) 

 23: return max_error 

 24: End 

 

segments is equal to the cost of encoding one quadratic curve. 

Using this simple rule, the algorithm makes two measurements from each start 

point.  First, the longest quadratic curve is determined using the technique outlined in 

Section 3.3.3.  Second, the next two line segments are mapped to the contour using the 

strategy shown in Section 3.3.2.  If the quadratic curve reaches farther than the two line 

segments, the quadratic curve is saved as the best choice.  On the other hand, if the two 

line segments reach farther the first of these two line segments is saved as the next 

mapped curve. 

There are a few benefits to this strategy.  First, the algorithm is simple and easy to 

implement.  Second, the whole operation requires much less time to run than more 

complicated and sophisticated algorithms such as “backtrack” or “branch-and-bound”. 

Third, it provides contour compression with locally optimal results.  Fourth, and most 

importantly, this strategy is easily extensible.  This means that adding B-splines, higher  
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200 DPI Census Image 

Compression Type Beziers Used 
File Size 
(bytes) 

Line Segments 29,749 Lines 71,870  

Quadratics 
19,782 
Quadratics 86,693  

Mixed 
Compression 

24,033 Lines & 
2,446 
Quadratics 71,588  

 

300 DPI Census Image 

Compression Type Beziers Used 
File Size 
(bytes) 

Line Segments 42,438 Lines 108,087 

Quadratics 
27,632 
Quadratics 128,556 

Mixed 
Compression 

32,691 Lines & 
4115 
Quadratics 107,184 

 

Table 3.2 Amount of Beziers Used During CECAT Compression 

 

degree Bezier curves, or another parametric representation to the contour mapping 

process is simple.  The only things needed are the following:  a method for mapping a 

curve to a contour, a method for determining the error between the mapped curve and the 

contour, and a cost factor. 

On the negative side, this strategy suffers from the same limitations that all 

“greedy” algorithms face:  the consequence of locally optimal vs. globally optimal 

results.  The final point for a particular quadratic may fall much shorter than the final 

point for the similar two line segments, but it might provide a much better starting point 

for the next step in the contour mapping. 

 Table 3.2 compares the CECAT file sizes using only lines, only quadratics, and a 

mix of the two.  Although they help a little, quadratic Bezier curves do not provide much 

in the way of improved compression rates, as line segments are clearly superior 

compression-wise.  On the other hand, the “smoothing” quality of the CECAT 

compression strategy can be reduced when only line segments are used.  Changing the 

algorithm to allow for more quadratics and enhanced curve quality comes at the cost of 

file size, which is a dilemma faced by most image compression operations.  Despite the 
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scarce use of quadratics in the current algorithm, the improved “smoothing” effect and 

the small improvement in compression makes mixing lines and quadratics still the best 

course of action 
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Chapter 4 

Encoding and Transmission of CECAT 

Images 

 

The CECAT system combines two technologies to facilitate document image 

browsing:  image compression and progressive transmission.  Chapter 3 discussed the 

process of encoding the document image “foreground mask” as a collection of first and 

second degree Bezier curves.  Chapter 4 will discuss the file format for these compressed 

contours as well as the progressive transmission strategy used by the CECAT system.  

Section 4.1 will introduce the tiling strategy used to separate images into manageable 

chunks.  Details about the file formats used to store the different layers of a CECAT-

encoded image are given in Section 4.2.  Section 4.3 discusses the “Curve Segment 

Library”, a tool used to improve compression of the “foreground mask” by creating a 

lookup table of common line segments.  Lastly, Section 4.4 will describe the progressive 

transmission strategy used to send the encoded images to low-bandwidth users. 

 

4.1 Localization of Contours 

 The strategies employed by the CECAT system for localizing contours are quite 

simple.  First, contours in each tile must be sorted into different layers to prevent larger 

contours from overwriting smaller ones.  Additionally, each image is divided into tiles.  

To improve the compression, a consistent tile size of 512 x 512 pixels is used.  These 

tiles can be transferred as a block and all their contents rendered in the same step.  In this 

way, an image viewer can easily display pieces of the image to the user without forcing 

them to wait for the whole image to be transmitted.  
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4.1.1 Storing Contours as Layers 

 The concept of storing sets of contours as distinct layers was mentioned in 

Section 3.2.1.  These layers are the first, and simplest, form of contour localization 

employed by the CECAT system.  Because some contours can be completely contained 

inside others, it is imperative that outer contours are rendered before any contours 

contained inside.  If this is not enforced, the larger contour will simply write over the top 

of the other “contained” contours.  These contours represent the holes inside larger black 

shapes or shapes inside these holes. 

   Fortunately, because contour detection presorts these contours according to layer, 

simply storing and rendering them in the default order keeps these contours from 

overwriting each other.  This is the strategy currently used by the CECAT system.  It is 

simple and requires no additional computation.  If an advanced strategy for sorting 

contours by priority inside each tile is developed, attention must be paid to prevent 

rendering these layers out of order. 

 

4.1.2 Tiling the Images 

 The CECAT system uses a very simple tiling strategy:  each tile is a 512 x 512 

pixel block.  The only exceptions to this are the tiles along the right and bottom edges of 

the image, where they are simply cropped to fit the image.  Figure 4.1 shows a sample 

image and its associated tiles. 

Fixing each tile to a maximum of 512 x 512 pixels provides several important 

benefits.  First, the average file size for a tile of this size is usually less than three 

kilobytes.  Table 4.1 shows the average tile size for CECAT images compressed at 

various error tolerance levels.  This size is appropriate for a single packet passed over a 

dial-up internet connection.  Second, fixing the size of the tile allows for some minor 

improvements to the encoding of each tile.  One piece of data, which is essential for each 

contour, is a starting point in (x, y) coordinates.  Because each starting point is relative to 

the upper-left corner of its respective tile, the slot for each of these contours can be 

limited to nine bits (representing coordinates ranging from 0-511) instead of the 

previously used two bytes.  This reduces the file size of a CECAT image by about 
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Figure 4.1 Tiled Document Image (using 512 x 512 pixel tiles). 

 

Error Tolerance (pixels) Tile Size (KB) 

1.5 1135 

1.0 1409 

0.75 1895 

0.5 2558 

 

Table 4.1  Average CECAT Tile Size 

 

two bytes per contour.  Given the number of potential contours in each image, this can 

add up fast. 

 



48 

4.2 CECAT File Format 

 The most significant aspect of the CECAT file system is the encoding strategy for 

the “foreground” contour-encoded layer.  This encoding strategy is a major contribution 

of the CECAT system as well as the result of all the work described in Chapter 3.  This is 

described in detail in Section 4.2.1.  The encoding strategy for the second two layers, the 

residual and background layers were added to demonstrate the progressive transmission 

strategy.  These strategies are discussed in Sections 4.2.2 and 4.2.3 respectively.  Because 

grayscale image compression was not the emphasis of the CECAT system, these layers 

have not been optimized for compression efficiency.  As a result, a brief discussion about 

optimizations added to the compression of the foreground, contour encoded, layer 

continue in Section 4.3. 

 

4.2.1 Encoded Contour Layer 

One of the most important contributions of the CECAT system is the method by 

which the control points for the various parametric curves used to represent contours are 

compressed and represented in a data file.  This data file format has a direct effect on the 

compression ratio as well as the image data availability. 

There are a few principles used by the CECAT file compression system that may 

be useful to review before getting into the file structure.  First and foremost, everything in 

the CECAT file format is bit-oriented.  For some pieces of data like the starting points 

and number of Beziers per contours, the encoding strategy assigns them a particular 

number of bits that may or may not be divided along the standard 8, 32, or 64 bit 

partitions.  Although this imposes a maximum value to each data slot, the amount of 

unused space required for the image data is significantly reduced. 

The second principle used by the encoding strategy system to reduce file size is 

the use of “deltas” instead of fixed control points coordinates.  Instead of storing absolute 

X and Y coordinates for each control point, the relative distance from the previous 

control point on the contour is stored instead.  This significantly reduces file size and 

makes it possible to improve compression by using techniques such as the curve segment 

library discussed in Section 4.3. 
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The third principle involves the use of variable-length data elements.  For 

example, to represent the “deltas” mentioned above, four bits are used to tell the system 

how many bits are needed to represent the required distances.  By allowing a variation in 

the number of bits required for these values, there can be a much higher maximum value 

without the need for an excessive amount of unused “filler bits”.  In addition, these four 

bits actually represent the first ‘1’ bit for the “delta” they reference, removing the need 

for repeating it in the next collection of bits.  This does puts a limit to the size of the 

deltas that can be represented.  Because the tile size is restricted to 512 x 512 bits, this 

does not pose a problem. 

 As shown in Figure 4.2, the each contour-encoded foreground layer starts with a 

basic image header.  The image header gives basic information about the height and 

width of the original image.  16-bit values limit the maximum dimensions of the image of 

to little more than 65536 pixels and could be extended to allow for larger images, but that 

did not seem necessary for the initial implementation of the CECAT system.  The number 

of bits needed to represent the height and width of each tile follow the image height and 

width in the header.  To reduce the file size by a few bits per contour, the tile width and 

height are required to be factors of 2.  As a result, the four bits can specify a tile edge 

ranging from 2 to 65536 pixels in length.  Using this information, the decoder can set the 

correct tile boundaries. 

After the image header, each contour has header that is 33 bits long.  This header 

contains data used to render its corresponding contour.  The first bit marks the contour as 

a black or white shape.  Following this is the “Last Contour Flag” which, when set to 

true, tells the decoder stops looking for more contours and moves onto the next tile.  13 

bits are then used to store the number of Beziers required to render the contour.  The 

length of 13 bits was selected arbitrarily, setting the maximum number of curves used to 

represent for a single shape to 8192. 

For each Bezier, the degree is the only piece of data required.  After that, the 

“curve segment” data is represented by a 10-bit index to the curve segment library 

described in Section 4.3 or data defining the delta from one control point to another. 
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Data Element Bits Used 

Image Header 

Total Image Width 16 

Total Image Height 16 

Tile Pixel Width (bits needed to represent) 4 

Tile Pixel Height (bits needed to represent) 4 

Contour Header 

Internal Flag (is shape black or white?) 1 

Last Contour Flag (is this the last contour?) 1 

Number of Beziers 13 

X Coordinate for Contour Starting Point Tile Width 

Y Coordinate for Contour Starting Point Tile Height 

Bezier Data 

Degree of Bezier Curve 2 

Segment Data 

Stored Segment Flag (are deltas in library?) 1 

If Stored Segment 

Curve Segment Index 10 

If Not Stored Segment 

Delta Width (bits needed to represent) 4 

Positive Flag (is delta X positive or negative?) 1 

Delta X Delta Width - 1 

Delta Height (bits needed to represent) 4 

Positive Flag (is delta Y positive or negative?) 1 

Delta Y Delta Height - 1 

 

Figure 4.2  CECAT File Structure. 

 

4.2.2 Residual Image Data Layer 

 The encoding strategy for the residual image data layer is extremely simple, and 

could benefit from more work (grayscale compression was not an emphasis of this 

thesis).  The residual layer contains grayscale data for every pixel that is rendered black 

in the “foreground” contour layer as well as all the white pixels adjacent to these black 

pixels.  By supplementing these extra pixels, the residual layer adds a tremendous amount 

of detail to an otherwise bitonal image, outlining and enhancing the handwritten content 

with valuable grayscale data.  This is a simple antialiasing operation.  
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(a)                                                                   (b) 

Figure 4.3  CECAT Tiles.  (a) Foreground Mask  (b) Residual Layer 

 

 To improve compression for this image data, the grayscale values are converted 

into one of the following eight levels of gray:  1, 36, 72, 108, 144, 180, 216, and 254.  

Because only eight different levels of gray are used, each pixel can be represented by 

three bits instead of the requisite eight bits required for a full grayscale pixel.  This image 

data is further compressed using a common run-length encoding strategy known as gzip. 

 Like the contour-encoded “foreground” layer, this pixel information is stored in 

tiles so it can be later transmitted after its associated contour layer.  By requiring the 

contour encoded layer to be transferred first, the data for the residual layer can be used to 

“fill in” the grayscale information onto the “foreground” layer.  As a result, location 

references are not needed in the residual layer.  As shown in Figure 4.3, the data in the 

residual layer is organized by using the contour encoded layer as a mask and adding the 

residual grayscale data sorted from upper left to lower right in regular scan-line order. 

 

4.2.3 Background Image Data Layer 

 The CECAT system uses the same compression strategy for the background layer 

as it does for compressing the residual layer.  In summary, each pixel not found in the 

residual image layer is converted into one of the eight different grayscale values 

mentioned in Section 4.3.2.  These grayscale values are then stored as three-bit data 

values, ordered in a standard scan line order from the top of the image to the bottom.  As 

a final touch, this data is compressed with a simple gzip compression algorithm.  In short, 

the background layer pixels are treated just like the residual layer pixels. 
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Index 
Size 

Max 
Length 
(pixels) Compression 

% of Contours 
in Library 

10 15 5.07% 65% 

11 22 4.57% 79% 

12 31 1.45% 89% 

13 44 -3.72% 94% 

 

Table 4.2.  Curve Segment Library Compression Enhancements 

 

4.3 Curve Segment Library 

 One of the more useful optimizations discovered while developing the CECAT 

compression strategy was a curve segment library.  As mentioned in section 4.2.1, aside 

from the absolute starting point, contours are stored as a chain of deltas from one control 

point to another.  After analyzing various compressed contours, it was discovered that up 

to 65% of these deltas were less that 16 pixels in size and the number of bits required to 

represent them ranged from 10 to 18 bits. 

