
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-12-07

A Dynamic Workflow Framework for Mass Customization Using A Dynamic Workflow Framework for Mass Customization Using

Web Service and Autonomous Agent Technologies Web Service and Autonomous Agent Technologies

Daniel J. Karpowitz
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Karpowitz, Daniel J., "A Dynamic Workflow Framework for Mass Customization Using Web Service and
Autonomous Agent Technologies" (2006). Theses and Dissertations. 1076.
https://scholarsarchive.byu.edu/etd/1076

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1076?utm_source=scholarsarchive.byu.edu%2Fetd%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A DYNAMIC WORKFLOW FRAMEWORK FOR MASS

CUSTOMIZATION USING WEB SERVICE AND

AUTONOMOUS AGENT TECHNOLOGIES

by

Daniel J. Karpowitz

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

December 2006

Copyright © 2006 Daniel J. Karpowitz

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Daniel J. Karpowitz

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Jordan J. Cox, Chair

Date Jeffrey C. Humpherys

Date Timothy W. McLain

Date Sean C. Warnick

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Daniel J.
Karpowitz in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

Date Jordan J. Cox

Chair, Graduate Committee

Accepted for the Department

 Matthew R. Jones
Graduate Coordinator

Accepted for the College

 Alan R. Parkinson
Dean, Ira A. Fulton College of Engineering
and Technology

ABSTRACT

A DYNAMIC WORKFLOW FRAMEWORK FOR MASS

CUSTOMIZATION USING WEB SERVICE AND

AUTONOMOUS AGENT TECHNOLOGIES

Daniel J. Karpowitz

Department of Mechanical Engineering

Master of Science

Custom software development and maintenance is one of the key expenses

associated with developing automated systems for mass customization. This paper

presents a method for reducing the risk associated with this expense by developing a

flexible environment for determining and executing dynamic workflow paths. Strategies

for developing an autonomous agent-based framework and for identifying and creating

web services for specific process tasks are presented. The proposed methods are outlined

in two different case studies to illustrate the approach for both a generic process with

complex workflow paths and a more specific sequential engineering process.

ACKNOWLEDGMENTS

I absolutely owe much thanks to all who supported and assisted my work: Dr.

Jordan Cox for his patience with my complete inability to work to a fixed schedule; my

graduate committee members, Dr. Tim McLain, Dr. Jeff Humpherys, and Dr. Sean

Warnick, for their insight, direction, and general support of my work; my loving wife,

Abby, for her willingness to endure many long and late nights; and my beautiful

daughter, Sophie, who always helps put life in context.

TABLE OF CONTENTS

Chapter 1 Introduction... 1

Chapter 2 Literature Review ... 5

2.1 The Product Design Generator.. 5

2.1.1 Defining the Product Transformation Schematic 6

2.1.2 Constructing the Product Design Generator 9

2.2 Multi-agent Design Systems ... 10

Chapter 3 Background ... 15

3.1 Service-Oriented Architecture (SOA)... 15

3.2 Web Service Standards ... 18

3.2.1 eXtensible Markup Language (XML) .. 18

3.2.2 Simple Object Access Protocol (SOAP)....................................... 19

3.2.3 Web Service Description Language (WSDL)............................... 19

3.2.4 Universal Description Discovery and Integration (UDDI) 20

3.3 Multi-agent Systems ... 21

3.3.1 Agent Definition ... 21

3.3.2 Web Services and Agents ... 25

3.3.3 Design System Infrastructure.. 28

3.4 Semantic Web & Ontology... 31

Chapter 4 Method ... 37

4.1 Agent-based Control Framework.. 37

 vii

4.1.1 Web Service Registry Management Agent................................... 38

4.1.2 Workflow Configuration Agent.. 39

4.1.3 Workflow Execution Agent .. 41

4.2 Identifying and Creating Web Services .. 43

Chapter 5 Results .. 45

5.1 Case Study #1 – Ring Example .. 45

5.2 Case Study #2 – Impeller Example... 53

Chapter 6 Conclusion ... 63

Chapter 7 References.. 65

Appendix A Guidelines for Implementing the System Framework 71

Appendix B Ring Example – Code ... 75

Services.xml.. 75

WSRegistry.java ... 76

KnowledgeAgent.java... 81

ConfigurationAgent.java... 85

ExecutionAgent.java... 90

ServiceASEI.java .. 94

ServiceAImpl.java .. 95

ServiceBSEI.java .. 98

ServiceBImpl.java... 99

ServiceCSEI.java .. 102

ServiceCImpl.java... 103

ServiceDSEI.java .. 106

 viii

ServiceDImpl.java .. 107

AltServiceBSEI.java ... 110

AltServiceBImpl.java.. 111

Appendix C Impeller Example – Code... 115

Services.xml.. 115

WSRegistry.java ... 116

KnowledgeAgent.java... 121

ConfigurationAgent.java... 125

ExecutionAgent.java... 130

CATIAServiceSEI.java... 134

CATIAServiceImpl.java ... 135

HyperMeshServiceSEI.java .. 138

HyperMeshServiceImpl.java .. 139

FluentServiceSEI.java... 142

FluentServiceImpl.java ... 143

ANSYSServiceSEI.java.. 146

ANSYSServiceImpl.java .. 147

 ix

 x

LIST OF FIGURES

Figure 2.1 A schematic representation of the PTS... 7

Figure 3.1 Agent interaction with the environment ... 24

Figure 3.2 A schematic representation of an agent network 29

Figure 3.3 A schematic representation of an agent federation 30

Figure 3.4 A schematic representation of an agent-based blackboard 31

Figure 5.1 Process schematic for creation of basic ring structure.............................. 46

Figure 5.2 Registered web services from “services.xml” file 48

Figure 5.3 Registry update from web service reporting methods 49

Figure 5.4 Example workflow paths mapped by configuration agent 50

Figure 5.5 Workflow execution by process execution agent 51

Figure 5.6 Registry update with alternative web service ... 52

Figure 5.7 Workflow execution with alternative web service included..................... 53

Figure 5.8 Registered web services for impeller design process 56

Figure 5.9 Impeller design workflow path mapped by the configuration agent 56

Figure 5.10 IGES data for the impeller structural wedge... 57

Figure 5.11 CATIA representation of the structural wedge... 58

Figure 5.12 Surface mesh for the air solid wedge produced by HyperMesh 59

Figure 5.13 Fluent pressure distribution for the air solid wedge.................................. 60

Figure 5.14 Stress plot produced by ANSYS for the structural wedge........................ 61

 xi

 xii

CHAPTER 1 INTRODUCTION

Tseng and Jiao define mass customization as “producing goods and services to

meet individual customer’s needs with near mass production efficiency” [1]. Automation

of engineering product development processes is essential to the implementation of mass

customization. The objective of mass customization is to provide individualized products

and services by integrating processes that are agile and flexible [2]. Production systems

that utilize automated, reusable processes are becoming an increasingly important tool for

improving the efficiency, accuracy, and cost during the product lifecycle as well as

enabling mass customization.

Over the past two decades the development of process automation tools such as

Computer Aided Design (CAD), Computer Aided Engineering (CAE), Computer Aided

Manufacturing (CAM), Product Data Management (PDM), Product Lifecycle

Management (PLM), and Enterprise Resource Planning (ERP) have had a significant

impact on process automation. To realize many of the benefits of advanced CAx tools,

company processes must be captured and automated through additional software

development. The custom software development that is often required to extend and

integrate these tools represents a significant investment of both time and money. The risk

of such an investment often prevents businesses from implementing mass customization.

 1

The key expense in this custom software development comes from the automation

system not being flexible enough to adapt to changes in process tools and product

markets. Small changes in the tools, market, or most importantly the product

development process results in large additional investments in software modifications.

The volatility of product markets and the rapid rate of new technology introduction into

product development threaten the possibility of success in automating product

development processes and ultimately wide spread adoption of mass customization. In

addition, frequent changes in the market environment or engineering tools and processes,

make it difficult to maintain valid automated processes after they have been created [3].

This work presents a potential solution to reduce the risk associated with the

custom software development investment. The proposed method is structured around the

deployment of a web service-agent framework. Such a framework allows product

development systems to be automated using dynamic methods which can reroute the path

of a process workflow as changes occur to the system.

The development of a dynamic framework involves implementing single purpose

tasks as web services and controlling the workflow process execution in a multi-agent

system. Using this method, decision and execution paths of the process framework can

be determined dynamically as the objectives change. Multi-disciplinary optimization,

sensitivity studies, uncertainty propagation, artifact generation, and design studies could

each potentially produce different process systems based upon the paths required to

accomplish the objective. The agent framework must be able to not only identify and

construct these different processes, but provide a flexible execution method.

 2

The general concept presented in this thesis is to develop a framework that

enables “plug and play” capability for integrating automated modules related to specific

tasks in an engineering process. This framework is developed once and used for all

subsequent automation projects, thereby reducing the software development to

identification of task modules within an engineering process and the implementation of

these task modules in a “plug and play” form. Strategies and methods for developing the

overall framework, identifying task modules within an engineering process, and

preparing the tasks in a “plug and play” form are also presented.

The goal of this research is to establish a foundation for a dynamic, automated

framework for product development through the following objectives:

1. Create a flexible design system built on web service and agent technologies.

a. Define the system agents and identify the required process services.

b. Develop a method for dynamic web service-agent integration.

2. Demonstrate feasibility of the proposed system applied to a generic application.

3. Demonstrate feasibility of the proposed system applied to a specific engineering

application.

 3

 4

CHAPTER 2 LITERATURE REVIEW

2.1 The Product Design Generator

The Product Design Generator (PDG) developed by Roach et al is “a computer-

based tool that automatically creates all of the design artifacts and supporting information

that are necessary for the design of a product that is customized to meet the needs of a

specific customer” [4]. Essentially, the PDG is a systematic approach to the creation of

automated design modules for mass customization. This approach requires a complete

description of the product development process, which along with business best practices

and company knowledge can be used to transform unique customer requirements into a

final product.

The PDG plays a central role in the development of the dynamic web service-

agent system for engineering design that is outlined in this paper. For example,

identifying the system services and agents requires following the process mapping

strategies defined in the PDG methodology. In addition, many of the behaviors and

services provided by system agents are simply an automated implementation of PDG

construction practices.

 5

2.1.1 Defining the Product Transformation Schematic

Developing a PDG requires that a Product Transformation Schematic (PTS) be

created for a product design within a specified envelope of variation. The PTS is defined

by a specific sets and process maps that are used to transform customer requirements into

a range of products. The idea of a PTS is similar to the definition of a mathematical

function, a single method extracted from an infinite number of solutions for transforming

one set of numbers (the domain) into another set numbers (the range). Like a

mathematical function a specific PTS can be realized by an infinite number of different

PDGs. As a result, each PDG is a unique implementation for a specific product type [5].

At the highest level, the transformation of customer requirements into detailed

designs can be represented by the function:

() Ω=ΦF (2.1)

where F is the product transformation function, Φ represents the specific product design

requirements, and Ω is the required set of design outputs [4]. In order to provide the

details necessary for PDG construction F, Φ, and Ω are deconstructed into more specific

subsets and intermediate mappings. Figure 2.1 shows a schematic representation of these

elements.

The domain Φ, the top level product design requirements, is deconstructed into

two specific subsets: C and K [5]. The subset C is the customer specific requirements for

the product design which typically includes performance metrics or limits. K is the

 6

subset which identifies company knowledge or conventions. This information is usually

defined by company best practices or policies that are required to successfully design a

product [5].

Figure 2.1 A schematic representation of the PTS

The range Ω, the set of required design outputs, is reduced to five subsets: B, A,

U, T, V, and M [5]. B is a subset of metrics that measure product behavior. Often some

of the parameters contained in subset B are the same as others specified by the customer

in subset C. In this case, optimization and other iterative strategies are employed during

process execution to reconcile any discrepancies between the parameter values. Subset A

is all necessary product artifacts required for production, marketing, and support of a

product. This subset might include manufacturing instructions, solid models, installation

 7

drawings, data sheets, etc. U is defined as the subset of all final customer deliverables,

which could include technical product specifications, the package product, any

documentation required for customer use, etc. The subset T is comprised of test and

validation metrics for the product. V is the subset of all vaulted parameters, artifacts, or

deliverables. The master parameter set, M, is the primary repository for the controlling

parameters for all possible configurations of a given product. It is important to note that

many of these subsets have a coupled relationship similar to that with B and C. The

schematic in Figure 2.1 shows a general relationship between upstream and downstream

subsets, where the downstream sets U, T, and V update the upstream sets B and K [5].

The primary relationship between the subsets of Φ and Ω is defined by the

intermediate mappings that make up the transformation function F. The design map d

transforms customer input into appropriate master parameters. Company rules and

knowledge are also introduced into the master parameter set through another mapping r.

The map b is responsible for determining the predictive metrics from the master

parameters. Generation of artifacts form the master parameters is a function of the design

map g. The testing and validation process is represented by the map i and the vaulting of

information is handled by the map e. The design map s represents the final

transformation of artifacts into customer deliverables [5]. Identifying the members of the

individual subsets and the processes represented by the intermediate maps is a critical

step in the construction of a PDG.

 8

2.1.2 Constructing the Product Design Generator

The PDG is constructed by (1) selecting a design concept and determining the

layout for the subsets and intermediate mappings, (2) creating detailed process plans for

the intermediate mappings, (3) rectification of the master parameter set, and (4)

constructing reusable design modules and integrating them into a common framework.

The first step in constructing the PDG is selecting a design concept. From this

concept and the desired design envelope the parameters of the subsets C, B, A, U, T, and

V can be determined. These subsets are generally enumerated first because they can be

readily determined from engineering judgment, best practices, company or international

standards, or past experience developing other similar products. Once these subsets have

been constructed the intermediate mappings must be determined. This requires that

intermediate mappings are further refined into individual parametric process maps [5].

Determining the parametric process maps leads to the next step – creating layouts

for the detailed mapping plans. This is a process of outlining the different steps required

for each map, defining necessary parameters, and identifying both internal and external

relationships between parameters, product features, and other mappings. Constructing

detailed process plans ensures that the intermediate mappings will be flexible and

reusable. Once the subsets and intermediate mappings are determined the master

parameter set can be compiled. This third step in constructing a PDG provides a

repository of all parameters that define each unique design. When vaulted as part of the

PDG process, the master parameter set along with the PDG implementation will provide

sufficient information to recreate a customized design [5].

 9

The final step in creating a PDG is the construction of reusable modules. Unlike

the other construction steps, the actual PDG implementation is not strictly defined by

Roach et al. Past PDG systems have been realized in a number of different frameworks

including simple Visual Basic applications, ASP.Net web pages, and a distributed

framework using web service technologies [5] [6]. Once the process mappings are

implemented as reusable modules, storyboard models of the different lifecycle design

phases are integrated with the reusable models to create the PDG [4].

The concept of a PDG is fundamental to the successful development of a web

service-agent dynamic design system. The formal expression of the design process

through the PDG methodology provides an established approach to mass customization

that has been used as the primary foundation for this research. The PDG approach allows

the existing tools and methods to be captured and defined in a reusable form that will

improve the productivity of the design process in a consistent and repeatable manner [4].

2.2 Multi-agent Design Systems

During the last decade the concept of multi-agent systems has become an

increasingly important research field in both artificial intelligence (AI) and computer

science. At the core of much of this research has been an exploration of the science of

agent systems through both theoretical and experimental results [7]. As multi-agent

systems have become better understood by a wider community not limited to just AI and

computer science, agents theories have been successfully applied to engineering design

systems.

 10

One of the primary motivations for developing engineering systems that utilize

agent-based technologies is the lack of flexibility and adaptability in current process

automation systems. Lander explains that “[d]esign, in particular, is characterized by a

constant evolution of software tools and techniques and by the need to respond rapidly to

changes in the market and industry” [3]. Such extensive change makes software

maintenance in engineering design a particularly complex and difficult task. It is

estimated that traditionally, software maintenance consumes 50% to 80% of an

application’s lifecycle cost [3]. In an attempt to avoid this significant cost, traditional

approaches to automated product development have been reduced to a narrow product

definition that is not as heavily influenced by such a volatile environment.

The need for “diverse, highly sophisticated, and rapidly changing skills and

knowledge” as well as a more flexible approach to engineering design makes multi-agent

systems “particularly appropriate for knowledge-based design” [3]. Agent-based systems

require minimal software changes to existing tools by “wrapping” legacy code with agent

functionality, make process changes without altering system code, vault knowledge and

data autonomously, present an open and well defined knowledge representation and

behavior model, and are remotely accessible [9]. These flexible characteristics

dramatically reduce the custom software development and future maintenance associated

with traditional automated engineering systems.

Because multi-agent systems have many far reaching benefits, it is not surprising

that a considerable amount of research has been focused on developing agent-based

applications for engineering design. Many of these systems, unfortunately, are no longer

 11

in study or development. Wooldridge et al explain that misunderstanding the pragmatics

of multi-agent system development results in developers “needlessly repeating the same

mistakes, with the result that, at best, resources are wasted – at worst, projects fail” [7].

Despite the lack of longevity in many agent-based engineering systems, it is important to

review the different implementation attempts to improve future development projects.

Shen et al provide a comprehensive overview of existing agent-based design systems,

including historical context, important technical features and implementation details,

significant results, and how the project is positioned with respect to other methods [10].

One of the first agent-based systems for engineering design was the Palo Alto

Collaborative Testbed (PACT). PACT utilizes agent technologies to encapsulate existing

engineering tools in order to provide a communication interface using the agent

languages KQML (Knowledge Query and Manipulation Language) and KIF (Knowledge

Interchange Format). Agents within this system worked with facilitators as “middle-

men” to coordinate the configuration of a simple robotics manipulator from a design

catalog. The end result of this project was not so much an actual environment for agent-

based design, but a mechanism for distributing reason to engineering design tools [10].

PACT spawned the development of a number of other design systems that focused

heavily on studying the benefits of different agent frameworks for collaborative

engineering between groups of human agents.

The Distributed Intelligent Design Environment (DIDE) represents another

significant study in agent-based engineering design systems. This system uses a peer-to-

peer approach to a multi-agent system where agents can be either human specialists or

 12

automated computer modules. These agents are integrated into a business-like

framework where some agents act as project managers and others as lower-level

managers overseeing smaller groups of agents.

DIDE is defined by a few core characteristics. First, the system does not run in an

autonomous fashion. The project manager is the agent responsible for initiating action in

local groups. These tasks must then be delegated by local group managers to individual

agents some of who will operate automatically. Second, agents in this system are purely

reactive. There is no form of collaborative planning to achieve global system goals.

