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Characterization of two-dimensional finite-aperture
wire grid polarizers by a spectral-domain technique

Michael A. Jensen and Gregory P. Nordin

We investigate the transmission characteristics of perfectly conducting two-dimensional wire grid polarizers
fabricated in finite and infinite apertures using a rigorous spectral-domain mode-matching method. Spe-
cifically, the transmission coefficient for both transverse-electric and transverse-magnetic polarizations,
extinction ratio, and diffraction pattern are characterized for a wide variety of geometric and material
parameters including aperture dimension, conducting wire fill factor, wire spacing, polarizer thickness,

material dielectric constants, and incident wave arrival angle.

The results indicate that the transmission

behavior is largely insensitive to aperture dimension. © 2001 Optical Society of America

OCIS codes:

1. Introduction

It has long been recognized that wire grid polarizers
are an effective option for discriminating between or-
thogonal linear polarization states at infrared wave-
lengths.12  Such polarizers are typically fabricated
when conducting wires are placed within an aperture
formed in a larger opaque screen. When the aperture
is electrically large, the device behavior is similar to
that of a polarizer of infinite extent, and its perfor-
mance can be accurately characterized with simula-
tion approaches such as rigorous coupled-wave
analysis.3* However, with the emergence of new fab-
rication technologies have come a host of applications
that require implementation of small-aperture polar-
izers® and arrays of micropolarizers,®7 motivating the
development of devices with electrically small aper-
tures. In this case, alternative simulation techniques
that model the finite-aperture extent must be explored
for device characterization.

A variety of research has appeared on the subject of
modeling finite-sized diffractive optical devices. Most
of these studies have focused on grating structures,
diffractive lenses, and other aperiodic geometries and
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exploit simplifying assumptions based on Kirchhoff’s
scalar solutions.® Other studies have used computa-
tional methods such as the boundary element
method®-1! and method of moments!213 to more accu-
rately describe the device behavior. More recently,
we used a finite-difference time-domain implementa-
tion to characterize the behavior of polarizers with
finite-extent-aperture size in both transverse dimen-
sions.’¢ Although this research has brought forth
useful information for the characterization of these
polarizer structures, the computational complexity
and material modeling constraints of the method have
precluded exhaustive exploration of polarizer behavior
as a function of a broad range of geometric and mate-
rial parameters. This fact motivates investigation of
these geometries with simpler and less computation-
ally intensive analytical techniques.

In response to this need, we present in this paper a
detailed characterization of perfectly conducting
wire grid polarizers placed in finite apertures by a
spectral-domain  mode-matching technique.15-19
The resulting solution allows highly accurate simu-
lations of two-dimensional polarizer structures for
both transverse-electric (TE) and transverse-
magnetic (TM) illuminations. This approach is ad-
vantageous as it allows a relatively straightforward
examination of a wide variety of configurations,
thereby facilitating detailed studies that illustrate
the effect of key geometric parameters on the polar-
izer performance.

In this paper we provide a brief yet informative sum-
mary of the computational method and discuss com-
putational issues associated with its implementation
in Section 2. This discussion includes an extension of
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Fig. 1. Geometry for a plane wave incident upon the finite-
aperture wire polarizer.

the technique that uses Floquet analysis to accommo-
date infinitely long polarizers. In Section 3 we define
the polarizer parameters of interest and study the in-
fluence of aperture size, wire properties (fill factor, slit
density, and wire thickness), material characteristics,
and illuminating field incidence angle on the transmis-
sivity and diffraction pattern of the polarizer. Fi-
nally, we provide conclusions in Section 4.

2. Analysis Methodology

The problem under consideration is that of a plane
wave impinging on a finite-sized aperture located in an
otherwise infinite conducting plane of thickness D =
2d. As indicated in Fig. 1, the wave vector of the
incident plane wave lies in the x—z plane and makes an
angle 6 with the z axis. 'The aperture is divided into N
slits, each of width w = 2a, with the nth slit centered
at x = x,. The center-to-center spacing of the con-
ducting regions between the slits is denoted as Ax.
The wave number, permittivity, and permeability in
each region are expressed as k;, €;, and ;, respectively,
where j indicates the region number 1, 2, or 3 as de-
fined in Fig. 1.