 To take advantage of this redundancy, a curve segment library was created, 

containing deltas ranging from (-15,-15) to (+15, +15), indexed by a 10-bit integer value.  

The 10-bit index was chosen following a number of experiments with different index 

sizes and compression improvements.  Each index can only represent a range of deltas, 

and Table 4.2 shows the maximum delta the each index can represent, the percent of 

contours on the test images that fell within that range, and the overall compression 

improvement each library provides. 

 One of the big advantages of this library is that it can be created in the viewer 

without having to send it from the server.  The library consists of an exhaustive list of all 

the deltas ranging from (-15, -15) to (15, 15).  The CECAT image viewer is quite capable 

of creating this library and storing it in RAM, where it can be referenced as needed.  The 

contents of the library are simple as demonstrated in Figure 4.4.  This shows the first few 

deltas stored in the curve segment library along with their associated indices. 

 Two different types of curve segment libraries were implemented:  one for 

decoding images and the other for encoding images.  The encoder library has a constant 

time lookup of indices given two deltas.  This greatly speeds up using this library while 

encoding a contour.  The decoder library, on the other hand, uses a constant time lookup 
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Index Delta X Delta Y 

0 0 0 

1 0 1 

2 0 -1 

3 1 0 

4 -1 0 

5 0 2 

6 0 -2 

7 1 1 

8 -1 1 

9 1 -1 

10 -1 -1 

 

Figure 4.4  First 11 Entries in Curve Segment Library. 

 

For deltas given an index.  Although both libraries can be used to look up deltas and 

indexes, using them in the opposite direction takes much longer.  The curve segment 

library is built right into the CECAT file format detailed in Section 4.2, using a single bit 

flag to tell the decoder if the contour is in the library or not. 

 

4.4 Progressive Transmission 

 By compressing the various image layers in a tiled format, it is possible to send 

the image to a viewer a piece at a time.  This process, known as progressive transmission, 

is the second, albeit smaller, contribution made by this thesis.  Because the images have 

been “tiled” and broken into layers, it is possible to create a server and a viewer capable 

of displaying these images as if they were in the process of being downloaded to a 

viewer.  Section 4.4.1 describes how the sample server was created to simulate 

transmitting tiles from a CECAT file.  In Section 4.4.2, the process of receiving contour 

encoded tiles from a server and displaying them on a viewer is discussed.  Finally, the 

process for transmitting and adding the residual and background layers to an image is 

discussed in Section 4.4.3. 

 

4.4.1 Sample Server Implementation 

 To demonstrate the potential of the progressive transmission of CECAT images, a 

simple client-server system was set up to open compressed files.  This server simulates 
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sending images tile-by-tile to a simple viewer.  Although there is much work that can be 

done to improve this operation, it does a reasonable job demonstrating the potential of the 

CECAT file format.  What follows is a brief description of the user experience associated 

with this sample server as well as a few implementation details on how the server 

operates. 

 

User Experience with Sample Server 

 There are currently two ways of “downloading” a CECAT image using the 

sample server.  One method is what might be considered the “manual” approach.  The 

server will send one tile each time the operator presses a button.  As soon as the last tile 

for the foreground layer image is sent, the first residual layer tile is added, followed by 

the rest of that layer.  The same thing happens with the background layer.  This approach 

shows how a CECAT image may appear during download, as well as what happens if the 

download freezes or is cancelled. 

 The second method for downloading a CECAT image involves something called 

a “floating window viewer”.  For this strategy, the viewer sends requests to the server for 

tiles in the area of the image where the viewer is currently displaying.  As a result, 

scrolling around the image the first time sends a lot of tile requests to the server.  

Fortunately, the tile information is saved in the viewer, so tiles do not need to be sent a 

second time.  This makes scrolling through the image a little jerky at first, however 

subsequent scrolling operations are quite fluid.  To request another image layer using this 

viewing method, the user simply presses a button on the keyboard.  This sets the 

viewable layer to “residual” and then to “background” if the button is pressed again.  If 

the layer is set to one of these levels and the user scrolls into a section that has not had 

any layers sent yet, the server sends all the necessary layers one-by-one. 

 

Server Implementation Details 

 As of the time of this implementation, CECAT images are composed of three 

different files, one for each layer of the image.  When a viewer requests an image, the 

server first opens the data file containing the contour encoded layer, parses out the image 

data and stores information for each tile into a large array.  When the viewer makes 
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subsequent requests for specific tiles, a copy of the tile data is sent directly from the 

array. 

 To preserve memory, the other layers (residual and background) are not stored in 

the server memory.  After the array of contour-encoded tiles has been created, the server 

then goes through both the residual and background layers creating an index to each tile.  

Because each tile begins with a 32 bit number describing how many pixels of data it 

contains, creating a list of indices for these tiles only requires a single pass through the 

appropriate files.  In response to a request for a particular tile containing one of these 

layers, the server opens the appropriate file at the index location, reads the requested 

image data, compresses it with a simple Gzip compression operation, and sends it to the 

viewer. 

 

4.4.2 Rendering the Contour Encoded Tiles 

 Most of the steps required for the receiving and rendering of contour-encoded 

tiles have been described in Section 3.2.2.  The basic procedure for rendering a tile is 

simple.  The Image Server sends a CECAT tile to the CECAT Viewer, which then 

converts the tile a list of contours.  These contours are then filled using the algorithm 

outlined in Section 3.2.2. 

 The only part of the progressive transmission strategy that has not been covered 

elsewhere is the ‘canvas’ upon which the image is painted.  When the CECAT Viewer 

requests a compressed image, the Image Server responds with a brief “header” file telling 

the Viewer the height and width of the requested tile.  The Viewer uses this information 

to create a ‘canvas’ (a buffer of memory that stores the image data as byte-length pixel 

values).  The CECAT Viewer can only see this canvas, which gets updated each time a 

tile is received.  In addition, a simple map is used to keep track of which tiles have 

already been received, preventing the CECAT Viewer from needlessly requesting image 

data a second time.   

 

4.4.3 Adding Residual and Background Layers 

 Because the second two layers use the first as a mask, it is imperative that the 

contour-encoded foreground layer be received and rendered first.  This requirement 
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prompts the need for the map mentioned in Section 4.4.2.  Once a contour-encoded tile is 

rendered, the procedure for adding the other layers on top of it is simply a matter of 

decompressing the gzipped pixel data, changing each pixel from 3-bit to its 8-bit 

grayscale values, and filling over the appropriate portion of the contour-encoded mask 

with pixel data in a scan-line order from top to bottom.  These changes are made to the 

‘canvas’ mentioned in Section 4.4.2 and are quickly reflected in the CECAT Viewer after 

the image data has been received. 
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Chapter 5 

Compression Efficiency and Results 

The CECAT compression system compares favorably with other document image 

compression algorithms, especially the compression of the bitonal foreground mask.  

Although very little work was done on the grayscale compression (the residual and 

background layers), the compression was competitive with other more sophisticated 

compression algorithms once the image was reduced to eight levels of gray.  In addition 

to a study of compression efficiency, CECAT encoded images also provide a simple tiled 

structure that allows for progressive transmission of portions of each image at full 

resolution. 

This chapter shows results of the compression and usability tests, comparing the 

CECAT system to other freely available document image compression systems.  These 

compression systems include the JBIG and JPEG2000 standards as implemented by the 

GraphicsMagick open-source imaging package [33].  In addition, the DjVuLibre package 

(an open-source distribution of the DjVu encoding standard) was used to compress 

images in DjVuBitonal, DjVuPhoto, and full DjVu files [34].  Section 5.1 presents the 

results of the compression tests.  Image quality and usability are discussed in Section 5.2.  

Section 5.3 describes some of the inefficiencies and weaknesses in the CECAT system. 

 

5.1 Analysis of CECAT Bitonal Compression 

 To analyze the effectiveness of the CECAT compression system, a few common 

compression formats were applied to four small sets of document images.  Two of these 

sets, the George Washington Papers and the James Madison Papers consist of 

handwritten correspondence captured at 100 dpi resolution.  The other two datasets 

contained US Census pages that were extracted from microfilm at resolutions of 200 and  
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Error 

Tolerance 

(pixels) 

Image 

DPI 

File Size 

(bytes) 

Error 

Tolerance 

(pixels) 

Image 

DPI 

File Size 

(bytes) 

0.5 200 193,920 0.5 300 295,844 

0.75 200 143,166 0.75 300 213,102 

1.0 200 107,764  1.0 300 161,440 

1.25 200 91,786 1.25 300 136,732 

1.5 200 84,112 1.5 300 126,300 

1.75 200 79,225 1.75 300 119,451 

2.0 200 75,174 2.0 300 113,725 

3.0 200 66,004 3.0 300 100,396 

 

Table 5.1 Relative CECAT File Size at Different Error Tolerance Settings 

 

300 dpi.  For more details on each of these sets of images as well as thumbnails of each 

image, consult Appendix A. 

Because the compression enhancements were focused around the bitonal 

foreground mask, most of the improvements in compressions were seen at that level as 

shown in Section 5.1.1.  By combining the cost of all the layers of the CECAT image, 

further tests were made against common color image compression standards in Section 

5.1.2.  Lastly, compression effectiveness between “hybrid” compression strategies is 

discussed in Section 5.1.3. 

 

5.1.1 Getting the Settings for the CECAT System 

 The CECAT system has two parameters that control the amount of lossy data:   

error tolerance (which was discussed in Section 3.3.2) and “despeckling” which removes 

the small contours such as single pixel points and stray dots.  By using these two settings, 

the CECAT bitonal image file size can be reduced considerably.  Care must be taken, 

however, when choosing the appropriate settings, because they remove data from the 

image. 

Error Tolerance 

 As discussed in Section 3.3.2, error tolerance is the maximum distance allowed 

between a contour and the Beziers mapped to it.  Table 5.1 shows the comparative file 

size for a 200 and a 300 dpi image compressed using different error tolerances values  
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Figure 5.1  CECAT File Size verses Error Tolerance. 

 

ranging from 0.5 to 3.0 pixels.  In conjunction with Table 5.1, Figure 5.1 shows a plot 

comparing file size and different error tolerance values.  One of the goals of this thesis is 

to identify the point of diminishing return (also called the “knee of the curve”) with 

regard to error tolerance.  According to this data, an error tolerance setting ranging from 

0.75 – 1.25 appears to produce the best results. 

Although, some substantial gains in compression efficiency can be obtained by 

using a large error tolerance value, this is not without cost.  If the compression routine is 

set to allow too much error, serious artifacts can occur.  The “smoothing” effect created 

by nicely matched quadratic Bezier curves can end up being replaced by block-like line 

segments.  Figure 5.2 shows a few examples of the same name from a 200 dpi image 

compressed with different error tolerance settings.  Obviously, an error tolerance setting 

above 2.0 appears to create some blocky hard-to-read text when applied to 200 dpi 

images.  

Using this as a guide, the compression tests were run using the following error 

tolerances:  0.0, 0.5, 0.75, and 1.0.  This gives a good accounting of file size vs. image 

quality as controlled by error tolerance settings. 
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Figure 5.2  Compressed Image Quality verses Amount of Error Tolerance. 

 

 “Despeckling” Operation 

 To reduce the overhead of using contours to compress small (1 – 4 pixels long) 

shapes, a “despeckling” operation is used to remove any contours that are less than a 

fixed length.  To determine a good value for this fixed number, a series of compression 

tests were run on sample images from each of the datasets.  Interestingly enough, 

changing this value didn’t affect the image quality as much as expected, although the file 

size definitely took a hit. 
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(a)                                (b)                                  (c) 

Figure 5.3  CECAT Compression from 100 dpi George Washington Papers.  (a) 16 

Pixel Length Despeckling  (b) 12 Pixel Length Despeckling (c) No Despeckling 

 

       

(a)                                    (b)                                     (c) 

Figure 5.4  CECAT Compression from 100 dpi James Madison Papers.  (a) 16 Pixel 

Length Despeckling  (b) 12 Pixel Length Despeckling (c) No Despeckling 

 

   

(a)                                            (b)                                             (c) 

Figure 5.5  CECAT Compression from 200 dpi U.S 1870 Census.  (a) 16 Pixel Length 

Despeckling  (b) 12 Pixel Length Despeckling (c) No Despeckling 

 

       

(a)                                      (b)                                       (c) 

Figure 5.6  CECAT Compression from 300 dpi U.S 1870 Census.  (a) 16 Pixel Length 

Despeckling  (b) 12 Pixel Length Despeckling (c) No Despeckling 

 

 Figures 5.3 – 5.6 shows the result of despeckling the images by removing 

contours with less than 16 and 12 pixels in length.  Further tests were done using a 

“despeckling” operation with 8 and 4 as the minimum pixel length, but the resulting  
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Despeckling 
Settings 

GW 
Papers 

JM 
Papers 

200 DPI 
Census 

300 DPI 
Census 

None 33 42 143 168 

4 Pixels 32 42 137 162 

8 Pixels 31 41 126 153 

12 Pixels 30 40 115 145 

16 Pixels 29 40 107 139 

 

Table 5.2:  CECAT Compression file sizes (using 0.5 error tolerance) for sample 

images with various “despeckling” settings.  The file sizes are given in Kilobytes. 

 

images were very close those using 12 pixel despeckling.  The file sizes for these CECAT 

images (which were compressed with a 0.5 error tolerance) are shown on Table 5.2.  