Third, local groups are not responsible for maintaining global consistency. The project

manager is responsible for reconciling discrepancies. Fourth, agents maintain their own

knowledge base and have the ability to communicate with any other agent in the system.

These agents are capable of adding themselves to the system by broadcasting their

abilities and removing themselves from the system by broadcasting a removal message.

Individual agents use the information from other agents to update their own knowledge

base [10].

DIDE demonstrated several key advantages to multi-agent design systems: (1)

multi-agent systems are an appropriate solution for creating dynamic and flexible design

systems; (2) autonomous and independent agents allow for easy integration with legacy

tools; (3) human agents can interact successfully with computer agents; (4) agent-based

systems provide efficiency through parallel design. Along with the benefits, however,

were some notable disadvantages: (1) testing the overall behavior of a peer-to-peer agent

system is prohibitively complex; (2) the complexity of the development process prohibits

 13

applying this strategy to small scale projects; (3) interactive tools are difficult to integrate

into the system; (4) the system introduced problems with consistency of design

representations, reliability of communication, and sustainability of cooperation processes

into the process [10].

Other notable agent-based design systems include ACDS (Automated

Configuration-Design Service), a distributed, automated synthesis approach that uses an

agent network to generate a space of all possible complete designs and then narrow the

space to feasible designs only [11]; A-Design, a multi-agent system design tool that

utilizes multi-objective optimization and automated design synthesis for the conceptual

design of electro-mechanical devices [12] [13]; CADOM (Component Agent-based

Design-Oriented Model), uses a hierarchical design-oriented model to build agents that

carry out the functions of a designer [14]; and RAPPID (Responsible Agents for Product-

Process Integrated Design), a agent-based design system that uses market dynamics

among distributed design team members to coordinate set-based design of a discrete

manufactured product [15].

 14

CHAPTER 3 BACKGROUND

3.1 Service-Oriented Architecture (SOA)

A service-oriented architecture (SOA) is one of the key technologies which

enable the development of a dynamic framework for product development. In recent

years much of the progress of SOA concepts and technologies has been driven by a desire

to reduce network-based application development time while also increasing the

flexibility and connectivity of applications. As a result, much of the information

technology industry has embraced an SOA approach, specifically one focused on web

service standards, as the solution to increased productivity in enterprise computing. It is

expected that adopting an SOA approach will open the door for flexible, secure, and

reliable communication over both internal and external networks.

Service-oriented architecture is a development approach to connecting

applications, often exposed as services made available over a network, so they can

communicate and share functions in a widespread and flexible way [16]. A service is

defined as a specific task or functionality implemented in such a way as to facilitate

consumption by clients in different business processes or applications. Services can also

be defined by varying levels of granularity. Fine-grained services may represent a single,

 15

well-defined task such as a mathematical operation or database query. Similarly, course-

grained services can be used to represent the functionality of a software application or an

entire business process. Course-grained services can also be used to represent a directory

of services and any necessary details required for a client to consume the service.

One of the essential characteristics of SOA is the idea of loose coupling between

services and clients. Loose coupling requires that the service have a well defined

interface (the “what”) which is separate from the implementation (the “how”) [6]. This

approach creates a flexible environment where the client is not required to understand

implementation details such as the platform the service runs on, the language it is

programmed in, or what additional processing might be required for the service to return

a result. The client must only understand how to interact with the service interface.

Tightly coupled services often share semantics, libraries, or state resulting in a system

that is difficult to maintain as environments or needs change [16]. Document-oriented

services further enhance the concept of loose coupling by accepting a document as an

input, rather than a more specific, often restrictive, data type. In this case the service is

responsible for interpreting the context of the document and executing appropriately.

In addition to the flexibility that results from implementing an SOA, applications

are also able to more easily scale as demand increases or decreases. Because loose

coupling of services results in fewer dependencies between clients and services,

asynchronous communication is possible. Therefore, services are able to scale to meet

required loads without introducing the increased lag or delay experienced by a tightly

coupled system dependent on synchronous communication.

 16

The reusability of services is one of the important benefits driving widespread

adoption of SOA concepts. Because services separate the interface from the

implementation, the actual code exposed as a service can be reused as interface

requirements change. Functionality that is loosely coupled in this way is more likely to

be reused in future applications than tightly coupled functionality built into a specific

application. Also, because the interface is the only part of a service exposed to client

consumers, legacy applications as well as those developed by business partners can be

used and reused more readily.

Essential to the success of service reuse is interoperability between services and

clients. Interoperable services are able to communicate with both clients and other

services regardless of the specific service platform, system, or programming language.

The WS-I basic profile for web services defines the core technologies and concepts that

ensure web services are interoperable with each other. Strong backing from the

information technology industry for the WS-I basic profile helps guarantee the

interoperability of web services developed to this standard [16].

The flexibility, scalability, and reusability of services created in a SOA provide a

cost effective solution to integrating business applications. An SOA approach allows for

reuse of legacy applications, which could potentially include applications that were

previously unusable, by adding a standard service interface for client interaction. In

addition, this SOA creates a solution for integrating business partner applications with

minimal custom development. More important to this research, however, a SOA

contributes to reducing the risk associated with developing a product development system

 17

that is dependent on custom software to integrate various CAx tools. Product

development systems based on SOA and web service standards require less initial

analysis and unique code in developing applications custom engineering applications.

Loosely coupled engineering services also provide flexibility and scalability necessary

for extended application life and reduced maintenance costs.

3.2 Web Service Standards

Web services provide an effective, standards-based approach to SOA. The core

web service standards defined in the WS-I basic profile [17] include: Simple Object

Access Protocol (SOAP), Web Service Description Language (WSDL), and Universal

Description, Discovery, and Integration (UDDI). Each of these standards is based on

eXtensible Markup Language (XML) for describing and exchanging data over a network.

3.2.1 eXtensible Markup Language (XML)

XML [18] is a general purpose markup language which uses “tags”, similar to

those used by HTML, to identify information in a document and organize it in a

structured way. Unlike HTML, XML does not have a limited, inflexible set of tags,

elements, or attributes available for use. As a result, an associated schema must be used

to give meaning to the different XML components and provide a required structure for

the data contained in the document. The schema creates a set of grammar or language

rules that can then be used by either humans or machines to interpret and understand the

XML document. Because XML documents must be well-formed and conform to the

associated schema, they provide an effective data language for web services [16].

 18

3.2.2 Simple Object Access Protocol (SOAP)

SOAP is an XML-based protocol for “exchanging structured and typed

information between peers in a decentralized, distributed environment” [19]. While

XML provides the meaning and structure necessary for exchanging data, SOAP provides

a protocol for communicating the message “payload” and any additional instructions or

supplemental content [16].

SOAP defines a message as a one-way transmission between SOAP nodes. This

message consists of a SOAP envelope which contains an optional SOAP header and

mandatory SOAP body. The header is an extension to the communication protocol which

assists in routing the message through intermediate nodes for additional processing to its

final destination. The body contains the end-to-end information intended for the final

recipient. SOAP standards are not only platform independent, but they are not tied to a

specific communication protocol. As a result, both SMTP and HTTP, which work well

in today’s existing internet structure, are frequently used with SOAP.

3.2.3 Web Service Description Language (WSDL)

WSDL is another key standard defined by the WS-I basic profile. WSDL is an

XML approach to defining how to communicate with a given web service. A WSDL

document is essential for a client to understand how to make a service request.

Specifically, the WSDL provides protocol bindings and message formats for a web

service interface through an XML schema. By accessing the WSDL document in web

 19

service registry, a client can use XML standards, including SOAP, to determine where a

web service resides, its function, and the process for invoking it.

A WSDL document defines a web service as collections of abstract endpoints or

ports. Other abstract elements are used to represent service data and actions. Messages

are abstract descriptions of the data being exchanged and a port type is an abstract

collection of operations supported by one or more endpoints. Once these items are

described abstractly, they are bound to a concrete network protocol and the data format

specifications for a particular port type. The WSDL document allows a client to access

the binding and network address for each port, and call a web service operation according

to the specified protocol and message format [16].

3.2.4 Universal Description Discovery and Integration (UDDI)

The UDDI specifications define “how to publish and discover information about

services in a UDDI-conforming registry” [16]. The UDDI specifications are comprised

of a definition for a UDDI schema and a UDDI API. The UDDI schema uses XML data

structures to describe web service registry entries. The API provided through the UDDI

specifications defines the appropriate structure and content for SOAP messages that

publish in the registry or search for available services. Like UDDI, ebXML is another

web service standard that includes a registry.

Many of the current registry technologies including UDDI and ebXML standards

do not provide a method for autonomous discovery and integration with web services.

This is primarily the result of a lack of machine understandable information in the

 20

registry entry descriptions. Potential solutions to this issue are discussed later in the

context of semantic web services.

3.3 Multi-agent Systems

3.3.1 Agent Definition

Like web services, agent technologies are another important enabler of dynamic

product development. Agent-based systems are able to solve problems that are too large

for a single-resource limited system; facilitate the interconnecting and interoperation of

multiple existing legacy systems; provide solutions where the expertise and information

is distributed; and enhance system speed, reliability, extensibility, and the ability to

tolerate uncertain data and knowledge. Many engineering systems rely on a vast catalog

of legacy software, extensive product and/or knowledge databases, and parametric CAx

tools for development and manufacturing. Agent technologies provide many of the tools

necessary for linking these elements together in a dynamic, flexible system.

An agent is defined as “a computer system that is situated in some environment,

and that is capable of autonomous action in this environment in order to meet its design

objectives” [20]. While this characterization is generic enough to apply to most agent

implementations, there is no universally accepted definition for the term “agent”. In fact,

“agent” has become a buzzword that is often applied erroneously to expert systems,

artificial intelligence, object-oriented programming, and web service concepts [7] [20]

[21]. Despite these discrepancies, it is generally accepted that agent autonomy is key to

understanding this type of agency [22].

 21

Wooldridge makes several important points about agent definition [22]. First, it is

important to distinguish between “agents” and “intelligent agents”. The term agent

represents a more generic definition that can be extended by different properties or

behaviors. An intelligent agent is one such extension defined by flexibility, meaning that

it is:

 Autonomous – Agents control both their individual state and behavior.

 Reactive – Agents are able to perceive changes in their environment and respond

in a timely manner.

 Proactive – Agents demonstrate goal-oriented behavior by taking initiative to

meet objectives.

 Social – Agents are able to communicate and work with other agents to satisfy

design objectives.

It is also important to understand that intelligent agents are not limited to computer

systems. Any entity that can meet these conditions, including humans, can be treated as

an intelligent agent [22]. For this research, the basic definition of an intelligent agent will

be used in developing an agent-based framework including extending agent concepts

beyond software applications.

Wooldridge also notes that the general definition of an agent is not tied to any

specific agent environment [22]. Russell et al [23] characterize an agent environment as:

 22

 Accessible or Inaccessible – An accessible environment enables an agent to

accurately determine the environment’s state at any given time.

 Deterministic or Non-deterministic – A deterministic environment is one in which

there is a specific, guaranteed outcome for an action.

 Episodic or Non-episodic – Agents that react in an episodic environment must

determine if its actions will have an impact beyond the current episode.

 Static or Dynamic – Dynamic systems require the agents to adapt to change.

 Discrete or Continuous – A discrete system has only a limited set of potential

agent actions.

Because agents can exist in a wide variety of environments characterized by properties

similar to those listed above, the complexity of implementing an agent-based systems is

necessarily coupled with the agent environment.

On the most basic level an agent interacts with its environment by processing its

perceptions through sensors and acting on the environment through effectors [20]. This

relationship, as shown in Figure 3.1, is similar to the operation of a home thermostat

which acts as a very simple agent. The thermostat uses a sensor to determine the

temperature in a room. The thermostat then manipulates the temperature controls to

maintain or change the room temperature to match the desired temperature specified by

the homeowner. Most systems a developer will encounter require a more complex agent

definition and exhibit far less control over their environment than is demonstrated by the

thermostat example. However, this example does show the core functionality of both

 23

sophisticated and unsophisticated agent-based systems. Agents that utilize this same core

functionality have been used to create autonomous, flexible systems for general

distributed computing, network management, goal-oriented web search, e-commerce,

manufacturing process control, air traffic control, UAV control and cooperation,

distributed behavioral models, population simulations, and many other varied

applications.

ENVIRONMENT

Sensors:
Process

Perceptions

Effectors:
Process
Actions

AGENT

Figure 3.1 Agent interaction with the environment

Providing for agent communication is essential to developing more complex

multi-agent systems. Several standard languages have been proposed for use in multi-

agent systems. One of the more common languages is the Knowledge Query and

Manipulation Language (KQML) that was developed as part of the ARPA Knowledge

Sharing Effort [10]. This messaging protocol allows agents to communicate information

by annotating messages to describe specific requests. Another language in wide spread

 24

use in the Agent Communication Language (ACL) [24]. ACL is standard maintained by

the Foundation for Intelligent Physical Agents (FIPA) that functions similarly to KQML.

The work present in this paper does not attempt to employ a standard language for use in

the case study examples.

3.3.2 Web Services and Agents

The W3C Web Services Architecture specification defines agents as, “…the

running programs that drive web services – both to implement them and to access them

as computational resources that act on behalf of a person or organization” [25]. This

definition of an agent identifies one of the primary motivations for implementing multi-

agent systems. According to Wooldridge, agents are primarily “responsible for

mediating between users’ goals, and the available strategies and plans” [21]. Agents

accomplish this by creating composite web service workflows and consuming individual

services that satisfy design objectives and goals.

Although web services and agents both provide a means for encapsulating

business or application knowledge, they differ in that agents “do not simply expose

functionality as methods over a fixed protocol” [26]. Rather, agents “offer multiple

services, or behaviors, that can be processed concurrently and activated specifying goals”

[26]. The abstract, goal-driven behavior is unique to the definition of an agent. Unlike

web services which provide functionality through simple executable methods, agents that

act intelligently use knowledge to react to and act on their environment autonomously

and proactively.

 25

Web service-agent systems have recently become the focus of a significant

number of research activities. One of the more apparent issues with web service

implementation is the creation of a framework that provides autonomous selection and

consumption of the services. As agent technology has matured, many have begun to

address this problem and investigate the use of an intelligent agent-based system as a

potential solution.

JADE (Java Agent DEvelopment Framework) is one of the most pervasive agent

development platforms in use today [27]. JADE is an open source, middle-ware solution

for developing peer-to-peer agent applications that comply with FIPA (the Foundation for

Intelligent Physical Agents) specifications for agents and multi-agent systems [28].

Recently this platform has been extended by Greenwood and Calisti to provide

development tools for web service-agent interactions through the Web Service

Integration Gateway Service (WSIGS) [26].

The primary goal of the WSIGS extension to JADE is to provide a “transparent,

bidirectional access form/to web services to/from agent-based services” [26]. Agents

implemented in this system are able to:

 Redirect the system to other web services when the originally requested service

becomes temporarily unavailable.

 Aggregate several web services to function as an individual service interface.

 Integrate web services into preexisting agent systems.

 Manage and perform administrative tasks for large groups of web services.

 26

Web services and agents developed with this extension use existing standards and

technologies. The primary function of WSIGS is to provide a common interface for

translating and forwarding web service-agent communication.

Dickinson and Wooldridge have expressed concern over the confusion that

ultimately results to the core definitions of web services and agents with WSIGS style bi-

directional integration [21]. On one hand, in order for web services to invoke agent

behaviors it is implied that the agents must expose a fixed, deterministic behavior. This

approach “violates the presumption of the autonomy of the agent” and brings into

question the validity of referring to this component as an agent [21]. Likewise, if the

agent behavior is not fixed a web service must adopt ability to respond to the agent’s

autonomous responses. Conceptually this is closer to the definition of an agent rather

than a web service [21].

Along with their critique of WSIGS, Dickinson and Wooldridge identify some

important behaviors of web services and agents in an integrated system. First, agents and

web services share motivation to create flexible and adaptable systems, but are

nevertheless distinct in their implementation and functionality. Second, agents are the

responsible party for composing complex service workflows from the individual, atomic

web services. Third, autonomy is only represented at the agent level. Finally, agents are

capable of planning by decomposing high level goals in specific sub goals [21].

Other important research focused on web service-agent interaction includes the

concept of extending UDDI with the DARPA Agent Markup Language (DAML)

 27

presented by Maximilien and Singh [29]; an approach to adaptive workflow that uses the

Business Process Execution Language for Web Services (BPEL4WS) to define the initial

structure of a multi-agent system [30]; a system that uses a workflow agent to

dynamically compose web service workflows by using semantic descriptions of the

services to find and match service inputs and outputs [31]; and the use of the Web

Ontology Language for Semantic Web Services (OWL-S) to create middle agents to

assist in dynamically discovering and connecting with appropriate web services [32].

3.3.3 Design System Infrastructure

Although agent technologies are inherently flexible, the choice of an

infrastructure technology “affects the degree of asynchronous, concurrent, or persistent

activity that can occur; the way information is stored and shared; and how agents

communicate” [3]. As a result, the infrastructure used to build a multi-agent system must

be carefully selected to provide the desired behavior from the system agents. Three basic

system infrastructures will be discussed: an agent network, a federated environment, and

agent-based blackboards.

An agent network is essentially a peer-to-peer network for a multi-agent system.

The agents in the network are required to have a global knowledge of the complete

system for communication and operation. They must know where and when messages

should be sent, what other agents are available in the system, and what services that are

provided by these agents [3]. The DIDE system mentioned earlier in this paper is one

example of a peer-to-peer approach for developing agent networks. Like the DIDE

application, there is system-wide duplication of knowledge that must be embedded in all

 28

system agents. This duplication makes this type of agent network inefficient for large

systems. Figure 3.2 shows an agent network comprised of two local networks.

Figure 3.2 A schematic representation of an agent network [3]

The second infrastructure that can be used for multi-agent systems is a federated

network. The federation operates through agent facilitators who handle all network

connectivity and message routing. Facilitators also serve as a local repository for

knowledge about individual groups of system services. A service makes a request

through facilitators which in turn respond by searching for appropriate agents to satisfy

the service request. A service provider can also work through the facilitator to find

additional services that require their functionality [3]. Because federated systems do not

 29

require global knowledge to be shared with all agents these system types will be more

flexible. Figure 3.3 shows an example of an agent federation.

Figure 3.3 A schematic representation of an agent federation [3]

The final infrastructure type is an agent-based blackboard. Blackboards are very

similar to federated infrastructures in that create localized groups of agents. While all

federations share in the same database, the blackboard approach provides a data

repository for design data and control knowledge within each local group. A network

controller and control shell are also provided for local groups to communicate remotely.