The structure depicted in Fig. 1 can be analyzed
with a spectral-domain mode-matching technique.
This approach has the limitation of modeling only
two-dimensional structures and therefore cannot pre-
dict the influence of the finite-aperture size in the y
dimension. In addition, it cannot accommodate fi-
nite conductivity for the materials that comprise the
wires. However, in contrast to more sophisticated
computational methodologies, this technique has the
advantage of relatively simple implementation and
low computational requirements. This latter fea-
tures makes it possible to explore performance trends
as a function of a wide variety of geometric parame-
ters. Also, the method allows simple exploration of
the effect of different medium characteristics (in
regions 1-3) on the polarizer behavior. This is par-
ticularly relevant because typical polarizers are fab-
ricated on a dielectric substrate. Finally, it should
be emphasized that the results observed with the
two-dimensional model provide invaluable physi-
cal insight into the expected behavior of three-
dimensional structures with finite-aperture size in
both the x and y dimensions.

A. Field Solutions

The starting point in the analysis is the proper expres-
sion of the fields in the three regions in Fig. 1. For a
TE-polarized wave, the fields in region 1 can be repre-

sented as the sum of incident, reflected, and scattered
components that can each be expressed as

E,i(x, 2) = explik.x — ik.(z — d)], 1)

E/(x, 2) = —explikux + ik.(z — d)], 2)
E;(x,2) = i J% Ej(&)exp[—itx + i(k,” — £9)'/*

X (z jd)]dg, 3)

() = f " E (v, dyexplitx)ds, (4)

where &, = k; sin 6 and k2, = %k, cos 6. The spectral
representation in Eq. (3) for the scattered field facili-
tates later enforcement of continuity conditions. Ina
similar fashion, the field transmitted into region 3 can
be expressed as

1 0
Eyt(xa 2) :%J. Eyt(g)

X expl —itx — i(ks® — €)%z + d)]dg,
(5)

Ej) = le E /(x, —d)exp(i&x)dx. (6)

Finally, the fields in the nth slit in region 2 can be
expressed by use of modes that satisfy the boundary
conditions on the slit sidewalls. This results in the
summation

Ej(x,z) = E (b,," cos {,,z +c,," sin {,,2)
m=1

X sin[a,,(x — x, + a)], (7

where a,, = mw/2a and ¢, = (k2 — a,,?)"2

Using these field representations, we must now en-
force continuity of tangential fields at z = *+d and solve
for unknown quantities. For convenience, we define
the functions

(—=1)" exp(Fika) — exp(*ita)
EZ _ am2 ’

Gl,z(m, §) = (8

where the upper and lower signs are for G; and G,
respectively. Enforcing continuity of E/, we obtain
the expression

N =
ESE) =D >, (b," cos L, d

n=1 m=1

* Cmn Sin Cmd)am G2(m7 E)exp(lgxn): (9)

where here, as well as in other equations in this paper,
the upper and lower signs are used for scattered and
transmitted fields, respectively. Now, using the rela-
tion H, = (i/ow)oE,/dz, we can enforce continuity of
the magnetic fields over each slit. If we then approx-
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imate the infinite series in Eq. (9) using the first M
terms and order the unknowns b,,” and ¢,,” into col-
umn vectors B and C, we obtain the block matrix equa-

tion
Vi Yie|l|B| _|T
R e Y
where
\I,lB,rs = Cpa & sin (de)srs + Lamap Cos (gmd)lpmqn(kl)’
Mo ™
(11)
\PlC,rs = _gpa & CoSs (Epd)Brs
Mg
a,a, .
+ Wp sin (Cmd)'[pmqn(kl)) (12)
1_‘r = 2kzap GZ(pa kx)exp(ikqu)a (13)

andr =(q - 1M +pands=(n—1)M + m. The
integral 1,,,,,,,(k) is expressed as

L) = f " Gilp, ©)Ga(m, (k7 — )2

X explit(x, — x,)]d. (14)
A technique for efficient evaluation of this integral can
be found in Ref. 15.

B. Far Fields and Transmission Coefficient

Solution of Eq. (10) allows determination of the un-
known coefficients b,,” and ¢,,,” that can subsequently
be used to determine fields by use of Eqgs. (3), (5), (7),
and (9). For far-zone observations, we can let x = r,
X sin 6, andz —d = rgcos O, forz = d, and x = r,
X sin6®,andz +d = —r,cos 6, forz =< —d. Then, using
the method of steepest descent for r, , large, we manip-
ulate Egs. (3) and (5) into the general expression

k1 5 1/2 N M
E(0,,) = i2w;~ ) cos 0, 21 > a,(b,” cos {,,d
* cmn Sin Cmd)Gl(m7 ks,t)exp[i(kl,Srs,t
- ks,txn)]a (15)

where k£, = k, sin 0, and &, = kg sin 6,.