Given the file sizes and the overall quality improvement, a default setting of 12 pixels 

was selected for the compression tests. 

 

5.1.2 Bitonal Image Compression Results 

 The foreground mask layer for a CECAT image is a bitonal representation of the 

document image.  As such, the compression effectiveness can be compared to other 

bitonal image compression algorithms.  As mentioned in Section 5.1.1, for the purposes 

of these tests, the CECAT compression was done using four error tolerance settings: 0.0, 

0.5, 0.75 and 1.0 and the “minimum contour length” controlling the “despeckling” 

operation was set to remove contours containing less than 12 pixels. 

Two common document image compression standards were used for these bitonal 

image compression tests:  JBIG and DjVuBitonal.  The JBIG images were compressed 

using default settings in the GraphicsMagick [33] software package.  Although not a 

commercial image compression package, GraphicsMagick accurately implements the 

JBIG standard.  The DjVu bitonal images were created using the DjVuLibre open source 

package [34].  The CECAT foreground masks generally ranged in size from one-third to 

one-half the size of both JBIG and DjVuBitonal compression.  All in all, very favorable 

file size and quality comparisons were made despite some binarization problems.  The 

results of a few of these tests along with sample images taken from each data set follow. 
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(a)                                                                     (b) 

    

(c)                                                                     (d) 

    

(e)                                                                     (f) 

 

(g) 

Figure 5.7  Bitonal image compression for a portion of the George Washington Papers 

(reduced in size).  (a) JBIG  (b) DjVu Bitonal  (c) CECAT [1.0 error]   (d) CECAT 

[0.75 error]   (e) CECAT [0.5 error]  (f) CECAT [no error]   (g) Original JPEG copy 

 

Dataset 1:  George Washington Papers 

The first dataset tested was taken from the George Washington Papers, an online 

collection of George Washington’s handwriting stored as digital JPEG images.  These 

100 dpi resolution images had good contrast, allowing the binarization algorithm to  
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Page 
Contours 
No Error 

Contours 
0.5 

Contours 
0.75 

Contours 
1.0 

DjVuBitonal JBIG Raw 

2 161 65 45 38 111 111 782 

5 190 79 53 45 125 124 764 

10 171 71 48 41 135 135 797 

 

Table 5.3:  Bitonal compression comparisons for 100 dpi images from the George 

Washington Papers.  The file sizes are given in Kilobytes. 

 

operate effectively.  Unfortunately, the fact that the original images were low quality 

JPEG images introduces artifacts in the images that would not be present if clean copies 

were used.  Figure 5.7 shows the results of applying JBIG, DjVu Bitonal, and the 

CECAT compression at error tolerances of 0.0, 0.5 0.75 and 1.0.  The relative file sizes 

for these four different compressed images are shown on Table 5.3. 

 Although the letters in the CECAT-encoded images were not as “thinned out” as 

the JBIG and DjVu Bitonal images (which appear to be very similar to each other), all 

four images are quite readable.  The thickness of the letters is a result of poor 

binarization, likely the result of using low quality JPEG images as a source.  In this case, 

the binarization algorithm padded each letter with the darker sections of the document 

surrounding it. 

On the other hand, the CECAT images are also free from the dithering effect that 

JBIG and DjVu Bitonal compression algorithms add to darker sections of the image.  

This dithering effect is removed by the “despeckling” operation performed on the 

CECAT images before encoding begins.  This operation reduces the background noise 

considerably.  This does not come without some cost, however.  With the “despeckling” 

operation set to remove shapes with less than 12 total pixels in the contour, a few small 

holes tend to be lost as well (such as in the A’s or O’s in the CECAT images).   

As far as file size is concerned, the CECAT images ranged from about a fifty 

percent increase in size (for no error) to less than one-third of the size of the other image 

files for an error tolerance of one pixel.  Although the images shown in Figure 5.7 were 

somewhat reduced in size, the differences between the CECAT image without error and 

the 0.5 pixel error CECAT image appears quite miniscule.  All in all, this was a very 

favorable compression comparison, demonstrating the power as well as some limitations 

of the CECAT system. 
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(a)                                                                     (b) 

    

(c)                                                                     (d) 

    

(e)                                                                     (f) 

 

(g) 

Figure 5.8  Bitonal image compression for a portion of the James Madison Papers.  

(reduced in size).  (a) JBIG  (b) DjVu Bitonal  (c) CECAT [1.0 error]   (d) CECAT 

[0.75 error]   (e) CECAT [0.5 error]  (f) CECAT [no error]   (g) Original JPEG copy 

 

Dataset 2:  James Madison Papers 

The second dataset contains images from the James Madison Papers, another 

online collection of 100 dpi low-quality JPEG encoded images of handwriting.  This  
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Page 
Contours 
No Error 

Contours 
0.5 

Contours 
0.75 

Contours 
1.0 

DjVuBitonal JBIG Raw 

11 149 71 53 45 171 169 515 

16 93 41 30 26 107 108 501 

20 118 52 38 32 108 107 488 

 

Table 5.4:  Bitonal compression comparisons for images from the James Madison 

Papers.  The file sizes are given in Kilobytes. 

 

collection contains poorer quality images than the George Washington Papers, especially 

considering the contrast and readability of the images.  The limitations of the binarization 

algorithm as well as the results of the “despeckling” operation on the bitonal image are 

more pronounced in these images.  Despite this, the CECAT image file sizes were less 

than a third of the file sizes for DjVuBitonal and JBIG encoded images.  Table 5.4 shows 

the relative file sizes of each of these images. 

 Figure 5.8 shows the compressed images from this dataset.  The poor image 

quality of the original images in the James Madison Papers has an effect on the 

readability of the bitonal representations of this image.  The JBIG and DjVuBitonal 

images represent some portions of letters with small collections of dots while the CECAT 

images fail to capture those pieces of the image.   This demonstrates the danger 

associated with the “despeckling” operation.  Like the inside of the A’s and O’s in the 

George Washington Papers, pieces of the letters found throughout this document may 

have been lost because the connected components were all too small.  This shows the 

need for a more intelligent (or at least human-adjustable) “despeckling” operation. 

After performing a couple more tests with the “despeckling” on the image above, 

it appears that the root cause of this problem is the binarization algorithm, not the 

“despeckling” operation.  The pieces of the letters missing from the CECAT images were 

removed when the image was converted to a binary image before any contour 

compression took place.  The words, which were converted correctly into foreground / 

background layers, are quite readable even on the CECAT images shown in Figure 5.8 

(such as the words “to confer on”).  On the other hand, poorly segmented words (like 

“army”) are much more difficult to read.  Improving the binarization algorithm would 

help this dataset considerably.  
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(a)                                                                     (b) 

   

(c)                                                                     (d) 

   

(e)                                                                     (f) 

 

(g) 

Figure 5.9  Bitonal image compression for a portion of the 1870 US Census 200 dpi.  

(reduced in size).  (a) JBIG  (b) DjVu Bitonal  (c) CECAT [1.0 error]   (d) CECAT 

[0.75 error]   (e) CECAT [0.5 error]  (f) CECAT [no error]   (g) Original JPEG copy 

 

Dataset 3:  US 1870 Census (200 DPI Resolution) 

As the resolution of the images increase, the quality and readability of CECAT 

images improves.  The next dataset used consists of images from the 1870 U.S. Census.  

These images were taken directly from microfilm and were scanned as 200 dpi images.  

Due to a limitation in the scanning operation at the time these images were taken, the  
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Page 
Contours 
No Error 

Contours 
0.5 

Contours 
0.75 

Contours 
1.0 

DjVuBitonal JBIG Raw 

3 370 163 126 106 392 375 1904 

8 403 170 131 108 362 344 1889 

9 401 175 135 111 410 399 1985 

 

Table 5.5:  Bitonal compression comparisons for 200 dpi images from the US 1870 

Census.  The file sizes are given in Kilobytes. 

 

contrast for these images was poor.  This gave the binarization algorithm some difficulty 

with these with these images, but the results shown in Figure 5.9 display some promise.  

Although a few pieces of letters were lost (such as pieces of the letter ‘l’ and ‘S’ on the 

second line) due to poor binarization, overall image quality looks good.  The dithering 

effect of the DjVuBitonal and JBIG images was replaced by smooth, solid strokes in the 

CECAT images, enhancing the readability and overall “crispness” of the image. 

In addition to the enhanced image quality, the CECAT compression distanced 

itself even farther in the lead for image file size.  Table 5.5 shows these compression 

differences for US Census images saved at a 200 dpi resolution.  Since the resolution 

doubled, the CECAT image file size allowing 1.0 error tolerance images was about one 

fourth of the file size for DjVu and JBIG compressed images.  As the error tolerance 

shrank, the CECAT image file sizes remained competitive with 0.5 error tolerance 

CECAT images having less than half the size of the next compression algorithm.  Even 

more exciting than that, at this resolution the “no error tolerance” CECAT images finally 

come to about the same file sizes as the DjVu and JBIG images.  

 

Dataset 4:  US 1870 Census (300 DPI Resolution) 

 The fourth and last dataset also contains images from the US Census, only these 

images were captured at 300 dpi.  Unfortunately, the contrast problem inherent in the 

previous dataset was more severe in these 300 dpi images, resulting in poor binarization.  

As shown in Figure 5.10, small pieces of handwritten strokes were lost:  the connecting 

stroke between the ‘a’ and ‘r’ in the word “Farmer”, the ‘m’ in the word “Farmer”, and 

the connecting stroke between the ‘e’ and ‘p’ in the work “Keeper”.  Because of the size 

of the pieces missing, problems with the “despeckling” operation can be ruled out, 

leaving the binarization algorithm as the culprit.  Aside from the inefficiencies with the 
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(a)                                                             (b) 

    

(c)                                                             (d) 

    

(e)                                                             (f) 

 

(g) 

Figure 5.10  Bitonal image compression for a portion of the 1870 US Census 300 dpi.  

(reduced in size).  (a) JBIG  (b) DjVu Bitonal  (c) CECAT [1.0 error]   (d) CECAT 

[0.75 error]   (e) CECAT [0.5 error]  (f) CECAT [no error]   (g) Original JPEG copy 

 

binarization algorithm, the CECAT images contain sharp, fluid letters when compared to 

the “dithering” effect that blurs the handwriting in the JBIG and DjVuBitonal images. 



72 

Page 
Contours 
No Error 

Contours 
0.5 

Contours 
0.75 

Contours 
1.0 

DjVuBitonal JBIG Raw 

8 496 221 165 135 730 693 3791 

12 678 277 204 163 825 769 3706 

15 696 275 199 156 777 734 3681 

 

Table 5.6:  Bitonal compression comparisons for 300 dpi images from the US 1870 

Census.  The file sizes are given in Kilobytes. 

 

In addition to nice contrast and overall image quality, the CECAT images 

continued to outperform the other compression strategies in terms of image file size.  As 

shown in Table 5.6, the file size of the CECAT images with a 1.0 pixel error tolerance 

was less than one-fifth of the size of the other file formats and the 0.5 pixel error 

tolerance images was less than one-third the size for these higher resolution images.  The 

most exciting result, however, is the fact that the “no error” CECAT images were actually 

smaller than the DjVuBitonal and JBIG images.  It is important to note, however, that if 

the binarization algorithm was more accurate, the size of the CECAT files might be 

higher as more shapes appear in the image.   

 

5.2 Analysis of CECAT Grayscale Compression 

 The focus of this Thesis has been the encoding of a bitonal foreground mask using 

contours and tiles.  This is fine if only a bitonal representation of the image is needed.  As 

explained in Section 4.2.2 and 4.2.3, the CECAT image consists of three layers:  the 

bitonal foreground mask, the grayscale residual layer, and the grayscale background 

layer.  This section discusses the effectiveness of the grayscale compression (all three 

layers of the CECAT image added together) against the following standards:  JPEG, 

JPEG2000, DjVuPhoto, DjVu, and the raw pixel data. 

 The compression used for the residual and background layer was not fully 

developed during the course of this Thesis.  Despite this, the basic strategy used is 

somewhat competitive with the other compression standards.  The biggest limitation of 

the residual and background layers lies in the fact that the CECAT system reduces the 8-

bit grayscale to 3-bit grayscale.  Of course, this is the primary reason for good 

compression rates (the compression starts at 3/8 of the original image size without any 

extra treatment).  The only other compression strategy used is the standard Gzip  
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(a)                                                                    (b) 

    

(c)                                                                    (d) 

    

(e)                                                                    (f) 

Figure 5.11  Grayscale image compression for a portion of the 1870 US Census 

captured at 200 dpi.  (a) JPEG  (b) JPEG2000  (c) DjVuPhoto (d) DjVu  (e) CECAT 

residual layer with an error tolerance of 0.75  (f) CECAT full image 

 

encoder.  As a slight bonus to the compression, chopping the image into the residual and 

background layers tends to group similar shades of gray together (this improves the Gzip 

operation).  As for the foreground mask, after the entire image has been transferred the 

visible pixels only come from the residual and background layers.  In many respects, the 

contour-encoded foreground mask only adds to the final file size as it is overwritten by 

these other two layers in the end. 

