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ABSTRACT

ANALYSIS USING SMOOTHING SPLINES AS IMPLEMENTED IN LME() IN R

John R. Howell

Department of Statistics

Master of Science

Spline smoothers as implemented in common mixed model software provide a

familiar framework for estimating semi-parametric and non-parametric models. Fol-

lowing a review of literature on splines and mixed models, details for implementing

mixed model splines are presented. The examples use an experiment in the health

sciences to demonstrate how to use mixed models to generate the smoothers. The first

example takes a simple one-group case, while the second example fits an expanded

model using three groups simultaneously. The second example also demonstrates how

to fit confidence bands to the three-group model. The examples use mixed model soft-

ware as implemented in lme() in R. Following the examples a discussion of the method

is presented.
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1. INTRODUCTION

Smoothing splines offer more flexibility than traditional polynomial regression

for fitting non-linear and non-polynomial relationships. In this project, smoothing

splines are fit to experimental data from the health sciences. The data consist of

tendon temperatures taken every 30 seconds over a 55-minute treatment period from

subjects in three separate treatment groups. The temperature was measured by

a thermometer surgically embedded in the Achilles tendon of each subject. The

experimental groups consist of a control (no intervention) and two treatments. Both

treatments include a 5-minute pre-treatment measurement period followed by: (1)

applying an icepack to the tendon for 20 minutes followed by 30 minutes of post-

treatment measurement, and (2) immersing the tendon in a whirlpool ice bath for 20

minutes followed by 30 minutes of post-treatment measurement. Following a review

of literature, a description on how to analyze the experiment using smoothing splines

implemented in popular mixed model software will be given.

Eilers and Marx (1996) proposed the technique of P-Splines, or penalized splines,

a method of fitting a smoothing spline using knots and simple penalties. Prior to Eilers

and Marx, penalty methods used an integral of the second derivatives as a smoothing

penalty. Eilers and Marx proposed using a simple difference as the penalty. They

claimed that this technique retained all the benefits of the integral methods, but had

the added benefit of being less computationally expensive. Ngo and Wand (2004)

demonstrated a method using existing mixed model software in S-Plus R© and SAS R©

that retained the use of knots, but controlled the smoothing using the shrinkage

property of mixed models instead of an externally defined penalty.

Smoothing spline techniques have been well developed, but not widely imple-

mented by researchers in disciplines outside of probability and statistics. This project
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is an introduction to smoothing splines for practicioners in the health sciences. It as-

sumes no prior knowledge of penalized splines, but a basic knowledge of R (2004) and

mixed models is beneficial. The project will help researchers deal with longitudinal

data collected by health science researchers that is not amenable to analysis using

regular parametric methods.

This paper shows how to apply splines to the tendon temperature data. Chapter

2 is a review of literature containing a brief history of literature concerning smoothing

and an examination of P-splines. Chapter 3 outlines the proposed scope of the project.

In Chapter 4, results of the analysis are presented along with the key portions of the

computer code necessary to obtain the results. Chapter 5 concludes by reviewing the

strengths and weaknesses of the method and identifying pitfalls that were encountered

when implementing the model. An appendix is also included which contains the

complete computer programs in R.
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2. REVIEW OF LITERATURE

2.1 Early Literature

Smoothing splines are non-parametric or semi-parametric techniques for fitting

smooth curves to data. Named after the tool used by ship builders to create the curve

of the hull, a mathematical spline is a series of piecewise polynomials with smooth

joints. Splines first appeared in actuarial literature near the turn of the twentieth

century. Spencer’s paper “On the graduation of rates of sickness and mortality”

(1904) is the earliest reference to smoothing as a mathematical technique. Whittacker

proposed a new method of smoothing data in 1923. Whittacker’s paper is the first

that used probability tools for fitting a smooth curve. He also used a roughness

penalty to control the amount of smoothing. The use of this penalty was later refined

and used in many forms of splines, including P-Splines.

The term “spline” was coined by Schoenberg to describe the process of fitting

a smooth function to data points (Schoenberg 1946; Epperson 1998). While working

for the U.S. Army at the Ballistics Research Laboratory during World War II, he

was assigned to determine the trajectory of munitions shells. The spatial nature of

the data prompted him to develop basis functions for piecewise polynomial fits. The

application was computationally intensive and not practical for widespread use at the

time. Schoenberg spent much of his later career fine-tuning and expanding his initial

work. He is considered to be the father of B-splines or basis splines (covered in section

2.2) and the many applications which stem from them (Karlin 1973; Schoenberg 1988;

Davis 1996).

Due to insufficient computing power and unstable boundary estimates, B-splines

were not widely used until the 1970’s. The boundary problem was solved in 1972 by de

Boor, who published a paper detailing a mathematically stable formula for calculating
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B-splines. De Boor used the concept of divided differences and recursively computed

higher-order splines. This algorithm became the basis for much of the spline literature

that followed in fields as diverse as statistics and computer-aided design.

2.2 B-splines

While many other smoothing methods exist such as LOWESS, kernel density es-

timators, and running-mean and running-line (Cleveland 1979; Ramlau-Hansen 1983;

Buja et al. 1989), B-Splines are especially popular among statisticians because they

are easy to implement and allow greater flexiblity than other spline methods.

2.2.1 Constructing Basis Functions

B-splines are smoothing splines that are based on B-spline basis functions. The

term B-spline has been used for both the basis functions and the resulting smoothed

function. This paper will use the term ”B-spline basis function” to refer to the basis

function and ”smoothed function” to refer to the function fit using the B-spline basis

function. Basis functions are functions that are mathematically independent from

one another. The calculation of a basis function of a given order depends only on

the number and location of the knots within the basis function interval. It does

not depend on any other basis functions. When basis functions are taken in linear

combinations, they can be used to approximate any target function. The larger the

number of basis functions used in the linear combination, the better the smoothed

function is approximated (Ramsay and Silverman 2005).

Knots divide the interval over which basis functions are calculated. The number

and location of the knots along with the order of the basis function determine the

shape of the basis function. When the knots are equally spaced, they only determine

the scale of the basis function. When they are not equally spaced, the B-spline basis

functions can be skewed or truncated. Figure 2.1 graphically represents a set of basis
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functions calculated using 4 equally spaced interior knots and 4 boundary knots on

each end. The knots were (0, 0, 0, 0, 2, 4, 6, 8, 10, 10, 10, 10). Notice that center basis

function is symmetrical. As the basis functions move closer to the edge of the graph,

they become more skewed. This is due to the stacking of the knots at the endpoints.

Figure 2.1: B-Spline Basis Functions

Generally knots are located at unique values. There are two purposes for stack-

ing knots. The first is when the knots are located on a boundary. A basis function

requires order δ knots on each side of all independent variables, t, evaluated where δ is

the order of the B-spline. Because data is not generally found outside the interval δ,

equal knots are often specified at each boundary so that the B-spline basis functions

do not extend beyond the interval that contains data. Another reason to stack knots

is to create a discontinuity in the smoothed curve. Only the data contained in the

interval that the B-spline basis function covers can influence the smoothed function.

When knots are stacked, the B-spline basis functions are truncated. If enough knots

are stacked, the B-spline basis functions can be truncated such that two adjacent

data points may never be contained in the same B-spline basis function. This would

lead to a discontinuity in the smoothed function.
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The order of the basis function and the number of knots is predetermined. The

smoothness of the curve is determined by the order of the basis function as well as the

number of knots. At each knot, all of the δ− 2 derivatives of the adjoining functions

are equal due to the construction of the B-spline. For splines of order four or higher,

this leads to a smooth fit provided each knot is located at a unique value. Order four

basis functions are the most common type of splines since they provide for equal first

and second derivatives at each knot.

The basis functions in Figure 2.1 were created using the recursive formula de-

veloped by de Boor (1972). This formula is:

Ni,1(t) =

 1, ki ≤ t < ki+1

0, otherwise

Ni,δ(t) =
t− ki

ki+δ−1 − ki

Ni,δ−1(t) +
ki+δ − t

ti+δ − ti+1

Ni+1,δ−1(t)

where Ni,δ(t) is the basis function evaluated at ti, k1, ..., kn are the knots; and δ is

the order of the basis function being calculated. The basis functions are recursively

calculated by first calculating the lower degree splines. Ni,δ(t) is greater than 0 only

at δ knots; it is 0 everywhere else. The recursive nature of the formula can be shown

by creating a triangle for each value of t:

Order 1 Order 2 · · · Order δ

ki−1 0 0 · · · 0

ki Ni,1(t) = 1 Ni,2(t) · · · Ni,δ(t)

ki+1 0 Ni+1,2(t) · · · Ni+1,δ(t)

... 0
. . .

...

ki+δ 0 Ni+δ,δ(t)

ki+δ+1 0.

Although it is not shown, all Ni,δ(t) outside the triangle are 0. The column corre-
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sponding to the desired order can be transposed to create the X matrix when the

smoothed function is fit.

2.2.2 Fitting the Smoothed Function

Ordinary Least Squares is used to determine a set of coefficients for the basis

functions that minimize the sums of squares between the observed data and the linear

combination of B-spline basis functions (Dierckx 1993). Using these coefficients, the

smoothed function is calculated and can be plotted.

Figure 2.2 is an example of a B-Spline fit that was calculated from randomly

generated data. The X values were randomly generated from a Uniform(0, 10) dis-

tribution. The Y values were then calculated as sin(X)+ .4×Random Normal(0, 1).

The knots are the same ones that were used to create Figure 2.1, (0, 0, 0, 0, 2, 4,

6, 8, 10, 10, 10, 10). Using the the recursive formula described in Section 2.2.1, the

B-spline basis functions were calculated for an order four B-spline, This results in the

same basis functions plotted in Figure 2.1. The basis functions then form the rows of

the X matrix. The X matrix is 100× 8 so it is not possible to show the entire table

in this text; however, the first three rows are shown in Table 2.1. After calculating

the B-Spline basis functions, a simple linear model, y = Xβ + ε, was fit using the

generated y values and the X matrix created by the basis functions. The spline can

then be plotted using predicted values from the simple linear model. Figure 2.2 is

the fitted spline from this exercise. The dark, heavy line is the fitted curve and the

dashed line is the actual function. The points represent the generated data values.

0.943 0.057 0.001 0.000 0.000 0.000 0.000 0.000
0.618 0.352 0.030 0.001 0.000 0.000 0.000 0.000
0.369 0.528 0.099 0.004 0.000 0.000 0.000 0.000

Table 2.1: First three rows of the constructed X matrix

B-splines have a tendancy to over-fit the data as more knots are used. Green
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Figure 2.2: B-Spline fit example

and Silverman (1995) overcame one of the problems with B-splines by using a penalty

to control the smoothness of the splines instead of using rules and algorithms to

determine the optimal number of knots.

2.3 P-splines

In 1996, Eilers and Marx coined the term P-splines. P-splines, also called

penalized splines (Ruppert and Carroll 2000) or pseudosplines (Hastie 1996), are an

extension of B-splines and share many of the same desirable properties. Both P-

spline and B-spline approximations do not degrade at the boundaries of the interval

containing them. The mean of B-splines or P-splines evaluated at the data points is

equal to the mean of the data points and the variance is less than the variance of

the data points due to the smoothing. B-splines and P-splines also extend common

generalized linear models. However, B-splines suffer from a practical problem: the

number and location of the knots must be decided prior to fitting the model. The

choice of the number of knots used is problematic because too few knots can lead to
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under-fitting the data and too many knots can lead to over-fitting the data (Eilers

and Marx 1996).

Many approaches have been proposed to help determine how many knots should

be used. One method involves automatically optimizing the number of knots based on

a predetermined algorithm. Friedman and Silverman (1989) used a stepwise procedure

to find the optimal position of the knots for a smoothing spline. The fit of the knots

is evaluated using a procedure called Generalized Cross Validation (GCV). Knots are

added one by one to give the best piecewise fit while ensuring that the knots are spaced

by an amount determined by the researcher. This stepwise procedure is repeated until

a predetermined maximum number of knots is placed. The GCV is then computed

for each step in the procedure (from 1 knot to Kmax knots) and the solution with the

lowest GCV is chosen. The procedure then uses a backwards stepwise procedure to

determine if deleting any one of the knots will improve the GCV. Kooperberg and

Stone (1991; 1992) use an automatic procedure based on AIC or BIC and the Wald

statistic to determine the appropriate number of knots. This stepwise procedure

removes the knot that is the least statistically significant, as measured by its Wald

statistic, until only one knot remains. The iteration that minimizes either AIC or

BIC is chosen as the final model. These solutions lead to complex computation and

decision rules which are fairly arbitrary.

Good and Gaskins (1971) proposed that a roughness penalty be subtracted

from the log-likelihood in order to control over-fitting. The penalty they proposed is

λ
∫

f ′′(x)2dx, where f(x) is the function to be fit and λ is the smoothing parameter.