Figure 3.4 shows a blackboard infrastructure.

 30

Figure 3.4 A schematic representation of an agent-based blackboard [3]

3.4 Semantic Web & Ontology

As web-based technologies such as web services and autonomous agents have

become more mature and widely accepted, the Internet has moved beyond a simple tool

for communicating textual and graphical information, to a provider of services enabling

automation and interoperation. Where the Internet was once focused primarily on

delivering content for human interpretation, recent development trends have focused on

creating “web-enabled” applications and physical devices that capitalize on Internet-

provided services. One purpose of a Semantic Web – an extension of the current Internet

structure which attempts to communicate meaning (semantics) in a machine

understandable form – is to enable reliable, large-scale interoperation between web

 31

services, autonomous agents, and “web-enabled” applications and devices by making

service information computer interpretable [33].

Fundamental to understanding the Semantic Web and ultimately communication

between services and agents is the concept of ontologies and other data models that can

be used to represent some domain such as controlled vocabularies and hierarchical

taxonomies. Ontology is frequently defined in relation to the Semantic Web as “a set of

knowledge terms, including the vocabulary, the semantic interconnections, and some

simple rules of inference and logic for some particular topic” [34]. Regardless of the

formal language of expression, ontologies generally describe information with:

 Classes – an abstract group, set, or collection of objects

 Individuals – an instance of a particular abstract object or concept

 Attributes – object defining properties, features, characteristics, or parameters

 Relations – parameters defining association between objects or concepts

Because ontology is often used to represent specialized concepts that may have specific

meaning to a particular sub-domain, high-level domains are necessary to define essential

concepts and merge the vocabulary of different sub-domains into a more generic

representation [10].

Web service and autonomous agent systems benefit from using ontologies to

“decipher the content of exchanged messages” [10]. One of the problems with current

web service implementations is the difficultly in dynamically discovering and consuming

 32

the service without human assistance. The public UDDI registry that was formally closed

in January 2006 by IBM, Microsoft, and SAP [35] attempted to provide a more universal

approach to automatic web service integration by using the UDDI standards to catalog

business services. Developers could access the registry and search for services that

would meet a desired objective. However, without a formal method for providing

semantic information, human interpretation of the web service descriptions was still

required.

Unlike previous approaches, an ontology-driven, semantic markup of registered

web services would enable a machine to automatically:

 Select web services for consumption based on a set of user-driven requirements.

 Understand and independently act on input/output requirements and execution

details of a particular service.

 Interface with multiple web services to provide results for more abstract

objectives.

The Web Ontology language for Services (OWL-S) [36] is a markup language intended

to facilitate these results. Like its predecessors (e.g. DAML, OIL), related technologies

(e.g. XML, RDF), and other unique approaches (e.g. Semantic Annotations for WSDL)

[37], OWL-S is an attempt to represent meaning and semantics with machine-

interpretable content.

 33

OWL-S describes web services with a service profile, service model, and service

grounding. The service profile identifies what the service does. In addition to the actual

function of the web service, the service profile describes any limitations or special

requirements for a specific web service. Not only does this allow agents and other

services to access service profiles from a web service registry and use this information to

identify a service that will satisfy a request, but it provides sufficient information for this

to occur autonomously. The service model details how to use a service and what results

can be expected. It also provides “the semantic content of requests, the conditions under

which particular outcomes will occur, and, where necessary, the step by step processes

leading to those outcomes” [36]. The final piece of structured information provided by

OWL-S web services is the service grounding. The grounding is the specific information

necessary to access the web service, including the required communication protocol,

message formats, and the specific input and output data types expected by the service.

While formal markup technologies are still limited in use and maturity, other less

sophisticated approaches are beginning to emerge on the Internet. Web sites such as

del.icio.us (a social bookmarking service), Flickr (an internet photo sharing service),

YouTube (an internet video sharing service), GMail (an internet email client),

Technocrati (a weblog search service), and many others all use metadata “tags” to label

and describe information and content (i.e. photos, videos, music, etc.). The process of

“tagging” does not adhere to a formal ontology or taxonomy, but rather uses a more

eclectic, collaboratively generated method of modeling data referred to as folksonomy.

Although categorizing information in this way can create conflicts and confusion, it does

provide an important step in migrating to the more structured idea of the Semantic Web.

 34

Creating ontologies for a web services or agent-based systems that are focused on

a specific function or utility requires a different approach from the more general web

situations since the web is much larger in scope, often requires less complex information,

and does not have the same requirements for automation and adaptation. In principle, a

universal ontology could be used for knowledge sharing, however, differing system

requirements, such as those already outlined, show that a universal approach is not a

practical approach [10]. For many systems, particularly the dynamic product

development framework presented in this paper, a simplified, less-flexible approach to

ontology is sufficient.

 35

 36

CHAPTER 4 METHOD

4.1 Agent-based Control Framework

The first step in creating a dynamic product development system is to define an

agent-based control framework. The design of individual agents is highly dependent on

how a specific agent control framework is implemented. Ultimately a framework will

have a significant impact on the location of the system knowledge base, the method for

both local and remote communication, and the complexity of design problems that can be

addressed. For example, a peer-to-peer agent network will require a sophisticated agent

with knowledge of the entire system and ability to communicate with any other available

agents. While this method may have many different practical applications, the

framework can end up duplicating knowledge and ability in different agents making some

large processes too inefficient for the peer-to-peer system.

For this research a more simple approach to an agent-based framework has been

adopted. Avoiding more complex development of multi-agent systems enabled greater

focus on the practical engineering application of the general concepts rather than just the

nuances of developing an agent-based system. As a result, generic agent framework was

created that is not coupled to any specific programming tools or engineering processes,

 37

and system agents are limited in knowledge and communication ability. These agents are

limited to providing only the services needed to generate an automated engineering tool

enabled by web service-agent interaction.

The control agents developed for the dynamic product development framework

serve the system in three ways:

 Managing a web service registry and identifying potential services

 Configuring process maps of all potential workflow paths

 Executing an automatically selected workflow path to meet the system design

objectives

Implementation of these tasks was accomplished by creating three types of control

agents: a web service registry management agent, a workflow configuration agent, and

one or more workflow execution agents. The detailed function of each of these agents is

discussed in this section.

4.1.1 Web Service Registry Management Agent

The web service registry management agent (MA) is responsible for monitoring

and updating system web service registries. The actual implementation of the MA will

differ depending on the type of registry or web service technologies used by the system.

For example, existing web service registries such as UDDI and ebXML registries often

do not contain enough information for successful autonomic service selection. In this

case the MA must be capable of providing the system with additional semantic

 38

information to will facilitate automatic selection and execution by other system agents or

services.

One of the more simple methods for making semantic information available

would be for the MA to maintain and update a supplemental database which would

provide the enhanced web service. The MA would be responsible for gleaning web

services semantics through description languages such as OWL-S [36] and/or by calling

web service methods specifically designed to provide detailed service information. The

system framework developed for this research uses the latter approach to gathering web

service details for the web service registry.

In addition to registry management, the MA also has the responsibility to notify

the workflow configuration agent of any new services, removed services, or changes to

existing services that could alter an established workflow (e.g. changing the output type

of a critical service, moving a service to another network location). This function

requires that the MA have some knowledge of how the framework establishes a specific

process workflow in order to identify impacting changes.

4.1.2 Workflow Configuration Agent

It is the responsibility of the workflow configuration agent (CA) to determine the

potential workflow paths for the services registered with the system. Engineering

workflow is defined for this research as the process of executing individual engineering

tasks in a specific process order. Specifically, this workflow is established independent

of the agent framework by the mappings of the PTS [4]. The CA identifies the workflow

 39

paths by determining the associated input and output sets of the registered web services

and then backwards mapping to link the services in a workflow pattern similar to the

approach presented by Laukkanen et al [31]. By following this approach, all possible

workflow paths for a given product development process can be determined. The CA

maintains a system workflow repository by adding new process maps and removing

workflow paths with invalid services after receiving updates from the MA.

In addition to determining a specific workflow path the CA may also be required

to determine workflow cost (i.e. resources, time, etc.) and overall process capability (i.e.

process variation, input sensitivity, etc.). The CA uses additional semantic data to

enhance more basic workflow information which can be stored along with the process

map in the workflow repository. As new or altered web services create additional

available workflows, the agent framework can use this semantic data to automatically

select and execute the best process for a specific application.

Key to the success of the CA is the development of a system language for

describing process workflow. Without a robust process language the system would not

be able to understand workflows with complex bifurcation or nested sub-processes. The

Business Process Execution Language for Web Services (BPEL) developed by Microsoft

and IBM provides a standard format for defining the structure of a process [38]. BPEL is

an XML based language that describes complex process structures, attributes, and

external processes relationships. Process languages such as BPEL may be helpful for

describing complex processes [31]; particularly processes that result require any recursive

behavior or systems that employ sophisticated ontology.

 40

While the actual process description language used by the CA is not important, it

is critical that the CA does at least provide the minimum information required by the

execution agents for dynamic web service binding and invocation. A simple process

language was developed for this research that described a process by web services linked

by similar inputs and outputs. Using a simple language of this type limited initial

prototypes to linear processes with simple bifurcation.

4.1.3 Workflow Execution Agent

The workflow execution agent (EA) is responsible for controlling the execution of

a specific engineering process. While both the MA and CA have a fixed objective,

updating the web service and workflow registries, the system framework may have any

number of different EAs each with a different execution objective. These objectives

could include multi-disciplinary optimization, sensitivity studies, uncertainty

propagation, or artifact generation. Because agent technologies enable intelligent and

autonomous action, product development systems can capitalize on unused resources

(e.g. network or computing system downtime) to train neural nets, explore design space,

or improve individual agent knowledge base.

The communication and interaction between multiple EAs and other system

agents must be handled by a multi-agent environment capable of managing agent

interaction to meet any system-level goals specified for the product development process.

EAs embody the intelligence needed for truly autonomous actions, while the MA and CA

function to provide the semantic information required by the EAs. The EAs are the

agents that answer the system-level engineering process questions (e.g. Which design

 41

provides maximum life? How do I minimize cost?) These top level questions are posed

to the EAs which in turn explore the variety of workflow paths identified by the CA to

find answers to these questions. This method of problem decomposition provides

significant flexibility in posing the top level questions by answering the question with

different workflow paths, technologies, or combinations of process task modules.

Improvements in process technologies or changes in process steps can be

automatically implemented by the EAs once the CA is notified of changes to the set of

available services by the MA, updates the workflow repository with new process maps,

and then provides notification of change to the EAs. To illustrate this concept consider

an engineering process for predicting deflection in some product component. The

original process may include the use of traditional closed-form linear equations captured

in a spreadsheet, and the initial workflow paths identified by the CA might include this

spreadsheet implemented as a stand alone web service. If later in the product life it is

determined that more sophisticated deflection results are needed, a finite-element

technique might be developed as a web service and the module introduced into the

system. A secondary workflow path would be identified by the CA which would include

the finite-element module instead of the spreadsheet. Determination of which workflow

to use would be determined by the EAs based upon criteria most likely linked to an

engineering process question such as quality of prediction based on field data or

empirical correlations.

 42

4.2 Identifying and Creating Web Services

Determining the web services (i.e. process task modules) to use in the system

framework requires following a theoretic process decomposition to extract the specific

tasks associated with a given product development process. This decomposition involves

identifying the associated input and output variables of a process task, backwards

mapping the dependencies, and defining the tasks that convert the inputs to the outputs.

Backwards mapping is a simple dependency resolution process starting with the desired

result of the process and working backwards to identify the required inputs.

This decomposition links the inputs and outputs as well as the tasks into a single

theoretical integrated workflow as described by Roach et al [4] in the formulation of the

PTS. This procedure identifies the necessary low level process tasks, referred to by

Roach as intermediate mapping functions, which link the system inputs and outputs.

Each of the identified intermediate maps then must be structured and implemented as a

web service. In this way, all necessary tasks for the specific product development

process are defined, allowing complete coverage for the overall product development

process. The integration of these web services into the specific process is left to the CA.

Once the services are identified, they need to be exposed for consumption by the

agent-based framework. This can be accomplished by creating a web service for each

process task module in the product development process. Although web service

technologies are focused on set description and communication standards, there are a

number of different methods for implementing these standards. The solution outlined in

this paper does not require that any one particular solution be used. However, the

 43

selected web service implementation must provide for a dynamic method for binding to

and consuming the web services. Some existing web service APIs and autonomous agent

development tools such as the JADE platform provide the necessary resources for

creating dynamic web service-agent interactions [26].

The CA must follow some type of system language in order to successfully map

the potential workflow paths. A system language is a common syntax for defining the

process task inputs and outputs. Decomposition and web service creation has a

significant impact on the common system language that will be used to define the service

inputs and outputs. In more complex systems a simple system language may not be

sufficient for describing all potential links between services or may be overly restrictive.

In this case, detailed system ontology can be used to create object-oriented structure for

the system language. Once the system language is determined all web services must

represent their different operations in this format, whether by exposing the information

through a semantic description format or by reporting this information through

executable methods.

 44

CHAPTER 5 RESULTS

5.1 Case Study #1 – Ring Example

To better illustrate the proposed method, an example case study was created. In

this case study, a generic engineering process was selected and modeled as a sequential

process that connects four components together into a ring structure. This could

represent an assembly of four parts, an interlinked analysis process, etc. In this example,

the ring is constructed by assembling parts A-B-C-D in the correct order. It is important

to note that part A cannot be added to C without first adding either B or D. A similar rule

also holds for parts B, C, and D. Each action box shown in Figure 5.1 represents

potential process tasks, services, or the action of particular agents. For the proposed

method to be successful, the prototype system must be capable of finding all possible

workflow paths, identifying and executing a workflow path based on some criteria, and

be able to handle creation, removal, or changes to the system services without requiring

any additional system-level software modifications.

The schematic shown in Figure 5.1 represents the results of the backwards

mapping process and decomposition which can now be used to identify the tasks or

services to be created. The process of creating the ring structure can be decomposed into

 45

four separate process tasks: Add A, Add B, Add C, and Add D. Each of the process

boxes in the schematic can be subdivided into these sub-functions. In most cases, only the

“leaf-node” functions need to be captured as services.

B
A

C
D
A

D

B
C

C
D

A
B A

BD
C

C B+
BC

B D
+CD BCD

A
+

CDA
B
+

DAB
C
+

CD
C A

+DA
DA

D B
+AB

AB
BC

C D
+

D A
+

A B
+

+
CA

D
+ABC

Figure 5.1 Process schematic for creation of basic ring structure

For this study, the service action was represented by a simple mathematical

operation and a quality metric representing process variation was arbitrarily assigned for

each operation. In order to create process paths that would have a different total

variation, a dependency was created between the order in which a process task was

executed and the variation in the operation. For example, if “Add A” service was

executed first it might have a lower process variation than if it was executed last.

After identifying the services needed for the ring creation process, the web service

framework was created. For this prototype, XFire, an open source web services API [39]

 46

based on the Java programming language, was used. The primary motivation for

selecting XFire over other more widely used solutions by IBM, Microsoft, or Sun

Microsystems was the ease of creating services for automatic binding and invocation.

Most commercial solutions for developing a web service framework require that the

programmer have some knowledge of the specific services that will be consumed. For

each service in the system a custom function call or other individualized method for

service consumption must be developed prior to run time. Without a more generic

method for consuming a web service, a client (the execution agents in the system) will

not be able to dynamically adapt to changes in process workflow or available services

without reprogramming the web service-client interface.

XFire, unlike other solutions, has a simple, generic interface for consuming web

services. Clients developed using this API use a single function that can be executed

with input and output parameters not specific to any one web service. An XFire web

service can provide the function parameters as part of a semantic description allowing the

client to use the same interface for all web services in the system. Because the XFire

client uses a generic method for consuming web services, any changes to process

workflows or individual services can be incorporated during run time. No human input is

required and the system can adapt to changes of this type automatically. In addition to

providing a flexible interface for web service consumption, XFire also allows for web

services to be created from basic Java objects. This reduces much of the initial

complexity associated with developing a specific web service implementation, which is

often a major hurdle in creating web service applications.

 47

In order to facilitate the population of the web service registry, each service

implemented a number of reporting methods that could be called by the agent framework

to glean the additional information necessary for workflow creation and dynamic

execution of the services. Because this approach represents the web service details as

executable reporting methods rather than through a more descriptive semantic web

service interface, it was necessary to create registry management agents that would

update the web service registry in two separate steps. First the agent must search the web

services deployment file system for the “services.xml” file that is created as part of XFire

development. From this file the names and locations of all available services is

registered. Once this information has been determined the agent is then able to call the

standard reporting methods (which might be unique to each individual system) to update

the registered services with the remaining descriptive information. Figures 5.2 and 5.3

show the MA adding the available web services and updating their descriptive

information in this two-step process.

Figure 5.2 Registered web services from “services.xml” file

 48

Figure 5.3 Registry update from web service reporting methods

In addition to the reporting methods, each web service also implements a unique

method representing the core task operation. Because each service operation can be used

in a number of possible ways (i.e. add A as the initial element, add A to B only, add A to

D only, add A to BC, add A to CD, add A to BCD), each service reports correlating sets

of input requirements, output produced, and variability for different operation use cases.

The input and output sets were defined according to a simple system language that would

allow inputs and outputs from different services to be matched during workflow

mapping.

Once the process services were created and registered the CA was able to map all

sixteen available processes, two of which are shown in Figure 5.4. Each of these

workflow paths was stored in the workflow repository along with the total variation of

each process. The EA was implemented so as to select the process with the lowest total

variation. Figure 5.5 shows the successful execution of the optimal workflow path based

on this criterion.

 49

Figure 5.4 Example workflow paths mapped by configuration agent

 50

Figure 5.5 Workflow execution by process execution agent

In order to demonstrate the dynamic nature of the system framework, an

alternative process task was created that would perform the same operations as the “Add

B” web service using a different method which lowered variability. As a result, all

workflow paths that included this new service would have a lower total variability than

those using the original “Add B” service. Creation and registration of the alternative

 51

service required only that a new Java object be created from the same template as the

other services and that the agent framework recognize the new service, add it to the

registry, and map any new workflow paths. After the web service registry was updated

the CA was able to find the additional 16 workflow paths and the new optimal path which

included the alternative service was selected and executed by the EA. The results from

this procedure can be seen in Figures 5.6 and 5.7.

Figure 5.6 Registry update with alternative web service

 52

Figure 5.7 Workflow execution with alternative web service included

5.2 Case Study #2 – Impeller Example

In order to demonstrate the application of the proposed method to a practical

engineering problem, an automated modeling and analysis process for an impeller design

was used for this case study. Although the core operations for the necessary web services

 53

used in this example required more sophistication and interaction with external

applications, the method for creating the services and deploying them in the agent-based

framework remained the same.