With that in mind, the CECAT grayscale images compared favorably to the other 

compression standards.  As Figure 5.11 shows, reducing the color number of shades of 

gray from 256 to 8 does not impact the readability of the images very much.  In some 

ways, the residual layer, with its white background and grayscale foreground is more 

readable than the other, more sophisticated, approaches.  Of course, the strength of the  
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Page JPEG JPEG2000 
CECAT 
0.75 

CECAT 
1.0 DjVuPhoto DjVu Raw 

2 217 391 359 355 398 601 6240 

5 237 381 429 425 448 736 6086 

10 229 399 419 414 419 657 6360 

 

Table 5.7:  Compression comparisons for 100 dpi images from the George Washington 

Papers.  The file sizes are given in Kilobytes. 

 

Page JPEG JPEG2000 
CECAT 
0.75 

CECAT 
1.0 DjVuPhoto DjVu Raw 

11 352 258 439 431 199 607 4117 

16 300 251 276 272 179 600 4000 

20 336 244 376 370 217 683 3884 

 

Table 5.8:  Compression comparisons for 100 dpi images from the James Madison 

Papers.  The file sizes are given in Kilobytes. 

 

Page JPEG JPEG2000 
CECAT 
0.75 

CECAT 
1.0 DjVuPhoto DjVu Raw 

3 1070 953 806 793 530 1350 15230 

8 1106 945 832 813 579 1547 15106 

9 1114 993 849 832 562 1223 15878 

 

Table 5.9:  Compression comparisons for 200 dpi images from the US 1870 Census.  

The file sizes are given in Kilobytes. 

 

Page JPEG JPEG2000 
CECAT 
0.75 

CECAT 
1.0 DjVuPhoto DjVu Raw 

8 1619 1896 1232 1204 637 1548 30326 

12 1745 1854 1398 1362 699 1845 29648 

15 1790 1841 1433 1393 734 2307 29447 

 

Table 5.10:  Compression comparisons for 300 dpi images from the US 1870 Census.  

The file sizes are given in Kilobytes. 

 

other compression standards is the fact that they are representing the image with all 8 

bits, providing the potential for finer detail. 

 Tables 5.7 – 5.10 show the differences in file size between the CECAT grayscale 

images and the other various file formats, with Table 5.9 showing the file sizes of the 

images shown in Figure 5.11.  Quantitatively speaking, the CECAT grayscale 

compression performed consistently better than DjVu with 50% – 60% less file size.  At 

resolutions of 200 dpi and higher, the CECAT grayscale images also outperformed JPEG 
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and JPEG2000 images.  DjVuPhoto turned out to perform much better on all but the 

George Washington Papers dataset. 

 

5.3 “Hybrid” Image Layer Comparison 

 Using the “out of the box” DjVu compression routine found in the open-source 

DjVuLibre project [34], hybrid DjVu files containing multiple layers similar to the 

CECAT encoded images were created.  Both formats, DjVu and CECAT, consist of a 

bitonal foreground mask, a grayscale layer containing color information, and an encoded 

background color layer. These layered images facilitate a content progressive 

transmission by sending one or more layers at a time, allowing the user to view to 

contents of these earlier layers without having to wait for the whole image to be 

transmitted. 

One advantage that the CECAT system has over the DjVu progressive 

transmission strategy lies in the fact that each layer of the image is further subdivided 

into tiles that can be transmitted one by one.  For a simple comparison of progressive 

transmission strategies, the DjVuLibre encoder and viewer was used to show the three 

layers of the DjVu file.  Figure 5.12 shows the different layers of a CECAT encoded 

image and DjVu images side-by-side using samples from the George Washington papers 

dataset. 

Apparently, the DjVu foreground mask suffers from poor binarization just like the 

CECAT system, although from the look of Figure 10b, the results of the foreground mask 

is too “blocky” to read.  In its defense, the DjVu was not specifically designed for 

handling grayscale images, having more of a focus on color images.  Even so, the 

CECAT foreground bitonal mask is superior to the DjVu image in terms of readability 

and size.  Of course, some of the distortion in the DjVu foreground mask could spring 

from the fact that this dataset contains low-quality JPEG images as its source. 

Once the residual grayscale layer has been transmitted, the DjVu image is just as 

readable as the CECAT residual image (see Figures 10c and 10d), especially since the 

DjVu residual layer contains the background pixels covered by the “blocky” foreground 

mask.  The CECAT image, however, does contain a much higher contrast as the 

background remains mostly white.  This sharp contrast can make it easier to follow the  
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(a)                                                                    (b) 

    

(c)                                                                    (d) 

    

(e)                                                                    (f) 

Figure 5.12  “Hybrid” image compression comparison for a portion of the George 

Washington Papers.  (a) CECAT Foreground Layer  (b) DjVu Bitonal Foreground 

Layer  (c) CECAT Residual Layer (d) DjVu Grayscale Foreground Layer  (e) CECAT 

Background Layer  (f) DjVu Background Layer 

 

strokes of the letters with the human eye. 

 For a second example, the foreground image masks from the 300 dpi resolution 

copy of the 1870 U.S. dataset are shown in Figure 5.13.  Obviously, the binarization 

algorithm failed, leaving the foreground image mask as an opaque black square.  In these 

cases, the foreground mask and the residual color layer are needed before any image 

details can be made out. 

 In addition to comparing these various layers qualitatively, the tools found in the 

DjVuLibre package can provide the file sizes for each of the three DjVu layers.  By 

analyzing these images and the file size of each layer, some interesting trends were seen.   
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(a)                                                                    (b) 

Figure 5.13  “Hybrid” image compression comparison for a portion of the 1870 US 

Census scanned at 300 dpi.  (a) CECAT Foreground Layer  (b) DjVu Bitonal 

Foreground Layer 

 

First of all, the DjVu background and foreground color layers were extremely well 

encoded.  The foreground mask, on the other hand, made up for most of the total file size 

(around 95%) and was larger than the whole CECAT image. 

 Looking at these results layer-by-layer, the CECAT system outperformed the 

DjVu encoding for the bitonal layer, resulting in contour-encoded image files which were 

less than 10% of the DjVu foreground layer (called the JB2 Bilevel layer).  The DjVu 

encoding, however, outperformed the CECAT system in the residual/JB2 color layers.  It 

is possible that DjVu uses context information from the first layer to render the next 

layers.  Quantitatively, the DjVu JB2 color layer was less that 20% of the CECAT 

residual layer.  Of course, the biggest gain in the DjVu encoding was seen in the IW4 

background layer which never exceeded 1 KB in size.  Tables 5.11 – 5.14 show how the 

DjVu and CECAT images compare in size, layer-by-layer. 

 

5.4 Limitations of the CECAT System 

 Despite the compression efficiency of the CECAT system, these tests revealed a 

few of its limitations as well.  The most glaring of these is the dependency on an 

underdeveloped binarization algorithm for detecting the foreground mask.  As mentioned 

in Section 3.1.2, the bitonal conversion process was limited to a basic localized 

binarization algorithm with a tunable threshold.  In the case of the US Census images, the 

threshold had to be changed from 64 to 128 to achieve reasonable binarization. 
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  CECAT (Error 0.75 / Error 1.0) DjVu 

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4 

2 43 / 36 214 / 212 102 / 107 571 32 1 

5 50 / 42 264 / 263 115 / 120 698 39 1 

10 45 / 37 242 / 241 132 / 136 626 31 1 

 

Table 5.11:  Comparison of “Hybrid” image layers for 100 dpi images from the George 

Washington Papers.  The file sizes are given in Kilobytes. 

 

  CECAT (Error  0.75 / Error 1.0) DjVu 

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4 

11 56 / 47 188 / 188 195 / 196 579 29 1 

16 30 / 26 111 / 110 135 / 136 573 28 1 

20 40 / 33 140 / 140 196 / 197 651 32 1 

 

Table 5.12:  Comparison of “Hybrid” image layers for 100 dpi images from the James 

Madison Papers.  The file sizes are given in Kilobytes. 

 

  CECAT (Error 0.75 / Error 1.0) DjVu 

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4 

3 117 / 98 319 / 320 370 / 375 1292 57 1 

8 124 / 101 352 / 353 356 / 359 1487 61 1 

9 126 / 103 345 / 347 378 / 382 1171 52 1 

 

Table 5.13:  Comparison of “Hybrid” image layers for 200 dpi images from the US 1870 

Census.  The file sizes are given in Kilobytes. 

 

  CECAT (Error 0.75 / Error 1.0) DjVu 

Page Contours Residual Background JB2 Bilevel JB2 Colors IW4 

8 156 / 126  380 / 382 696 / 696  1509 40 1 

12 196 / 156   530 / 532 672 / 674 1772 72 1 

15 194 / 151  631 / 635 608 / 607  2218 89 1 

 

Table 5.14:  Comparison of “Hybrid” image layers for 300 dpi images from the US 1870 

Census.  The file sizes are given in Kilobytes. 

 

Although grayscale-to-bitonal conversions were not the emphasis of this thesis, 

poor binarization severely affects the usefulness of the CECAT contour layer.  Letters 

can be chopped into disconnected pieces and sometimes entire words can be missing 

from the bitonal representation of the image.  Admittedly, these missing pieces do 

reappear when the background layer is added to the image, but if the user is required to 
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wait for the final layer to transmit in order to read the document the progressive 

transmission strategy is marginalized. 

The other limitation of the CECAT system is the 8-bit to 3-bit grayscale 

conversion.  Because of this operation, fully downloaded CECAT images are lossy 

images, at least until further work is done to improve the compression of the residual and 

background layers. 

Lastly, the CECAT images can take up to three minutes to compress.  This may 

limit the usability of this compression strategy, especially for large collections that could 

take years to convert.  Hopefully further improvements can speed up this process, 

especially since a large portion of the time is spent reading tiles from the original 

“uncompressed” image. 
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Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusion 

 The Curve-Encoded Compression and Transmission (CECAT) system provides 

significant compression improvements to the bitonal foreground image layer, especially 

those containing large amounts of handwriting.  The bitonal foreground layer of CECAT 

images were only 20% - 30% of the size of the JBIG and DjVuBitonal and yet still quite 

readable.  This shows significant improvement.  In addition, when binarization was good, 

this image layer has more fluid, continuous lettering with background noise removed by a 

“despeckling” operation. 

 To add readability and demonstrate the usefulness of the encoded images, the 

residual and background layers were encoded as 3-bit grayscale image data.  As a result, 

a fully transmitted CECAT image shows the image data as it appears on the document 

(after this 8-to-3 bit quantization) without distortions or artifacts that appear on other 

lossy compression algorithms. 

 In addition, the layers created by the CECAT system facilitate progressive 

transmission functionality.  Compared with the open source implementation of the 

popular DjVu standard, the bitonal foreground layer is much more readable and 

appropriate for browsing through multiple documents quickly.  As an extra level of 

functionality, the CECAT image layers are segmented into 512 x 512 bit tiles which can 

be streamed to a viewer one piece at a time, providing another form of progressive 

transmission. 
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6.2 Future Work 

The CECAT system introduces a novel method for compressing and transmitting 

document images.  As is often the case with new approaches to old problems, new areas 

for study as well as further enhancements are made available. 

One very important enhancement revolves around the binarization algorithm used 

to separate the foreground from the background.  Because the intent of this thesis 

revolved around parametric compression and progressive transmission, the operation of 

converting grayscale image into good bitonal images was only lightly touched.  However, 

the usefulness of the first “contour compressed” layer of CECAT images is determined 

by the effectiveness of the binarization algorithm.  Many such operations have been 

developed throughout the past few years and this problem remains an active area of 

research.  On a positive note, the CECAT system has been architected so that a new 

binarization operation can easily be swapped in, with the only change being a simple 

method call.  One such operation is using an approach known as graph cut for segmenting 

text from background, rather than applying a thresholding algorithm.  By seeding the 

foreground and background, good binarization can be achieved.   

 Another obvious enhancement involves the residual and background layers.  

Although eight color grayscale images are quite readable, there are better algorithms 

available for reducing the size of these two layers without reducing the color palette.  

These layers can easily be further compressed using sophisticated one-dimensional signal 

compression techniques such as an arithmetic encoder.  Because some locality 

information is preserved in those layers, some two-dimensional encoding strategies might 

be useful as well.  Future tests may even discover that only two layers of an image are 

needed, allowing the residual and the background layer to merge in some tightly 

compressed lossless format.  At the very least, the simple gzip encoding done as a last 

step could be changed to a more effective arithmetic encoder.  There are many 

possibilities enhancing the compression efficiency of these other layers, including a 

combination of CECAT foreground layer with the tightly compressed DjVu background 

layer. 

 As mentioned in Section 3.3, the currently implemented CECAT system only uses 

quadratic and linear Bezier curves.  More experimentation could be done to determine if 
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there exists a better choice for this purpose.  Although the gain between linear and 

quadratic curve representations turned out to be small, further gains might be possible if 

cubic or even higher-order Bezier curves are used.  Another set of experiments could be 

performed to determine the value of using B-Splines, NURBS, or another parametric 

form.  Because compression efficiency was more important than parametric curve 

connectivity, Bezier curves were chosen.  The advantages of good curve connectivity 

may outweigh a slight increase in file size as these experiments may show. 

 Another enhancement, which was pursued lightly during the course of this thesis, 

was something akin to a shape library.  The CECAT system combined vectorization 

(mapping lines and curves to contours) with codebook (segment library) compression 

strategies quite effectively.  Another challenge faced by the CECAT system is the need 

for a good method for encoding small contours.  Since the segment library successfully 

reduced the overall CECAT file size by about 5%, a good shape library may compress 

these images even farther. 

 Enhancements to the CECAT system are not the only avenues for future work.  