Silverman (1982) refined this suggestion by penalizing the second derivative of the

logarithm of f(x) instead of the second derivative of f(x). Instead of being forced to

directly select knots, a large number of knots are used and over-fitting is controlled

by the value of the smoothing parameter λ.

O’Sullivan (1986; 1988) expanded on this idea by proposing an algorithm to au-
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tomatically optimize the value of the smoothing parameter λ using a cross-validation

procedure based on a Newton-Raphson approximation. The algorithm is complex and

only an approximation of the optimal smoothing parameter but it can be computed

quickly. Ruppert (2002) showed that with penalized splines, the number of knots has

little effect on the resulting smoothed curve as long as a sufficient number of knots

are used to fit the main features of the data. In rare cases the MSE increases as the

number of knots increases. The computation time also increases as the number of

knots increases, so there is an incentive to limit the number of knots used.

P-Splines expand the method of using a penalty to control the smoothing.

Instead of basing the penalty on the second-order derivative, the penalty is based on

the difference of the coefficients of adjacent B-splines. The non-penalized approach

determines weights aj such that

n∑
i=1

{
yi −

k∑
j=1

ajBj (xi)

}2

is minimized where n is the number of observations and Bj is the jth B-spline basis

function. This is an Ordinary Least Squares fit to the B-splines. Traditional penalized

procedures add a penalty function to this equation and minimize

n∑
i=1

{
yi −

k∑
j=1

ajBj (xi)

}2

+ λ

∫ xmax

xmin

{
k∑

j=1

ajB
′′
j (x)

}2

dx.

The traditional penalized procedure leads to complex mathematical equations and

difficulties in fitting the model. Eilers and Marx (1996) simplified the previous equa-

tion by minimizing

n∑
i=1

{
yi −

k∑
j=1

ajBj (xi)

}2

+ λ

n∑
j=k+1

(
∆laj

)2
,

where aj is the least squares weight, Bj is the jth B-spline, n is the number of

observations, λ is the constant controlling the smoothing, and ∆laj is the lth difference

between adjacent B-spline weights (∆2aj = ∆∆aj = (aj − aj−1)(aj−1 − aj−2)).
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This simplified criterion is a good approximation of higher-order penalties. The

equation reduces the mathematical complexity of the problem and replaces a compu-

tationally expensive operation with a cheap one. The attractive properties of penal-

ized B-splines are preserved using this method and the computation is much easier

than using the second derivative as a penalty (Eilers and Marx 1996).

2.4 Linear Mixed Models

Linear mixed models have been used for many years to analyze data from ran-

domized block designs, longitudinal data, spatial data, and many other types of data

in which the observations are correlated (Laird and Ware 1982; Littell et al. 1996;

Diggle et al. 2002). The popularity of linear mixed models has led to the develop-

ment of sophisticated procedures for their analysis in software packages such as SAS R©,

S-PLUS R©, and R.

Linear mixed models are an extension of simple linear models. Recall the simple

linear model

y = Xβ + ε,

where y represents a vector of dependent variables, X is the full rank design matrix of

known values, β is a vector of regression parameters, and ε is a vector of error terms. It

is common to assume that ε is distributed MV N(0,V). In the simplest form, V is σ2I.

β is estimated by minimizing the sum of squares ε′ε = (y − Xβ)′(y − Xβ). This

leads to the normal equations X ′Xβ = X ′y and the solution β̂ = (X ′X)−1X ′y.

If ε is distributed normally with mean 0 and variance σ2I, then β̂ is the best linear

unbiased estimator of β, meaning that there is not a β̂ that has a smaller variance,

is a linear function of y, and is unbiased for β.

The linear mixed model is an extension of the simple linear model. The equation
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for the linear mixed model is

y = Xβ + Zu + ε,

where y, X, and β have the same meaning as the simple linear model. Z is the design

matrix for the random effects, u is distributed as MV N(0,G), and ε is distributed

as MV N(0,R). Assuming that u is multivariate normal relaxes the iid restriction

of the simple linear model. It allows for observations to be correlated and to have

heterogeneous variances. This type of data is common in longitudinal experiments

where there are repeated measures on an experimental unit, as is the case in the

examples in this text.

In linear mixed models, both u and β are estimated. β̂ estimates the effect due

to the fixed treatments and û estimates the difference between the subgroups and the

population mean as defined by the Z matrix. Most of the time β is of most interest

since it involves the effects of a treatment; however, it is often useful to examine the

u parameters as well.

If G and R are known the estimation problem is straightforward and easily

solved by separately solving the mixed model equations for β̂ and û. However, G

and R are generally unknown. The most commonly used approach for estimating R

and G is Restricted Maximum Likelihood (REML)(Swallow and Monahan 1984).

Once we find reasonable estimates of G and R we can solve the mixed model

equations in the standard way. The mixed model equations are:

 X ′R̂−1X X ′R̂−1Z

Z′R̂−1X Z′R̂−1Z + Ĝ−1


 β̂

û

 =

 X ′R̂−1y

Z′R̂−1y

 .

The solution to these equations are:

β̂ = (X′V̂−1X)−X′V̂−1y

û = ĜZ′V̂−1(y − Xβ̂),
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where V = V(y) = ZGZ′ + R (Littell et al. 1996). If G and R were known then

β̂ would be a best linear unbiased estimator (BLUE) of β and û would be the best

linear unbiased predictor (BLUP) of u. However, since G and R are only estimates

the term ”empirical” is often used to indicate that β̂ and û are only approximations,

referred to as EBLUE and EBLUP.

One result that is a byproduct of specifying u ∼ MV N(0,G) is that the esti-

mates of u shrink toward 0. For prediction, this is generally a good thing because the

variability inherent in the different experimental units is generally greater than the

variability due to the different treatments (Robinson 1991). The shrinkage minimizes

the effect that the observed experimental units have on predicting the outcome of

a trial and give more weight to the effect of treatment itself. Mixed model splines

as discussed in section 2.5 are possible because of the shrinkage properties of the û

estimators. Because of the shrinkage, the fitted curve is smooth instead of reflecting

every random variation in the data.

2.5 P-Splines and Linear Mixed Models

Many researchers have combined smoothing splines and mixed models. These

include Lin and Zhang (1999) who proposed using General Additive Mixed Models

to jointly estimate variance components and smoothing parameters. They applied

this procedure to longitudinal data on respiratory infections as well as simulation

studies. Because of the difficult numerical integration required, they also developed

an extension of REML called double penalized quasi-likelihood. Wang (1998a) fit a

random effects analysis of variance model with smoothing splines as the main effects

and estimated the model using generalized maximum likelihood. He suggested that

existing software could be used to fit the nonparametric mixed effects models and

found a way to fit his model using a two-step process with SAS R©. The first step

is to calculate the B-splines and the second is to fit the model using SAS R© PROC
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MIXED. Verbyla et al.(1999) used REML implemented in a software package ASREML

(Gilmour et al. 2002) to fit mixed models with smoothing spline components. Verbyla

et al.(1999) used three examples from a variety of research areas. Brumbank and Rice

(1998) also used REML and traditional B-splines to fit a non-parametric mixed model

to grouped repeated measures data.

Researchers have also shown that splines themselves can be fit as mixed models.

Commenting on the Robinson (1991) paper on BLUPs, Speed (1991) showed that it

was possible to fit penalized splines as mixed models and therefore splines could also

be considered BLUPs. Eilers (1999) showed that the P-spline formulation he helped

develop could also be represented as mixed models. Both of these references are in

comments on other spline and mixed model papers and do not contain a complete

proof and examples. Wand (2003) took a different approach and used the shrinkage

property of mixed models to fit the splines. This approach makes splines much more

accessible since it relies on well understood mixed model theory and the notation can

be simplified. His approach also relies on only specifying the fixed and random effects

so that the models can be completely fit with widely available software such as SAS R©,

S-Plus R©, or R.

The model Wand uses can be simply described with few mathematical formulas

and a simple graph. Wand simplified the mathematics by using a truncated line basis

function instead of a B-spline basis function. B-spline basis functions would work as

well, but the mathematics are more complex. The truncated line basis function is

represented by

(x− κk)+ =

 0, x ≤ κk

(x− κk), x > κk

, (2.1)

where κk is the k-th knot. Consider the model

yi = β0 + β1xi +
K∑

k=1

uk(xi − κk)+ + εi. (2.2)

If this model is fit as a standard linear model with only fixed effects, then the plot
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pictured on the left of Figure 2.3 would be the result. The fitted line is very rough

due to the number of truncated line basis functions fit. The roughness of the fit can

be remedied by imposing the restriction:

uk ∼ N(0, σ2
u).

Thus the model is now a mixed model. For σ2
u < ∞, the uk’s are shrunk toward the

mean and the fit is smooth. This is demonstrated on the right side of Figure 2.3.

Figure 2.3: Truncated line basis splines fit with fixed effects model on the left and
mixed effects model on the right. The data is the same as used in Figure 2.2. However,
twenty-seven equally spaced interior knots are used instead of the twelve knots for
the B-spline example.

If design matrices are defined as:

X = [1 xi]1≤i≤n , Z =
[
(xi − κk)+

]
1≤i≤n,1≤k≤K

,

with the β’s set to β = [β0, β1]
′ and the uks set to u = [u1, . . . , uK ]′, then you can

rewrite equations 2.1 and 2.2 as a linear mixed model,

y = Xβ + Zu + ε,

 u

ε

 ∼ N


 0

0

 ,

 σ2
uI 0

0 σ2
ε I


 ,
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and perform estimation using REML. This formulation allows for great flexibility in

the mixed model fit since both random and fixed effects can be easily added. Wand

and Ngo (2004) published a follow-up paper that walks through specific examples of

smoothing that include computer code for both S-Plus R© and SAS R©.

Fitting the models with R is a trivial extension of the S-Plus R© examples because

both S-plus R© and R are based on the programming language “S”. R is appealing

as a statistical programming langauge because it is open-source, free, and widely

available. R lacks the graphic interface that S-Plus R© has for inexperienced users, but

implements nearly all of the programming functions of S-Plus R©. It also facilitates

the creation of high-quality graphs which are indispensable for smoothing problems.

Formal inference has not been well-developed for traditional spline models.

Complicated, numerically intensive methods are required for an exact fit. This has

led researchers to simplify the challenge of fitting confidence intervals and performing

hypothesis tests by using lower-dimensional approximations (Gray 1994). P-splines

estimated using mixed model software avoid this problem because standard mixed-

effects diagnostics, inference, and model selection can be used (Wand 2003). The

smoothing coefficients do not have any direct meaning, but degrees of freedom and

standard errors can be calculated. The degrees of freedom and standard errors can

then be used to create a variety of inference procedures including variability bars.

The amount of smoothing implemented is determined by the number of knots or the

basis function used in the Z matrix. Researchers who are familiar with mixed models

but have little experience with smoothing can use the methods in this paper to take

advantage of the flexibility that splines offer (Ruppert et al. 2003).
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3. PROJECT SCOPE

3.1 Research Objectives

The purpose of this project is to create a “how-to” guide for fitting splines using

mixed models. The project is written for statisticians and health science researchers

who have knowledge of mixed models, but do not have significant knowledge of splines

or programming. The project walks the reader through an example of creating a set

of splines from a blocked design. The splines for each of the three groups are created

both individually and simultaneously, and confidence bands are fit to the data.

The data come from a health science experiment. It is a simple three-group

design. Forty-five subjects were divided into three groups. Each subject had an elec-

tronic thermometer surgically embedded into their Achilles tendon and then went

through an exercise routine designed to increase the temperature of the tendon. Im-

mediately following the exercise, the subjects received one of the following treatments.

The control group was allowed to recover without intervention. The second group had

an ice pack placed on the Achilles tendon five minutes after the completion of the ex-

ercise. The ice pack was administered for 20 minutes and then the group was allowed

to recover for 30 minutes. The third group was allowed the same five-minute resting

period as the second group, but had their leg immersed in a whirlpool ice bath for 20

minutes, followed by a 30-minute recovery. The temperature of all three groups was

measured every 30 seconds for the entire 55-minute period. The primary questions of

interest are how fast the tendon cools and how long the coolness persists. The faster

the temperature is dropped and the longer the temperature stays below normal, the

greater the therapeutic effect. The raw data are graphed in Figure 3.1. The dataset

is very rich, so the graphs already show a strong respondent trend.

The graphs for the two treatment groups show two change-points. These points
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Figure 3.1: Control, Ice pack, and Whirlpool Data

occur at the five-minute mark and the 25-minute mark where the treatment began

and ended. Because the change points in the data are so sharp, it is not appropriate

to fit a simple parametric model. Splines offer a simple alternative. Using splines,

a flexible model can be fit which does not follow a strict functional form. The data

set contains repeated measures of the same observational unit. In the interest of

simplicity, this paper ignores the serial correlation within the observational units,

and models within subject correlation only via the random effects. In Chapter 4,

which addresses challenges of the model, there is a discussion of various ways to

fit a model that incorporate the correlation due to repeated measures on the same

respondent.