The transmission coefficient of the polarizer is de-
fined as the ratio of the total power transmitted by the
aperture to that intercepted by the aperture. This
corresponds to a detector being placed behind the po-
larizer such that it captures all the transmitted light.
To maintain consistency for comparisons performed
below in this paper, the aperture dimension is taken to
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be NAx. Using this convention, we obtain the expres-
sion

1 a N M
T L DD Im[L,*(b,," cos ,d

- Nkl COoS 9 Ax Mo n=1 m=1
—c,," sin (,,d)(b,," sin {,,d + ¢, cos (,,d)*].
(16)

C. Infinite Periodic Structure

In the event that the number of apertures N becomes
infinite, the solution methodology can be altered to
allow efficient evaluation of the fields. In this case,
the fields in regions 1 and 3 are expressed in terms of
Floquet harmonics,

Eys’t(x7 Z) = Z qu,t exp[—ié’;qx * i(k1,32 - §q2)1/2

g=—
X (z 7 d)], a7
1 Ax/2 .
v Ax J E(x, +d)explig,0)dx, (18)
—Ax/2

where &, = k, + 2mq/Ax.

With this representation, the problem becomes that
of finding the fields in a single aperture (N = 1). En-
forcement of tangential field continuity leads to the
expression

1 =

Fqu,t = r E (bm Ccos gmd * Cm Sin gmd)amG2(ma gq),
X m=1

(19)

as well as a matrix equation of the form of Eq. (10) with
elements

K. iama
\I,lB,pm = Cpa E Ssin (de)fipm + P

Ax
X cos (émd) Fpm(kl)’ (20)
W
\I’IC,pm = _Cpa = Cos (gpd)Bpm
o2
+ 5% i () k), (2D)
Ax

and with I', given in Eq. (13). It is noteworthy that
this matrix equation has a dimension of M X M, in
contrast to the MN X MN equation encountered for the
finite-aperture case. The terms F),,, are given by the
rapidly converging sum

Fpm(kl) = E Gl(p’ gq)GZ(m> gq)(kl2 - §q2)1/2~ (22)
Pt

At this point, we can perform the computation of the
transmission coefficient using the expression in Eq.
(16) with N = 1. However, when Eq. (19) is placed
into Eq. (17), it should be noted that only a finite num-
ber of series terms will be characterized by propaga-
tion in the =z directions. These terms represent



plane waves that will propagate to the far zone. For
the wire spacings typical in polarizer applications, only
the ¢ = 0 term will propagate to the far field.

D. Transverse-Magnetic lllumination

The spectral-domain analysis methodology outlined
above can be repeated for TM illumination, with the
roles of magnetic and electric fields interchanged.
The key difference for the TM case involves an expres-
sion for the fields in region 2 because the magnetic field
must satisfy proper boundary conditions at the slit
sidewalls {i.e., 9H /ox = 0 so that sin[a,,(x — x, + a)]
becomes cos[a,,(x — x,, + @)]}. With this change, the
derivation parallels that given above. In the interest
of conciseness, the derivation is not repeated here.
Details can be found in the references.15

E. Computational Considerations

Although the derivation of the spectral-domain mode-
matching technique is somewhat involved, the result-
ing algorithm is relatively straightforward to
implement. In addition, the method is computation-
ally efficient for typical problems. For example, a rep-
resentative geometry with a 2\ aperture and ten slits
(slit width w = 0.12\) requires only M = 5 modes for
the sums to converge to within four significant digits.
Such a computation requires approximately 6 s on the
moderately capable computer used for this study
(Hewlett-Packard Visualize B-180L workstation).
This is in contrast to numerical methods such as the
finite-difference time-domain method in which the
simulation requires relatively long run times to char-
acterize the device behavior. It should be mentioned
that, in all computations shown in this paper, a con-
vergence test was performed to ensure that enough
modes were used to obtain four significant digits of
accuracy. Also, as demonstrated in several of the ref-
erences, the method has been proven to provide accu-
racy comparable with or better than many techniques
such as the method of moments,'® Keller's high-
frequency diffraction theory,'” Kirchhoff’s scalar solu-
tion, and a rigorous Fourier analysis method for thin
structures.’> This accuracy coupled with the relative
implementation simplicity and speed makes the
method highly suitable for the performance of detailed
parametric studies of the device behavior.