Having readable copies of document images stored as parametric curves makes new 

options available in the field of image manipulation.  Because Bezier curves are affine 

invariant, scaling, translations, and rotation operations can be safely performed on the 

CECAT control points.  Building a viewer to take advantage of this would be beneficial 

as a first step.  Rotation and zooming operations would not require very intensive 

calculations in this case. 

 Image manipulation is not the only field of research than can benefit from using 

the CECAT system.  Because shapes have been converted to parametric curves, it is 

possible to use those curves as a feature set to identify content in the image.  Pattern 

recognition is always a difficult problem.  At the extreme end, handwriting recognition 

may benefit from the sequence of encoded curve information the compressed contours 

can supply.  In the short term, form recognition or other such operations could benefit 

from the additional features provided by the CECAT-encoded contours. 

 The CECAT server can also be developed further.  The implementation of the 

server was only meant for demonstration purposes.  The challenges associated with 

making a connection, streaming data, and adding image data into the viewer as it is 
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transferred have not been addressed during the course of this thesis.  Third party software 

may provide a great fit here, such as the server used in the JITB system.  

 The CECAT viewer is also in its infancy.  Only simple operations like 90 degree 

rotations and mirroring can be performed on the image while it is being displayed at the 

viewer.  Tools such as a progress meter, pan window, and interactive zoom could go a 

long way to improve the overall browsing experience.  In the best case, a browser plug-in 

could be developed to viewer CECAT images transmitted over http. 

 Resolving the issues mentioned above could advance the CECAT system, making 

it a much more powerful method for encoding and delivering document images across 

potentially low bandwidth connections for browsing operations. 
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Appendix A 

Image Datasets 

 

To test the effectiveness of the CECAT compression system, images from four 

different sources were taken, compressed, and compared.  What follows are thumbnails 

and a brief description of each of these sets of images. 

 

A.1 George Washington Papers 

 This first dataset was published by the Library of Congress and contains the 

collected writings of George Washington.  This dataset provided a number of documents 

consisting of mostly handwriting.  As such, these documents lay squarely in the “target” 

as it were of the CECAT compression system.  Unfortunately, these images were JPEG 

images before performing the various compression tests, creating at least two generations 

of image degradation.  Full details for the images in this dataset are as follows: 

George Washington Papers at the Library of Congress, 1741-1799: Series 

3a Varick Transcripts; George Washington to Continental Congress, July 

10, 1775; http://memory.loc.gov/ammem/gwhtml/gwseries3.html 

(Subseries A Continental Congress LetterBook 1) 

           

Page 02           Page 03           Page 04           Page 05           Page 06          Page 07 
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Page 08           Page 09           Page 10           Page 11          Page 12 

 

Full Resolution Snapshot of Page 02 

 

A.2 James Madison Papers 

 The second dataset was also published by the Library of Congress, consisting of 

number of James Madison’s writings.  Like the George Washington Papers, these images 

consisting of mostly handwriting as well as the JPEG image degradation.  Also, like the 

George Washington Papers, these documents lay squarely in the “target” area for the 

CECAT compression system.  Full details for this collection are as follows: 

The James Madison Papers; Series 3: Madison-Armstrong 

Correspondence, 1813-1836; James Madison. Review 1824; 

http://memory.loc.gov/ammem/collections/madison_papers/mjmser3.html; 

Credit Line: Library of Congress, Manuscript Division. 

         

Page 11             Page 12            Page 13            Page 14            Page 15 
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Page 16             Page 18            Page 19            Page 20 

 

Full Resolution Snapshot of Page 11 

 

A.3 US 1870 Census (200 dpi) 

 The third dataset consists of records from the 1870 United States Census.  These 

images were scanned directly off microfilm and saved off as uncompressed images, 

reducing the amount of image degradation.  In addition, these census images were saved 

at 200 dpi resolution.  Although the Census form is not handwriting, it still compresses 

fairly well. 

Population Schedules of the Ninth Census of the United States 1870; 

National Archive Microfilm Publications; Roll 110, Connecticut Vol. 7, 

New Haven County, New Haven City, Wards 4-8 

            

Roll         Titleboard 1     Titleboard 2        Page 01            Page 02             Page 03 
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Page 04           Page 05           Page 06           Page 07          Page 08           Page 09 

           

 Page 10            Page 11           Page 12            Page 13           Page 14 

 

Full Resolution Snapshot of Page 01 

 

A.4 US 1870 Census (300 dpi) 

 The fourth and final dataset consists of a few more pages from the 1870 United 

States Census, also scanned directly from microfilm.  These images were saved at a 

resolution of 300 dpi. 

Population Schedules of the Ninth Census of the United States 1870; 

National Archive Microfilm Publications; Alabama, Jackson County 
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Page 08            Page 09           Page 10           Page 11           Page 12 

     

Page 13            Page 14          Page 15 

 

Full Resolution Snapshot of Page 08 
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Appendix B 

User’s Guide 

 

 Two graphical user interfaces where created to support the CECAT system, one to 

compress images and the other to view them.  What follows is a summary of each of 

these interfaces as well as how to use them to perform their appropriate function. 

 

B.1 Compression Interface 

 The primary purpose of this interface is to perform the actual CECAT 

compression on a tiled image.  In addition, some methods have been added to allow the 

user to view contours as well as each layer of an image tile.  The interface is simple 

consisting of an image viewer, a dropdown menu and a couple simple widgets. 

 

File Menu 

This menu offers basic options for opening and saving image files.  The initial 

implementation supports the following image formats:  jpeg, gif, png, ppm, pgm, and 

pbm. 

 

Open First Tile: 

This option allows the user to open and view the 512 x 512 pixel tile 

located in the upper-left corner of the image.  This tile can then be compressed 

using different options from the compression menu and viewed at different levels 

using the display menu. 
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Open and Compress Tile Image: 

This option runs the entire CECAT compression algorithm on an image 

file, creating all three layers using the parameters specified on the interface 

controls (error tolerance and minimum contour length).  Simply put, to compress 

an entire image, use this option.  The three different layers of the CECAT Image 

will be saved under the same name, in the same directory as the original file 

except that the extensions will be cec, res, and bkg for the CECAT layer, residual 

layer, and background layer respectively. 

Encode Entire Image: 

After selecting this option, the user is prompted to select an image.  Once 

an image is selected, the CECAT compression will compress the entire image as 

one large tile (instead of segmenting them out into smaller tiles).  Only the 

CECAT layer is created in this manner, and the cec file is saved in the same 

directory as the original file. 

Quit: 

  This exits the compression interface. 

 

Compression Menu 

Once a single tile has been opened, this menu allows the user the opportunity to 

see the results of applying different types of CECAT compression approaches. 

 

Line Compress: 

This displays the contours that result from applying CECAT compression 

but restricting the curve mapping to line segments only. 

Quad Compress: 

This displays the contours that are rendered after applying CECAT 

compression with only quadratic Bezier curves (no line segments allowed). 
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Mixed Compress: 

This option allows the user to view the results of applying a normal 

CECAT operation to an open tile. 

 

Display Menu 

After a tile has been opened using the File menu and compressed using one of the 

options found in the Compression menu, this menu will give the user the opportunity to 

view different layers of the CECAT image. 

 

Contours: 

This option forces the display to show only the currently active contours.  

If a compression algorithm has been run, these contours are the result of the 

CECAT compression operation; otherwise, the results of the contour detection 

algorithm are displayed. 

Filled Contours: 

By selecting this option, the display shows the results of applying the 

contour fill operation to the list of current contours (either CECAT compressed 

contours or the currently detected, uncompressed, contours).  When applied to 

CECAT compressed contours, this option displays the foreground mask. 

Foreground: 

Choosing this option displays the residual layer created during CECAT 

compression (assuming that a CECAT operation has already be performed). 

Background: 

Choosing this option displays the background layer created during 

CECAT compression is displayed, assuming that a CECAT operation has already 

been performed on the current image. 
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CECAT Compression Controls 

Only three parameters are currently exposed for changing the quality and size of 

CECAT compressed files:  error tolerance, minimum contour length, and a global 

binarization minimum threshold.  Three controls are present on the Compression 

Interface to allow the user to change these settings.  Once the compression operation is 

complete, the name of the original file and the final size of the CECAT compressed layer 

are displayed in a text area. 

 

 

 

B.2 CECAT Image Viewer 

 For the most part, the options offered by the CECAT viewer are self explanatory.  

Basic file open/save and rotation/mirroring operations make up most of the viewer’s 

exposed functionality.  The only unusual controls allow the user to request a different 

layer of the image from the server. 

 To view a CECAT image, simply open the image using the File menu and use the 

view window to scroll around the image.  Each time the user looks at a new part of the 

image in the viewer, the appropriate tile is downloaded (of it does not already exist in 

memory).  The viewer starts out displaying the CECAT-encoded foreground layer.  If 

another image layer is requested, those tiles are downloaded to the viewer. 

 

File Menu 

This is another standard file menu with the standard open, save, and quit options 

available. 
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Open Image: 

This allows the user to specify a CECAT image to view.  Note that JPEG, 

GIF, and PNG file formats are also supported in this viewer. 

Save Current Image: 

By selecting this option, the user can save a JPEG, GIF, or PNG copy of 

the image currently displayed in the viewer. 

Quit: 

This closes the CECAT viewer window and exits the system. 

Edit Menu 

This menu allows the user some basic control over the ninety degree rotation and 

the mirroring of the current image. 

  

Rotate Clockwise: 

Selecting this option rotates the image currently displayed in the viewer 

ninety degrees clockwise. 

Rotate CCW: 

Selecting this option rotates the image currently displayed in the viewer 

ninety degrees counter-clockwise. 

Flip Horizontal: 

Selecting this option mirrors the image currently displayed in the viewer 

from left to right.  

Flip Vertical: 
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Selecting this option mirrors the image currently displayed in the viewer 

from top to bottom. 

 

Progressive Menu 

This menu allows the user to simulate some of the progressive transmission 

features available through the CECAT compression format.  By default, when a CECAT 

image is opened, the only layer currently viewable is the CECAT-encoded foreground 

layer.  By using this menu, other layers (residual and background) can be viewed as well 

as single tiles can be requested from the server. 

 

Get Next Layer: 

This option sets the viewer to download and display the next layer of a 

CECAT encoded image.  If the current layer is the foreground layer, the residual 

layer is downloaded after selecting this option.  If the residual layer is currently 

being viewed, the background layer is downloaded.  If tiles from the previous 

layers have not been downloaded from the server yet, they will be downloaded as 

needed before the residual or background layers tiles. 

Get Next Tile: 

Instead of scrolling around the image viewer, additional image tiles can be downloaded 

from the server by selecting this option.  As a rule, tiles from the current layer will be 

downloaded first. 
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Appendix C 

CECAT Code Base 

 

C.1 CECAT Package 

 This is the root package for the CECAT system contains the GUI interfaces used 

to compress or view CECAT images. 

CECATViewer 

Description: 

This is the first implementation of a CECAT image viewer.  Details 

behind using this interface are given in Appendix B. 

CompressionInterface 

Description: 

This provides a graphical interface for compressing jpg or pgm/ppm/pbm 

images into CECAT form.  Appendix B contains details on how to use this 

application. 

C.2 CECAT.compression Package 

 This package is primarily responsible for running the operations associated with 

detecting contours and mapping Bezier curves using the strategies outlined in Sections 

3.2 and 3.3.  Most of these classes possess static methods and might more easily be 

thought of as simple C style procedures.  The only data object in this package is the 

ContourDetails class, which was a recent addition used to track the number of Beziers 

being mapped to each contour as part of an experiment. 

BorderMarker 

Description: 
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The methods contained inside this class have only one function, detecting 

where contours meet the edge of the tile/image.  Essentially a static method, this 

operation uses a few helper functions to detect and return a list of spans indicating 

these locations.  This class is primarily a “holding location” for all the code used 

in this operation (as opposed to a true object-oriented data class). 

Public Methods: 

findEdges (static) 

This is the primary (and only) operation performed by this class, 

which gets contour information and image boundaries as input.  Edges are 

detected, marked, and stored off as an ArrayList of BezierMappings.  

Using these mappings as “fixed” parametric curves, seamless connection 

from one tile to another is achieved. 

Inputs: 

contour (Contour) – the contour to be tested 

maxX (int) – coordinate for the right edge of the tile/image 

maxY (int) – coordinate for the left edge of the tile/image 

Output: 

ArrayList of cecat.contour.BezierMappings representing first 

degree Bezier curves lying on the edge of the tile or image 

ContourDetails 

Description: 

This is a simple data object stores the count of how many first, second, 

and third degree Bezier curves are needed to represent a contour.  This is returned 

as output from a contour compression operation. 

Public Variables: 

lineCount (int) – number of first degree Bezier curves used 

quadCount (int) – number of second degree Bezier curves used 

cubicCount (int) – number of third degree Bezier curves used 

Public Methods: 

Constructors 
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The constructors available for this object allow you to initialize all 

the public variables or allow them to default to zero. 

ContourDetector 

Description: 

All contour detection operations run from inside this class.  Unlike other 

operators in this package, current implementation requires a constructor followed 

by a call to the method “getContours”.  Details behind the strategy for breaking 

down the image into “layers” and detecting them are outlined in Section 3.2. 

Public Methods: 

Constructor 

This constructor takes an image (in the form of a byte array) and 

computes the image height, width, and initialized the detected contour 

array. 