3.2 One-Group Solution

The whirlpool icebath group will be used as an example for fitting a one-group

solution. A simplified version of the actual R code is presented to reduce the com-

plexity of the problem. The full program is presented in Appendix B. The basic

procedure for fitting the model involves six basic steps:

(1) Set up the dependent and independent variables

(2) Specify knots
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(3) Create Z matrix

(4) Prepare model

(5) Estimate parameters

(6) Plot results

3.2.1 Set up variables

In the whirlpool dataset there are two variables. The temperature of the ten-

don is the dependent variable and the time that the measurement was taken is the

independent variable. There are 110 observations per respondent.

y <- whirlpool.temperature #The dependent variable

x <- whirlpool.times #The independent variable

3.2.2 Specify knots

The second step is to set up the knots which are needed in step 5, the estimation

step. Wand (2004) proposed a default knot specification that functions well for most

problems. The simple rule used in the default.knots function is

κk =

(
k + 1

K + 2

)
th sample quantile of unique xi’s, 1 ≤ k ≤ K,

with

K =


5, 1

4
N < 5

b1
4
Nc, 5 ≤ 1

4
N ≤ 35

35, 1
4
N > 35

,

where N is the number of unique X values. These knots seem to work well for many

problems and are a reasonable initial assumption for knot placement in this example.
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default.knots <- function(x,num.knots)

{

if (missing(num.knots))

num.knots <- max(5,min(floor(length(unique(x))/4),35))

return(quantile(unique(x),seq(0,1,length=

(num.knots+2))[-c(1,(num.knots+2))]))

}

knots <- default.knots(x)

The function default.knots returns 27 unique knots based on the algorithm

above.

3.2.3 Create Z matrix

The third step in fitting the model is to create the Z matrix. The Z matrix

represents the difference between each x value and each knot. Its dimensions are

the length of the X matrix by the number of knots. The values of the Z matrix are

constrained to be greater than or equal to 0, so any differences that result in a negative

number are set to 0. A simple example of a Z matrix with knots κk = (1.5, 3, 4.5)

and X values (1, 2, 3, 4, 5) is 

0 0 0

0.5 0 0

1.5 0 0

2.5 1 0

3.5 2 .5


.

z <- outer(x, knots, "-") #Number of obs. X Number of knots

z <- z * (z > 0) #All negative elements of z set to 0
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3.2.4 Prepare Model

The linear mixed model function in R, lme(), requires a grouped data structure

in order to fit the model using a specialized Z matrix. Normally the grouped data

object would contain information on which group each observation belongs to so that

the Z matrix could be properly constructed. Since the Z matrix is explicitly defined

in this problem, a single dummy group will be created so that the software does not

attempt to alter the Z matrix that has been provided.

group <- rep(1, length(x)) #Create the dummy grouping variable

temp.dataframe <- data.frame(x, y)

#Combine the raw data into a data

#frame

model.data <- groupedData(y~x|group, data=temp.dataframe)

#Create the grouped data object

#for the fixed effects

3.2.5 Estimate Parameters

The actual model can be fit once the grouped data object has been created.

The model should be fairly clear. The model is temperature = β0 + time ∗ β1 + Zu.

The β0 parameter in the model is an intercept and the β1 is a pseudo-slope related

to the time that each temperature was taken. The random effects are specified in the

Z matrix that was previously created.

library(nlme)

fit <- lme(y~x, random=pdIdent(~-1+z), data=model.data)

The function lme() is a part of the nlme library. This library needs to be

loaded before the function can be called. The fixed effects section of the model is a
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standard intercept and slope model. The intercept retains its standard meaning, but

since the actual curve is determined by a combination of the slope and the random

effects the slope has no meaning. In the random statement the pdIdent() function

is used to construct the Z matrix exactly as it appears in the argument and specifies

that the G matrix should be a multiple of the identity matrix. The ~-1+z specifies

that the Z matrix created should be used exactly as specified without the addition

of an intercept.

3.2.6 Plot Results

The coefficients of the mixed model are not meaningful by themselves. They

are only useful when combined to create the fitted curve. The easiest way to display

the results for this problem is using a two-dimensional line plot.

fit.beta.hat <- fit$coef$fixed

#extract the beta-hats

fit.u.hat <- unlist(fit$coef$random)

#extract the u-hats

#Construct the plot dimensions

x.grid <- seq(min(x), max(x), length=length(x))

X.grid <- cbind(1, x.grid)

Z.grid <- outer(x.grid, knots, "-")

Z.grid <- Z.grid * (Z.grid > 0)

yhat.grid <- X.grid%*%fit.beta.hat + Z.grid%*%fit.u.hat

plot(x, y, type=’n’)

for( i in 1:15) {

lines(x, each.respondents.y, lty=i)

}

lines(x.grid, yhat.grid, col="green", lwd=3)

Figure 3.2 is the resulting plot. The plot shows that the fit is quite good except

in two locations. At the beginning of the treatment near the five-minute mark, the

curve anticipates the beginning of the treatment and at the beginning of the recovery
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Figure 3.2: Fit of whirlpool group. The dashed lines are the data points. The thick
line is the fitted spline. The circle highlight the change points in the graph. Because
of knot position, the fit at the change points is less than ideal.
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period near the 25-minute mark the curve slightly lags the data. This can be corrected

to some degree by adjusting the knots to explicitly take into account the treatment

change points. By adding two knots at the 5-minute and the 25-minute marks the

model fit is greatly improved.

knots <- default.knots(x)

knots <- append(knots, 5, after=2)

knots <- append(knots, 25, after = 12)

The 5-minute mark is the third knot and the 25-minute mark is the thirteenth

knot. The parameters can be re-estimated and the model re-plotted.

As seen in Figure 3.3, the fit is now better at the change points. The reversal

of the slope of the spline is closer to the 5-minute mark and the second slope reversal

comes at exactly the 25-minute mark. With traditional P-splines the change point

could be emphasized even further by placing additional knots at the 5-minute mark

to create a discontinuity in the fitted curve. The mixed model approach used in this

paper does not allow for these additions since it creates redundant columns in the Z

matrix and R removes those columns from the model.

3.3 Three-Group Solution

The next step in fitting the tendon temperature model is to fit the three groups

simultaneously. Since mixed models allow for different groups to have different vari-

ance and covariance structures, each treatment can be fitted as a group of random

effects. The same steps used in Section 3.2 can be followed for the three-group solu-

tion.

(1) Set up the dependent and independent variables
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Figure 3.3: Fit of whirlpool group with adjusted knots. The thick line is the fitted
spline. The circles highlight the 5-minute mark and the 25-minute mark where the
knots were adjusted.
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(2) Specify knots

(3) Create Z matrix

(4) Prepare model

(5) Fit model

(6) Plot results

The notation used in this section will be more complex than used in the previous

section as the problem is now more complicated.

3.3.1 Set up the dependent and independent variables

The data were originally stored in three separate files, one for each treatment

group. The data need to be stacked so that there is one dependent variable per row.

control <- read.csv(’control.csv’, header=T)

icepack <- read.csv(’icepack.csv’, header=T)

whirlpool <- read.csv(’whirlpool.csv’, header=T)

temperature <- rbind(control,icepack,whirlpool)

Temperature is the dependent variable and it is sorted by respondent and then

by order within each respondent. The next step is to construct the independent

variable. In this situation it is easier to create the independent variable using R

than it is to read it in from a file. For this model a reasonable specification is a

separate slope and intercept for each group. Other specifications would be possible

and appropriate, but the separate slope and intercept model maintains the group

structure and is easy to interpret. This process creates six columns in the X matrix.

The first three columns represent the intercept for each group; a 1 if the subject is

a member of the group and a 0 if it is not. The fourth through sixth columns are

the measurement times for each group. The value generated is the actual time of the
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measurement if the subject was a member of the group associated with the column

or 0 if the subject was not a member of the group.

n <- length(temperature)

time <- rep(seq(0, 55, .5), 45)

index.control <- (1:(n/3))

index.icepack <- n/3 + (1:(n/3))

index.whirlpool <- 2*(n/3) + (1:(n/3))

int.control <- rep(0, n)

int.icepack <- rep(0, n)

int.whirlpool <- rep(0, n)

int.control[index.control] <- 1

int.icepack[index.icepack] <- 1

int.whirlpool[index.whirlpool] <- 1

X <- cbind(int.control, int.icepack, int.whirlpool, int.control*time,

int.icepack*time, int.whirlpool*time)

Since there are no missing data, time is simply a sequence from 0 minutes to 55

minutes in half-minute increments. This is repeated for all 45 respondents. The next

step is to create a stretched identity matrix for the intercept. Because the respondents

are sorted according to group, the first third of the respondents belong to the control

group, the second third to the ice-pack group, and the final third to the whirlpool

group. By creating an index variable for the group, the three intercept columns can

quickly be fill. The slope is then the intercept column multiplied by the column of

times. The final X matrix is just the combination of those columns. There are 4,995

total observations, so the X matrix is 4, 995× 6.
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3.3.2 Specify Knots

The number of knots that are chosen affects the size of the model. In this

example there will be 3 times as many random effects as there are knots in the

model. This will greatly increase the number of parameters in the model and can

substantially increase the computation time. A balance needs to be maintained since

more knots mean a smoother curve, while with too few knots the model will not be

sufficiently smooth.

In this model there are 111 unique X values. If one knot for every four X values

were used, as in the previous example, then there would be 27 knots. This number

can be reduced by incorporating some information from the experiment. The graphs

of the data show a flat portion for the first five minutes of the experiment prior to

the application of the treatments. There can be few knots in this period of time since

there is little curvature in the model. As demonstrated in Section 3.2.6, a knot is

needed at the first change point at 5 minutes. One other knot between zero and the

the change point should be sufficient. The next section of the data is the region of

the steepest change due to the treatment being applied. Ten knots should be enough

to model this with a knot at the 25 minute mark, but not one at the five minute

mark since the previous piecewise section contains one. The third section also has

significant curvature, but not quite as much as the second section. Eight knots should

be sufficient in this section for a total of 20 knots. The end points are not included

in the knot specification since there are implicit knots at the beginning and end of

the interval.

knots.1 <- c(2.5, 5)

knots.2 <- quantile(c(5, 25), seq(0, 1, length=11))[-c(1)]

knots.3 <- quantile(c(25, 55), seq(0,1, length=10))[-c(1, 10)]

knots <- c(knots.1, knots.2, knots.3)
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3.3.3 Create Z Matrix

The Z matrix needs to be a block diagonal matrix, with one block for each

of the three treatment groups. Since the knots and the X matrix are the same for

each of the treatment groups, each of the blocks will be the same. Using the same

procedure as that used in Section 3.2.3, first take the difference between each time

and each knot and then set the negative values to 0. Then, using the previously

created grouping variable, create the blocked diagonal matrix.

Z.overall <- outer(time, knots, "-")

Z.overall <- Z.overall*(Z.overall > 0)

Z <- cbind(Z.overall*int.control, Z.overall*int.icepack,

Z.overall*int.whirlpool)

The creation of the Z.overall is fairly straight forward. To expand the overall

Z matrix element-wise multiply the overall Z matrix with the intercept for each

treatment group. This is a shorter process than creating the entire Z matrix by

hand.

3.3.4 Prepare Model

The formula used in the random statement of the mixed model can be created

prior to use to simplify the model specification. There needs to be one formula for

each treatment group that identifies which columns of the Z matrix are used in each

solution.

block.ind <- list(1:K, (K+1):(2*K), (2*K+1):(3*K))

Z.block <- list()
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for (i in 1:length(block.ind))

Z.block[[i]] <- as.formula(paste("~Z[,c(",paste(block.ind

[[i]],collapse=","),")]-1"))

The code is best described by showing the results.

[[1]]

~Z[, c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20)] - 1

[[2]]

~Z[, c(21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40)] - 1

[[3]]

~Z[, c(41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59, 60)] - 1

Z.block is a list that contains three elements. Each of the elements is the one-

sided formula for one of the treatment groups. It explicitly calls out the columns in

the Z matrix that are used for each of the groups fit.

The grouped data structure used in the mixed model also needs to be created.