3. Resiults

In this section we utilize the theory summarized above
to investigate the behavior of the wire grid polarizer for
different geometric parameters and incident wave
characteristics. Throughout the discussion, the fol-
lowing terms are utilized to quantify the device param-
eters: fill factor, 1 — w/Ax; aperture size, NAx; slit
density (number of slits per wavelength), \/Ax; and
extinction ratio, T'ry/ T, Where the subscripts on the
transmission coefficient 7' denote the polarization of
the illumination field.

In much of this study we investigate the behavior of
the polarizer transmission coefficient for different geo-
metric configurations. In this exploration, it is impor-
tant to emphasize that the transmission coefficient is

1.0 T T s
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Fig. 2. (a) Transmission coefficient and (b) extinction ratio as a
function of aperture size for several values of fill factor (D = 0, 5
slits/\, M = 5).

defined as the ratio of the total power transmitted to
the total power intercepted by the polarizer aperture.
Unless otherwise indicated, all plots are for normally
incident illumination (6 = 0°).

A second important characteristic outlined in the
following discussion is the angular distribution of the
transmitted energy for the TM polarization. To as-
sess the effect of different geometric parameters on
this behavior, the polarizer diffraction pattern is pre-
sented as the ratio of the transmitted power density to
the power density that would be obtained if the power
intercepted by the aperture were radiated isotropically
into the space z < —d. Mathematically, this is given
as

G.(6,) = 10 10g{n3lﬂy<6t>l/2} |

Pi/’ﬂ'rt
M3 |Hyt(et)|2 ™y
=10 log| — , 23
ogLI |H;|> NAx cos 0 (23)

where P, is the power intercepted by the aperture.

A. Effect of Aperture Size

As a starting point, consider Fig. 2, which shows the
transmission behavior as a function of aperture size for
several different values of the fill factor for an infini-
tesimally thin polarizer (D = 0). The computations
assume 5 slits/A (Ax = 0.2\), and M = 5 modes to
describe the fields within each slit. These plots dem-
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onstrate that, although small apertures tend to have
somewhat reduced transmission coefficient values, the
transmission and extinction characteristics of aper-
tures with dimensions greater than approximately 1A
are relatively insensitive to aperture size. This phe-
nomenon implies that, for larger apertures, the energy
contained in the perturbed fields near the aperture
edge is relatively small compared with the total energy
transmitted. It is noteworthy that the infinite-
aperture analysis predicts transmission coefficients of
0.999, 0.991, and 0.953 for TM and 0.162, 0.040, and
0.007 for TE for fill factors of 0.2, 0.4, and 0.6, respec-
tively. Examination of the curves in Fig. 2(a) reveals
that the results from the finite-aperture computation
approach these values as the aperture dimension in-
creases. Figure 3, which plots the transmission coef-
ficient versus aperture size for several values of
polarizer thickness, shows that the transmission char-
acteristics remain relatively insensitive to aperture di-
mension even for the finite-thickness case.

Figure 4 shows the diffraction pattern for three dif-
ferent aperture sizes. In contrast to the transmission
coefficient, the diffraction pattern is highly sensitive to
the aperture dimension. This sensitivity is because
the area of the radiating region is directly related to
the diffraction pattern beam width.

B. Effect of Wire Properties

It is important to recognize that fabrication consider-
ations impose constraints on wire grid polarizer de-
sign. For example, consider use of microfabrication
techniques to create a polarizer for the infrared or
visible portion of the spectrum.?.20.21  Minimum fea-
ture size limitations determine the slit density, fill fac-
tor, and wire aspect ratio, and it is therefore crucial to
understand the impact of these parameters on polar-
izer transmission behavior.