The first step in creating the impeller design framework was to identify the

individual process tasks using a backwards mapping technique. It is important that these

tasks are first defined on a general level and are not coupled to any specific CAx tools.

This enables a necessarily flexible process that is driven by proven engineering design

practices rather than the current implementation of available design tools. For this case

study the workflow was subdivided into the following tasks:

1. Update the parametric models for structural and air solid wedges.

2. Create surface and volume meshes for the air solid wedge.

3. Determine surface pressure values for the air solid wedge.

4. Create surface and volume meshes for the structural wedge.

5. Determine maximum stress values for the structural wedge.

Once this general workflow was identified, specific CAx tools and

implementation methods were selected for each process task and their function(s)

embedded in an XFire web service. In this example, the process task modules and the

resulting web service implementation were far more sophisticated than the ring example.

While successful automation of these process tasks required a programmatic interface

with parametric CAD models as well as parametric finite-element models for both CFD

and stress calculations, the workflow was much less sophisticated than the ring example

 54

since it was a simple linearly sequential process. Most practical engineering processes

follow a quasi-linear sequential process and are made up of sophisticated services.

In addition to implementing the process design tasks as web services, a system

process language was identified from the inputs and outputs of the individual modules.

Because the process language followed the same patterns used in the ring example no

additional changes were required to the configuration agent. Changes were made,

however, to the execution agent. Because there was not a measurable metric for each

process module the variation calculations were removed from the execution agent.

Like the ring example, the web service registry was populated by first identifying

available modules from the “services.xml” file and then executing predefined reporting

methods to provide the necessary execution details and semantic information for each

process task (e.g. inputs, outputs, network location). For this case study Derby, an open

source database based on Java, JDBC, and SQL standards, was used to store the agent

information. A separate instance of the Derby database was also used to store the single

linear workflow identified by the CA. Figure 5.8 shows the MA adding the process tasks

to this database and Figure 5.9 shows the linear process mapped by the CA.

In order to maintain flexibility, the only system level information required by the

individual web services is the name and location of a user specific working directory.

Web services use this directory as a repository for inputs, outputs, and any resulting

design artifacts, eliminating any need for communication between the services. The

 55

execution agent’s responsibility is to provide the location of the working directory to all

web services during execution.

Figure 5.8 Registered web services for impeller design process

Figure 5.9 Impeller design workflow path mapped by the configuration agent

 56

For this case study the EA is represented by a Java servlet that receives the name

and location of the working directory, impeller blade angles, and number of impeller

blades as user input. Following the linear process identified by the CA and stored in the

Derby database, the execution agent invokes the CAD service which uses the user input

parameters to update a parametric model of the impeller in CATIA V5. Once the model

has been updated, a structural wedge and air solid wedge are created and saved as IGES

files in the working directory. The IGES file is a neutral data format that enables the

geometric definition of the impeller to be interpreted by a wide range of CAx tools.

Figure 5.10 shows the actual IGES data for the structural wedge while Figure 5.11 shows

the CATIA V5 interpretation of this information

Figure 5.10 IGES data for the impeller structural wedge

 57

Figure 5.11 CATIA representation of the structural wedge

After receiving confirmation from the CAD service that it has finished executing

and successfully created the IGES files for the impeller wedges, the EA invokes the mesh

service. This service uses HyperMesh to build surface and volume meshes for finite-

element calculations from the air solid IGES file stored in the working directory. Once

created, the meshes are then saved to this same directory. Figure 5.12 shows the surface

mesh for the air solid wedge created by HyperMesh.

 58

Figure 5.12 Surface mesh for the air solid wedge produced by HyperMesh

The impeller design process continues after the mesh service has executed, stored

the output in the working directory, and returned control to the EA. The next step

identified by the CA is providing pressure values from a fluid analysis package such as

Fluent. The EA accomplishes this by invoking the pressure service with the working

directory as input. Fluent uses the HyperMesh output files and iterates through air flow

calculations to determine the pressure on the impeller blade surfaces. The final solution

is then written to a text file and saved in the working directory. Figure 5.13 is a

screenshot of the pressure distribution that is also output to the working directory by this

service.

 59

Figure 5.13 Fluent pressure distribution for the air solid wedge

Execution of the stress analysis service follows a procedure very similar to the

operation of the pressure service. The stress analysis service both writes and runs an

ANSYS macro that inputs the pressure data from the working directory to produce stress

values for the structural wedge. Figure 5.14 shows the Von Mises stress plot that is part

of the service output.

 60

Figure 5.14 Stress plot produced by ANSYS for the structural wedge

It is important to note that because this design process is composed of self

contained services integrated into a flexible framework introduction of a new CAx tool or

moving an existing tool would only require that the registry be reinitialized. The

dynamic nature of the framework will then create a new workflow using the new web

service and add this to the database where it can be accessed for execution by the EA.

Sophisticated workflow paths that include bifurcation, loops, etc. can be handled using

process execution languages such as BPEL or by introducing recursion and hierarchy into

the service definitions [6] without changing the methods already presented.

 61

 62

CHAPTER 6 CONCLUSION

The presented method of establishing a dynamic system framework that divides

the software maintenance into development of a generic system framework and specific

process task modules allows companies to better understand and manage custom software

investment. As a result, a company can implement a management strategy to maintain a

system framework for all automated engineering projects and then provide templates for

process task module development. The web services can be created and managed by the

engineers involved with the specific process. Typically they are the most knowledgeable

about the specific task and the tools used to accomplish it and therefore are the most

qualified to create and manage the specific process task module. Any requirement to

know the system-level protocols for tying task modules together into automated process

systems is eliminated.

The method presented therefore provides a way to better match the normal

decomposition of knowledge and tasks based on personnel involved in the process and a

more manageable approach to software development and maintenance. This will

hopefully eliminate any resistance to engage in process automation projects require to

truly implement mass customization.

 63

The goals outlined in the introduction of this work were met during the course of

this research. First, a flexible design system was defined using web service and agent

technologies. Specifically, the definition of a Web Service Registry Agent, Workflow

Configuration Agent, and Workflow Execution Agent was developed along with a

framework for integrating these agents. A process for identifying and creating web

services from a specific process was also presented. Finally, the feasibility of the

proposed system was demonstrated with a generic example (the ring structure) and a

specific engineering example (the impeller design).

Future work includes the implementation of hierarchy, recursion, and other

sophisticated methods to allow bifurcation and looping in processes. More sophisticated

implementation of EAs to accomplish multi-disciplinary optimization, design studies, etc.

is also needed. In addition, future research should include developing methods to

analyze and contrast competing workflow paths to develop improved efficiency and

scheduling.

 64

CHAPTER 7 REFERENCES

[1] Tseng, Mitchell M. and Jianxin Jiao. “Mass Customization.” In Handbook of
Industrial Engineering: Technology and Operations Management, 3rd Edition, ed.
Gravriel Slavendy, 685. Hoboken, NJ: John Wiley & Sons, Inc., 2001.

[2] Pine, Joseph B. Mass Customization: The New Frontier in Business Competition.

Boston: Harvard Business School Press, 1993.

[3] Lander, Susan E. “Issues in Multi-agent Design Systems.” IEE Expert, 12, no. 2

(1997): 18-26.

[4] Roach, Gregory M., Cox, Jordan J., and Carl D. Sorenson. “The Product Design

Generator: A System for Producing Design Variants.” International Journal of
Mass Customization, 12, no. 1: 2005.

[5] Roach, Gregory M. “The Product Design Generator – A Next Generation Approach to

Detailed Design.” Ph.D. diss., Brigham Young University, 2003.

[6] Young, Jared M. “Nesting Automated Design Modules in an Interconnected

Framework.” M.S. thesis, Brigham Young University, 2005.

[7] Wooldridge, Michael and Nicolas R. Jennings. “Pitfalls of Agent-oriented

Development.” In Proceedings of the Second International Conference on
Autonomous Agents held in Minneapolis, MN 10-13 May 1998, 385-391.

[8] Woofinden, M. J. “Quantifying Reuse in Computer Models.” M.S. thesis, Brigham

Young University, 2003.

[9] Feng, Shaw C. “Preliminary Design and Manufacturing Planning Integration Using

Web-based Intelligent Agents.” Journal of Intelligent Manufacturing 16 (2005):
423-437.

[10] Shen, Weiming, Norrie, Douglas H. and Jean-Paul A. Barthès. Mult-agent Systems

for Concurrent Intelligent Desing and Manufacturing. London, England: Taylor
and Francis, 2001.

 65

[11] Darr, Timothy P. and William P. Birmingham. “Automated Design for Concurrent
Engineering. “ IEEE Expert 9 (1999), no. 5: 35-42.

[12] Campbell, Matthew I., Cagan, Jonathan, and Kenneth Kotovsky. “A-Design: An

Agent-based Approach to Conceptual Design in a Dynamic Environment.”
Research in Engineering Design 11 (1999): 172-192.

[13] Campbell, Matthew I., Cagan, Jonathan, and Kenneth Kotobsky. “The A-Design

Approach to Managing Automated Design Synthesis.” Research in Engineering
Design 14 (2003): 12-24.

[14] Rosenman, Mike and Fujun Wang. “CADOM: A Component Agent-based Design-

Oriented Model for Collaborative Design.” Research in Engineering Design 11
(1999): 193-205.

[15] Parunak, H.V.D., Ward, A., Fleischer, M. and J. Sauter. “A Marketplace of Design

Agents for Distributed Concurrent Set-based Design.” In ISPE/CE97: Fourth
ISPE International Conference on Concurrent Engineering: Research and
Applications held in Troy, MI 20-22 August 1997.

[16] Sun Developer Network. “Service-Oriented Architecture and Web Services:

Concepts, Technologies, and Tools.”
http://java.sun.com/developer/technicalArticles/WebServices/soa2/index.html
(valid as of Nov. 2006).

[17] Web Services Interoperability Organization. “WS-I Basic Profile Version 1.1.”

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html (valid as of Nov.
2006).

[18] W3C. “Extensible Markup Language (XML) 1.1.” http://www.w3.org/TR/xml11/

(valid as of Nov. 2006).

[19] W3C. “SOAP Version 1.2 Part 0: Primer.” http://www.w3.org/TR/soap12-part0/

(valid as of Nov. 2006)

[20] Wooldridge, Michael. “Intelligent Agents” In Multi-agent Systems, ed. G. Weiss.

Boston: The MIT Press, 1999.

[21] Wooldridge, Michael and Ian Dickinson. “Agents are not (Just) Web Services:

Considering BDI Agents and Web Services.” In Proceeding of the 2005
Workshop on Service-oriented Computing and Agent-based Engineering
(SOCABE 2005) held in The Hague, Netherlands, Jul 2005.

[22] Wooldridge, Michael and Nicholas R. Jennings. ”Intelligent Agents: Theory and

Practice.” Knowledge Engineering Review, 10, no. 2 (1995).

 66

[23] Russell S. and P. Norvig. Artifical Intelligence: A Modern Approach. Prentice-Hall,
1995.

[24] Foundation for Intelligent Physical Agents. “FIPA ACL Message Structure

Specification.” http://www.fipa.org/specs/fipa00061/index.html (valid as of Nov.
2006).

[25] W3C Web Service Architecture Working Group. “ Web Service Architecture.”

http://www.w3.org/TR/ws-arch (valid as of Nov. 2006).

[26] Greenwood, Dominic and Monique Calisti. “Engineering Web Service-Agent

Integration” In IEEE Systems, Cybernetics and Man Conference, The Hague,
Netherlands, October 2004.

[27] Java Agent DEvelopment Framework. “An Open Source Platform for Peer-to-Peer

Agent Based Applications.” http://jade.tilab.com/ (valid as of Nov. 2006).

[28] The Foundation for Intelligent Physical Agents. “Welcome to FIPA!”

http://www.fipa.org/ (valid as of Nov. 2006).

[29] Maximilien, E. M. and M.P. Singh. “Agent-based Architecture for Autonomic Web

Service Selection.” In Proc. of the 1st International Workshop on Web Services
and Agent Based Engineering, Sydney, Australia, July 2003.

[30] Buhler, P., Vidal, J. N. and H. Verhagen. “Adaptive Workflow = Web Services +

Agents.” In Proc. of the International Conference on Web Services, Las Vegas,
NV July 2003. 131-17. CSREA Press.

[31] Laukkanen, M. and H. Helin. “Composing Workflows of Semantic Web Services.”

In Proc. of the 1st International Workshop on Web Services and Agent Based
Engineering, Sydney, Australia, July 2003.

[32] Sycara, K., Paolucci, M., Soudry, J., and N. Srinivasan. ”Dynamic Discovery and

Coordination of Agent Based Semantic Web Services.” IEEE Internet Computing.
May-Jun, 2004.

[33] McIlraith, S. A., Son, T.C. and Zeng Honglei. “Semantic Web Services.” IEEE

Intelligent Systems. Mar-Apr, 2001.

[34] Hendler, J. “Agents and the Semantic Web.” IEEE Intelligent Systems. Mar-Apr,

2001.

[35] IBM. “Web Services by IBM: UDDI.” http://www-

306.ibm.com/software/solutions/webservices/uddi/shutdown_faq.html (valid as of
Nov. 2006).

 67

[36] W3C. “OWL-S: Semantic Markup for Web Services.”
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ (valid as of
Nov. 2006).

[37] W3C. “Semantic Annotations for WSDL.” http://www.w3.org/TR/sawsdl/ (valid as

of Nov. 2006)

[38] IBM Developer Works. “Business Process Execution Language for Web Services.”

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf (valid as of
Nov. 2006)

[39] Codehaus XFire. “Codehaus XFire.” http://xfire.codehaus.org/ (valid as of Nov.

2006)

[40] Baker, Albert D., Parunak, Van Dyke H., and Kutluhan Erol. “Agents and the

Internet: Infrastructure for Mass Customization.” IEE Internet Computing. 1999.

[41] Sun, J., Zhang, Y. F. , and A. Y. C. Nee. “A Distributed Multi-agent Environment

for Product Design and Manufacturing Planning.” International Journal of
Production Research, 39, no. 4 (2001), 625-645.

[42] Shen, Weiming, and Ghenniwa. “A Distributed Multidisciplinary Design

Optimization Framework Based on Web and Agents.” In Proceedings of the 2002
Design Engineering Technical Conferences, Montreal, Canada, DETC2002/CIE-
34461.

[43] Wang, S.L, Xia, H., Liu, F., Tao, G.B., and Z. Zhang. “Agent-Based Modeling and

Mapping of a Manufacturing System.” Journal of Materials Processing
Technology. 129 (2002): 518-523.

[44] Anosike, Anthony and David Zhang. “An Agent-Oriented Modelling

Approach for Agile Manufacturing.” School of Engineering and Computer
Science, University of Exeter, Exeter, United Kingdom, 2000.

[45] Shen and Weiming. “Distributed Manufacturing Scheduling Using Intelligent

Agents.” IEE Intelligent Systems. Jan-Feb 2002, 88 - 94.

[46] Skolicki, Zbigniew and Tomasz Arciszewski. “Intelligent Agents in Design.” In

Design Engineering Technical Conferences, Chicago, Illinois, USA, 2003.
DETC2003/DTM-48671.

[47] Zha, Xuan F., Li, Ling L., and Samuel Y. E. Lim. “A Multi-Agent Intelligent

Environment For Rapid Assembly Design.” In Planning and Simulation,
Design Engineering Technical Conferences, Salt Lake City, UT, USA, 2004.
DETC2004-57713.

 68

[48] Nanda, Jyotirmaya, Thevenot, Henri J., Simpson, Timothy W., Kumara, and R.T.
Soundar. “Exploring Semantic Web Technologies for Product Family Modeling.”
In Design Engineering Technology Conferences, Salt Lake City, UT, 2004.
DETC2004-57683.

[49] Hao, Qi, Shen, Weiming, Zhang, Zhan, Park, Seong-Whan, Lee, and Jai-Kyung. “A

Multi-Agent Framework for Collaborative Engineering Design and
Optimization”, Design Engineering Technical Conferences, Salt Lake City, UT,
2004. DETC2004-57686.

[50] Knapik, Michael and Jay Johnson. Developing Intelligent Agents for Distributed

Systems. New York: McGraw-Hill, 1998.

[51] Murch, Richard and Tony Johnson. Intelligent Software Agents. Upper Saddle River,

NJ: Prentice Hall PTR, 1999.

 69

 70

APPENDIX A GUIDELINES FOR
IMPLEMENTING THE SYSTEM
FRAMEWORK (README.TXT)

1. Download/Install the following in the folder C:\dev -

 Netbeans 5.0 (http://www.netbeans.info/downloads/download.php?type=5.0)
 - Download the IDE + Application Server Bundle.
 - This will give you an integrated Tomcat server and

 integrated Derby database.
 - There is no need to install a seperate instance of these

 programs.
 - Install Netbeans in C:\dev\netbeans-5.0
 - Install Sun App Server in C:\dev\sun-appserver-8.2

 XFire (http://xfire.codehaus.org/Download)
 - Download the binary distribution in zip package.
 - To install just extract to the C:\dev folder.

 Maven (http://maven.apache.org/download.html)
 - Download the binary distribution in zip package.
 - To install just extract to the C:\dev folder.

 Ring Example (http://www.et.byu.edu/~djk22)

- After downloading/extracting move the "projects" and
 "data" folders to C:\dev

 ***Note: If you use something other than C:\dev you will need to make

some changes in the registry agent.

2. Set the Maven environment variables:
 - Right click on "My Computer" and select "Properties"
 - Advanced -> Environment Variables
 - To the system path add the maven bin path (i.e. C:\dev\maven-2.0.4\bin)
 - Add a new variable call JAVA_HOME set to the value of the

 Installed jdk (i.e. C:\Program Files\Java\jdk1.5.0_06)

3. Set the Netbeans parameters for Derby
 - Open Netbeans
 - Tools -> Options -> Advanced Options -> IDE Configuration ->

 Server and External Tool Settings -> Derby Database
 - Make sure that the derby location is correct

 (i.e. C:\dev\sun-appserver-8.2\derby)
 - Set the database location to C:\dev\data

 71

4. Start the database
 - Tools -> Derby Database -> Start Derby Server

5. Fix any driver errors
 - Expand "Databases" in the runtime tree
 - Expand "Drivers"
 - Fix any drivers in the list with a red cross
 - Right click on the driver and select "Customize"
 - Add the correct path and remove the incorrect path
 - Click on the find button
 - Click on OK

6. Create a new Derby connection
 - Right click on the "Apache Derby (Net)" driver and

 select "Connect Using..."
 - Change the Database URL to jdbc:derby://localhost:1527/APDLdb
 - Change the User Name to apdl
 - Change the Password to apdl
 - Click on OK
 - Verify connection by expanding the connection and then

 expanding "Tables" to see database tables
 - View table data by right clicking on a table and

 selecting "View Data..."