Just as in Section 3.2.4, a dummy variable of ones needs to be created to prevent the

software from expanding the specified Z matrix. The groupedDataobject is required

by the software when a Z matrix is explicitly specified, but provides no additional

information.

dummy <- rep(1, n)

tendon <- groupedData(temperature~X|dummy,

data=data.frame(X, temperature))
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3.3.5 Estimate Parameters

The estimate parameters step for this model is fairly straightforward. The

formula for the random effects and data frame object were created in the previous

step.

fit <- lme(temperature~-1+X, data=tendon, random=pdBlocked(Z.block,

pdClass="pdIdent"))

The only thing that is unusual in the lmecall is the pdBlocked function in

the random statement. It specifies that the G matrix will have a blocked diagonal

structure and takes two arguments. The first argument is a list of formulas that

define which random effects the blocks will consist of. Each formula represents one

block and in this example each block of the G matrix will represent a different group.

This list of formulas was created in Section 3.3.4. The second argument, pdClass=,

specifies the structure of an individual block of the G matrix. For this example we

will use a multiple of an identity matrix for each group which corresponds to the

"pdIdent" class.

3.3.6 Plot Results

Plotting the results of the model is also fairly straightforward. It is simply a

matter of extracting the β̂’s and û’s, and calculating the predicted value for each

group. Any values can be used, but since there is an observation every 30 seconds, it

is convenient to use the actual time values for predictions.

beta.hat <- fit$coef$fixed

u.hat <- unlist(fit$coef$random)
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grid.control <- 1:111

grid.icepack <- (15*111+1):(16*111)

grid.whirlpool <- (30*111+1):(31*111)

X.grid <- X[c(grid.control, grid.icepack, grid.whirlpool),]

Z.grid <- Z[c(grid.control, grid.icepack, grid.whirlpool),]

fhat <- X.grid%*%beta.hat + Z.grid%*%u.hat

The β̂’s and the û’s are first extracted from the model. The X grid used for

the prediction is made up of the rows of the X matrix for the first respondent in each

group. The same is done for the Z matrix. Note that the Z matrix is dependent on

the X matrix. It does not need to be recalculated in this example because the same

X matrix values are used in the prediction as were used to fit the model. If different

X values were desired for prediction, the Z matrix would need to be recalculated

using those X values and the knots used to fit the model.

The fitted values can then be used to overlay the splines on a plot of the raw

data. This is shown in Figure 3.4. The complete code for the plots can be found in

Appendix B, but the code to fit the splines is:

grid.control <- 1:111

grid.icepack <- (15*111+1):(16*111)

grid.whirlpool <- (30*111+1):(31*111)

X.grid <- X[c(grid.control, grid.icepack, grid.whirlpool),]

Z.grid <- Z[c(grid.control, grid.icepack, grid.whirlpool),]

fhat <- X.grid%*%beta.hat + Z.grid%*%u.hat

lines(time[1:111], fhat[1:111], col=’red’, lwd=3)

lines(time[(111+1):(2*111)], fhat[(111+1):(2*111)],

col=’blue’, lwd=3)
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lines(time[(2*111+1):(3*111)], fhat[(2*111+1):(3*111)],

col=’green’, lwd=3)

3.4 Confidence Bands

The splines themselves are useful, but they only tell a part of the story. Since

the model was fit with mixed models we can add confidence bands to the plot of the

splines. These confidence bands are useful for detecting significant differences. The

first step in computing the confidence bands is to calculate the complete variance

covariance matrix for the mixed model. Using estimates of the G matrix and the

R matrix from the REML procedure, the joint variance-covariance matrix, C, of

(β̂ − β, û− u) can be estimated. As seen in Littel et al. (1996) and Robinson (1991),

C =

 X ′R−1X X ′R−1Z

Z′R−1X Z′R−1Z + G−1


−1

for full rank X. Since G and R are not known, the estimates Ĝ and R̂ are used

instead. C is notationally Ĉ to signify that it is only an estimate.

Using this formula it is not difficult to create the Ĉ matrix once R̂ and Ĝ are

extracted from the model.

sig.sq.eps <- fit$sigma^2

R <- diag(sig.sq.eps, 111*45)

G <- sapply(pdMatrix(fit$modelStruct$reStruct), "*", fit$sigma^2)

G <- matrix(G, 60, 60)

In the estimation step in Section 3.3.5 Ĝ was specified as a matrix:
σ̂2

G1
I 0 0

0 σ̂2
G2

I 0

0 0 σ̂2
G3

I

 .
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Figure 3.4: All three groups fitted simultaneously. The three thicker lines are the
spline fits for each group. The top line (red) is the control group, the second line
(blue) is the ice-pack group, and the bottom (green) line is the whirlpool group. The
dots are the raw data.
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and R̂ was specified as σ̂2
ε I. The R code extracts the parameters σ̂2

G1
, σ̂2

G2
, σ̂2

G3
,

and σ̂2
ε . It then constructs the Ĝ and R̂ matrix. The value for σ̂2

ε is stored as part

of the lme object and is easily extracted. Ĝ is decomposed into a positive definite

matrix object with each element divided by σ̂2
ε . Thus Ĝ can be found by multiplying

each element of the positive-definite matrix by σ̂2
ε . The call to pdMatrix returns

the positive-definite matrix used in the calculation as a list. The sapply statement

multiplies each element in the list by σ̂2
ε . The Ĝ matrix can then be reconstructed.

The result is that

R̂ = σ̂2
ε I = 2.56 · I,

where I is a 4995 × 4995 identity matrix and

Ĝ =


σ̂2

G1
I 0 0

0 σ̂2
G2

I 0

0 0 σ̂2
G3

I

 =


0.0003 · I 0 0

0 0.3485 · I 0

0 0 1.2947 · I

 ,

where each I is a 20 × 20 identity matrix.

Once the G and R matrix are extracted the Ĉ matrix can be created.

G.inv <- solve(G)

R.inv <- diag(1/sig.sq.eps, 4995)

C11 <- t(X)%*%R.inv%*%X

C21 <- t(Z)%*%R.inv%*%X

C22 <- t(Z)%*%R.inv%*%Z+G.inv

Chat <- cbind(rbind(C11, C21), rbind(t(C21), C22))

Chat <- solve(Chat)

Because R is a diagonal matrix the expensive operation of taking the inverse

of a 4995 × 4995 matrix can be avoided by simply taking the reciprocal of each of

the diagonal elements. Using this formulation the largest matrix that needs to be

inverted is the 66X66 matrix, one row and column for each parameter.
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Note that Ĉ underestimates the overall variability of the model since it does not

take into account the variance of Ĝ and R̂. One way to correct this to use variance

inflation factors; a second way is to use a conservative number of degrees of freedom

in any t- or F-statistic (Littell et al. 1996). The second method is the procedure used

in this example.

If L is a contrast vector, then confidence bands for each spline are

L

 β̂

û

± tν̂,α/2

√
LĈL′,

where ν̂ is the approximate degrees of freedom and tν̂,α/2 is the (1 − α/2)100th per-

centile of the tν̂-distribution (Littell et al. 1996). Since multiple tests are being done,

a Scheff correction is used for the critical value. Eight degrees of freedom are used

as a conservative estimate for the denominator degrees of freedom. Eight was chosen

because Ngroup− pfixed effects− 1 (15− 6− 1). Two numerator degrees of freedom are

used for the three treatments minus 1. This is a fairly arbitrary choice, but should

be sufficiently conservative.

se.control <- sqrt(diag(cbind(X[grid.control,], Z[grid.control,])

%*%Chat%*%t(cbind(X[grid.control,], Z[grid.control,]))))

ul.control <- fhat[1:111]

+ (sqrt(2)*sqrt(qf(.95, 2, 8))*se.control)

ll.control <- fhat[1:111]

- (sqrt(2)*sqrt(qf(.95, 2, 8))*se.control)

lines(seq(0, 55, .5), ll.control, col=’red’, lwd=3, lty=2)

lines(seq(0, 55, .5), ul.control, col=’red’, lwd=3, lty=2)

se.icepack <- sqrt(diag(cbind(X[grid.icepack,], Z[grid.icepack,])

%*%Chat%*%t(cbind(X[grid.icepack,], Z[grid.icepack,]))))

ul.icepack <- fhat[(111+1):(2*111)]

+ (sqrt(2)*sqrt(qf(.95, 2, 8))*se.icepack)

ll.icepack <- fhat[(111+1):(2*111)]

- (sqrt(2)*sqrt(qf(.95, 2, 8))*se.icepack)

lines(seq(0, 55, .5), ll.icepack, col=’blue’, lwd=3, lty=2)
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lines(seq(0, 55, .5), ul.icepack, col=’blue’, lwd=3, lty=2)

se.whirlpool <- sqrt(diag(cbind(X[grid.whirlpool,], Z[grid.whirlpool,])

%*%Chat%*%t(cbind(X[grid.whirlpool,], Z[grid.whirlpool,]))))

ul.whirlpool <- fhat[(2*111+1):(3*111)]

+ (sqrt(2)*sqrt(qf(.95, 2, 8))*se.whirlpool)

ll.whirlpool <- fhat[(2*111+1):(3*111)]

- (sqrt(2)*sqrt(qf(.95, 2, 8))*se.whirlpool)

lines(seq(0, 55, .5), ll.whirlpool, col=’green’, lwd=3, lty=2)

lines(seq(0, 55, .5), ul.whirlpool, col=’green’, lwd=3, lty=2)

This uses a simple contrast for each X value and plots the results in Figure 3.5,

which shows that even with the conservative degrees of freedom the confidence bands

do not overlap once the treatment has begun, so one can conclude that treatments

are significantly different at α = .05
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Figure 3.5: All three groups fitted simultaneously. The three thicker solid lines are
the spline fits for each group. The top line (red) is the control group, the second line
(blue) is the ice-pack group, and the bottom (green) line is the whirlpool group. The
dashed lines are the confidence bands for each group.
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4. CHALLENGES

Fitting splines with mixed models provides a fast and relatively simply method

for fitting splines to data. There are some limitations to model fitted in this example.

Some correlation due the repeated measures on the subjects was not accounted for.

This correlation was ignored in order to simplify the problems and make it easy to

understand. R makes this problem especially difficult to solve because the structure

of the R matrix is difficult to specify independent of the G matrix. In theory, the cor-

relation within each subject could be captured by specifying the correlation structure

in the R matrix only; however, R applies the correlation structure in the G matrix.

Using the correlation= argument in the lme() function with a grouped dataset

creates a set of random effects for each respondent. Multiplying the already large

number of random effects by the number of respondents would make this problem

unwieldy. The constraint on the correlation structure is unique to the way R fits the

model and is not a weakness of the method. It is possible that this could be overcome

with a significant amount of programming or by using a different program such as

SAS R©.

Another limitation with mixed model splines is that the amount of smoothing

can only be controlled by changing the number of knots or changing the distributional

assumptions of u. There is not a penalty parameter that can be tuned as there is

in P-splines, but in the examples from this paper and the Wand (2003) paper that

does not seem to create a problem. This may be because the mixed model shrinkage

factor is calculated automatically from the model and this leads to an optimal fit.

More research into this issue needs to be done before a conclusion can be reached as

to what types of problems need additional control over the penalty.

In this paper R was used for fitting the models. R was chosen because it is widely
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available and allows easy data manipulation. It has a strong mixed model estimation

engine and is widely used among statisticians. The ease with which a researcher can

manipulate matrices in R is one of its big advantages. Its weakness, however, is in the

model specification. The lme() routine was not designed to allow direct specification

of the Z matrix or to separately control the structure of the R and G matrices. This

complicates the use of the program slightly. An alternative to lme() is currently

being developed, but the replacement, lmer(), is even more restrictive and currently

cannot fit mixed model splines. As development continues this may provide a better

method. SAS R© is another option for fitting mixed models, but data manipulation

and the plotting require more programming than R. If specifying the desired model

is much easier in SAS R©, then it may be a better choice for some problems.
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5. CONCLUSION

One of the biggest advantages of mixed model splines is that they are simply

mixed models. There are no tricks or special considerations that need to be used to

calculate the splines. Mixed model splines provide an easy method to incorporate the

advantages of splines into a framework familiar to many researchers. The researchers

can use all the techniques that they are familiar with to plot and analyze the splines.

It is also possible to incorporate additional fixed and random effects in mixed model

splines since the method does not rely on any special handling of the X or Z matrix.

The only difficulty researchers face is in translating the model into the software.

However, this is a difficulty that people familiar with the software are used to.