To begin our examination of the effect of wire char-
acteristics on the polarizer behavior, we reconsider the
data in Fig. 2. These results clearly indicate that, as
the fill factor is increased, the transmission coefficient
for both polarizations decreases because of the in-

creased area occupied by the conducting wire. How-
1.0
08 | e I I T T
g ™
06 | [ —— D=0.00A
= e e D =0.051
————— D =0.10A
04r -—-== D=0.15\
02 |
TE
0.0 = s '
0 1 2 3 4 5
Aperture Size/A

Fig. 3. Transmission coefficient as a function of aperture size for
several values of polarizer thickness (fill factor is 0.4, 5 slits/\, M =
5).
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Fig. 4. Transmitted diffraction pattern for a polarizer with three
different aperture sizes (D = 0, 5 slits/\, fill factor is 0.4, M = 5).

ever, because the TE polarization is more strongly
impacted by the increase in conductor size, the extinc-
tion ratio also increases with fill factor.20 Figure 5
depicts the polarizer transmission behavior as a func-
tion of the slit density and fill factor for an infinitesi-
mally thin polarizer. These results illustrate that the
above-observed fill factor trends remain the same as
the slit density is varied. These plots also demon-
strate a substantial increase in extinction ratio as the
slit density is increased. This behavior is consistent
with expectation because an increase in slit density
implies an increased number of thinner, more closely
spaced wires. Such a distribution of the conductor in
the aperture tends to be less disruptive to the TM
polarization and more disruptive to the TE polariza-
tion.

Figure 3 illustrates a slight decrease in transmission
coefficient as the thickness of the wires increases.
This behavior is more dramatically demonstrated in
Fig. 6, which shows the transmission behavior as a
function of fill factor and polarizer thickness. It is
noteworthy that, despite the drop in power transmis-
sion, the extinction ratio increases sharply with in-
creasing fill factor, particularly for thicker wires.
This latter effect can be explained when we consider
that the narrow, finite-thickness slit represents a
parallel-plate waveguide that supports only the
lowest-order transverse-electromagnetic (TEM) mode.
Because the TM wave is properly polarized to excite
this TEM mode, it passes through relatively easily
with reflections that are due mainly to the impedance
mismatch between the incident plane wave and the
propagating mode. However, the TE waveguide
modes excited by the incident TE plane wave will be
cut off, and therefore TE transmission falls off dramat-
ically with D.

Figure 7 illustrates the effect of polarizer thickness
and fill factor on the radiation characteristics.
Clearly, both parameters exercise a marginal influence
on the pattern shape, with the most notable effects
being present in the wide angular regions where the
transmitted power concentration is small. Naturally,
at a high fill factor with thick wires, the pattern peak
is noticeably reduced because of the decreased trans-
mission power.
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Fig. 5. (a) Transmission coefficient and (b) extinction ratio as a
function of slit density and fill factor (D = 0, aperture size is 2]\,
M = 10).

C. Effect of Material Properties

One key strength of the analysis methodology chosen
is its ability to assess the role of material properties on
the polarizer performance. Figure 8 shows the trans-
mission characteristics as a function of the relative
permittivity e, for region 1 for four different values of
the relative permittivity in regions 2 and 3 (¢,5 = €,3).
Naturally, the transmission power observed in these
plots is related to the Fresnel transmission coefficient
that would occur at an interface between two dissim-
ilar materials with no polarizer metal. However, ex-
amination of this Fresnel power transmissivity,
expressed as

2
erl/erZ -1

Tp=1-
r Erl/erz_l_]-

) (24)

shows that this behavior alone would indicate perfect
transmission when the two media are the same and a
monotonic decrease in T as €, varies from this equal-
ity value. However, as the value of permittivity (par-
ticularly that in region 2) increases, the wire electrical
spacing also increases, implying the possibility of in-
creased power transmission. Therefore the trends
observed in Fig. 8 clearly represent an interesting in-

01 >~
0.05
Thickness (D/A) 0 0

0.5

Fill Factor

Tw/Tre

Thickness (D/A) 00 Fill Factor

(b)

Fig. 6. (a) Transmission coefficient and (b) extinction ratio as a
function of fill factor and polarizer thickness (aperture size is in-
finite, 5 slits/\, M = 5).

terplay between Fresnel transmission and polarizer
electrical properties. It is intriguing, however, that
the extinction ratio has a well-structured behavior as a
function of material dielectric constants.

Figure 9 illustrates the diffraction pattern for differ-
ent combinations of material relative permittivity.

"Fill Factor

-90 -45 0 45 90
Transmitted Angle (6])
Fig. 7. Transmitted diffraction pattern for a polarizer with three

different values of thickness (aperture size is 2\, 5 slits/\, fill factor
is 0.4, M = 5).
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Fig. 8. (a) Transmission coefficient and (b) extinction ratio as a
function of relative permittivity of region 1 for several values of
relative permittivity of regions 2 and 3 (D = 0.1\, fill factor is 0.4,
aperture size is 2\, 5 slits/\, M = 5).