7. Copy Derby jar files to Tomcat directory
 - Copy all the jar files in C:\dev\sun-appserver-8.2\derby\lib
 - Paste all the copied files in

 C:\dev\netbeans-5.0\enterprise2\jakarta-tomcat-5.5.9\common\lib

8. Add a new Tomcat user
 - Open the tomcat-users.xml file located at

 C:\Documents and Settings\UserName\.netbeans\5.0\
 jakarta-tomcat-5.5.9_base\conf

 - Add a new user with your desired username and password
 - Make sure you include both the manager and admin roles

8. Add the "APDLRegistry" and "APDLProcessAgent" projects
 (NOT THE "APDLServices" PROJECT!).
 - File -> Open Project...

9. Create a user library for the XFire jars
 - Tools -> Library Manager -> New Library...
 - Add C:\dev\xfire-1.1.2\xfire-all-1.1.2.jar to the new library
 - Add all the jar files found in C:\dev\xfire-1.1.2\lib

10. Add the new library to the APDLProcessAgents project
 - Right click on project libraries and select "Add Library..."

11. Start the Tomcat server
 - In the Netbeans runtime tab right click on the Tomcat

 server and select "Start"

12. Build and deploy projects to the Tomcat server
 - Right click on project and select "Build Project"

 72

 - Right click on project and select "Deploy Project"

13. Build the web services
 - Browse to the APDLServices project folder and run the maven.bat file
 - After maven has downloaded all the files from the repository a

 new folder named "target" will have been created
 - Make sure that the file APDLServices-1.0.war exists in the

 "target" folder

14. Deploy the web services
 - Browse to http://localhost:8084
 - Select the Tomcat Manager
 - Input the username and password you created
 - From the "WAR file to deploy" section browse to the war file

 in the "target" folder and deploy the file

15. Run the agents
 - Browse to http://localhost:8084/APDLRegistry/WSRegistry to call

 the first servlet (this adds the name and wsdl location to
 the database)

 - Browse to http://localhost:8084/APDLProcessAgents/KnowledgeAgent
 to update the registry entries with additional details

 - Browse to
 http://localhost:8084/APDLProcessAgents/

 ConfigurationAgent?endpoint=ABCD to backwards map all the processes
 - Browse to http://localhost:8084/APDLProcessAgents/ExecutionAgent

 to run the best process

***Note: The alternate B service can be removed by removing its entry

 in the "services.xml" file located at C:\dev\projects\APDLServices\
 src\main\META-INF\xfire. You will then need to delete the "target"
 folder and rerun the maven batch file. If you clear the registries
 (run a view data command in Netbeans then replace the text "select *"
 with "delete" and rerun the script) you can rerun the agents to map
 the process without the alternate agent. No changes need to be made
 to the registries to add a service.

 73

 74

APPENDIX B RING EXAMPLE – CODE

Services.xml

<b

eans xmlns="http://xfire.codehaus.org/config/1.0">

 <service>
 <name>ServiceA</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.ServiceASEI</serviceClass>
 <implementationClass>org.apdl.services.ServiceAImpl</implementationClass>
 </service>

 <service>
 <name>ServiceB</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.ServiceBSEI</serviceClass>
 <implementationClass>org.apdl.services.ServiceBImpl</implementationClass>
 </service>

 <service>
 <name>ServiceC</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.ServiceCSEI</serviceClass>
 <implementationClass>org.apdl.services.ServiceCImpl</implementationClass>
 </service>

 <service>
 <name>ServiceD</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.ServiceDSEI</serviceClass>
 <implementationClass>org.apdl.services.ServiceDImpl</implementationClass>
 </service>

 <service>
 <name>AltServiceB</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.AltServiceBSEI</serviceClass>
 <implementationClass>org.apdl.services.AltServiceBImpl</implementationClass>
 </service>

</beans>

 75

WSRegistry.java

/*
 * WSRegistry.java
 *
 * Created on June 6, 2006, 7:26 PM
 */

package org.apdl.servlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.*;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

/**
 *
 * @author APDL
 * @version
 */
public class WSRegistry extends HttpServlet {
 /**
 * Parameters for "services.xml" file search
 */
 private PrintWriter out;
 private static String webServicesFile = "services.xml";
 private static String filePath = "C:/dev/projects/APDLServices";
 private boolean fileFound = false;
 private String webServiceDoc = null;

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet WSRegistry</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet WSRegistry at " + request.getContextPath () +
"</h1>");

 /**
 * Database connection parameters

 76

 */
 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/
 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get existing services from database
 **/
 ResultSet rs = null;
 try {
 String sql = "SELECT service_name FROM apdl.web_services";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rs = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve services from database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 ArrayList<String> existingServices = new ArrayList<String>();
 boolean databaseEmpty = true;
 try {
 while (rs.next()) {
 String service = rs.getString("service_name");
 existingServices.add(service);
 databaseEmpty = false;
 }
 rs.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing service
information!</h3>");
 }

 /**
 * Find "services.xml" deployment description file
 */
 File dir = new File(filePath);
 try {
 findFile(dir);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to find file \"services.xml\"!</h3>");
 }

 Document webServices = null;

 77

 try {
 File servicesXML = new File(webServiceDoc);
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 dbf.setNamespaceAware(true);
 DocumentBuilder documentBuilder = dbf.newDocumentBuilder();
 webServices = documentBuilder.parse(servicesXML);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to parse file \"services.xml\"!</h3>");
 }

 /**
 * Parse web service names
 */
 ArrayList<String> serviceNames = new ArrayList<String>();
 ArrayList<String> serviceNamespaces = new ArrayList<String>();
 NodeList nl = webServices.getElementsByTagName("service");
 for (int n = 0; n < nl.getLength(); n++) {
 Element service = (Element) nl.item(n);
 String name =
service.getElementsByTagName("name").item(0).getFirstChild().getNodeValue();
 String namespace =
service.getElementsByTagName("namespace").item(0).getFirstChild().getNodeValue(
);

 if (databaseEmpty == false) {
 boolean matchFound = false;
 Iterator iter = existingServices.iterator();
 while (matchFound != true && iter.hasNext()) {
 String existingName = (String)iter.next();
 if (name.equals(existingName))
 matchFound = true;
 }
 if (matchFound == false) {
 serviceNames.add(name);
 serviceNamespaces.add(namespace);
 }
 }

 if (databaseEmpty == true) {
 serviceNames.add(name);
 serviceNamespaces.add(namespace);
 }
 }

 /**
 * Get url for servlet context
 */
 StringBuffer url = new StringBuffer();
 url.append(request.getScheme() + "://");
 url.append(request.getServerName());
 if(request.getServerPort()!=80)
 url.append(":" + request.getServerPort());
 String uri = url.toString();

 /**
 * Add services to database
 **/
 for (int i=0; i<serviceNames.size(); i++) {
 String serviceName = serviceNames.get(i);
 String serviceNamespace = serviceNamespaces.get(i);

 78

 String wsdlLocation = uri + "/" + serviceNamespace + "/" +
serviceName + "?wsdl";

 try {
 String sql = "INSERT INTO apdl.web_services (service_name,
wsdl_location) VALUES (?, ?)";
 PreparedStatement psSet = conn.prepareStatement(sql);
 psSet.setString(1, serviceName);
 psSet.setString(2, wsdlLocation);
 psSet.execute();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load service(s) into
database!</h3>");
 }
 out.print("<h3><i>" + serviceName + "</i> added to the
registry.</h3>");
 }

 /**
 * Close database connection
 */
 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Error during file search!</h3>");
 }

 /**
 * Close HTML output
 */
 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">
 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";

 79

 }
 // </editor-fold>

 /**
 * Search method for finding the file "services.xml"
 */
 protected void findFile(File dir) {
 if (fileFound == false) {
 try {
 if (dir.isDirectory()) {
 String[] children = dir.list();
 String filename;
 if (children != null) {
 for (int i=0; i<children.length; i++) {
 filename = children[i];
 File dirChild = new File(dir, children[i] + "\\");
 if (dirChild.isDirectory()) {
 findFile(dirChild);
 } else {
 if (filename.equals(webServicesFile)) {
 webServiceDoc = dir + "\\" + filename;
 fileFound = true;
 }
 }
 }
 }
 }
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }
 }
 }

}

 80

KnowledgeAgent.java

/*
 * KnowledgeAgent.java
 *
 * Created on June 6, 2006, 11:29 PM
 */

package org.apdl.agents;

import java.io.*;
import java.net.URL;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.Pattern;
import org.codehaus.xfire.client.Client;

/**
 *
 * @author APDL
 * @version
 */
public class KnowledgeAgent extends HttpServlet {

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet KnowledgeAgent</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet KnowledgeAgent at " + request.getContextPath
() + "</h1>");

 /**
 * Database connection parameters
 */
 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/

 81

 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get web service wsdl locations from registry
 **/
 ResultSet rs = null;
 try {
 String sql = "SELECT wsdl_location FROM apdl.web_services";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rs = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve services from database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 ArrayList<String> serviceInfo = new ArrayList<String>();
 try {
 while (rs.next()) {
 String wsdl = rs.getString("wsdl_location");
 serviceInfo.add(wsdl);
 }
 rs.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing service
information!</h3>");
 }

 for (Iterator iter = serviceInfo.iterator(); iter.hasNext();) {
 String wsdlLocation = (String)iter.next();
 String serviceName = null;
 String serviceDescription = null;
 String databaseName = null;
 String operationName = null;
 String inputString = null;
 String outputString = null;
 String variationString = null;

 try {
 Client client = new Client(new URL(wsdlLocation));
 Object[] servResults = client.invoke("getServiceName", new
Object[] {});
 serviceName = (String)servResults[0];

 Object[] descResults = client.invoke("getServiceDescription",
new Object[] {});
 serviceDescription = (String)descResults[0];

 Object[] dataResults = client.invoke("getDatabaseName", new
Object[] {});
 databaseName = (String)dataResults[0];

 82

 Object[] operResults = client.invoke("getOperationName", new
Object[] {});
 operationName = (String)operResults[0];

 Object[] inResults = client.invoke("getInputString", new
Object[] {});
 inputString = (String)inResults[0];

 Object[] outResults = client.invoke("getOutputString", new
Object[] {});
 outputString = (String)outResults[0];

 Object[] varResults = client.invoke("getVariationString", new
Object[] {});
 variationString = (String)varResults[0];

 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to access web service reporting
methods!</h3>");
 }

 try {
 String sql = "UPDATE apdl.web_services SET service_name=?,
service_description=?, " +
 "database_name=?, operation_name=?,
input_string=?, output_string=?, " +
 "variation_string=? WHERE wsdl_location=?";
 PreparedStatement psSet = conn.prepareStatement(sql);
 psSet.setString(1, serviceName);
 psSet.setString(2, serviceDescription);
 psSet.setString(3, databaseName);
 psSet.setString(4, operationName);
 psSet.setString(5, inputString);
 psSet.setString(6, outputString);
 psSet.setString(7, variationString);
 psSet.setString(8, wsdlLocation);
 psSet.execute();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to update web service(s)!</h3>");
 }
 out.print("<h3>Registry entry for <i>" + serviceName + "</i>
updated.</h3>");
 }

 /**
 * Close database connection
 */
 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }

 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">

 83

 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";
 }
 // </editor-fold>
}

 84

ConfigurationAgent.java

/*
 * ConfigurationAgent.java
 *
 * Created on June 7, 2006, 12:09 AM
 */

package org.apdl.agents;

import java.io.*;
import java.net.URL;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.Pattern;
import org.codehaus.xfire.client.Client;

/**
 *
 * @author APDL
 * @version
 */
public class ConfigurationAgent extends HttpServlet {

 private Connection conn = null;
 private PrintWriter out;

 private ArrayList<String> servNames;
 private ArrayList<String> operNames;
 private ArrayList<String> inStrings;
 private ArrayList<String> outStrings;
 private ArrayList<String> varStrings;
 private ArrayList<String> existingMaps;

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 //PrintWriter out = response.getWriter();
 out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet ConfigurationAgent</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet ConfigurationAgent at " +
request.getContextPath () + "</h1>");

 /**
 * Database connection parameters

 85

 */
 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get web service information from registry
 **/
 ResultSet rsServ = null;
 try {
 String sql = "SELECT service_name, operation_name, input_string,
output_string, " +
 "variation_string FROM apdl.web_services";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rsServ = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve services from database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 servNames = new ArrayList<String>();
 operNames = new ArrayList<String>();
 inStrings = new ArrayList<String>();
 outStrings = new ArrayList<String>();
 varStrings = new ArrayList<String>();
 try {
 while (rsServ.next()) {
 String serv = rsServ.getString("service_name");
 servNames.add(serv);

 /* Check for multiple service operaitions */
 String oper = rsServ.getString("operation_name");
 if (oper.indexOf(';') != -1) {
 String input = rsServ.getString("input_string");
 String output = rsServ.getString("output_string");
 String variation = rsServ.getString("variation_string");
 Pattern p = Pattern.compile(";");
 String[] operArray = p.split(oper);
 String[] inArray = p.split(input);
 String[] outArray = p.split(output);
 String[] varArray = p.split(variation);

 operNames.add(operArray[0]);
 inStrings.add(inArray[0]);
 outStrings.add(outArray[0]);
 varStrings.add(varArray[0]);

 86

 for (int i=1; i<operArray.length; i++) {
 servNames.add(serv);
 operNames.add(operArray[i]);
 inStrings.add(inArray[i]);
 outStrings.add(outArray[i]);
 varStrings.add(varArray[i]);
 }
 } else {
 operNames.add(oper);
 String input = rsServ.getString("input_string");
 inStrings.add(input);
 String output = rsServ.getString("output_string");
 outStrings.add(output);
 String variation = rsServ.getString("variation_string");
 varStrings.add(variation);
 }
 }
 rsServ.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing service
information!</h3>");
 }

 /**
 * Get existing process maps from the database
 */
 ResultSet rsMaps = null;
 try {
 String sql = "SELECT process_string FROM apdl.process_maps";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rsMaps = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve process maps from
database!</h3>");
 }

 /**
 * Store existing process information in an ArrayList
 **/
 existingMaps = new ArrayList<String>();
 try {
 while (rsMaps.next()) {
 String map = rsMaps.getString("process_string");
 existingMaps.add(map);
 }
 rsMaps.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing process
information!</h3>");
 }

 /**
 * Map and store process paths
 */
 String endpoint = request.getParameter("endpoint");
 mapProcess("", 0.0, endpoint);

 /**
 * Close database connection
 */

 87

 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }

 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">
 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";
 }
 // </editor-fold>

 /**
 * Method for mapping possible process paths and storing results in a
database
 */
 protected void mapProcess(String mapString, Double varValue, String
findNext) {
 if (findNext.equals("nil")) {
 boolean matchFound = false;
 Iterator iter = existingMaps.iterator();
 while (matchFound != true && iter.hasNext()) {
 String existingMap = (String)iter.next();
 if (mapString.equals(existingMap))
 matchFound = true;
 }
 if (matchFound == false) {
 try {
 String sql = "INSERT INTO apdl.process_maps " +
 "(process_string, process_variation) VALUES (?,
?)";
 PreparedStatement psSet = conn.prepareStatement(sql);
 psSet.setString(1, mapString);
 psSet.setDouble(2, varValue);

 88

 psSet.execute();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load new process into
database!</h3>");
 }

 out.println("<h2>Process added to database!</h2>");
 Pattern pStep = Pattern.compile("[;\\s]+");
 String[] steps = pStep.split(mapString);
 for (int i=0; i<steps.length; i++) {
 out.println("<h3>Step #" + (i+1) + " - " + steps[i] +
"</h3>");
 }
 out.println("<h3>Variation = " + varValue + "</h3>");
 out.println("</br>");
 }
 return;
 }

 for (int i=0; i<operNames.size(); i++) {
 String name = servNames.get(i);
 String operation = operNames.get(i);
 String tempIn = inStrings.get(i);
 String tempOut = outStrings.get(i);
 String tempVar = varStrings.get(i);

 Pattern p = Pattern.compile("[,\\s]+");
 String[] inputs = p.split(tempIn);
 String[] outputs = p.split(tempOut);
 String[] variations = p.split(tempVar);

 for (int j=0; j<outputs.length; j++) {
 if (outputs[j].equals(findNext)) {
 String newMap = name + ":" + operation + ":" + inputs[j] +
"; " + mapString;
 Double newVar = Math.sqrt(Math.pow(varValue,2) +
Math.pow(Double.parseDouble(variations[j]),2));
 mapProcess(newMap, newVar, inputs[j]);
 }
 }
 }
 }

}

 89

ExecutionAgent.java

/*
 * ExecutionAgent.java
 *
 * Created on June 7, 2006, 4:35 PM
 */

package org.apdl.agents;

import java.io.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.Pattern;
import org.codehaus.xfire.client.Client;

/**
 *
 * @author APDL
 * @version
 */
public class ExecutionAgent extends HttpServlet {

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet ExecutionAgent</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet ExecutionAgent at " + request.getContextPath
() + "</h1>");

 /**
 * Database connection parameters
 */
 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/

 90

 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get process details from database
 **/
 ResultSet rs = null;
 try {
 String sql = "SELECT process_string, process_variation FROM
apdl.process_maps";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rs = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve process maps from
database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 ArrayList<String> maps = new ArrayList<String>();
 ArrayList<String> variations = new ArrayList<String>();
 try {
 while (rs.next()) {
 String getMap = rs.getString("process_string");
 maps.add(getMap);
 String getVar = rs.getString("process_variation");
 variations.add(getVar);
 }
 rs.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing process
information!</h3>");
 }

 /**
 * Find process with smallest variation
 */
 int minIndex = 0;
 double minValue = Double.parseDouble(variations.get(0));
 for (int i=1; i < maps.size(); i++) {
 int tempIndex = i;
 double tempValue = Double.parseDouble(variations.get(i));
 if (tempValue < minValue) {
 minIndex = tempIndex;
 minValue = tempValue;
 }
 }

 /**
 * Execute process
 */
 String process = maps.get(minIndex);
 Pattern pStep = Pattern.compile("[;\\s]+");
 String[] steps = pStep.split(process);