Input: 

image (byte[][]) – image from where the contours are to be 

detected 

getContours 

Contours are detected using the image data entered in the 

constructor detecting a contour, filling it in, and creating a map.  This map 

represents the first contour “layer”.  After all the contours on that layer are 

detected, the map is used to create an image of the next contour “layer” 

and the process repeats.  This operation is described in detail in Section 

3.2. 

Output: 

ArrayList of Contour objects representing the contours 

detected for this operation. 

ContourLineFitter 

Description: 

This is the outward face for a CECAT compression strategy described in 

detail in Section 3.3.2.  Mapping only first degree Bezier curves (line segments) 

to the contour, this class is somewhat limited in its capabilities but provides useful 
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experiments.  The Contour objects inputted into this class are assumed to have 

their points array set, as this class maps Beziers to these points and stores the 

resulting Beziers in the Contour’s curves array. 

Public Methods: 

fitBorderContours (static) 

One of multiple strategies for running this first degree Bezier 

mapping strategy, this one goes through the process of detecting and 

setting the border segments before going through the process of mapping 

line segments to the rest of the Contour.  The results of this operation are 

stored in the Contours’ curves arrays, thus no actual output exists. 

Input: 

contours (ArrayList) – list of contours to be processed 

maxX (int) – coordinate for right edge of the tile/image 

maxY (int) – coordinate for bottom edge of the tile/image 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

minimumContourSize (int) – contours consisting of fewer 

pixels than this are not processed 

fitContours (static) 

Another strategy for mapping first degree Beziers to contours, this 

strategy ignores border cases and simply goes through the process of 

mapping line segments each piece of the Contour.  The results of this 

operation are stored in the Contours’ curves arrays, thus no actual output 

exists. 

Inputs: 

contours (ArrayList) – list of contours to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

minimumContourSize (int) – contours consisting of fewer 

pixels than this are not processed 

fitEntireContour (static) 
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Although used by the previous two methods, this method can be 

called by itself to map line segments to a single contour using the CECAT 

mapping strategy outlined in Section 3.3.2. 

Inputs: 

contours (Contour) – contour to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

Output: 

CompressionDetails describing how many line segments 

were needed to represent the contour. 

fitContourSections (static) 

This third contour compression method performs the CECAT 

compression on one contour using first degree Bezier curves; however, it 

allows an outside operation to determine and “fix” particular Beziers to 

the contour.  The fitBorderContours operation uses this method, 

although other strategies could be developed which use other “fixed” 

Bezier curves.  

Input: 

contour (Contour) – contour to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

fixedCurves (ArrayList) – a list of BezierMappings 

describing which sections of contour are to be replaced by 

which Bezier curve 

ContourMixtureFitter 

Description: 

This is the outward face for a CECAT compression strategy described in 

detail in Section 3.3.4.  This class maps both first and second degree Bezier 

curves to the contour, creating a CECAT compressed image (or tile).  The 

Contour objects inputted into this class are assumed to have their points array set, 
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as this class maps Beziers to these points and stores the resulting Beziers in the 

Contour’s curves array. 

Public Methods: 

fitBorderContours (static) 

One of multiple strategies for running this Bezier mapping 

strategy, this one goes through the process of detecting and setting the 

border segments before going through the process of mapping line 

segments or quadratic Bezier curves to the rest of the Contour.  The results 

of this operation are stored in the Contours’ curves arrays, thus no actual 

output exists. 

Input: 

contours (ArrayList) – list of contours to be processed 

maxX (int) – coordinate for right edge of the tile/image 

maxY (int) – coordinate for bottom edge of the tile/image 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

minimumContourSize (int) – contours consisting of fewer 

pixels than this are not processed 

fitContours (static) 

Another strategy for mapping first and second degree Beziers to 

contours, this strategy ignores border cases and simply goes through the 

process of mapping line segments and quadratic Bezier curves to each 

piece of the Contour.  The results of this operation are stored in the 

Contours’ curves arrays, thus no actual output exists. 

Inputs: 

contours (ArrayList) – list of contours to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

minimumContourSize (int) – contours consisting of fewer 

pixels than this are not processed 

fitEntireContour (static) 
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Although used by the previous two methods, this method can be 

called by itself to map Bezier curves to a single contour using the CECAT 

mapping strategy outlined in Section 3.3.4. 

Inputs: 

contours (Contour) – contour to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

Output: 

CompressionDetails describing how many line segments 

were needed to represent the contour. 

ContourQuadraticFitter 

Description: 

This is the outward face for a CECAT compression strategy described in 

detail in Section 3.3.3.  Mapping only second degree Bezier curves (quadratics) to 

the contour, this class is somewhat limited in its capabilities but provides useful 

experiments.  The Contour objects inputted into this class are assumed to have 

their points array set, as this class maps Beziers to these points and stores the 

resulting Beziers in the Contour’s curves array. 

Public Methods: 

fitBorderContours (static) 

One of multiple strategies for running this second degree Bezier 

mapping strategy, this one goes through the process of detecting and 

setting the border segments before going through the process of mapping 

quadratic Bezier curves to the rest of the Contour.  The results of this 

operation are stored in the Contours’ curves arrays, thus no actual output 

exists. 

Input: 

contours (ArrayList) – list of contours to be processed 

maxX (int) – coordinate for right edge of the tile/image 

maxY (int) – coordinate for bottom edge of the tile/image 
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errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

minimumContourSize (int) – contours consisting of fewer 

pixels than this are not processed 

fitContours (static) 

Another strategy for mapping second degree Beziers to contours, 

this strategy ignores border cases and simply goes through the process of 

mapping quadratic Bezier curves to each piece of the Contour.  The results 

of this operation are stored in the Contours’ curves arrays, thus no actual 

output exists. 

Inputs: 

contours (ArrayList) – list of contours to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

minimumContourSize (int) – contours consisting of fewer 

pixels than this are not processed 

fitEntireContour (static) 

Although used by the previous two methods, this method can be 

called by itself to map quadratic Bezier curves to a single contour using 

the CECAT mapping strategy outlined in Section 3.3.3. 

Inputs: 

contours (Contour) – contour to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

Output: 

CompressionDetails describing how many line segments 

were needed to represent the contour. 

fitContourSections (static) 

This third contour compression method performs the CECAT 

compression on one contour using second degree Bezier curves; however, 

it allows an outside operation to determine and “fix” particular Beziers to 
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the contour.  The fitBorderContours operation uses this method, 

although other strategies could be developed which use other “fixed” 

Bezier curves.  

Input: 

contour (Contour) – contour to be processed 

errorTolerance (double) – error (in pixels) allow by the 

CECAT mapping system 

fixedCurves (ArrayList) – a list of BezierMappings 

describing which sections of contour are to be replaced by 

which Bezier curve 

 

C.3 CECAT.contour 

 The contour package contains a number of data objects used to represent 

contours, Beziers, and points.  These classes are used throughout the CECAT code base 

to store and transfer information used to represent these fundamental units of a contour-

compressed file. 

Bezier 

Description: 

This is the “in memory” representation of a line, quadratic, or cubic Bezier 

curve.  In this data object are the degree of the Bezier curve represented and the 

coordinates of the control points used. 

Public Variables: 

degree (int) – degree of the Bezier curves represented 

x0, x1, x2, x3 (double) – x-coordinates for the Bezier curves represented 

y0, y1, y2, y3 (double) – x-coordinates for the Bezier curves represented 

Public Methods: 

Constructors 

The four constructors available for this object allow you to 

initialize an empty data object or set up a first, second, or third degree 

Bezier by initializing 2, 3, or 4 control points. 

BezierComparator 
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Description: 

This is an extremely simple Java comparator used to sort lists of 

BezierMapping objects according to their position in the contour. 

Public Methods: 

compare 

This method is used indirectly when a collection of BezierMapping 

objects are sorted.  It takes two BezierMappings compares their 

lowerPointIndex variables, returning a sort priority accordingly. 

BezierMapping 

Description: 

In most cases, this is a wrapper for a Bezier object used to map a Bezier 

curve to the points contained on a contour.  By using upper and lower indices to 

the list of points in a contour, this mapping is accomplished.  This allows Bezier 

curves to be sorted in order of the contour and compared during the CECAT 

mapping process.  

Public Variables: 

upperPointIndex (int) – point on the contour mapping to the last control 

point of the Bezier curve 

lowerPointIndex (int) – point on the contour mapping to the first control 

point of the Bezier curve 

curve (Bezier) – Bezier curve that has been mapped to the contour 

Public Methods: 

Constructor 

Only one constructor is available for this data object, which is used 

to initialize the Bezier curve and both indices. 

CECATImage 

Description: 

The CECATImage object can holds all the data contained in the first layer 

of a CECAT compressed file.  To be more specific, general information about the 

image and tile dimensions coupled with the contours contained on those tiles is 

stored in this data object.  
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Public Variables: 

contours (ArrayList[][]) – lists of contours for each tile whose coordinates 

are identified by the 2D array indices 

width (int) – width of the entire image in pixels 

height (int) – height of the entire image in pixels 

tileWidth (int) – width, in pixels, of each tile in the CECAT image 

tileHeight (int) – height, in pixels, of each tile in the CECAT image 

Public Methods: 

Constructor 

Only one constructor is available for this data object, which is used 

to initialize the contour lists and the CECAT image/tiles dimensions. 

Contour 

Description: 

Entire contours, whether they are represented by a list of points or a list of 

Bezier curves, are encapsulated in this data object.  In addition to acting as a 

simple data object, there are a couple methods used to generate statistics about the 

contour or convert Bezier curves to a list of points. 

Public Variables: 

internal (boolean) – flag marking the contour as surrounding a black or 

white connected component 

points (ArrayList) – list of PixelPoints marking each point on the contour 

curves (ArrayList) – list of Beziers used to represent the contour 

maxY (int) – y-coordinate the bottommost pixel on the contour 

maxX (int) – x-coordinate of the rightmost pixel on the contour 

minX (int) – x-coordinate the leftmost pixel on the contour 

minY (int) – y-coordinate the topmost pixel on the contour 

Public Methods: 

Constructor 

Only one constructor is available for this data object, which 

initializes a contour as internal or not and takes a list of PixelPoints or 

Beziers, initializing the appropriate list in the contour.  If a list of 
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PixelPoints is used to initialize the contour, the min/max variables are 

determined and set. 

calculatePointsFromCurves 

If the contour is represented by Bezier curves, this operation 

converts them into PixelPoints, filling the appropriate list and setting the 

min/max variables in the process. 

countCurves 

Although used by the previous two methods, this method can be 

called by itself to map line segments to a single contour using the CECAT 

mapping strategy outlined in Section 3.3.2. 

Inputs: 

degree (int) – degree of Bezier to be used in the count 

Output: 

Int identifying the number of Bezier curves of the specified 

degree used to represent this contour. 

HorizontalSpan 

Description: 

The process of filling contours accurately requires small data objects that 

represent horizontal spans of pixels encompassed by these contours.  Each “span 

is represented by this data object. 

Public Variables: 

start (int) – relative x-coordinate for the start of this span 

end (int) – relative x-coordinate for the end of this span 

yValue (int) – absolute y-coordinate for this span 

xValue (int) – absolute x-coordinate for the start of this span 

Public Methods: 

Constructor 

Only one constructor is available for this data object, which is used 

to initialize the absolute x and y coordinates for the start of this span. 

PixelPoint 

Description: 
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To prevent the use of the large java Point class, this simple data object was 

created to hold a pair of x and y coordinates representing a pixel on an image. 

Public Variables: 

x (int) – x-coordinate for this pixel 

y (int) – y-coordinate for this pixel 

Public Methods: 

Constructor 

Only one constructor is available for this data object, which is used 

to initialize the x and y coordinates for this pixel. 

 

C.4 CECAT.decoder 

 All the algorithms used to decode the different layers of a CECAT file are 

included in this package.  In addition to this, the initial implementation of the CECAT 

server (which essentially decodes, indexes, and sends out portions of images to an image 

viewer).  On top of this, a utility used to read data in bit-sized portions from a data source 

appears in this package. 

BackgroundDecoder 

Description: 

As mentioned in Section 4.2.3, the background layer of a CECAT image 

consists of three bit values stored for each pixel not contained or adjacent to 

pixels in the foreground mask.  This class contains methods used to decode this 

background layer using the foreground mask as a guide to determine the 

coordinates of these pixels. 

Public Methods: 

decodeBackground (static) 

This method is used to decode a background tile that has been 

completely transferred. 

Inputs: 

mask (byte[][]) – foreground mask for the CECAT image 

encodedImage (byte[]) – background layer for CECAT 

image 



114 

decodeBackground (static) 

This method is just like the previous method except that the image 

data currently resides in a file instead of in memory. 

Inputs: 

mask (byte[][]) – foreground mask for the CECAT image 

decoder (FileBitDecoder) – reader which reads background 

CECAT data from a file 

BitDecoder (interface) 

Description: 

Simply put, this in an interface for a file input stream, designed to allow 

access to individual bits.  These bits can be read one-by-one or many at a time.  If 

more than one is read at once, the results are converted into integer value. 

Public Methods: 

close 

This closes the file input stream and cleans up the connection. 

startMeasurement 

This method sets a flag that starts measuring the number of bits 

that have been read from the input stream. 

stopMeasurement 

This method stops the process of measuring the number of bits that 

have been read from the input stream and reports. 

Output: 

Long describing how many bits have been read from this 

input stream since measuring has begun. 

getBufferData 

When a large amount of raw data is needed from a data file, this 

method is used. 