When fitting splines the model specification in R is straightforward and a direct

extension of mixed models. Many different models can be used that combine the

elements of both random effects and fixed effects. This paper demonstrated two

models. The first fit a spline to a single treatment, the second simultaneously fit

splines to three groups. Because mixed model splines are simply mixed models, the

spline models can use the same inference procedures that standard mixed models

use. Thus, fitting confidence bands is straightforward using standard mixed model

inference procedures.
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1. RAW DATA
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Table A.1: Control Data

Time Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 Sub11 Sub12 Sub13 Sub14 Sub15
0 25.51 24.37 27.43 28.72 24.65 28.1 26.82 27.85 30.46 27.45 27.61 24.94 28.14 25.97 30.22
0.5 25.54 24.17 27.5 28.8 24.7 28.1 26.82 27.87 30.55 27.45 27.66 24.98 28.19 25.87 30.1
1 25.63 23.96 27.57 28.81 24.74 28.15 26.84 27.97 30.73 27.57 27.7 25.05 28.22 25.81 30.07
1.5 25.67 23.83 27.67 28.88 24.77 28.2 26.87 28.01 30.81 27.69 27.78 25.11 28.28 25.79 30.06
2 25.67 23.81 27.72 28.88 24.79 28.22 26.89 28.05 30.9 27.79 27.88 25.18 28.35 25.84 30.03
2.5 25.68 23.8 27.82 28.94 24.83 28.3 26.95 28.14 30.99 27.94 27.93 25.26 28.42 25.87 30.01
3 25.81 24.04 27.89 28.96 24.86 28.36 27.01 28.14 31.08 28.06 28.02 25.31 28.57 25.88 30.01
3.5 25.83 24.11 27.97 28.96 24.91 28.44 27.08 28.2 31.25 28.17 28.06 25.38 28.54 25.95 30.06
4 25.84 24.19 28.06 28.96 24.98 28.5 27.14 28.22 31.3 28.27 28.09 25.43 28.58 26.03 30.1
4.5 25.88 24.33 28.13 28.98 25.03 28.53 27.22 28.23 31.43 28.39 28.14 25.48 28.67 26.12 30.18
5 25.92 24.42 28.17 29 25.06 28.58 27.31 28.27 31.41 28.47 28.19 25.54 28.74 26.21 30.23
5.5 25.96 24.57 28.23 29.01 25.11 28.63 27.35 28.32 31.52 28.55 28.23 25.58 28.79 26.32 30.27
6 26.05 24.71 28.3 29 25.18 28.66 27.39 28.32 31.54 28.7 28.28 25.63 28.85 26.38 30.32
6.5 26.1 24.81 28.35 29 25.2 28.72 27.46 28.33 31.56 28.8 28.32 25.67 28.93 26.47 30.37
7 26.13 24.94 28.41 29 25.26 28.75 27.53 28.35 31.57 28.9 28.39 25.71 28.97 26.58 30.38
7.5 26.19 25.03 28.46 29.01 25.32 28.79 27.53 28.41 31.59 29.03 28.46 25.75 29.01 26.63 30.41
8 26.25 25.14 28.52 28.98 25.39 28.84 27.62 28.39 31.65 29.14 28.5 25.8 29.05 26.73 30.45
8.5 26.3 25.22 28.55 29 25.47 28.9 27.67 28.356 31.66 29.24 28.53 25.83 29.13 26.82 30.49
9 26.36 25.34 28.59 29 25.55 28.9 27.72 28.4 31.7 29.33 28.55 25.84 29.16 26.87 30.53
9.5 26.43 25.42 28.62 28.98 25.56 28.93 27.76 28.4 31.72 29.41 28.61 25.89 29.19 26.93 30.54
10 26.43 25.55 28.66 28.98 25.62 28.94 27.82 28.41 31.74 29.49 28.62 25.92 29.22 26.97 30.55
10.5 26.49 25.59 28.68 28.98 25.64 28.98 27.88 28.36 31.74 29.59 28.67 25.95 29.28 27.05 30.58
11 26.56 25.65 28.71 28.97 25.69 29.02 27.93 28.343 31.72 29.66 28.7 25.96 29.24 27.11 30.59
11.5 26.61 25.72 28.76 28.97 25.73 29.03 27.98 28.35 31.75 29.72 28.71 26 29.29 27.19 30.62
12 26.67 25.83 28.76 28.98 25.84 29.03 28.01 28.363 31.73 29.81 28.74 26.03 29.33 27.23 30.63
12.5 26.71 25.87 28.79 28.98 25.89 29.05 28.04 28.32 31.72 29.81 28.74 26.03 29.36 27.3 30.63
13 26.76 25.89 28.81 28.94 25.95 29.03 28.07 28.33 31.74 29.8 28.76 26.06 29.41 27.32 30.64
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Time Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 Sub11 Sub12 Sub13 Sub14 Sub15
13.5 26.82 25.99 28.84 28.97 26.01 29.05 28.1 28.3 31.75 29.83 28.8 26.08 29.4 27.37 30.63
14 26.87 26.05 28.85 28.96 26.08 29.06 28.1 28.27 31.72 29.81 28.81 26.1 29.42 27.43 30.64
14.5 26.93 26.09 28.87 28.97 26.12 29.03 28.1 28.26 31.69 29.86 28.84 26.1 29.4 27.48 30.66
15 27 26.14 28.87 28.94 26.14 29.06 28.1 28.26 31.7 29.92 28.84 26.12 29.41 27.53 30.66
15.5 27.04 26.18 28.87 28.94 26.22 29 28.13 28.23 31.67 29.99 28.88 26.13 29.45 27.57 30.67
16 27.02 26.22 28.87 28.92 26.23 29.1 28.11 28.23 31.69 29.99 28.9 26.13 29.45 27.61 30.67
16.5 27.05 26.23 28.88 28.9 26.25 29.11 28.15 28.23 31.66 29.97 28.9 26.14 29.45 27.65 30.67
17 27.09 26.27 28.9 28.92 26.28 29.06 28.18 28.2 31.64 29.98 28.92 26.15 29.45 27.71 30.68
17.5 27.14 26.34 28.9 28.9 26.31 29.09 28.19 28.19 31.71 29.99 28.9 26.15 29.42 27.71 30.68
18 27.14 26.39 28.9 28.88 26.36 29.09 28.2 28.18 31.7 30.09 28.9 26.18 29.44 27.74 30.68
18.5 27.19 26.41 28.93 28.84 26.39 29.09 28.2 28.17 31.65 30.09 28.9 26.19 29.42 27.76 30.66
19 27.26 26.45 28.92 28.85 26.44 29.06 28.19 28.1 31.64 30.05 28.93 26.21 29.41 27.78 30.63
19.5 27.26 26.52 28.94 28.87 26.48 29.03 28.22 28.1 31.61 30.06 28.94 26.19 29.41 27.83 30.62
20 27.28 26.56 28.93 28.84 26.54 29.01 28.19 28.05 31.59 30.1 28.94 26.22 29.4 27.83 30.6
20.5 27.3 26.6 28.93 28.81 26.57 29.02 28.18 28.07 31.54 30.07 28.94 26.23 29.4 27.84 30.63
21 27.34 26.63 28.93 28.81 26.58 29 28.2 28.07 31.56 30.14 28.98 26.23 29.37 27.87 30.68
21.5 27.37 26.67 28.93 28.79 26.65 29 28.19 28.05 31.5 30.14 28.98 26.26 29.36 27.93 30.68
22 27.4 26.74 28.96 28.78 26.67 28.98 28.2 28.02 31.48 30.11 28.98 26.23 29.35 27.91 30.71
22.5 27.43 26.75 28.96 28.76 26.67 28.94 28.18 28 31.41 30.19 28.97 26.25 29.31 27.96 30.73
23 27.46 26.78 28.98 28.76 26.7 28.93 28.17 27.96 31.42 30.19 28.97 26.26 29.28 27.97 30.73
23.5 27.46 26.8 28.96 28.75 26.71 28.89 28.13 27.96 31.35 30.18 28.97 26.26 29.27 27.98 30.73
24 27.46 26.83 28.93 28.74 26.76 28.85 28.1 27.93 31.33 30.2 28.97 26.25 29.26 28.01 30.76
24.5 27.53 26.82 28.94 28.72 26.8 28.83 28.13 27.92 31.28 30.2 28.97 26.25 29.22 28.01 30.72
25 27.56 26.83 28.98 28.71 26.84 28.83 28.13 27.91 31.12 30.22 28.93 26.26 29.24 28.05 30.71
25.5 27.58 26.84 28.97 28.76 26.88 28.83 28.13 27.89 31.18 30.23 28.97 26.27 29.2 28.07 30.68
26 27.6 26.86 28.97 28.74 26.93 28.81 28.14 27.89 31.18 30.2 28.97 26.27 29.22 28.07 30.67
26.5 27.62 26.87 28.98 28.7 26.97 28.79 28.15 27.84 31.12 30.18 28.93 26.26 29.19 28.09 30.66
27 27.65 26.88 28.97 28.68 27.02 28.78 28.17 27.85 31.12 30.15 28.93 26.25 29.19 28.07 30.63
27.5 27.65 26.87 28.96 28.66 27.05 28.79 28.17 27.83 31.07 30.1 28.93 26.26 29.16 28.09 30.64
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Time Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 Sub11 Sub12 Sub13 Sub14 Sub15
28 27.67 26.89 28.97 28.65 27.09 28.7 28.17 27.78 31.04 30.11 28.92 26.27 29.18 28.09 30.62
28.5 27.69 26.91 28.96 28.63 27.11 28.71 28.15 27.83 31.08 30.11 28.92 26.28 29.18 28.11 30.6
29 27.69 26.89 28.94 28.62 27.14 28.75 28.17 27.78 30.99 30.22 28.89 26.26 29.2 28.11 30.58
29.5 27.69 26.91 28.94 28.62 27.17 28.75 28.18 27.76 30.93 30.19 28.87 26.27 29.22 28.1 30.51
30 27.71 26.89 28.94 28.59 27.18 28.71 28.18 27.74 30.98 30.2 28.87 26.26 29.23 28.11 30.44
30.5 27.71 26.89 28.94 28.58 27.21 28.65 28.17 27.69 30.94 30.23 28.87 26.26 29.26 28.13 30.38
31 27.74 26.88 28.94 28.61 27.22 28.65 28.18 27.75 30.86 30.23 28.87 26.28 29.27 28.06 30.37
31.5 27.75 26.87 28.93 28.59 27.24 28.62 28.19 27.7 30.92 30.23 28.84 26.27 29.29 28.09 30.33
32 27.75 26.87 28.96 28.57 27.3 28.61 28.2 27.672 30.89 30.2 28.83 26.25 29.28 28.06 30.29
32.5 27.76 26.86 28.94 28.55 27.32 28.58 28.2 27.71 30.85 30.19 28.81 26.21 29.28 28.07 30.25
33 27.78 26.83 28.93 28.53 27.37 28.62 28.2 27.69 30.86 30.16 28.78 26.26 29.28 28.05 30.23
33.5 27.83 26.82 28.94 28.53 27.44 28.58 28.18 27.706 30.84 30.15 28.75 26.25 29.26 28.07 30.16
34 27.8 26.8 28.93 28.5 27.49 28.55 28.18 27.67 30.8 30.11 28.74 26.26 29.26 28.06 30.14
34.5 27.83 26.8 28.94 28.48 27.52 28.54 28.17 27.69 30.75 30.14 28.72 26.22 29.29 28.05 30.11
35 27.84 26.79 28.92 28.48 27.58 28.54 28.17 27.67 30.66 30.14 28.71 26.25 29.26 28.04 30.11
35.5 27.85 26.8 28.9 28.44 27.61 28.55 28.14 27.67 30.71 30.2 28.71 26.23 29.23 28.04 30.12
36 27.84 26.76 28.92 28.45 27.65 28.54 28.17 27.66 30.7 30.24 28.68 26.22 29.22 28.02 30.11
36.5 27.85 26.78 28.93 28.42 27.71 28.54 28.14 27.62 30.73 30.24 28.74 26.23 29.19 28.01 30.11
37 27.85 26.76 28.92 28.39 27.75 28.52 28.14 27.61 30.62 30.24 28.67 26.21 29.18 28 30.12
37.5 27.88 26.74 28.9 28.4 27.82 28.48 28.13 27.62 30.64 30.24 28.66 26.21 29.14 28 30.1
38 27.88 26.74 28.9 28.41 27.89 28.45 28.11 27.672 30.58 30.24 28.67 26.21 29.11 27.98 30.1
38.5 27.89 26.71 28.9 28.41 27.91 28.41 28.1 27.65 30.57 30.22 28.63 26.22 29.1 27.98 30.06
39 27.88 26.69 28.89 28.37 27.98 28.41 28.07 27.63 30.53 30.18 28.63 26.21 29.07 27.97 30.06
39.5 27.91 26.69 28.88 28.35 28.04 28.41 28.1 27.59 30.49 30.19 28.62 26.21 29.06 27.96 30.03
40 27.91 26.67 28.88 28.36 28.06 28.35 28.09 27.59 30.42 30.18 28.55 26.19 29.03 27.96 29.98
40.5 27.89 26.67 28.87 28.35 28.13 28.35 27.97 27.58 30.41 30.2 28.54 26.19 29.02 27.96 29.97
41 27.89 26.67 28.84 28.35 28.17 28.36 28.04 27.59 30.36 30.16 28.55 26.21 29 27.93 29.93
41.5 27.88 26.67 28.83 28.33 28.19 28.37 28.01 27.57 30.38 30.11 28.54 26.19 28.96 27.93 29.9
42 27.88 26.63 28.8 28.32 28.26 28.33 28 27.54 30.36 30.07 28.52 26.19 28.94 27.93 29.89
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Time Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 Sub11 Sub12 Sub13 Sub14 Sub15
42.5 27.89 26.66 28.78 28.32 28.32 28.33 27.96 27.48 30.33 30.03 28.53 26.19 28.93 27.91 29.9
43 27.87 26.65 28.75 28.3 28.35 28.31 27.93 27.45 30.31 29.99 28.52 26.18 28.89 27.91 29.86
43.5 27.87 26.62 28.74 28.3 28.37 28.28 27.88 27.46 30.32 29.94 28.49 26.18 28.88 27.89 29.83
44 27.87 26.61 28.74 28.24 28.41 28.27 27.89 27.46 30.31 29.85 28.49 26.18 28.87 27.89 29.85
44.5 27.92 26.61 28.74 28.24 28.44 28.26 27.85 27.46 30.24 29.84 28.44 26.17 28.83 27.88 29.84
45 27.89 26.57 28.72 28.23 28.45 28.2 27.84 27.44 30.23 29.77 28.42 26.15 28.8 27.89 29.83
45.5 27.88 26.57 28.7 28.2 28.46 28.18 27.82 27.46 30.2 29.77 28.42 26.18 28.8 27.85 29.83
46 27.84 26.57 28.68 28.18 28.46 28.17 27.8 27.44 30.19 29.77 28.42 26.17 28.79 27.83 29.79
46.5 27.85 26.54 28.66 28.17 28.48 28.13 27.79 27.41 30.16 29.84 28.4 26.15 28.75 27.83 29.77
47 27.87 26.53 28.67 28.17 28.49 28.1 27.76 27.41 30.12 29.86 28.37 26.14 28.74 27.82 29.79
47.5 27.84 26.53 28.65 28.2 28.49 28.08 27.71 27.43 30.1 29.85 28.33 26.15 28.72 27.8 29.77
48 27.87 26.49 28.63 28.11 28.52 28.06 27.69 27.37 30.05 29.84 28.33 26.15 28.68 27.8 29.76
48.5 27.85 26.51 28.61 28.11 28.52 28.04 27.67 27.37 30.01 29.83 28.31 26.14 28.66 27.8 29.77
49 27.85 26.48 28.59 28.11 28.54 28.05 27.66 27.39 29.96 29.8 28.3 26.13 28.63 27.82 29.77
49.5 27.85 26.47 28.58 28.09 28.53 28.06 27.63 27.36 29.96 29.76 28.28 26.14 28.61 27.79 29.77
50 27.88 26.43 28.57 28.07 28.54 28.06 27.58 27.3 29.94 29.75 28.27 26.13 28.62 27.79 29.77
50.5 27.88 26.47 28.55 28.09 28.57 28.02 27.58 27.27 29.93 29.74 28.26 26.12 28.54 27.8 29.77
51 27.88 26.44 28.55 28.05 28.59 28.02 27.54 27.24 29.93 29.7 28.27 26.12 28.49 27.82 29.77
51.5 27.88 26.44 28.54 28.02 28.59 27.98 27.52 27.272 29.85 29.67 28.24 26.12 28.45 27.79 29.76
52 27.85 26.48 28.5 28.01 28.59 27.96 27.48 27.259 29.83 29.66 28.26 26.09 28.42 27.8 29.77
52.5 27.85 26.44 28.5 28.01 28.59 27.96 27.48 27.245 29.89 29.68 28.23 26.08 28.24 27.79 29.79
53 27.84 26.44 28.49 28.02 28.61 27.94 27.45 27.252 29.81 29.68 28.18 26.1 28.33 27.82 29.75
53.5 27.83 26.44 28.49 27.98 28.62 27.93 27.41 27.19 29.79 29.64 28.2 26.09 28.32 27.84 29.76
54 27.82 26.44 28.48 27.97 28.62 27.89 27.43 27.24 29.76 29.62 28.18 26.06 28.28 27.8 29.75
54.5 27.84 26.43 28.46 27.96 28.65 27.91 27.4 27.22 29.75 29.59 28.17 26.06 28.26 27.79 29.76
55 27.85 26.41 28.45 27.94 28.67 27.85 27.41 27.22 29.71 29.55 28.15 26.08 28.23 27.78 29.75
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Table A.2: Icepack Data