 91

 String input = "0.0";
 String output = null;
 for (int i=0; i<steps.length; i++) {
 Pattern pDetail = Pattern.compile(":");
 String[] details = pDetail.split(steps[i]);

 /**
 * Get web service wsdl locations from registry
 **/
 ResultSet rsWSDL = null;
 try {
 String sql = "SELECT wsdl_location FROM apdl.web_services WHERE
service_name = ?";
 PreparedStatement psGet = conn.prepareStatement(sql);
 psGet.setString(1, details[0]);
 rsWSDL = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve wsdl location from
registry!</h3>");
 }

 /**
 * Store wsdl location
 **/
 String wsdl = null;
 try {
 while (rsWSDL.next()) {
 wsdl = rsWSDL.getString("wsdl_location");
 }
 rsWSDL.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to wsdl location!</h3>");
 }

 try {
 Client client = new Client(new URL(wsdl));
 Object[] servResults = client.invoke(details[1], new Object[]
{details[2], input});
 output = (String)servResults[0];
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to access web service method!</h3>");
 }
 input = output;
 out.println("<h2>Step #" + (i+1) + " -</h2>");
 out.println("<h3>Service Name: " + details[0] + "</h3>");
 out.println("<h3>Operation Name: " + details[1] + "</h3>");
 out.println("<h3>Input Type: " + details[2] + "</h3>");
 out.println("<i>Result = " + output + "</i>");
 }

 /**
 * Close database connection
 */
 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }

 92

 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">
 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";
 }
 // </editor-fold>
}

 93

ServiceASEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */

public interface ServiceASEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String addA(String inputType, String inputValue) throws
java.rmi.RemoteException;

}

 94

ServiceAImpl.java

package org.apdl.services;

import java.sql.*;
import java.util.Random;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */
public class ServiceAImpl implements ServiceASEI {
 /**
 * Default constructor for xfire
 */
 public ServiceAImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "ServiceA";
 private String serviceDescription = "This service \"adds A\" to the input
value.";
 private String databaseName = "apdl.service_a";
 private String operationName = "addA";
 private String inputString = "nil, B, D, CD, BC, BCD";
 private String outputString = "A, AB, DA, CDA, ABC, ABCD";
 private String variationString = "0.01, 0.1, 0.1, 0.2, 0.2, 0.3";

 /**
 * Database connection parameters
 */
 private String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 private String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 private String dbUser = System.getProperty("APDLdb.user", "apdl");
 private String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException {

 95

 return databaseName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException {
 return variationString;
 }

 /**
 * Web service operation
 */
 public java.lang.String addA(String inputType, String inputValue) throws
java.rmi.RemoteException {
 double a = 0.0;
 double outputVal = 0.0;
 double var = 0.0;

 double inputVal = Double.parseDouble(inputValue);
 Pattern p = Pattern.compile("[,\\s]+");
 String[] inArray = p.split(inputString);
 String[] varArray = p.split(variationString);
 for (int i=0; i<inArray.length; i++) {
 if (inArray[i].equals(inputType)) {
 var = Double.parseDouble(varArray[i]);
 }
 }

 Random r = new Random();

 a = 1.0 + (r.nextDouble() * 0.01) * Math.pow(-1.0,
(double)r.nextInt(2));

 if (inputVal == 0.0)
 outputVal = a;
 else
 outputVal = (a + inputVal) + (r.nextDouble() * var) * Math.pow(-
1.0, (double)r.nextInt(2));

 96

 /**
 * Connect to derby database
 **/
 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load database driver!");
 return null;
 }

 /**
 * Add transaction to database
 **/
 try {
 String sql = "INSERT INTO apdl.service_a (input_type, input_value,
output_value) VALUES (?, ?, ?)";
 PreparedStatement ps = conn.prepareStatement(sql);
 ps.setString(1, inputType);
 ps.setDouble(2, inputVal);
 ps.setDouble(3, outputVal);
 ps.execute();
 conn.close();
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load transaction into database!");
 return null;
 }

 String outputValue = Double.toString(outputVal);
 return outputValue;
 }

}

 97

ServiceBSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceB web service.
 * Created Jun 4, 2006 9:34:39 PM
 * @author APDL
 */

public interface ServiceBSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String addB(String inputType, String inputValue) throws
java.rmi.RemoteException;

}

 98

ServiceBImpl.java

package org.apdl.services;

import java.sql.*;
import java.util.Random;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceB web service.
 * Created Jun 4, 2006 9:34:39 PM
 * @author APDL
 */
public class ServiceBImpl implements ServiceBSEI {
 /**
 * Default constructor for xfire
 */
 public ServiceBImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "ServiceB";
 private String serviceDescription = "This service \"adds B\" to the input
value.";
 private String databaseName = "apdl.service_b";
 private String operationName = "addB";
 private String inputString = "nil, A, C, DA, CD, CDA";
 private String outputString = "B, AB, BC, DAB, BCD, ABCD";
 private String variationString = "0.01, 0.15, 0.15, 0.15, 0.15, 0.2";

 /**
 * Database connection parameters
 */
 private String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 private String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 private String dbUser = System.getProperty("APDLdb.user", "apdl");
 private String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException {

 99

 return databaseName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException {
 return variationString;
 }

 /**
 * Web service operation
 */
 public java.lang.String addB(String inputType, String inputValue) throws
java.rmi.RemoteException {
 double b = 0.0;
 double outputVal = 0.0;
 double var = 0.0;

 double inputVal = Double.parseDouble(inputValue);
 Pattern p = Pattern.compile("[,\\s]+");
 String[] inArray = p.split(inputString);
 String[] varArray = p.split(variationString);
 for (int i=0; i<inArray.length; i++) {
 if (inArray[i].equals(inputType)) {
 var = Double.parseDouble(varArray[i]);
 }
 }

 Random r = new Random();

 b = 2.0 + (r.nextDouble() * 0.01) * Math.pow(-1.0,
(double)r.nextInt(2));

 if (inputVal == 0.0)
 outputVal = b;
 else
 outputVal = (b + inputVal) + (r.nextDouble() * var) * Math.pow(-
1.0, (double)r.nextInt(2));

 100

 /**
 * Connect to derby database
 **/
 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load database driver!");
 return null;
 }

 /**
 * Add transaction to database
 **/
 try {
 String sql = "INSERT INTO apdl.service_b (input_type, input_value,
output_value) VALUES (?, ?, ?)";
 PreparedStatement ps = conn.prepareStatement(sql);
 ps.setString(1, inputType);
 ps.setDouble(2, inputVal);
 ps.setDouble(3, outputVal);
 ps.execute();
 conn.close();
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load transaction into database!");
 return null;
 }

 String outputValue = Double.toString(outputVal);
 return outputValue;
 }

}

 101

ServiceCSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceC web service.
 * Created Jun 4, 2006 9:35:06 PM
 * @author APDL
 */

public interface ServiceCSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String addC(String inputType, String inputValue) throws
java.rmi.RemoteException;

}

 102

ServiceCImpl.java

package org.apdl.services;

import java.sql.*;
import java.util.Random;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceC web service.
 * Created Jun 4, 2006 9:35:06 PM
 * @author APDL
 */
public class ServiceCImpl implements ServiceCSEI {
 /**
 * Default constructor for xfire
 */
 public ServiceCImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "ServiceC";
 private String serviceDescription = "This service \"adds C\" to the input
value.";
 private String databaseName = "apdl.service_c";
 private String operationName = "addC";
 private String inputString = "nil, B, D, AB, DA, DAB";
 private String outputString = "C, BC, CD, ABC, CDA, ABCD";
 private String variationString = "0.01, 0.05, 0.05, 0.1, 0.1, 0.1";

 /**
 * Database connection parameters
 */
 private String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 private String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 private String dbUser = System.getProperty("APDLdb.user", "apdl");
 private String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException {

 103

 return databaseName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException {
 return variationString;
 }

 /**
 * Web service operation
 */
 public java.lang.String addC(String inputType, String inputValue) throws
java.rmi.RemoteException {
 double c = 0.0;
 double outputVal = 0.0;
 double var = 0.0;

 double inputVal = Double.parseDouble(inputValue);
 Pattern p = Pattern.compile("[,\\s]+");
 String[] inArray = p.split(inputString);
 String[] varArray = p.split(variationString);
 for (int i=0; i<inArray.length; i++) {
 if (inArray[i].equals(inputType)) {
 var = Double.parseDouble(varArray[i]);
 }
 }

 Random r = new Random();

 c = 3.0 + (r.nextDouble() * 0.01) * Math.pow(-1.0,
(double)r.nextInt(2));

 if (inputVal == 0.0)
 outputVal = c;
 else
 outputVal = (c + inputVal) + (r.nextDouble() * var) * Math.pow(-
1.0, (double)r.nextInt(2));

 104

 /**
 * Connect to derby database
 **/
 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load database driver!");
 return null;
 }

 /**
 * Add transaction to database
 **/
 try {
 String sql = "INSERT INTO apdl.service_c (input_type, input_value,
output_value) VALUES (?, ?, ?)";
 PreparedStatement ps = conn.prepareStatement(sql);
 ps.setString(1, inputType);
 ps.setDouble(2, inputVal);
 ps.setDouble(3, outputVal);
 ps.execute();
 conn.close();
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load transaction into database!");
 return null;
 }

 String outputValue = Double.toString(outputVal);
 return outputValue;
 }

}

 105

ServiceDSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceD web service.
 * Created Jun 4, 2006 9:35:23 PM
 * @author APDL
 */

public interface ServiceDSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String addD(String inputType, String inputValue) throws
java.rmi.RemoteException;
}

 106

ServiceDImpl.java

package org.apdl.services;

import java.sql.*;
import java.util.Random;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceD web service.
 * Created Jun 4, 2006 9:35:23 PM
 * @author APDL
 */
public class ServiceDImpl implements ServiceDSEI {
 /**
 * Default constructor for xfire
 */
 public ServiceDImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "ServiceD";
 private String serviceDescription = "This service \"adds D\" to the input
value.";
 private String databaseName = "apdl.service_d";
 private String operationName = "addD";
 private String inputString = "nil, A, C, AB, BC, ABC";
 private String outputString = "D, DA, CD, DAB, BCD, ABCD";
 private String variationString = "0.02, 0.1, 0.1, 0.2, 0.2, 0.2";

 /**
 * Database connection parameters
 */
 private String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 private String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 private String dbUser = System.getProperty("APDLdb.user", "apdl");
 private String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException {

 107

 return databaseName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException {
 return variationString;
 }

 /**
 * Web service operation
 */
 public java.lang.String addD(String inputType, String inputValue) throws
java.rmi.RemoteException {
 double d = 0.0;
 double outputVal = 0.0;
 double var = 0.0;

 double inputVal = Double.parseDouble(inputValue);
 Pattern p = Pattern.compile("[,\\s]+");
 String[] inArray = p.split(inputString);
 String[] varArray = p.split(variationString);
 for (int i=0; i<inArray.length; i++) {
 if (inArray[i].equals(inputType)) {
 var = Double.parseDouble(varArray[i]);
 }
 }

 Random r = new Random();

 d = 4.0 + (r.nextDouble() * 0.01) * Math.pow(-1.0,
(double)r.nextInt(2));

 if (inputVal == 0.0)
 outputVal = d;
 else
 outputVal = (d + inputVal) + (r.nextDouble() * var) * Math.pow(-
1.0, (double)r.nextInt(2));

 108

 /**
 * Connect to derby database
 **/
 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load database driver!");
 return null;
 }

 /**
 * Add transaction to database
 **/
 try {
 String sql = "INSERT INTO apdl.service_d (input_type, input_value,
output_value) VALUES (?, ?, ?)";
 PreparedStatement ps = conn.prepareStatement(sql);
 ps.setString(1, inputType);
 ps.setDouble(2, inputVal);
 ps.setDouble(3, outputVal);
 ps.execute();
 conn.close();
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load transaction into database!");
 return null;
 }

 String outputValue = Double.toString(outputVal);
 return outputValue;
 }

}

 109

AltServiceBSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceB web service.
 * Created Jun 4, 2006 9:34:39 PM
 * @author APDL
 */

public interface AltServiceBSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String altAddB(String inputType, String inputValue) throws
java.rmi.RemoteException;

}

 110

AltServiceBImpl.java

package org.apdl.services;

import java.sql.*;
import java.util.Random;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceB web service.
 * Created Jun 4, 2006 9:34:39 PM
 * @author APDL
 */
public class AltServiceBImpl implements AltServiceBSEI {
 /**
 * Default constructor for xfire
 */
 public AltServiceBImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "AltServiceB";
 private String serviceDescription = "This is an alternate service that
\"adds B\" to the input value.";
 private String databaseName = "apdl.alt_service_b";
 private String operationName = "altAddB";
 private String inputString = "nil, A, C, DA, CD, CDA";
 private String outputString = "B, AB, BC, DAB, BCD, ABCD";
 private String variationString = "0.01, 0.01, 0.01, 0.02, 0.02, 0.03";

 /**
 * Database connection parameters
 */
 private String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 private String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 private String dbUser = System.getProperty("APDLdb.user", "apdl");
 private String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getDatabaseName() throws java.rmi.RemoteException {

 111

 return databaseName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String getVariationString() throws
java.rmi.RemoteException {
 return variationString;
 }

 /**
 * Web service operation
 */
 public java.lang.String altAddB(String inputType, String inputValue) throws
java.rmi.RemoteException {
 double b = 0.0;
 double outputVal = 0.0;
 double var = 0.0;

 double inputVal = Double.parseDouble(inputValue);
 Pattern p = Pattern.compile("[,\\s]+");
 String[] inArray = p.split(inputString);
 String[] varArray = p.split(variationString);
 for (int i=0; i<inArray.length; i++) {
 if (inArray[i].equals(inputType)) {
 var = Double.parseDouble(varArray[i]);
 }
 }

 Random r = new Random();

 b = 2.0 + (r.nextDouble() * 0.01) * Math.pow(-1.0,
(double)r.nextInt(2));

 if (inputVal == 0.0)
 outputVal = b;
 else
 outputVal = (b + inputVal) + (r.nextDouble() * var) * Math.pow(-
1.0, (double)r.nextInt(2));

 112

 /**
 * Connect to derby database
 **/
 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load database driver!");
 return null;
 }

 /**
 * Add transaction to database
 **/
 try {
 String sql = "INSERT INTO apdl.alt_service_b (input_type,
input_value, output_value) VALUES (?, ?, ?)";
 PreparedStatement ps = conn.prepareStatement(sql);
 ps.setString(1, inputType);
 ps.setDouble(2, inputVal);
 ps.setDouble(3, outputVal);
 ps.execute();
 conn.close();
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Failed to load transaction into database!");
 return null;
 }

 String outputValue = Double.toString(outputVal);
 return outputValue;
 }

}

 113

 114

APPENDIX C IMPELLER EXAMPLE – CODE

Services.xml

<beans xmlns="http://xfire.codehaus.org/config/1.0">

 <service>
 <name>CATIAService</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.CATIAServiceSEI</serviceClass>

<implementationClass>org.apdl.services.CATIAServiceImpl</implementationClass>
 </service>

 <service>
 <name>HyperMeshService</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.HyperMeshServiceSEI</serviceClass>

<implementationClass>org.apdl.services.HyperMeshServiceImpl</implementationClas
s>
 </service>

 <service>
 <name>FluentService</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.FluentServiceSEI</serviceClass>

<implementationClass>org.apdl.services.FluentServiceImpl</implementationClass>
 </service>

 <service>
 <name>ANSYSService</name>
 <namespace>APDLServices-1.0/services</namespace>
 <serviceClass>org.apdl.services.ANSYSServiceSEI</serviceClass>

<implementationClass>org.apdl.services.ANSYSServiceImpl</implementationClass>
 </service>

</beans>

 115

WSRegistry.java

/*
 * WSRegistry.java
 *
 * Created on June 6, 2006, 7:26 PM
 */

package org.apdl.servlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.*;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

/**
 *
 * @author APDL
 * @version
 */
public class WSRegistry extends HttpServlet {
 /**
 * Parameters for "services.xml" file search
 */
 private PrintWriter out;
 private static String webServicesFile = "services.xml";
 private static String filePath = "C:/dev/projects/APDLServices";
 private boolean fileFound = false;
 private String webServiceDoc = null;

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet WSRegistry</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet WSRegistry at " + request.getContextPath () +
"</h1>");

 /**
 * Database connection parameters

 116

 */
 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/
 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get existing services from database
 **/
 ResultSet rs = null;
 try {
 String sql = "SELECT service_name FROM apdl.web_services";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rs = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve services from database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 ArrayList<String> existingServices = new ArrayList<String>();
 boolean databaseEmpty = true;
 try {
 while (rs.next()) {
 String service = rs.getString("service_name");
 existingServices.add(service);
 databaseEmpty = false;
 }
 rs.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing service
information!</h3>");
 }

 /**
 * Find "services.xml" deployment description file
 */
 File dir = new File(filePath);
 try {
 findFile(dir);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to find file \"services.xml\"!</h3>");
 }

 Document webServices = null;

 117

 try {
 File servicesXML = new File(webServiceDoc);
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 dbf.setNamespaceAware(true);
 DocumentBuilder documentBuilder = dbf.newDocumentBuilder();
 webServices = documentBuilder.parse(servicesXML);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to parse file \"services.xml\"!</h3>");
 }

 /**
 * Parse web service names
 */
 ArrayList<String> serviceNames = new ArrayList<String>();
 ArrayList<String> serviceNamespaces = new ArrayList<String>();
 NodeList nl = webServices.getElementsByTagName("service");
 for (int n = 0; n < nl.getLength(); n++) {
 Element service = (Element) nl.item(n);
 String name =
service.getElementsByTagName("name").item(0).getFirstChild().getNodeValue();
 String namespace =
service.getElementsByTagName("namespace").item(0).getFirstChild().getNodeValue(
);

 if (databaseEmpty == false) {
 boolean matchFound = false;
 Iterator iter = existingServices.iterator();
 while (matchFound != true && iter.hasNext()) {
 String existingName = (String)iter.next();
 if (name.equals(existingName))
 matchFound = true;
 }
 if (matchFound == false) {
 serviceNames.add(name);
 serviceNamespaces.add(namespace);
 }
 }

 if (databaseEmpty == true) {
 serviceNames.add(name);
 serviceNamespaces.add(namespace);
 }
 }

 /**
 * Get url for servlet context
 */
 StringBuffer url = new StringBuffer();
 url.append(request.getScheme() + "://");
 url.append(request.getServerName());
 if(request.getServerPort()!=80)
 url.append(":" + request.getServerPort());
 String uri = url.toString();