Inputs: 

size (long) – number of bits to read from the data file  

Output: 

Byte[] with the requested data from the input stream. 
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getData 

Unlike the previous method, this method reads a smaller number of 

bits and translates it into a single number before sending it back.  This is 

used for reading a single piece of data from the input stream. 

Inputs: 

numBits (int) – number of bits to read for the data file 

Output: 

Int translated from the data from the input stream. 

CECATDecoder 

Description: 

When a CECAT-encoded foreground layer needs to be decoded, this class 

must be used.  It contains all the methods associated with transforming Bezier 

curves into their representative contours and eventually shapes. 

Public Methods: 

decodeEntireImage (static) 

Taking an input file, this method is used for decoding an entire 

CECAT-encoded foreground layer (without regard to tiles). 

Inputs: 

in (BitDecoder) – data stream from a CECAT file 

Output: 

CECATImage that holds image data and statistics used for 

displaying a grayscale representation of the CECAT image. 

decodeNextTile (static) 

This method is used to decode the next tile from a CECAT file. 

Inputs: 

in (BitDecoder) – data stream from a CECAT file 

tileSizeX (int) – width (in pixels) of the tiles used 

tileSizeY (int) – height (in pixels) of the tiles used 

Output: 

ArrayList of contours found on the CECAT tile. 

measureEntireImage (static) 
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This method returns the file size of a CECAT-encoded foreground 

layer. 

Inputs: 

in (BitDecoder) – data stream from a CECAT file 

tileSizeX (int) – width (in pixels) of the tiles used  

tileSizeY (int) – height (in pixels) of the tiles used 

Output: 

Long showing the file size of the CECAT foreground layer. 

CECATImageServer  

Description: 

To demonstrate the CECAT progressive transmission strategy, this simple 

“server” was implemented.  While not a server in any sense of the word, this class 

pretends by reading and indexing a CECAT file and sending requested tile data to 

image viewers.  This class was described in Section 4.4.1. 

Public Variables: 

width (int) – width (in pixels) of the CECAT image 

height (int) – height (in pixels) of the CECAT image 

tileWidth (int) – width (in pixels) of the tiles used by the CECAT image 

tileHeight (int) – height (in pixels) of the tiles used by the CECAT image 

tileSizeX (int) – width (in pixels) of the tiles used by the CECAT image 

tileSizeY (int) – height (in pixels) of the tiles used by the CECAT image 

tilesX (int) – number of tiles  

tilesY (int) – number of tiles  

Public Methods: 

Constructor 

This class has a simple constructor:  a one parameter method that 

tells the “server” where the CECAT file is by passing in a filename. 

Inputs: 

 fileName (String) – name of the CECAT file to open 

getCECATTile  



117 

Using simple coordinates, this method sends a tile from the 

CECAT-encoded foreground layer to the attached viewer. 

Inputs: 

col (int) – index to the column where the CECAT-encoded 

tile can be found 

row (int) – index to the row where the CECAT-encoded tile 

can be found 

Output: 

Byte[] holding the CECAT-encoded representation of the 

desired tile.  A decoding operation must be performed on this data 

to recreate the foreground mask. 

getResidualTile  

Using simple coordinates, this method sends a tile from the 

encoded residual layer to the attached viewer. 

Inputs: 

col (int) – index to the column where the residual tile can 

be found 

row (int) – index to the row where the residual tile can be 

found 

Output: 

Byte[] holding the residual of the desired tile.  A decoding 

operation must be performed on this data to recreate the 

residual layer completely (pixels are still stored in three 

bits). 

getBackgroundTile  

Using simple coordinates, this method sends a tile from the 

encoded background layer to the attached viewer. 

Inputs: 

col (int) – index to the column where the background tile 

can be found 
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row (int) – index to the row where the background tile can 

be found 

Output: 

Byte[] holding the background of the desired tile.  A 

decoding operation must be performed on this data to 

recreate the background layer completely (pixels are still 

stored in three bits). 

ContourFiller 

Description: 

The contour filling algorithm described in Section 3.2.2 is implemented by 

static methods contained in this class.  Each method requires image data and 

contours as input, returning image data for a “filled contour”. 

Public Methods: 

fillSingleContour (static) 

Although this method is used by the “fillAllContours()”, it can be 

used separately to simply fill a single contour. 

Inputs: 

image (byte[][]) – image data where the contour is to be 

filled 

filledContour (Contour) – contour to be filled 

color (int) – grayscale value the contour is to be filled with 

Output: 

Byte[][] representing the image data with the filled contour. 

fillAllContours (static) 

This method fills a list of contours and returns image data with the 

results of this operation. 

Inputs: 

contours (ArrayList) – collection of contours to be filled 

image (byte[][]) – image data where the results of the filled 

contours is stored 

Output: 
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Byte[][] representing the image data with all the contours 

filled. 

ResidualDecoder 

Description: 

As mentioned in Section 4.2.2, the residual layer of a CECAT image 

consists of three bit values stored for each pixel contained or adjacent to pixels in 

the foreground mask.  This class contains methods used to decode this “residual” 

layer using the foreground mask as a guide to determine the coordinates of these 

pixels. 

Public Methods: 

decodeResidual (static) 

This method is used to decode a residual tile that has been 

completely transferred. 

Inputs: 

mask (byte[][]) – foreground mask for the CECAT image 

encodedImage (byte[]) – residual layer for CECAT image 

decodeResidualFromFile (static) 

This method is just like the previous method except that the image 

data currently resides in a file instead of in memory. 

Inputs: 

mask (byte[][]) – foreground mask for the CECAT image 

decoder (FileBitDecoder) – reader which reads residual 

CECAT data from a file 

 

C.5 CECAT.decoder.io 

 This package contains different implementations of the BitDecoder class, each 

implementing readers for a different source of data. 

ArrayBitDecoder (implements CECAT.decoder.BitDecoder) 

Description: 
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This implementation of BitDecoder allows bits to be extracted from an 

array of bytes. 

FileBitDecoder (implements CECAT.decoder.BitDecoder) 

Description: 

This implementation of BitDecoder opens a stream to a file and extracted 

bits from there.  

 

C.6 CECAT.encoder 

All the algorithms used to encode the different layers of a CECAT file are 

included in this package.  This includes those processes described in Section 3.3, some 

simple utilities used to facilitate these operations, and methods to encode the file formats 

described in Section 4.2.  On top of this, a utility used stream data into bit-sized portions 

and place them in a data file appears in this package. Internally, this encoder uses a gzip 

compression algorithm as a final step when saving off a background file. 

BackgroundEncoder 

Description: 

This class contains a number of static methods used to encode the 

background layer of an image and create a ‘background layer’ image data file.  Of 

course, this requires access to the foreground mask encoded as a CECAT file first, 

but once that is in place, the methods provided in this class can do the rest. 

Public Methods: 

encodeEntireImageAsTiles (static) 

The primary operation of this class is brought into effect using this 

method, which performs the background layer encoding operation for an 

entire image. 

Inputs: 

fileName (String) – name of the file where the background 

layer is to be saved 

cecatImageStream (ImageReader) – image data stream 

from a CECAT-encoded foreground image layer 
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originalImageStream (ImageReader) – image data stream 

from the original grayscale image 

Output: 

Int denoting the size-encoded background image layer (in 

bytes). 

encodeTile (static) 

Although primarily used internally, this method encodes a single 

tile from an image and returns the encoded results as a data array. 

Inputs: 

image (byte[][]) – grayscale representation for the tile 

mask (byte[][]) – foreground mask associated with this tile 

Output: 

Byte[] used to hold the encoded background layer for the 

image tile in question. 

CECATEncoder 

Description: 

As described in Section 3.3, this class performs the CECAT encoding 

operation, creating a CEC file containing the compressed foreground layer of the 

encoded image.  It only contains two static methods, one for encoding the 

foreground layer using tiles and one without tiles. 

Public Methods: 

encodeEntireImageAsTiles (static) 

This method performs a CECAT encoding operation using 

512x512 pixel tiles. 

Inputs: 

fileName (String) – name of the file to which the CECAT 

data will be saved 

imageStream (ImageReader) – image data input stream 

errorTolerance (double) – number of pixels a mapped 

Bezier can be off from the absolute contour 
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minimumContourSize (int) – only contours with a size 

equal to or greater than this will be compressed 

Output: 

Int describing the size of the CECAT encoded foreground 

layer. 

encodeEntireImage (static) 

This method performs the CECAT compression operation treating 

the entire image as one large tile.  Unlike the previous method, this 

requires the contours to be detected prior to the encoding operation and 

passed to it. 

Inputs: 

fileName (String) – name of the file to which the CECAT 

data will be saved 

imageWidth (int) – width of the image in pixels 

imageHeight (int) – height of the image in pixels 

contours (ArrayList) – contours found on the image 

Output: 

Int describing the size of the CECAT encoded foreground 

layer. 

EncodingUtilities 

Description: 

These utilities are used by both the BackgroundEncoder and the 

ResidualEncoder to distinguish between the two layers and convert the 8-bit 

grayscale values into smaller 3-bit values.  

Public Variables: 

eightGrayValues (int[]) – (static) u{1, 36, 72, 108, 144, 180, 216, 254}; 

Public Methods: 

findClosestGrayLevel8 (static) 

This method takes a pixel intensity value and returns the closest 

intensity stored in the “eightGrayValues” array. 

Inputs: 
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pixelValue (byte) – pixel intensity value 

Output: 

Byte representing the index to which of the 

“eightGrayValues” the input pixel intensity value is closest. 

isMasked (static) 

This utility uses the mask and coordinates to determine if a 

particular pixel is part of the foreground mask (or adjacent to it). 

Inputs: 

mask (byte[][]) – foreground mask applied to the image 

xPosition (int) – x-coordinate for the pixel in question 

yPosition (int) – y-coordinate for the pixel in question 

Output: 

Boolean value indicating if the pixel is part of or adjacent 

to the foreground mask. 

FileBitEncoder 

Description: 

This utility class is used to write data to a file bit-by-bit.  This means that 

integers, booleans, and strings of 1’s and 0’s can be written to a data file using a 

minimum number of bits.  In addition, integer data can be “padded” with zeros, 

which cab force a particular encoding size. 

Public Variables: 

size (int) – number of bits written to the data file (can be reset at any time) 

currentLocation (byte) – current location inside the current byte (1-8 

bits) 

currentFilePosition (long) – total number of bits written to the data file 

Public Methods: 

Constructor 

This constructor initializes the data stream (applying a gzip output 

stream where necessary) and attaches it to a file, the name of which is 

passed in as its only parameter. 

save 
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This method finishes the data file by padding the last byte with 

zeros and closes out the data stream. 

Output: 

Long describing the total number of bits written to the data 

file. 

addBit 

This method writes a single bit (0 or 1) to the data file. 

Inputs: 

bit (boolean) – bit to write out to the file 

addByte 

This method writes an entire byte to the data file. 

Inputs: 

newData (byte) – byte to write out to the file 

addInt 

This method writes an integer to the data file using the minimum 

number of bits to represent it. 

Inputs: 

newData (int) – integer value to write out to the file 

addInt 

This method writes an integer to the data file; however, it forces 

the number of written bits to be a particular size, by padding the number 

with leading zeros.  This is the primary method used by the CECAT 

encoder to store data into a file. 

Inputs: 

newData (int) – integer value to write out to the file 

absoluteSize (int) – number of bits to use to write the 

integer 

DEBUG (boolean) – flag which prints out the data to the 

screen (for debugging purposes) 

addString 

This method writes a string of 1’s and 0’s as bits to the data file. 
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Inputs: 

newData (String) – string to write out to the file 

ResidualEncoder 

Description: 

This class contains a number of static methods used to encode the residual 

layer of an image and create a ‘residual layer’ image data file.  Of course, this 

requires access to the foreground mask encoded as a CECAT file first, but once 

that is in place, the methods provided in this class can do the rest.  Internally, this 

encoder uses a gzip compression algorithm as a final step when saving off a 

residual file. 

Public Methods: 

encodeEntireImageAsTiles (static) 

The primary operation of this class is brought into effect using this 

method, which performs the residual layer encoding operation for an 

entire image. 

Inputs: 

fileName (String) – name of the file where the residual 

layer is to be saved 

cecatImageStream (ImageReader) – image data stream 

from a CECAT-encoded foreground image layer 

originalImageStream (ImageReader) – image data stream 

from the original grayscale image 

Output: 

Int denoting the size-encoded residual image layer (in 

bytes). 

encodeTile (static) 

Although primarily used internally, this method encodes a single 

tile from an image and returns the encoded results as a data array. 

Inputs: 

image (byte[][]) – grayscale representation for the tile 

mask (byte[][]) – foreground mask associated with this tile 
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Output: 

Byte[] used to hold the encoded residual layer for the image 

tile in question. 

  

C.7 CECAT.images 

 This package contains most of the utility methods used to read image data from an 

image file.  In addition to input streams, the data structures used inside the CECAT code 

base to represent images and tiles are included in this package as well. 

ImageReader (interface) 

Description: 

This interface provides outside access to the contents of an image file 

using a variety of different methods.  Because different image formats gather this 

information using a variety of encoders, this interface was made as generic as 

possible. 

Public Methods: 

getHeight 

This ‘getter’ returns the total height of the image. 

Output: 

Int representing the height of the image. 

getWidth 

This ‘getter’ returns the total width of the image. 

Output: 

Int representing the width of the image. 

getTileHeight 

This ‘getter’ returns the height of the tiles used by this image. 

Output: 

Int representing the height of the image tiles. 

getTileWidth 

This ‘getter’ returns the width of the tiles used by this image. 