Time Sub16 Sub17 Sub18 Sub19 Sub20 Sub21 Sub22 Sub23 Sub24 Sub25 Sub26 Sub27 Sub28 Sub29 Sub30
0 27.54 26.19 26.82 27.35 27.92 28.45 26.63 30.09 30.12 31.35 29.67 27.3 27.54 28.7 29.88
0.5 27.53 26.25 26.79 27.37 28.07 28.49 26.65 30.37 30.19 31.4 29.8 27.3 27.63 28.8 29.86
1 27.54 26.28 26.82 27.43 28.1 28.49 26.65 30.62 30.23 31.65 29.86 27.41 27.44 28.83 29.84
1.5 27.59 26.32 26.83 27.48 28.19 28.58 26.67 30.77 30.19 31.77 29.96 27.43 27.91 28.88 29.85
2 27.67 26.38 26.91 27.52 28.24 28.63 26.69 30.99 30.25 31.86 30.05 27.31 28.02 28.96 29.89
2.5 27.71 26.44 26.96 27.61 28.32 28.7 26.71 31.2 30.23 32.03 30.12 27.58 28.13 28.85 29.93
3 27.83 26.49 27.02 27.63 28.4 28.75 26.74 31.2 30.23 32.13 30.15 27.62 28.23 29.2 29.92
3.5 27.89 26.52 27.14 27.66 28.46 28.85 26.74 31.3 30.11 32.23 30.24 27.69 28.3 29.2 29.96
4 27.96 26.58 27.23 27.74 28.54 28.92 26.76 31.27 30.16 32.43 30.28 27.67 28.3 29.44 29.97
4.5 27.96 26.65 27.35 27.75 28.62 28.98 26.75 31.27 30.22 32.61 30.32 27.79 28.39 29.5 30.01
5 27.98 26.69 27.49 27.78 28.78 29.02 26.73 31.33 30.2 32.61 30.36 27.91 28.41 29.61 29.99
5.5 27.5 26.71 27.13 26.3 28.42 28.23 26.44 28.89 28.18 26.61 29.93 27.01 28.1 28.68 28.88
6 26.74 26.34 26.52 25.1 27.91 26.97 25.8 26.34 26.49 23.96 29.26 25.52 26.25 27.45 25.2
6.5 26.31 25.46 25.92 24.36 27.15 25.75 25.14 25.28 25.34 22.63 28.49 24.09 24.26 26.3 22.35
7 25.58 24.42 25.32 23.79 26.52 24.68 24.53 24.42 24.28 21.67 27.75 23.02 22.56 25.47 20.75
7.5 24.79 23.46 24.82 23.25 25.81 23.72 23.89 23.6 23.48 20.74 27.02 21.97 21.27 24.56 19.6
8 24.03 22.63 24.24 22.75 25.22 22.84 23.31 22.8 22.78 20.22 26.34 21.36 20.12 23.77 18.61
8.5 23.34 22.23 23.67 22.21 24.44 22.1 22.89 22.13 22.15 19.6 25.64 20.7 19.07 23.17 17.74
9 22.66 21.25 23.22 21.74 23.77 21.39 22.23 21.45 21.62 19.06 24.99 20.09 18.16 22.58 17.01
9.5 22.06 20.69 22.78 21.3 23.18 20.78 21.71 20.73 21.14 18.63 24.37 19.52 17.36 21.97 16.44
10 21.54 20.06 22.37 20.9 22.61 20.22 21.23 20.08 20.7 18.23 23.76 19.1 16.61 21.56 15.9
10.5 21.05 19.68 22 20.45 22.04 19.59 20.75 19.48 20.3 17.86 23.21 18.7 15.95 21.15 15.48
11 20.64 19.36 21.67 20.05 21.56 19.06 20.3 18.89 19.97 17.58 22.69 18.34 15.4 20.8 15.09
11.5 20.25 18.77 21.36 19.7 21.06 18.55 19.87 18.39 19.51 17.2 22.17 17.98 14.9 20.45 14.75
12 19.87 18.34 21.06 19.34 20.58 18.06 19.42 17.98 19.21 16.93 21.7 17.66 14.45 20.08 14.46
12.5 19.58 17.96 20.8 19.01 20.16 17.63 19.05 17.59 18.94 16.65 21.25 17.38 14.03 19.76 14.19
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Time Sub16 Sub17 Sub18 Sub19 Sub20 Sub21 Sub22 Sub23 Sub24 Sub25 Sub26 Sub27 Sub28 Sub29 Sub30
13 19.29 17.59 20.42 18.69 19.68 17.29 18.65 17.25 18.61 16.4 20.83 17.17 13.64 19.43 13.95
13.5 19.01 17.26 19.87 18.22 19.35 16.93 18.35 16.96 18.34 16.13 20.45 16.94 13.3 19.14 13.71
14 18.74 16.93 19.39 17.9 18.91 16.56 17.92 16.58 18.12 15.88 20.09 16.73 12.96 18.82 13.5
14.5 18.54 16.64 18.81 17.67 18.62 16.23 17.57 16.3 17.9 15.64 19.77 16.52 12.64 18.42 13.27
15 18.23 16.33 18.42 17.42 18.35 15.95 17.25 15.93 17.84 15.45 19.47 16.29 12.34 18.14 13.05
15.5 18 16.05 18.1 17.16 18 15.66 16.93 15.66 17.71 15.2 19.13 16.06 12.08 17.83 12.94
16 17.79 15.78 17.83 16.94 17.69 15.41 16.57 15.4 17.58 15.07 18.82 15.88 11.88 17.61 12.86
16.5 17.59 15.54 17.61 16.68 17.37 15.17 16.26 15.21 17.43 14.94 18.51 15.65 11.62 17.37 12.71
17 17.39 15.31 17.39 16.44 17.09 14.92 15.97 15.04 17.28 14.78 18.28 15.45 11.37 17.21 12.6
17.5 17.26 15.03 17.16 16.09 16.8 14.72 15.66 14.75 17.05 14.88 18.02 15.28 11.15 17.01 12.48
18 17.1 14.79 17.01 15.77 16.52 14.47 15.33 14.47 17 14.71 17.74 15.09 10.95 16.86 12.34
18.5 16.97 14.39 16.89 15.46 16.26 14.27 15.07 14.15 16.77 14.54 17.5 14.94 10.71 16.7 12.23
19 16.84 14.03 16.77 15.2 16.02 14.07 14.83 13.79 16.61 14.47 17.25 14.8 10.51 16.54 12.1
19.5 16.72 13.75 16.68 14.88 15.81 13.87 14.55 13.59 16.42 14.47 17 14.64 10.3 16.38 12
20 16.6 13.53 16.57 14.63 15.57 13.69 14.35 13.18 16.26 14.35 16.77 14.5 10.11 16.23 11.99
20.5 16.49 13.74 16.5 14.35 15.29 13.5 14.11 13.24 16.11 14.45 16.49 14.43 9.94 16.09 11.92
21 16.38 13.74 16.44 14.11 15.08 13.35 13.91 13.23 15.93 14.35 16.36 14.3 9.74 15.93 11.83
21.5 16.25 13.68 16.36 14.01 14.9 13.16 13.74 13.24 15.74 14.21 16.17 14.17 9.54 16.1 11.77
22 16.15 13.65 16.33 13.6 14.7 12.98 13.56 12.9 15.58 14.01 15.99 14.02 9.36 15.61 11.71
22.5 16.03 13.56 16.25 13.41 14.52 12.83 13.39 12.46 15.48 13.57 15.81 13.91 9.24 15.28 11.67
23 15.94 13.5 16.19 13.19 14.3 12.71 13.22 12.19 15.16 13.69 15.7 13.78 9.09 15.37 11.66
23.5 15.85 13.41 16.13 12.9 14.14 12.53 13.08 12.01 15.11 13.71 15.5 13.64 8.94 15.24 11.66
24 15.74 13.3 16.11 12.59 13.93 12.38 12.92 11.79 14.84 13.69 15.37 13.52 8.78 15.12 11.68
24.5 15.62 13.18 16.1 12.23 13.71 12.57 12.6 11.59 14.79 13.87 15.23 13.38 8.63 14.8 11.67
25 15.53 13.05 16.07 11.99 13.43 12.3 12.31 11.37 14.54 14.13 15.07 13.28 8.49 14.51 11.68
25.5 15.65 12.98 16.29 11.99 13.39 12.59 12.53 12.74 14.88 15.39 15.2 13.37 8.83 14.82 11.63
26 15.81 13.18 16.86 12.19 13.69 12.79 12.92 14.1 15.36 16.48 15.7 13.74 9.51 15.35 11.96
26.5 16.14 13.59 17.49 12.45 14.07 13.26 13.41 15.29 15.81 17.33 16.18 14.19 10.17 15.91 12.67
27 16.5 14.13 18.18 12.75 14.5 13.78 13.9 16.3 16.25 18.06 16.6 14.63 10.85 16.41 13.45
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Time Sub16 Sub17 Sub18 Sub19 Sub20 Sub21 Sub22 Sub23 Sub24 Sub25 Sub26 Sub27 Sub28 Sub29 Sub30