 /**
 * Add services to database
 **/
 for (int i=0; i<serviceNames.size(); i++) {
 String serviceName = serviceNames.get(i);
 String serviceNamespace = serviceNamespaces.get(i);

 118

 String wsdlLocation = uri + "/" + serviceNamespace + "/" +
serviceName + "?wsdl";

 try {
 String sql = "INSERT INTO apdl.web_services (service_name,
wsdl_location) VALUES (?, ?)";
 PreparedStatement psSet = conn.prepareStatement(sql);
 psSet.setString(1, serviceName);
 psSet.setString(2, wsdlLocation);
 psSet.execute();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load service(s) into
database!</h3>");
 }
 out.print("<h3><i>" + serviceName + "</i> added to the
registry.</h3>");
 }

 /**
 * Close database connection
 */
 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Error during file search!</h3>");
 }

 /**
 * Close HTML output
 */
 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">
 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";

 119

 }
 // </editor-fold>

 /**
 * Search method for finding the file "services.xml"
 */
 protected void findFile(File dir) {
 if (fileFound == false) {
 try {
 if (dir.isDirectory()) {
 String[] children = dir.list();
 String filename;
 if (children != null) {
 for (int i=0; i<children.length; i++) {
 filename = children[i];
 File dirChild = new File(dir, children[i] + "\\");
 if (dirChild.isDirectory()) {
 findFile(dirChild);
 } else {
 if (filename.equals(webServicesFile)) {
 webServiceDoc = dir + "\\" + filename;
 fileFound = true;
 }
 }
 }
 }
 }
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }
 }
 }

}

 120

KnowledgeAgent.java

/*
 * KnowledgeAgent.java
 *
 * Created on June 6, 2006, 11:29 PM
 */

package org.apdl.agents;

import java.io.*;
import java.net.URL;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.Pattern;
import org.codehaus.xfire.client.Client;

/**
 *
 * @author APDL
 * @version
 */
public class KnowledgeAgent extends HttpServlet {

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet KnowledgeAgent</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet KnowledgeAgent at " + request.getContextPath
() + "</h1>");

 /**
 * Database connection parameters
 */
 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/

 121

 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get web service wsdl locations from registry
 **/
 ResultSet rs = null;
 try {
 String sql = "SELECT wsdl_location FROM apdl.web_services";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rs = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve services from database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 ArrayList<String> serviceInfo = new ArrayList<String>();
 try {
 while (rs.next()) {
 String wsdl = rs.getString("wsdl_location");
 serviceInfo.add(wsdl);
 }
 rs.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing service
information!</h3>");
 }

 for (Iterator iter = serviceInfo.iterator(); iter.hasNext();) {
 String wsdlLocation = (String)iter.next();
 String serviceName = null;
 String serviceDescription = null;
 String operationName = null;
 String inputString = null;
 String outputString = null;

 try {
 Client client = new Client(new URL(wsdlLocation));
 Object[] servResults = client.invoke("getServiceName", new
Object[] {});
 serviceName = (String)servResults[0];

 Object[] descResults = client.invoke("getServiceDescription",
new Object[] {});
 serviceDescription = (String)descResults[0];

 Object[] operResults = client.invoke("getOperationName", new
Object[] {});
 operationName = (String)operResults[0];

 Object[] inResults = client.invoke("getInputString", new
Object[] {});
 inputString = (String)inResults[0];

 122

 Object[] outResults = client.invoke("getOutputString", new
Object[] {});
 outputString = (String)outResults[0];

 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to access web service reporting
methods!</h3>");
 }

 try {
 String sql = "UPDATE apdl.web_services SET service_name=?,
service_description=?, " +
 "operation_name=?, input_string=?, output_string=?
WHERE wsdl_location=?";
 PreparedStatement psSet = conn.prepareStatement(sql);
 psSet.setString(1, serviceName);
 psSet.setString(2, serviceDescription);
 psSet.setString(3, operationName);
 psSet.setString(4, inputString);
 psSet.setString(5, outputString);
 psSet.setString(6, wsdlLocation);
 psSet.execute();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to update web service(s)!</h3>");
 }
 out.print("<h3>Registry entry for <i>" + serviceName + "</i>
updated.</h3>");
 }

 /**
 * Close database connection
 */
 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }

 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">
 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */

 123

 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";
 }
 // </editor-fold>
}

 124

ConfigurationAgent.java

/*
 * ConfigurationAgent.java
 *
 * Created on June 7, 2006, 12:09 AM
 */

package org.apdl.agents;

import java.io.*;
import java.net.URL;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.Pattern;
import org.codehaus.xfire.client.Client;

/**
 *
 * @author APDL
 * @version
 */
public class ConfigurationAgent extends HttpServlet {

 private Connection conn = null;
 private PrintWriter out;

 private ArrayList<String> servNames;
 private ArrayList<String> operNames;
 private ArrayList<String> inStrings;
 private ArrayList<String> outStrings;
 private ArrayList<String> existingMaps;

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 //PrintWriter out = response.getWriter();
 out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet ConfigurationAgent</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet ConfigurationAgent at " +
request.getContextPath () + "</h1>");

 /**
 * Database connection parameters
 */

 125

 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get web service information from registry
 **/
 ResultSet rsServ = null;
 try {
 String sql = "SELECT service_name, operation_name, input_string,
output_string FROM apdl.web_services";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rsServ = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve services from database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 servNames = new ArrayList<String>();
 operNames = new ArrayList<String>();
 inStrings = new ArrayList<String>();
 outStrings = new ArrayList<String>();
 try {
 while (rsServ.next()) {
 String serv = rsServ.getString("service_name");
 servNames.add(serv);

 /* Check for multiple service operaitions */
 String oper = rsServ.getString("operation_name");
 if (oper.indexOf(';') != -1) {
 String input = rsServ.getString("input_string");
 String output = rsServ.getString("output_string");
 Pattern p = Pattern.compile(";");
 String[] operArray = p.split(oper);
 String[] inArray = p.split(input);
 String[] outArray = p.split(output);

 operNames.add(operArray[0]);
 inStrings.add(inArray[0]);
 outStrings.add(outArray[0]);
 for (int i=1; i<operArray.length; i++) {
 servNames.add(serv);
 operNames.add(operArray[i]);
 inStrings.add(inArray[i]);
 outStrings.add(outArray[i]);
 }

 126

 } else {
 operNames.add(oper);
 String input = rsServ.getString("input_string");
 inStrings.add(input);
 String output = rsServ.getString("output_string");
 outStrings.add(output);
 }
 }
 rsServ.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing service
information!</h3>");
 }

 /**
 * Get existing process maps from the database
 */
 ResultSet rsMaps = null;
 try {
 String sql = "SELECT process_string FROM apdl.process_maps";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rsMaps = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve process maps from
database!</h3>");
 }

 /**
 * Store existing process information in an ArrayList
 **/
 existingMaps = new ArrayList<String>();
 try {
 while (rsMaps.next()) {
 String map = rsMaps.getString("process_string");
 existingMaps.add(map);
 }
 rsMaps.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing process
information!</h3>");
 }

 /**
 * Map and store process paths
 */
 String endpoint = request.getParameter("endpoint");
 mapProcess("", endpoint);

 /**
 * Close database connection
 */
 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }

 out.println("</body>");
 out.println("</html>");

 127

 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">
 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";
 }
 // </editor-fold>

 /**
 * Method for mapping possible process paths and storing results in a
database
 */
 protected void mapProcess(String mapString, String findNext) {
 if (findNext.equals("nil")) {
 boolean matchFound = false;
 Iterator iter = existingMaps.iterator();
 while (matchFound != true && iter.hasNext()) {
 String existingMap = (String)iter.next();
 if (mapString.equals(existingMap))
 matchFound = true;
 }
 if (matchFound == false) {
 try {
 String sql = "INSERT INTO apdl.process_maps " +
 "(process_string) VALUES (?)";
 PreparedStatement psSet = conn.prepareStatement(sql);
 psSet.setString(1, mapString);
 psSet.execute();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load new process into
database!</h3>");
 }

 out.println("<h2>Process added to database!</h2>");
 Pattern pStep = Pattern.compile("[;\\s]+");
 String[] steps = pStep.split(mapString);
 for (int i=0; i<steps.length; i++) {

 128

 out.println("<h3>Step #" + (i+1) + " - " + steps[i] +
"</h3>");
 }
 out.println("</br>");
 }
 return;
 }

 for (int i=0; i<operNames.size(); i++) {
 String name = servNames.get(i);
 String operation = operNames.get(i);
 String tempIn = inStrings.get(i);
 String tempOut = outStrings.get(i);

 Pattern p = Pattern.compile("[,\\s]+");
 String[] inputs = p.split(tempIn);
 String[] outputs = p.split(tempOut);

 for (int j=0; j<outputs.length; j++) {
 if (outputs[j].equals(findNext)) {
 String newMap = name + ":" + operation + ":" + inputs[j] +
"; " + mapString;
 mapProcess(newMap, inputs[j]);
 }
 }
 }
 }

}

 129

ExecutionAgent.java

/*
 * ExecutionAgent.java
 *
 * Created on June 7, 2006, 4:35 PM
 */

package org.apdl.agents;

import java.io.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.regex.Pattern;
import org.codehaus.xfire.client.Client;

/**
 *
 * @author APDL
 * @version
 */
public class ExecutionAgent extends HttpServlet {

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet ExecutionAgent</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet ExecutionAgent at " + request.getContextPath
() + "</h1>");

 /**
 * Database connection parameters
 */
 String dbUrl = System.getProperty("APDLdb.url",
"jdbc:derby://localhost:1527/APDLdb");
 String dbDriver = System.getProperty("APDLdb.driver",
"org.apache.derby.jdbc.ClientDriver");
 String dbUser = System.getProperty("APDLdb.user", "apdl");
 String dbPassword = System.getProperty("APDLdb.password", "apdl");

 /**
 * Connect to derby database
 **/

 130

 Connection conn = null;
 try {
 Class.forName(dbDriver).newInstance();
 conn = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to load database driver!</h3>");
 }

 /**
 * Get process details from database
 **/
 ResultSet rs = null;
 try {
 String sql = "SELECT process_string FROM apdl.process_maps";
 PreparedStatement psGet = conn.prepareStatement(sql);
 rs = psGet.executeQuery();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve process maps from
database!</h3>");
 }

 /**
 * Store existing service information in an ArrayList
 **/
 ArrayList<String> maps = new ArrayList<String>();
 try {
 while (rs.next()) {
 String getMap = rs.getString("process_string");
 maps.add(getMap);
 }
 rs.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to store existing process
information!</h3>");
 }

 /**
 * Execute process
 */
 String process = maps.get(0);
 Pattern pStep = Pattern.compile("[;\\s]+");
 String[] steps = pStep.split(process);

 String input = request.getParameter("input");
 String output = null;
 for (int i=0; i<steps.length; i++) {
 Pattern pDetail = Pattern.compile(":");
 String[] details = pDetail.split(steps[i]);

 /**
 * Get web service wsdl locations from registry
 **/
 ResultSet rsWSDL = null;
 try {
 String sql = "SELECT wsdl_location FROM apdl.web_services WHERE
service_name = ?";
 PreparedStatement psGet = conn.prepareStatement(sql);
 psGet.setString(1, details[0]);
 rsWSDL = psGet.executeQuery();
 } catch (Exception e) {

 131

 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to retrieve wsdl location from
registry!</h3>");
 }

 /**
 * Store wsdl location
 **/
 String wsdl = null;
 try {
 while (rsWSDL.next()) {
 wsdl = rsWSDL.getString("wsdl_location");
 }
 rsWSDL.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to wsdl location!</h3>");
 }

 try {
 Client client = new Client(new URL(wsdl));
 Object[] servResults = client.invoke(details[1], new Object[]
{input});
 output = (String)servResults[0];
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to access web service method!</h3>");
 }
 input = output;
 out.println("<h2>Step #" + (i+1) + " -</h2>");
 out.println("<h3>Service Name: " + details[0] + "</h3>");
 out.println("<h3>Operation Name: " + details[1] + "</h3>");
 out.println("<h3>Input Type: " + details[2] + "</h3>");
 }

 /**
 * Close database connection
 */
 try {
 conn.close();
 } catch (Exception e) {
 out.println("<h3>" + e + "</h3>");
 out.println("<h3>Failed to close database connection!</h3>");
 }

 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click
on the + sign on the left to edit the code.">
 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.

 132

 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";
 }
 // </editor-fold>
}

 133

CATIAServiceSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */

public interface CATIAServiceSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String CATIAUpdate(String input) throws
java.rmi.RemoteException;

}

 134

CATIAServiceImpl.java

package org.apdl.services;

import java.sql.*;
import java.io.*;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */
public class CATIAServiceImpl implements CATIAServiceSEI {
 /**
 * Default constructor for xfire
 */
 public CATIAServiceImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "CATIAService";
 private String serviceDescription = "This service updates the parametric
CAD model and outputs " +
 "iges files for the structural wedge
and air solid.";
 private String operationName = "CATIAUpdate";
 private String inputString = "nil";
 private String outputString = "iges";

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 135

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String CATIAUpdate(String input) throws
java.rmi.RemoteException {
 Pattern pInputs = Pattern.compile("[;\\s]+");
 String[] inputs = pInputs.split(input);

 String workingDir = inputs[0];
 int nBlades = Integer.parseInt(inputs[1]);
 double leadingAng = Double.parseDouble(inputs[2]);
 double trailingAng = Double.parseDouble(inputs[3]);
 double ang1 = (180.0 / nBlades) - 2.5;
 double ang2 = (180.0 / nBlades) + 2.5;
 double ang3 = (360.0 / nBlades);
 double ang4 = (360.0 / nBlades) - 5;

 /**
 * Create CATScript file
 */
 String path = "C:/Impeller/" + workingDir;
 try {
 File dir = new File(path);
 dir.mkdirs();
 File f = new File(path + "/CATIAUpdate.CATScript");
 FileOutputStream out = new FileOutputStream(f);
 PrintStream p = new PrintStream(out);
 p.println ("Language=\"VBSCRIPT\"");
 p.println ("Sub CATMain()");
 p.println
("CATIA.Documents.Open(\"C:\\Impeller\\ImpellerWedge.CATPart\")");
 p.format
("CATIA.ActiveDocument.Part.HybridBodies.Item(\"Geometrical
Set.1\").HybridShapes.Item(\"Sweep.1\").GetAngle(2).Value = %f\n", new Object[]
{new Double(leadingAng)});
 p.format
("CATIA.ActiveDocument.Part.HybridBodies.Item(\"Geometrical
Set.1\").HybridShapes.Item(\"Plane.3\").Angle.Value = %f\n", new Object[] {new
Double(trailingAng)});
 p.format
("CATIA.ActiveDocument.Part.HybridBodies.Item(\"Geometrical
Set.1\").HybridShapes.Item(\"Revolute.4\").BeginAngle.Value = %f\n", new
Object[] {new Double(ang1)});
 p.format
("CATIA.ActiveDocument.Part.HybridBodies.Item(\"Geometrical
Set.1\").HybridShapes.Item(\"Revolute.4\").EndAngle.Value = %f\n", new Object[]
{new Double(ang2)});
 p.format
("CATIA.ActiveDocument.Part.HybridBodies.Item(\"Geometrical
Set.1\").HybridShapes.Item(\"Revolute.5\").BeginAngle.Value = %f\n", new
Object[] {new Double(ang3)});
 p.format
("CATIA.ActiveDocument.Part.HybridBodies.Item(\"Geometrical
Set.1\").HybridShapes.Item(\"Volume Revolve.6\").BeginAngle.Value = %f\n", new
Object[] {new Double(ang3)});

 136

 p.println ("CATIA.ActiveDocument.Part.Update");
 p.println ("CATIA.ActiveDocument.ExportData \"C:\\Impeller\\" +
workingDir + "\\StructWedge.igs\", \"igs\"");
 p.println ("CATIA.ActiveDocument.Selection.Add
CATIA.ActiveDocument.Part.HybridBodies.Item(\"Geometrical Set.1\")");
 p.println ("CATIA.ActiveDocument.Selection.VisProperties.SetShow
catVisPropertyNoShowAttr");
 p.println ("CATIA.ActiveDocument.Selection.Clear");
 p.println ("CATIA.ActiveDocument.Selection.Add
CATIA.ActiveDocument.Part.Bodies.Item(\"PartBody\")");
 p.println ("CATIA.ActiveDocument.Selection.VisProperties.SetShow
catVisPropertyShowAttr");
 p.println ("CATIA.ActiveDocument.Selection.Clear");
 p.format
("CATIA.ActiveDocument.Part.Bodies.Item(\"PartBody\").Shapes.Item(\"Shaft.1\").
FirstAngle.Value = %f\n", new Object[] {new Double(ang4)});
 p.println ("CATIA.ActiveDocument.Part.Update");
 p.println ("CATIA.ActiveDocument.ExportData \"C:\\Impeller\\" +
workingDir + "\\AirSolid.igs\", \"igs\"");
 p.println ("CATIA.ActiveDocument.Close");
 p.println ("CATIA.Quit()");
 p.println ("End Sub");
 p.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

 try {
 String cmd[] = new String[3];
 cmd[0] = "cmd.exe";
 cmd[1] = "/C";
 cmd[2] = "C:\\Catia\\B15\\intel_a\\code\\bin\\CNEXT.exe -macro
C:\\Impeller\\" + workingDir + "\\CATIAUpdate.CATScript";

 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec(cmd);
 proc.waitFor();
 } catch (Exception e) {
 e.printStackTrace();
 }

 return workingDir;
 }

}

 137

HyperMeshServiceSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */

public interface HyperMeshServiceSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String HyperMeshUpdate(String input) throws
java.rmi.RemoteException;

}

 138

HyperMeshServiceImpl.java

package org.apdl.services;

import java.sql.*;
import java.io.*;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */
public class HyperMeshServiceImpl implements HyperMeshServiceSEI {
 /**
 * Default constructor for xfire
 */
 public HyperMeshServiceImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "HyperMeshService";
 private String serviceDescription = "This service creates a fluid mesh for
the air solid iges";
 private String operationName = "HyperMeshUpdate";
 private String inputString = "iges";
 private String outputString = "mesh";

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 /**

 139

 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String HyperMeshUpdate(String input) throws
java.rmi.RemoteException {
 String workingDir = input;