Output: 

Int representing the width of the image tiles. 
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getImageContours  

This ‘getter’ returns a list of contours found in the image. 

Output: 

ArrayList containing Contour objects corresponding to 

each contour found in the image. 

getEntireImage 

This ‘getter’ returns the image as a large array of grayscale pixel 

intensity values. 

Output: 

Byte[][] containing all the grayscale pixel data values found 

on the image. 

getEntireImage 

This ‘getter’ returns the image as a large array of grayscale pixel 

intensity values rotated and/or mirrored using a particular orientation code. 

Inputs: 

orientation (String) – two-character orientation code which 

describe which corners of the image are found at the top 

corners of the viewer   

Output: 

Byte[][] containing all the grayscale pixel data values found 

on the image. 

getImageRegion 

Used primarily for extracting tiles from an image, this method 

returns an array of grayscale pixel intensities for a specified region of the 

image. 

Inputs: 

x (int) – x-coordinate of the upper left corner of the region 

of interest 

y (int) – x-coordinate of the upper left corner of the region 

of interest 

width (int) – width of the region of interest 
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height (int) – height of the region of interest 

Output: 

Byte[][] representing the grayscale pixel data values found 

in the region of interest on the image. 

getImageRegion 

Used primarily for extracting tiles from an image, this method 

returns an array of grayscale pixel intensities for a specified region of the 

image, which has been rotated and/or mirrored according to a particular 

orientation code. 

Inputs: 

x (int) – x-coordinate of the upper left corner of the region 

of interest 

y (int) – x-coordinate of the upper left corner of the region 

of interest 

width (int) – width of the region of interest 

height (int) – height of the region of interest 

orientation (String) – two-character orientation code which 

describe which corners of the image are found at the top 

corners of the viewer 

Output: 

Byte[][] representing the grayscale pixel data values found 

in the region of interest on the image. 

setTileSize 

Tile sizes (although they default to 512x512) are adjustable using 

this method. 

Inputs: 

width (int) – new width for each tile in pixels 

height (int) – new height for each tile in pixels 

getNextLayer 



129 

By calling this method, the ImageReader begins to transfer the 

next CECAT layer (residual or background).  If the image is not a CECAT 

encoded image, this does nothing. 

getNextTile 

This is the front-end to a simple tile iterator used to get tiles in 

order from left to right, top to bottom. 

Output: 

ImageTile object containing the next tile and its associated 

graphic. 

getTile 

This method allows outside access to any particular tile given its 

row and column. 

Inputs: 

row (int) – row where the requested tile is found 

col (int) – column where the requested tile is found 

Output: 

ImageTile object containing the requested tile and its 

associated graphic. 

getNextRawTile 

Same as getNextTile, this is the front-end to a simple tile iterator.  

The only difference is that the Java-viewable graphic is not generated. 

Output: 

RawImageTile object containing the next tile. 

getRawTile 

Same as getTile, this allows outside access to a specific tile.  The 

only difference is that the Java-viewable graphic is not generated. 

Inputs: 

row (int) – row where the requested tile is found 

col (int) – column where the requested tile is found 

Output: 
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ImageTile object containing the requested tile and its 

associated graphic. 

resetTileCounters 

This restarts the tile counter used by getNextTile and 

getNextRawTile to run the tile iterator. 

close 

This closes the data input streams and frees up the resources. 

ImageReaderFactory  

Description: 

The purpose of this class is to provide a central location from which to 

find the appropriate ImageReader for any image file type (even if that 

ImageReader is the UnsupportedImageReader).  

Public Methods: 

getImageReader 

Using the file extension, this method determines the appropriate 

ImageReader, instantiates one, and passes it back to the calling method.  

Input: 

 fileName (String) – name of the file where the image is 

stored 

Output: 

ImageReader that can be used to access the image. 

ImageTile 

Description: 

This data object stores coordinate, pixel data, and a Java-viewable image 

object used to render an image tile.  This information is used primarily by Java-

based image viewers to display the tile to a user. 

Public Variables: 

xPosition (int) – absolute x-coordinate of the upper left corner of the tile 

with respect to the original image 

yPosition (int) – absolute y-coordinate of the upper left corner of the tile 

with respect to the original image 
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image (byte[][]) – image grayscale pixel data 

graphic (Image) – java-based image object used to display the image 

gridX (int) – column where the tile is found on the original image 

gridY (int) – row where the tile is found on the original image 

width (int) – width of the tile 

height (int) – height of the tile 

Public Methods: 

Constructor 

This constructor uses a RawImageTile data object to initialize all 

the variables and create the java-based image object for viewing purposes. 

RawImageTile 

Description: 

This data object stores coordinate and raw pixel data about an image tile.  

This information is used by encoders, image processing operations, and viewers. 

Public Variables: 

xPosition (int) – absolute x-coordinate of the upper left corner of the tile 

with respect to the original image 

yPosition (int) – absolute y-coordinate of the upper left corner of the tile 

with respect to the original image 

image (byte[][]) – image grayscale pixel data 

gridX (int) – column where the tile is found on the original image 

gridY (int) – row where the tile is found on the original image 

width (int) – width of the tile 

height (int) – height of the tile 

Public Methods: 

Constructors 

Two constructors exist for filling the data inside this class, both of 

which initialize the image data array, coordinates and size.  The second 

construction, however, also allows the initialization of the gridX and 

gridY values. 
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C.8 CECAT.images.readers 

 In the CECAT.images package, there is an interface called ImageReader.  The 

goal behind this interface is to provide a general API for all image input streams.  In 

addition to traditional “read the whole image into memory” approaches, this interface 

provides the functionality required to chop the image into tiles (of a customizable size) 

and read them in, piece-by-piece.  Each implementation deals with a different file format 

or approach as described below. 

CECATImageReader (implements CECAT.images.ImageReader) 

Description: 

This ImageReader implements methods for decoding CECAT compressed 

files (.cec) and performs contour filling operation to present the completely 

decoded CECAT foreground. 

CECATImageReceiver (implements CECAT.images.ImageReader) 

Description: 

Although similar to the CECATImageReader, this ImageReader does not 

use files as its input.  Instead, this reader is receives blocks of array data (usually 

from the prototype CECAT server) and organizes the image for consumption by 

other classes.  

StandardImageReader (implements CECAT.images.ImageReader) 

Description: 

Java contains built-in functionality to decode JPEG, GIF, and PNG file 

formats.  This ImageReader makes use of this functionality to allow tiling of these 

“common” file formats. 

UncompressedImageReader (implements CECAT.images.ImageReader) 

Description: 

Adapted from the JIGL library created at BYU, this is a “bare-bones” 

decoder for the following “raw” image formats:  PGM, PPM, PBM, and PRGM. 

UnsupportedImageReader (implements CECAT.images.ImageReader) 

Description: 
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This default interface returns empty data sets and is used as a placeholder 

for file formats currently not implemented. 

 

C.9 CECAT.images.viewers 

 This package contains the Java Swing components used to create scrollable 

windows that can be used to view an image.  These images are represented fed into the 

viewer using the ImageReader interface, making these viewers independent of file 

format. 

ColorModels 

Description: 

This class contains static color models used by Java to render grayscale 

images.  They are stored here to prevent declaring them in multiple places. 

FloatingImageViewer 

Description: 

This viewer, used by CompressionViewer, is a complex grayscale image 

viewer used to render a grayscale image as a collection of tiles inside a scroll 

pane.  Simply put, this viewer creates a virtual canvas for the image and adds tiles 

and layers of image data as it receives them.  This canvas is displayable at any 

stage in the process. 

Public Methods: 

Constructor 

Only one constructor is available for this data object, which is used 

to set the height and width of the viewer window as well as initialize the 

viewer. 

displayVisibleTiles 

By calling this method, the viewer is forced to repaint its contents 

for the user. 

setNewImage 
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This operation sets the viewer to receive a new image from an 

ImageReader, initializing the virtual canvas size and connecting to the 

image source. 

Inputs: 

imageStream (ImageReader) – input stream for the image 

pixel data 

rotateLeft 

This rotates the image contained in the viewer 90 degrees counter-

clockwise. 

rotateRight 

This rotates the image contained in the viewer 90 degrees 

clockwise. 

flipHorizontal 

This mirrors the image contained in the viewer from left to right. 

flipVertical 

This mirrors the image contained in the viewer from top to bottom. 

invert 

This operation essentially creates a ‘negative’ copy of the currently 

displayed image (white pixels become black). 

changeOrientation 

This method can be used to change the 90 degree rotation and/or 

mirroring of the currently displayed image using internal orientation 

codes. 

Inputs: 

orientation (String) – two-character orientation code which 

describe which corners of the image are found at the top corners of 

the viewer   

requestNextLayer 

By calling this method, the viewer starts requesting the next layer 

of the CECAT encoded image (residual or background).  If tiles from the 
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previous layer have not been sent yet, they will be transmitted when 

needed. 

requestNextTile 

This method sends a request to the image source for the next 

available tile. 

GrayscaleImageViewer 

Description: 

This viewer, used by CompressionInterface, is a very simple grayscale 

mage viewer used to render a grayscale image inside a scroll pane.  Essentially a 

merging of an array of pixel data and a display pane, this viewer can be used to 

convert grayscale data into a more viewable form. 

Public Methods: 

Constructor 

Only one constructor is available for this data object, which is used 

to set the height and width of the viewer window as well as initialize the 

viewer. 

setImage 

This operation displays a grayscale image in the viewer. 

Inputs: 

image (byte[][]) – grayscale image data 

 

C.10 CECAT.preprocess 

 Most image manipulation operations, many of whom are applied to images before 

the CECAT encoding occurs, are stored in this package.  Most of these operations are 

implemented as static methods for performance reasons. 

BitonalThresholding 

Description: 

The thresholding operation described in Section 3.1 is implemented in this 

package.  Although designed to be a holding place for a variety of binarization 

algorithms, the modified Niblack operation is the only one currently implemented. 
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Public Methods: 

NiblackThreshold (static) 

This method actually performs the binarization operation described 

in detail in Section 3.1, a modified Niblack thresholding operation with a 

fixed global threshold. 

Inputs: 

image (byte[][]) – a grayscale image map (each byte 

corresponding to a pixel) 

ImageProcessing 

Description: 

Most of the different image processing operations used by the CECAT 

system are consolidated into this one package.  These operations range from the 

simple “open” operation to the application of image masks to create residual and 

background layers.  Any further “stand-alone” image processing operations 

should be added to this class. 

Public Methods: 

MaskImage (static) 

This operation applies a mask to the image and “whites out” the 

grayscale pixel values not covered by it. 

Inputs: 

image (byte[][]) – original (pre-encoded) image data 

mask (byte[][]) – bitonal foreground mask after it has been 

decoded from its CECAT form 

GenerateBackground (static) 

The inverse operation of the “MaskImage” method, this operation 

applies a mask to the image and “whites out” the grayscale pixel values 

covered by it. 

Inputs: 

image (byte[][]) – original (pre-encoded) image data 

mask (byte[][]) – bitonal foreground mask after it has been 

decoded from its CECAT form 
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ApplyMorphOpen (static) 

This is a basic image processing “open” operation used on bitonal 

image to remove small pixel noise. 

Inputs: 

image (byte[][]) – bitonal image data 

 

C.11 CECAT.segments 

 This package contains all the code required to implement the Curve Segment 

Library described in Section 4.3.   

CurveSegmentLibrary (interface) 

Description: 

This interface exposes the main functionality of the curve segment library, 

namely looking up curve segments, indices, or identifying the size of the curve 

segment library. 

Public Methods: 

lookupCurveSegment 

This method converts a library index into a curve segment. 

Inputs: 

index (int) – index for the curve segment desired 

Outputs: 

Segment object representing the curve segment that has 

been found using the inputted index. 

lookupIndex 

This method finds the library index for a particular curve segment. 

Inputs: 

deltaX (int) – change in the x direction for curve segment 

deltaY (int) – change in the y direction for curve segment 

Outputs: 

Int which provides an index to the library where the curve 

segment with the inputted deltas is found. 

getSize 
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Used most encoding operations, this method returns the maximum 

bit size a curve segment can possess and still be indexed in this library.  Its 

primary purpose is to determine if a given curve segment should be 

represented by an index to this library or not. 

Outputs: 

Int showing the maximum bit size of curve segments 

indexed in this instance of the curve segment library. 

 

DecoderSegmentLibrary (implements CECAT.segments.CurveSegmentLibrary) 

Description: 

This is one of two implementations of the CurveSegmentLibrary and is 

optimized for the process of decoding curve segments given an index.  Simply 

put, this library creates a large array of segment objects, all of which can be 

retrieved in constant time given a particular index.  Finding an index given a 

curve segment, on the other hand, requires a full search once through the table. 

EncoderSegmentLibrary (implements CECAT.segments.CurveSegmentLibrary) 

Description: 

The second implementation of the CurveSegmentLibrary, this is optimized 

for encoding curve segments by providing a constant time lookup of an index 

given a curve segment.  Going the opposite direction (looking up a curve segment 

given an index) requires a search through the whole library. 

Segment 

Description: 

Curve segments are, simply put, the x and y coordinate deltas from one 

control point to another.  This data object represents this curve segment. 

Public Variables: 

deltaX (int) – change in the x direction from one control point to another 

deltaY (int) – change in the y direction from one control point to another 

Public Methods: 

Constructor 



139 

The constructor for this object allows you to initialize the deltas when creates an instance 

of this object. 
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