27.5 16.81 14.62 18.83 13.07 14.9 14.23 14.35 17.1 16.65 18.63 17.05 15.05 11.49 16.85 14.15
28 17.16 15.08 19.43 13.37 15.28 14.71 14.7 17.86 17 19.17 17.43 15.52 12.04 17.32 14.78
28.5 17.43 15.52 19.95 13.65 15.62 15.2 15.08 18.46 17.28 19.6 17.84 15.86 12.55 17.66 15.35
29 17.78 15.89 20.48 13.94 15.98 15.6 15.36 19.17 17.59 20.06 18.22 16.22 12.98 17.99 15.84
29.5 17.99 16.28 20.97 14.21 16.32 16.01 15.61 19.42 17.82 20.42 18.54 16.57 13.35 18.31 16.32
30 18.3 16.61 21.39 14.47 16.66 16.3 15.86 20.01 18.07 20.77 18.87 16.89 13.87 18.62 16.74
30.5 18.69 16.92 21.8 14.72 17.05 16.6 16.1 20.45 18.31 21.14 19.19 17.17 14.22 18.87 17.17
31 18.86 17.22 22.19 14.96 17.26 16.82 16.3 20.96 18.47 21.45 19.42 17.45 14.58 19.14 17.55
31.5 19.07 17.5 22.56 15.24 17.55 17.05 16.56 21.38 18.62 21.78 19.68 17.75 14.88 19.38 17.91
32 19.27 17.79 22.89 15.53 17.83 17.28 16.76 21.63 18.91 22.13 19.88 17.79 15.27 19.59 18.2
32.5 19.47 18.04 23.17 15.73 18.11 17.53 16.93 21.91 19.1 22.41 20.12 18.04 15.53 19.8 18.57
33 19.74 18.27 23.47 15.97 18.37 17.75 17.13 22.13 19.32 22.66 20.34 18.41 15.82 19.93 18.86
33.5 19.91 18.5 23.71 16.22 18.61 17.96 17.32 22.41 19.34 22.87 20.54 18.71 16.01 20.16 19.11
34 20.1 18.75 23.95 16.48 18.82 18.16 17.5 22.57 19.44 23.14 20.77 18.89 16.38 20.34 19.38
34.5 20.26 18.94 24.16 16.66 19.02 18.35 17.67 22.75 19.75 23.36 20.93 19.07 16.66 20.45 19.66
35 20.39 19.14 24.36 16.9 19.25 18.5 17.83 22.87 19.88 23.56 21.14 19.29 16.9 20.61 19.88
35.5 20.6 19.32 24.54 17.12 19.43 18.67 18.02 22.91 20.06 23.74 21.3 19.46 17.1 20.74 20.1
36 20.79 19.51 24.81 17.32 19.66 18.85 18.15 22.97 20.08 23.95 21.45 19.96 17.38 20.87 20.29
36.5 20.93 19.68 24.98 17.51 19.83 19.03 18.34 22.97 20.14 24.11 21.62 19.84 17.65 21 20.49
37 21.13 19.87 25.16 17.69 20.01 19.19 18.46 23.05 20.39 24.26 21.8 19.95 17.78 21.12 20.67
37.5 21.26 19.96 25.32 17.9 20.17 19.35 18.58 23.09 20.49 24.42 21.95 20.1 18.02 21.23 20.87
38 21.41 20.19 25.52 18.08 20.4 19.47 18.74 23.11 20.65 24.56 22.06 20.22 18.2 21.35 21.08
38.5 21.53 20.31 25.69 18.27 20.52 19.59 18.86 23.18 20.73 24.7 22.22 20.36 18.38 21.44 21.25
39 21.7 20.44 25.88 18.45 20.71 19.74 19.01 23.23 20.86 24.87 22.34 20.48 18.63 21.54 21.4
39.5 21.82 20.58 26.35 18.69 21.02 19.85 19.11 23.32 20.92 24.97 22.49 20.62 18.71 21.66 21.54
40 21.92 20.74 26.25 18.81 21.09 20 19.25 23.39 21.04 25.14 22.65 20.86 18.9 21.75 21.74
40.5 22.08 20.83 26.3 18.93 21.25 20.13 19.34 23.48 21.15 25.26 22.75 21.02 19.25 21.82 21.92
41 22.19 20.95 26.47 19.09 21.36 20.23 19.46 23.56 21.23 25.4 22.88 21.13 19.23 21.93 22.05
41.5 22.3 21.04 26.58 19.23 21.52 20.36 19.58 23.62 21.31 25.51 22.97 21.31 19.39 21.98 22.22
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Time Sub16 Sub17 Sub18 Sub19 Sub20 Sub21 Sub22 Sub23 Sub24 Sub25 Sub26 Sub27 Sub28 Sub29 Sub30
42 22.43 21.12 26.8 19.35 21.67 20.48 19.7 23.71 21.41 25.6 22.84 21.4 19.58 22.08 22.37
42.5 22.53 21.25 26.96 19.5 21.8 20.6 19.8 23.76 21.5 25.69 23.22 21.49 19.72 22.15 22.54
43 22.66 21.38 27.14 19.66 21.95 20.71 19.91 23.8 21.58 25.76 23.35 21.58 19.87 22.22 22.67
43.5 22.78 21.48 27.28 19.8 22.08 20.84 20 23.85 21.63 25.8 23.42 21.71 19.99 22.31 22.75
44 22.87 21.61 27.3 19.85 22.21 20.95 20.09 23.93 21.73 25.87 23.54 21.73 20.12 22.39 22.88
44.5 22.94 21.73 27.46 20 22.32 21.06 20.21 23.97 21.79 25.95 23.64 21.97 20.26 22.54 23.03
45 23.06 21.82 27.54 20.14 22.49 21.19 20.17 24.04 21.87 26.04 23.74 22.01 20.39 22.5 23.15
45.5 23.14 21.88 27.61 20.23 22.65 21.28 20.38 24.08 21.93 26.09 23.83 22.09 20.52 22.59 23.27
46 23.22 21.98 27.7 20.35 22.75 21.34 20.38 24.13 22.05 26.15 23.91 22.18 20.56 22.63 23.38
46.5 23.34 22.08 27.71 20.45 22.88 21.48 20.51 24.19 22.1 26.23 24.03 22.35 20.73 22.7 23.47
47 23.42 22.14 27.84 20.56 23.03 21.53 20.62 24.22 22.13 26.26 24.11 22.23 20.82 22.76 23.52
47.5 23.47 22.26 27.88 20.65 23.1 21.62 20.7 24.28 22.22 26.32 24.17 22.41 20.97 22.83 23.63
48 23.58 22.34 28 20.74 23.23 21.71 20.77 24.3 22.34 26.36 24.25 22.53 21.06 22.88 23.72
48.5 23.64 22.37 28.06 20.84 23.34 21.78 20.86 24.36 22.37 26.38 24.34 22.56 21.18 22.93 23.83
49 23.71 22.46 28.15 20.93 23.42 21.84 20.92 24.37 22.52 26.51 24.44 22.61 21.3 23.03 23.91
49.5 23.8 22.53 28.22 21.02 23.52 22 21 24.41 22.48 26.54 24.53 22.62 21.35 23.03 23.97
50 23.85 22.61 28.24 21.09 23.62 22.04 21.09 24.44 22.75 26.61 24.57 22.75 21.47 23.11 24.04
50.5 23.91 22.67 28.33 21.14 23.7 22.13 21.17 24.48 22.65 26.71 24.6 22.79 21.58 23.17 24.15
51 23.97 22.74 28.4 21.26 23.81 22.19 21.26 24.52 22.71 26.67 24.77 22.85 21.62 23.23 24.21
51.5 24.05 22.78 28.46 21.34 23.91 22.26 21.34 24.53 22.76 26.74 24.81 22.89 21.71 23.27 24.28
52 24.13 22.87 28.5 21.36 24.03 22.36 21.4 24.53 22.8 26.7 24.87 22.94 21.79 23.36 24.3
52.5 24.17 22.93 28.63 21.52 24.12 22.41 21.43 24.56 22.83 26.79 24.95 23.01 21.91 23.35 24.36
53 24.24 23.01 28.65 21.54 24.17 22.53 21.41 24.58 22.93 26.82 25.01 23.1 21.97 23.42 24.42
53.5 24.32 23.05 28.67 21.65 24.25 22.53 21.61 24.61 23.03 26.78 25.06 23.1 22.02 23.42 24.5
54 24.36 23.07 28.7 21.7 24.33 22.65 21.7 24.62 23.09 26.76 25.16 23.21 22.09 23.5 24.57
54.5 24.42 23.14 28.72 21.79 24.38 22.75 21.73 24.65 23.15 26.91 25.2 23.23 22.18 23.35 24.61
55 24.48 23.22 28.59 21.86 24.48 22.8 21.8 24.69 23.22 26.92 25.27 23.26 22.24 23.56 24.66
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Table A.3: Whirlpool Data