 /**
 * Create HyperMesh command file
 */
 String path = "C:/Impeller/" + workingDir + "/HyperMeshUpdate.cmf";
 try {
 File f = new File(path);
 FileOutputStream out = new FileOutputStream(f);
 PrintStream p = new PrintStream(out);
 p.println ("*feinput(\"#iges\\iges\",\"C:/Impeller/" + workingDir +
"/AirSolid.igs\",1,0,-0.01,1,1)");
 p.println ("*collectorcreate(components,\"hub\",\"default\",8)");
 p.println
("*collectorcreate(components,\"pressure\",\"default\",10)");
 p.println
("*collectorcreate(components,\"suction\",\"default\",12)");
 p.println
("*collectorcreate(components,\"inlet\",\"default\",13)");
 p.println
("*collectorcreate(components,\"outlet\",\"default\",6)");
 p.println
("*collectorcreate(components,\"shroud\",\"default\",15)");
 p.println ("*collectorcreate(components,\"fluid\",\"default\",1)");
 p.println ("*currentcollector(components,\"hub\")");
 p.println ("*createmark(surfaces,1) 1");
 p.println ("*defaultmeshsurf(1,0.75,0,0,1,0,0,0,1,0,0,0,0)");
 p.println ("*currentcollector(components,\"outlet\")");
 p.println ("*createmark(surfaces,1) 2");
 p.println ("*defaultmeshsurf(1,0.75,0,0,1,0,0,0,1,0,0,0,0)");
 p.println ("*currentcollector(components,\"shroud\")");
 p.println ("*createmark(surfaces,1) 3");
 p.println ("*defaultmeshsurf(1,0.75,0,0,1,0,0,0,1,0,0,0,0)");
 p.println ("*currentcollector(components,\"inlet\")");
 p.println ("*createmark(surfaces,1) 4");
 p.println ("*defaultmeshsurf(1,0.75,0,0,1,0,0,0,1,0,0,0,0)");
 p.println ("*currentcollector(components,\"pressure\")");
 p.println ("*createmark(surfaces,1) 5");
 p.println ("*defaultmeshsurf(1,0.75,0,0,1,0,0,0,1,0,0,0,0)");
 p.println ("*currentcollector(components,\"suction\")");
 p.println ("*createmark(surfaces,1) 6");
 p.println ("*defaultmeshsurf(1,0.75,0,0,1,0,0,0,1,0,0,0,0)");
 p.println ("*createmark(elements,1) \"all\"");
 p.println ("*equivalence(elements,1,0.01,1,0,0)");
 p.println ("*currentcollector(components,\"fluid\")");
 p.println ("*createmark(elements,1) \"all\"");
 p.println ("*createmark(components,2)");
 p.println ("*tetramesh(elements,1,components,2,1.2,0.75,1)");
 p.println ("*createpoint(0.0,0.0,0.0,0)");
 p.println
("*templatefileset(\"C:/Altair/hw7.0/templates/feoutput/nastran/general\")");

 140

 p.println
("*feoutput(\"C:/Altair/hw7.0/templates/feoutput/nastran/general\",\"C:/Impelle
r/" + workingDir + "/HyperToFluent.nas\",1,0,0)");
 p.println ("*writefile(\"C:/Impeller/" + workingDir +
"/AirMesh.hm\",1)");
 p.println ("*quit(1)");
 p.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

 try {
 String cmd[] = new String[3];
 cmd[0] = "cmd.exe";
 cmd[1] = "/C";
 cmd[2] = "C:\\Altair\\hw7.0\\hm\\bin\\hmopengl.exe -
cC:\\Impeller\\" + workingDir + "\\HyperMeshUpdate.cmf";

 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec(cmd);
 proc.waitFor();
 } catch (Exception e) {
 e.printStackTrace();
 }

 return workingDir;
 }

}

 141

FluentServiceSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */

public interface FluentServiceSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String FluentUpdate(String input) throws
java.rmi.RemoteException;

}

 142

FluentServiceImpl.java

package org.apdl.services;

import java.sql.*;
import java.io.*;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */
public class FluentServiceImpl implements FluentServiceSEI {
 /**
 * Default constructor for xfire
 */
 public FluentServiceImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "FluentService";
 private String serviceDescription = "This service solves for the impeller
pressures.";
 private String operationName = "FluentUpdate";
 private String inputString = "mesh";
 private String outputString = "pressure";

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 /**

 143

 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String FluentUpdate(String input) throws
java.rmi.RemoteException {
 String workingDir = input;

 /**
 * Create Fluent command file
 */
 String path = "C:/Impeller/" + workingDir;
 try {
 File f = new File(path + "/FluentUpdate.log");
 FileOutputStream out = new FileOutputStream(f);
 PrintStream p = new PrintStream(out);
 p.println ("file import nastran C:\\Impeller\\" + workingDir +
"\\HyperToFluent.nas");
 p.println ("grid scale\n0.025\n0.025\n0.025");
 p.println ("define units pressure\natm");
 p.println ("define units angular-velocity\nrpm");
 p.println ("define models solver\nc-i\ny\nquit");
 p.println ("define models energy\ny");
 p.println ("define models viscous ke-realizable\ny");
 p.println ("define materials change-create air\nair\ny\nideal-
gas\nn\nn\nn\nn\nn\nn\nn\nn");
 p.println ("define o-c o-p\n0");
 p.println ("define\nb-c\nm-z\nz-t\noutlet\np-o\nz-t\ninlet\np-
i\nquit");
 p.println ("p-i
inlet\nn\n100000\nn\n1\nn\n50\ny\nn\ny\nn\n0\nn\n0\nn\n1\ny\nn\n10\nn\n10");
 p.println ("p-o
outlet\nn\n1.8014\nn\nn\n300\nn\ny\nn\nn\ny\n10\n10");
 p.println ("wall hub\n0\nn\n0\nn\nn\nn\n0\nn\nn\nn\n0\n0.5");
 p.println ("wall pressure\n0\nn\n0\nn\nn\nn\n0\nn\nn\nn\n0\n0.5");
 p.println ("wall suction\n0\nn\n0\nn\nn\nn\n0\nn\nn\nn\n0\n0.5");
 p.println ("wall shroud\n0\nn\n0\nn\nn\nn\n0\nn\ny\nm-b-
m\nn\ny\nn\n0\n0.5\n0\n0\n0\n0\n0\n0\n1");
 p.println ("fluid fluid\ny\nair\nn\nn\nn\ny\n0\n0\n0\n-
20000\n0\n0\n0\n0\n0\n1\nn\nn\nn\nquit\nquit");
 p.println ("solve initialize\nset-
defaults\np\n100000\nx\n0\ny\n0\nz\n100\nquit\nquit");
 p.println ("solve set\nc\n0.001\nunder-
relaxation\nepsilon\n0.4\nk\n0.4\nt-v\n0.5\nsolid\n0.5\nquit\nd-s\namg-
c\n0\nk\n0\nepsilon\n0\nquit\nquit");
 p.println ("solve monitors residual\nplot\ny\nquit");
 p.println ("solve iterate\n65");
 p.println ("display\nset\nhard-
copy\ncolor\ncolor\nquit\ndriver\njpeg\nquit\nquit\nquit");
 p.println ("hard-copy\nC:\\Impeller\\" + workingDir +
"\\residuals.jpg\ny");
 p.println ("vector\nvelocity\nv-m\n\n\n\n\nquit");
 p.println ("view\nread-view C:\\Impeller\\velocity\nrestore-view
good\nquit");
 p.println ("display\nhard-copy\nC:\\Impeller\\" + workingDir +
"\\velocity.jpg\ny\nquit");
 p.println ("file\nexport\nascii C:\\Impeller\\" + workingDir +
"\\Pressure.txt\npressure\n\nn\nn\npressure\nnone\nn\ny");

 144

 p.println ("ascii C:\\Impeller\\" + workingDir +
"\\Suction.txt\nsuction\n\nn\nn\npressure\nnone\nn\ny");
 p.println ("ascii C:\\Impeller\\" + workingDir +
"\\Hub.txt\nhub\n\nn\nn\npressure\nnone\nn\ny");
 p.println ("quit\nquit\nexit\ny");
 p.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

 try {
 String cmd[] = new String[3];
 cmd[0] = "cmd.exe";
 cmd[1] = "/C";
 cmd[2] = "C:\\Fluent\\ntbin\\ntx86\\fluent 3d -i C:\\Impeller\\" +
workingDir + "\\FluentUpdate.log";

 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec(cmd);

 File fOut = new File(path + "/Hub.txt");
 while (!fOut.exists()) {
 Thread.sleep(10000);
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 return workingDir;
 }

}

 145

ANSYSServiceSEI.java

package org.apdl.services;

/**
 * This is the service endpoint interface for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */

public interface ANSYSServiceSEI extends java.rmi.Remote {
 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException;

 /**
 * Web service operation
 */
 public java.lang.String ANSYSUpdate(String input) throws
java.rmi.RemoteException;
}

 146

ANSYSServiceImpl.java

package org.apdl.services;

import java.sql.*;
import java.io.*;
import java.util.ArrayList;
import java.util.regex.Pattern;

/**
 * This is the implementation bean class for the ServiceA web service.
 * Created Jun 4, 2006 7:43:53 PM
 * @author APDL
 */
public class ANSYSServiceImpl implements ANSYSServiceSEI {
 /**
 * Default constructor for xfire
 */
 public ANSYSServiceImpl() {};

 /**
 * Web service description parameters
 */
 private String serviceName = "ANSYSService";
 private String serviceDescription = "This service solves for the impeller
stresses.";
 private String operationName = "ANSYSUpdate";
 private String inputString = "pressure";
 private String outputString = "stress";

 /**
 * Web service operation
 */
 public java.lang.String getServiceName() throws java.rmi.RemoteException {
 return serviceName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getServiceDescription() throws
java.rmi.RemoteException {
 return serviceDescription;
 }

 /**
 * Web service operation
 */
 public java.lang.String getOperationName() throws java.rmi.RemoteException
{
 return operationName;
 }

 /**
 * Web service operation
 */
 public java.lang.String getInputString() throws java.rmi.RemoteException {
 return inputString;
 }

 147

 /**
 * Web service operation
 */
 public java.lang.String getOutputString() throws java.rmi.RemoteException {
 return outputString;
 }

 /**
 * Web service operation
 */
 public java.lang.String ANSYSUpdate(String input) throws
java.rmi.RemoteException {
 String workingDir = input;

 /**
 * Parse Fluent output and determine average pressures
 */
 String pressureFile = "C:/Impeller/" + workingDir + "/Pressure.txt";
 String suctionFile = "C:/Impeller/" + workingDir + "/Suction.txt";
 String hubFile = "C:/Impeller/" + workingDir + "/Hub.txt";

 double pressure = parsePressure(pressureFile);
 double suction = parsePressure(suctionFile);
 double hub = parsePressure(hubFile);

 /**
 * Create ANSYS batch file
 */
 String path = "C:/Impeller/" + workingDir;
 try {
 File f = new File(path + "/ANSYSUpdate.mac");
 FileOutputStream out = new FileOutputStream(f);
 PrintStream p = new PrintStream(out);
 p.println
("/AUX15\nIOPTN,IGES,NODEFEAT\nIOPTN,MERGE,YES\nIOPTN,SOLID,YES\nIOPTN,SMALL,YE
S\nIOPTN,GTOLER,DEFA\nIGESIN,'StructWedge','igs'\nVPLOT");
 p.println
("/PREP7\nET,1,SOLID187\nMPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,2e11\nMPDATA,
PRXY,1,,.3\nMPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,DENS,1,,7800");
 p.println ("MSHAPE,1,3D\nMSHKEY,0\nCM,_Y,VOLU\nVSEL, , ,
,1\nCM,_Y1,VOLU\nCHKMSH,'VOLU'\nCMSEL,S,_Y\nVMESH,_Y1\nCMDELE,_Y\nCMDELE,_Y1\nC
MDELE,_Y2");
 p.format ("SFA,P51X,1,PRES,%f\n", new Object[] {new
Double(pressure)});
 p.println ("FLST,2,1,5,ORDE,1\nFITEM,2,15");
 p.format ("SFA,P51X,1,PRES,%f\n", new Object[] {new
Double(suction)});
 p.println ("FLST,2,1,5,ORDE,1\nFITEM,2,19");
 p.format ("SFA,P51X,1,PRES,%f\n", new Object[] {new Double(hub)});
 p.println ("FLST,2,2,5,ORDE,2\nFITEM,2,22\nFITEM,2,-23");
 p.println ("DA,P51X,ALL,0\nOMEGA,0,0,-20000,0\nFINISH");
 p.println ("/SOL\n/STATUS,SOLU\nSOLVE\nFINISH");
 p.println
("/POST1\n/COLOR,WBAK,WHIT,1\n/SHOW,JPEG\nJPEG,QUAL,75,\nJPEG,ORIENT,HORIZ\nJPE
G,COLOR,2\nJPEG,TMOD,1\n/GFILE,1600,");
 p.println ("/VIEW, 1, -0.729260062836 , -0.657795420059 ,
0.188374483681");
 p.println ("/ANG, 1, 80.3946751086");
 p.println ("/EFACET,1\nPLNSOL,S,EQV,0,1.0");
 p.println ("/FOC, 1, -9.80127937324 , 8.54300250559 ,
10.1371984318");
 p.println ("/VIEW, 1, -0.517366709999E-01, 0.925379003517 ,
0.375495694681");

 148

 p.println ("/ANG, 1, 174.605743318");
 p.println ("/EFACET,1\nPLNSOL,S,EQV,0,1.0\nPRNSOL,S,PRIN");
 p.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

 try {

 String ANSYSCommand = "\"C:\\Program Files\\Ansys
Inc\\v81\\ANSYS\\bin\\Intel\\ansys.exe\" -p ANSYSRF -dir " +
 "\"C:\\Impeller\\" + workingDir + "\" -j \"ANSYS\"
-s read -l en-us -b " +
 "< \"C:\\Impeller\\" + workingDir +
"\\ANSYSUpdate.mac\" > " +
 "\"C:\\Impeller\\" + workingDir +
"\\ANSYSOutput.out\"";
 String ANSYSPath = path + "/ANSYSCmd.bat";

 File bf = new File(ANSYSPath);
 FileOutputStream bout = new FileOutputStream(bf);
 PrintStream bp = new PrintStream(bout);
 bp.println (ANSYSCommand);
 bp.close();

 String cmd[] = new String[3];
 cmd[0] = "cmd.exe";
 cmd[1] = "/C";
 cmd[2] = ANSYSPath;

 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec(cmd);
 proc.waitFor();
 } catch (Exception e) {
 e.printStackTrace();
 }

 return workingDir;
 }

 /**
 * Method for parsing Fluent output files and determining the average
pressures
 */
 private double parsePressure(String fileName) {
 FileReader inFile = null;
 BufferedReader in = null;
 String line;
 ArrayList<Double> values = new ArrayList<Double>();
 double avg = 0.0;

 try {
 inFile = new FileReader(fileName);
 in = new BufferedReader(inFile);

 // Parse the file header
 String header = in.readLine().trim();

 // Parse the node pressures
 while ((line = in.readLine()) != null) {
 line = line.trim();
 if (line.length() != 0) {
 Pattern delimiters = Pattern.compile("[;\\s]+");

 149

 String[] tokens = delimiters.split(line);
 values.add(Double.parseDouble(tokens[4]));
 }
 }

 // Reorder the pressure data in increasing order
 int j = 0;
 int count = 1;
 double index;
 for (int i=1; i < values.size(); i++) {
 index = values.get(i);
 j = count;

 while ((j > 0) && (values.get(j-1) > index)) {
 values.set(j, values.get(j-1));
 j = j-1;
 }

 values.set(j, index);

 count++;
 }

 // Remove outliers from the data and compute the average
 double median;
 if (values.size()%2 == 0) {
 median = (values.get(values.size()/2) +
values.get((values.size() + 2)/2))/2;
 } else {
 median = values.get((values.size() + 1)/2);
 }

 double sum = 0;
 count = 0;
 for (int i=0; i < values.size(); i++) {
 if (values.get(i) > 0 && values.get(i) < (3 * median)) {
 sum += values.get(i);
 count++;
 }
 }

 avg = sum/count;

 in.close();

 } catch (Exception e) {
 e.printStackTrace();
 }

 return avg;
 }

}

 150

	A Dynamic Workflow Framework for Mass Customization Using Web Service and Autonomous Agent Technologies
	BYU ScholarsArchive Citation

	Title Page

	Abstract

	Table of Contents

	List of Figures

	Chapter 1 Introduction
	Chapter 2 Literature Review
	2.1 The Product Design Generator
	2.1.1 Defining the Product Transformation Schematic
	2.1.2 Constructing the Product Design Generator

	2.2 Multi-agent Design Systems

	Chapter 3 Background
	3.1 Service-Oriented Architecture (SOA)
	3.2 Web Service Standards
	3.2.1 eXtensible Markup Language (XML)
	3.2.2 Simple Object Access Protocol (SOAP)
	3.2.3 Web Service Description Language (WSDL)
	3.2.4 Universal Description Discovery and Integration (UDDI)

	3.3 Multi-agent Systems
	3.3.1 Agent Definition
	3.3.2 Web Services and Agents
	3.3.3 Design System Infrastructure

	3.4 Semantic Web & Ontology

	Chapter 4 Method
	4.1 Agent-based Control Framework
	4.1.1 Web Service Registry Management Agent
	4.1.2 Workflow Configuration Agent
	4.1.3 Workflow Execution Agent

	4.2 Identifying and Creating Web Services

	Chapter 5 Results
	5.1 Case Study #1 – Ring Example
	5.2 Case Study #2 – Impeller Example

	Chapter 6 Conclusion
	Chapter 7 References
	Appendix A Guidelines for Implementing the System Framework (Readme.txt)

	Appendix B Ring Example – Code
	Services.xml
	WSRegistry.java
	KnowledgeAgent.java
	ConfigurationAgent.java
	ExecutionAgent.java
	ServiceASEI.java
	ServiceAImpl.java
	ServiceBSEI.java
	ServiceBImpl.java
	ServiceCSEI.java
	ServiceCImpl.java
	ServiceDSEI.java
	ServiceDImpl.java
	AltServiceBSEI.java
	AltServiceBImpl.java

	Appendix C Impeller Example – Code
	Services.xml
	WSRegistry.java
	KnowledgeAgent.java
	ConfigurationAgent.java
	ExecutionAgent.java
	CATIAServiceSEI.java
	CATIAServiceImpl.java
	HyperMeshServiceSEI.java
	HyperMeshServiceImpl.java
	FluentServiceSEI.java
	FluentServiceImpl.java
	ANSYSServiceSEI.java
	ANSYSServiceImpl.java