As can be seen, the pattern shape is essentially con-
trolled by the material properties at the polarizer out-
put. This observation can be explained when we
realize that the material properties in region 3 control
the electrical size of the aperture and therefore the
angular distribution of the transmitted energy.
Although the analysis method utilized is not able to
characterize the effect of imperfectly conducting wires,
past research by use of more advanced computational
models!* has demonstrated that, as long as such ma-
terials have relatively high conductivity, the transmis-

20

G(8)

=

-90 -45 0 45 90
Transmitted Angle (6;)

Fig. 9. Transmitted diffraction pattern for a polarizer with dif-
ferent material permittivities (D = 0.2\, aperture size is 2\, 5
slits/\, fill factor is 0.4, M = 5).

4744 APPLIED OPTICS / Vol. 40, No. 26 / 10 September 2001

sion of the TM wave remains relatively unchanged.
However, because imperfect conductors allow in-
creased transmission of the TE wave, the extinction
ratio tends to be reduced by approximately an order of
magnitude. It is important to include such informa-
tion in the design of practical polarizers.

D. Effect of Incidence Angle

Finally, we consider the polarizer transmission prop-
erties as a function of the incidence angle. Figure 10
shows the effect of incidence angle for several different
aperture sizes. Because of the nonzero grating thick-
ness (D = 0.1)\), the TE transmission power is small for
all angles and apertures. It should be emphasized
that the transmission coefficient was normalized by
cos 0 to accurately show the behavior near 6 = 90°
where the denominator of 7' goes to zero. The fact
that the finite-sized apertures have a nonzero normal-
ized transmission coefficient for the TM polarization at
6 = 90° implies that the polarizer structure perturbs
the incident field and produces transmitted power
even when no power is normally incident on the struc-
ture. However, little power is transmitted for the TE
polarization in this case, resulting in the large extinc-
tion ratio observed.

Figure 11 illustrates the diffraction pattern for dif-
ferent arrival angles of the incident plane wave.
These curves reveal the expected shift in the main
beam direction to match that of the incident wave as
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------ Aperture Size =44
————— Aperture Size = e 1

08t e N
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04 1

02t N,
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(a) TE A
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10 -
—— Aperture Size = 1A
------ Aperture Size = 44 y
————— Aperture Size = oo A
10°
=
g
k.
10
o (b)
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Fig. 10. (a) Normalized transmission coefficient and (b) extinction
ratio as a function of plane-wave incidence angle for several aper-
ture sizes (D = 0.1\, fill factor is 0.4, 5 slits/\, M = 5).
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Fig.11. Transmitted diffraction pattern for a polarizer with three
different plane-wave incidence angles (D = 0, aperture size is 2],
5 slits/\, fill factor is 0.4, M = 5).

well as a decrease in power in the main radiation lobe
and an increase in the sidelobes.

4. Summary

In this paper we have provided a detailed examination
of the transmission characteristics of perfectly con-
ducting, finite-aperture wire grid polarizers. The
analysis approach consisted of a rigorous mode-
matching solution coupled with a spectral representa-
tion of the scattered fields. An extension to this
theory that incorporated Floquet analysis allowed sim-
ulation of infinitely large, periodic polarizers as well.
This analysis methodology was used to investigate the
transmission coefficient for both TM and TE polariza-
tions, the extinction ratio, and the diffraction pattern
for a wide variety of geometric configurations and in-
cident field characteristics. These studies reveal
that, for apertures larger than approximately one
wavelength, the transmission coefficient and extinc-
tion characteristics are largely insensitive to aperture
dimension. Also demonstrated was a decrease in the
transmission coefficient for both polarizations and an
increase in the extinction ratio with increasing fill fac-
tor or increasing thickness.

Many applications require both a large extinction
ratio and a high optical throughput. On the basis of
the above results, the extinction ratio can, in general,
be augmented when the slit density, fill factor, or
thickness or some combination of these parameters is
increased. However, a high optical throughput is
achieved with a low fill factor, or, if the fill factor is
constrained to be large, by a decrease in the polarizer
thickness. Clearly, the design of a wire grid polarizer
for a particular application involves distinct trade-offs
between the extinction ratio and the optical through-
put.

The research of G. P. Nordin was supported by
National Science Foundation CAREER Award ECS-
9625040.
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