Time Sub31 Sub32 Sub33 Sub34 Sub35 Sub36 Sub37 Sub38 Sub39 Sub40 Sub41 Sub42 Sub43 Sub44 Sub45
0 26.12 29.75 26.23 24.82 29.01 26.09 28.62 29.44 24.4 26.98 27.18 23.72 28.07 25.83 28.24
0.5 26.08 29.88 26.32 24.87 29.09 26.12 28.72 29.41 24.49 27.09 27.15 23.63 28.13 25.88 28.28
1 25.99 29.99 26.41 24.95 29.18 26.15 28.79 29.54 24.62 27.1 27.14 23.58 28.24 25.99 28.36
1.5 26.06 30.1 26.52 24.97 29.26 26.18 28.85 29.63 24.69 27.18 27.1 23.56 28.28 26.05 28.42
2 26.4 30.15 26.57 25.28 29.32 26.19 28.93 29.75 24.78 27.21 27.21 23.56 28.41 26.14 28.52
2.5 26.31 30.2 26.63 25.18 29.4 26.53 29.06 29.81 24.83 27.28 27.31 23.58 28.44 26.23 28.61
3 26.4 30.22 26.69 25.22 29.4 26.31 29.14 30.01 24.93 27.27 27.32 23.64 28.5 26.48 28.65
3.5 26.57 30.24 26.78 25.55 29.51 26.45 29.22 30.05 25.06 27.34 27.35 23.59 28.53 26.4 28.68
4 26.56 30.01 26.67 25.56 29.58 26.35 29.26 30.07 25.09 27.39 27.35 23.6 28.5 26.47 28.76
4.5 27.21 30.13 26.86 25.54 29.66 26.41 29.31 30.27 25.23 27.4 27.36 23.62 28.61 26.54 28.92
5 26.73 30.24 26.52 25.35 29.83 26.54 29.36 29.98 24.98 27.17 27.43 23.64 28.61 26.61 28.85
5.5 25.14 29.15 23.97 23.25 28.52 25.87 27.33 28.13 20.17 22.96 26.05 21.63 26.98 25.52 26.88
6 22.44 27.02 20.53 20.03 25.38 22.7 25.01 24.58 17.04 20.38 22.94 18.74 23.59 23.19 24.39
6.5 20.62 25.55 18.37 17.95 22.82 20.12 22.15 22.09 15.49 18.85 20.79 16.93 21.21 21.41 21.58
7 19.29 24.71 16.93 16.56 20.96 18.26 20.19 20.34 14.51 17.95 19.02 15.66 19.59 20.08 19.58
7.5 18.19 23.89 15.84 15.57 19.59 16.89 18.71 18.99 13.98 17.34 17.74 14.79 18.38 18.98 18.1
8 17.29 23.06 14.99 14.78 18.47 15.84 17.51 17.94 13.6 16.81 16.76 14.1 17.42 18.08 16.97
8.5 16.54 22.36 14.39 14.14 17.54 15.03 16.64 17.06 13.2 16.29 15.93 13.53 16.72 17.46 16.06
9 15.97 21.86 13.89 13.63 16.81 14.39 15.93 16.4 12.83 15.84 15.39 13.12 16.14 16.86 15.34
9.5 15.66 21.21 13.43 13.2 16.18 13.87 15.35 15.81 12.53 15.46 14.92 12.78 15.58 16.33 14.74
10 15.41 20.6 13.05 12.87 15.65 13.42 14.86 15.33 12.19 15.13 14.55 12.49 15.17 15.89 14.23
10.5 15.07 19.93 12.75 12.57 15.2 13.07 14.38 14.96 12.01 14.84 14.29 12.25 14.78 15.5 13.88
11 14.84 19.42 12.46 12.33 14.83 12.74 14.07 14.64 11.79 14.56 14.02 12.04 14.46 15.15 13.53
11.5 14.64 19.11 12.22 12.1 14.48 12.45 13.76 14.39 11.75 14.27 13.74 11.93 14.18 14.82 13.19
12 14.48 18.83 12.01 11.99 14.18 12.23 13.5 14.15 11.78 14.05 13.52 11.79 13.97 14.54 12.93
12.5 14.39 18.55 11.9 11.82 13.9 12.03 13.27 13.97 11.77 13.83 13.31 11.66 13.74 14.3 12.7
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Time Sub31 Sub32 Sub33 Sub34 Sub35 Sub36 Sub37 Sub38 Sub39 Sub40 Sub41 Sub42 Sub43 Sub44 Sub45
13 14.25 18.27 11.78 11.7 13.67 11.89 13.08 13.76 11.68 13.68 13.12 11.53 13.53 14.07 12.52
13.5 14.06 18.07 11.63 11.6 13.46 11.74 12.89 13.59 11.6 13.54 12.93 11.44 13.35 13.89 12.36
14 13.91 17.86 11.52 11.51 13.28 11.6 12.72 13.45 11.51 13.39 12.75 11.34 13.18 13.71 12.2
14.5 13.76 17.63 11.42 11.42 13.13 11.52 12.57 13.33 11.44 13.34 12.6 11.26 13.01 13.54 12.01
15 13.67 17.45 11.36 11.34 12.96 11.38 12.45 13.24 11.37 13.28 12.46 11.21 12.87 13.38 11.88
15.5 13.6 17.28 11.29 11.27 12.82 11.29 12.34 13.16 11.26 13.24 12.31 11.15 12.74 13.26 11.73
16 13.48 17.09 11.21 11.21 12.68 11.21 12.22 13.04 11.21 13.16 12.22 11.11 12.64 13.16 11.62
16.5 13.35 16.98 11.15 11.18 12.57 11.14 12.15 12.94 11.17 13.11 12.14 11.08 12.56 13.04 11.57
17 13.24 16.89 11.11 11.12 12.45 11.07 12.07 12.89 11.19 13.02 12.04 11.06 12.49 12.93 11.49
17.5 13.09 16.7 11.04 11.08 12.34 11.04 11.99 12.83 11.19 12.96 11.97 10.99 12.41 12.83 11.43
18 12.98 16.57 10.99 11.04 12.26 11 11.97 12.75 11.06 12.86 11.93 10.95 12.33 12.74 11.4
18.5 12.89 16.36 10.97 11.02 12.15 10.96 11.92 12.7 10.99 12.78 11.86 10.92 12.26 12.68 11.33
19 12.82 16.17 10.93 11 12.08 10.92 11.85 12.63 10.95 12.7 11.82 10.89 12.19 12.59 11.31
19.5 12.75 15.97 10.89 10.96 12.01 10.89 11.79 12.57 10.84 12.63 11.74 10.86 12.18 12.53 11.28
20 12.67 15.8 10.86 10.92 12.01 10.86 11.77 12.53 10.78 12.56 11.68 10.84 12.12 12.44 11.23
20.5 12.63 15.64 10.84 10.93 11.94 10.84 11.71 12.49 10.73 12.49 11.63 10.8 12.05 12.38 11.21
21 12.56 15.52 10.82 10.89 11.88 10.82 11.67 12.44 10.67 12.42 11.55 10.8 12.01 12.34 11.17
21.5 12.53 15.41 10.8 10.89 11.83 10.81 11.6 12.36 10.65 12.4 11.52 10.8 11.99 12.26 11.15
22 12.49 15.33 10.77 10.84 11.77 10.78 11.55 12.3 10.59 12.36 11.44 10.76 11.99 12.18 11.12
22.5 12.44 15.2 10.76 10.82 11.71 10.77 11.51 12.25 10.55 12.31 11.42 10.76 11.93 12.11 11.07
23 12.41 15.08 10.73 10.8 11.68 10.76 11.48 12.19 10.52 12.26 11.4 10.71 11.89 12.07 11.05
23.5 12.37 14.97 10.71 10.78 11.64 10.71 11.42 12.15 10.54 12.22 11.37 10.69 11.88 12.03 11.08
24 12.22 15.03 10.69 10.77 11.6 10.7 11.4 12.08 10.52 12.21 11.36 10.67 11.85 12 11.04
24.5 12.15 15.04 10.67 10.76 11.56 10.7 11.36 12.01 10.5 12.16 11.33 10.65 11.79 12 11.01
25 12.07 15.01 10.63 10.84 11.52 10.7 11.33 12 10.5 12.16 11.32 10.65 11.78 11.97 10.97
25.5 12.26 14.64 10.7 10.99 11.51 10.76 11.53 12 10.97 12.3 11.41 10.69 11.79 11.99 11.02
26 12.44 14.71 11.04 11.17 11.67 10.86 11.63 12.21 11.14 12.33 11.42 10.85 11.97 11.99 11.25
26.5 12.77 14.83 11.02 11.37 11.81 11.06 11.86 12.48 11.27 12.59 11.67 11.03 12.16 12.23 11.52
27 13.08 14.95 11.21 11.53 11.97 11.26 12.01 12.74 11.48 12.89 11.94 11.22 12.4 12.41 11.81
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Time Sub31 Sub32 Sub33 Sub34 Sub35 Sub36 Sub37 Sub38 Sub39 Sub40 Sub41 Sub42 Sub43 Sub44 Sub45
27.5 13.34 15.15 11.51 11.73 12.18 11.47 12.27 13.01 11.68 13.15 12.15 11.47 12.63 12.7 12.01
28 13.57 15.31 11.52 11.92 12.37 11.68 12.46 13.28 12 13.41 12.36 11.62 12.85 12.89 12.3
28.5 13.8 15.5 11.66 12 12.56 11.89 12.66 13.54 11.94 13.64 12.57 11.82 13.07 13.09 12.55
29 14.06 15.58 11.79 12.16 12.77 12.03 12.92 13.78 12.26 13.87 12.82 12 13.26 13.3 12.84
29.5 14.27 15.9 11.91 12.31 12.96 12.21 13.04 14.05 12.38 14.09 13.02 12.15 13.49 13.49 13.04
30 14.54 16.03 12.03 12.46 13.11 12.42 13.26 14.25 12.59 14.29 13.18 12.3 13.65 13.68 13.19
30.5 14.7 16.06 12.14 12.66 13.31 12.6 13.45 14.45 12.75 14.48 13.35 12.44 13.83 13.82 13.48
31 14.79 16.19 12.25 12.71 13.45 12.77 13.65 14.59 12.9 14.67 13.5 12.57 14.01 13.99 13.66
31.5 14.91 16.29 12.34 12.85 13.64 12.92 13.84 14.75 13.02 14.83 13.67 12.72 14.17 14.13 13.86
32 15.03 16.41 12.42 13 13.78 13.08 14.02 14.92 13.18 15 13.82 12.85 14.31 14.26 14.04
32.5 15.19 16.46 12.46 13.08 13.91 13.23 13.98 15.08 13.28 15.13 13.99 12.97 14.48 14.38 14.18
33 15.29 16.56 12.56 13.23 14.06 13.39 14.37 15.24 13.39 15.27 14.07 13.08 14.63 14.5 14.33
33.5 15.42 16.64 12.68 13.33 14.18 13.52 14.45 15.37 13.5 15.41 14.23 13.18 14.75 14.63 14.49
34 15.54 16.69 12.77 13.48 14.29 13.6 14.71 15.44 13.67 15.56 14.35 13.31 14.84 14.74 14.66
34.5 15.66 16.78 12.87 13.59 14.41 13.74 14.78 15.57 13.76 15.65 14.46 13.42 14.97 14.84 14.82
35 15.74 16.85 13 13.68 14.51 13.84 14.91 15.68 13.97 15.73 14.54 13.54 15.07 14.94 14.94
35.5 15.84 16.92 13.11 13.78 14.59 13.98 15.03 15.78 14.03 15.85 14.63 13.68 15.16 15.05 15.08
36 15.94 16.98 13.48 13.84 14.7 14.23 15.09 15.86 14.13 15.93 14.74 13.8 15.27 15.15 15.2
36.5 16.22 17.05 13.61 13.91 14.78 14.18 15.23 15.97 14.25 16.02 14.82 13.89 15.36 15.24 15.31
37 16.14 17.08 13.49 14.01 14.91 14.27 15.35 16.05 14.37 16.1 14.92 13.95 15.46 15.32 15.43
37.5 16.23 17.16 13.56 14.1 14.95 14.38 15.45 16.11 14.46 16.19 14.99 14.01 15.56 15.4 15.56
38 16.32 17.2 13.65 14.17 15.07 14.46 15.56 16.14 14.55 16.28 15.09 14.06 15.62 15.49 15.63
38.5 16.41 17.28 13.75 14.26 15.13 14.56 15.66 16.22 14.5 16.37 15.17 14.09 15.68 15.54 15.72
39 16.5 17.32 13.74 14.27 15.19 14.64 15.74 16.28 14.68 16.44 15.27 14.13 15.77 15.62 15.84
39.5 16.57 17.36 13.71 14.26 15.29 14.72 15.8 16.33 14.7 16.5 15.35 14.17 15.84 15.69 15.9
40 16.68 17.41 13.69 14.39 15.32 14.82 15.89 16.38 14.78 16.56 15.41 14.27 15.85 15.76 15.99
40.5 16.69 17.32 13.69 14.46 15.45 14.9 15.95 16.44 14.86 16.62 15.46 14.33 15.89 15.84 16.05
41 16.74 17.37 13.69 14.48 15.52 14.99 16.02 16.53 14.9 16.73 15.54 14.41 15.95 15.91 16.1
41.5 16.8 17.37 13.72 14.56 15.58 15.09 16.13 16.54 14.96 16.74 15.58 14.46 16.02 15.98 16.14
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Time Sub31 Sub32 Sub33 Sub34 Sub35 Sub36 Sub37 Sub38 Sub39 Sub40 Sub41 Sub42 Sub43 Sub44 Sub45
42 16.86 17.38 13.8 14.62 15.74 15.15 16.09 16.6 15.04 16.78 15.66 14.54 16.07 16.03 16.22
42.5 16.9 17.39 13.78 14.7 15.76 15.23 16.1 16.64 15.09 16.98 15.69 14.62 16.13 16.07 16.24
43 17 17.34 13.8 14.74 15.81 15.32 16.11 16.66 15.07 16.86 15.78 14.7 16.18 16.14 16.26
43.5 17.08 17.39 13.87 14.82 15.86 15.37 16.17 16.66 14.99 16.93 15.8 14.79 16.26 16.19 16.32
44 17.17 17.45 13.95 14.86 15.94 15.42 16.23 16.69 15.12 16.96 15.81 14.84 16.3 16.22 16.34
44.5 17.29 17.49 14.02 14.87 16.02 15.46 16.25 16.72 15.21 17.04 15.85 14.88 16.36 16.28 16.4
45 17.39 17.47 14.14 14.95 16.11 15.53 16.26 16.74 15.25 17.08 15.88 14.92 16.4 16.3 16.38
45.5 17.51 17.47 14.18 15.23 16.21 15.6 16.22 16.74 15.28 17.1 15.9 15 16.46 16.34 16.41
46 17.62 17.51 14.22 15.03 16.3 15.65 16.29 16.77 15.33 17.16 15.95 15.01 16.53 16.4 16.42
46.5 17.71 17.51 14.42 15.05 16.42 15.7 16.34 16.78 15.4 17.21 16.02 15.07 16.6 16.44 16.46
47 17.83 17.54 14.29 15.11 16.5 15.76 16.4 16.8 15.42 17.24 16.01 15.11 16.66 16.46 16.5
47.5 17.94 17.53 14.33 15.09 16.61 15.88 16.42 16.81 15.49 17.28 16.05 15.11 16.72 16.52 16.53
48 18.03 17.61 14.39 15.16 16.69 15.84 16.42 16.82 15.58 17.29 16.09 15.11 16.76 16.57 16.56
48.5 18.12 17.57 14.43 15.2 16.81 15.89 16.49 16.82 15.6 17.34 16.1 15.09 16.84 16.86 16.61
49 18.23 17.57 14.47 15.27 16.86 15.93 16.52 16.84 15.66 17.37 16.13 15.21 16.93 16.69 16.63
49.5 18.31 17.54 14.47 15.32 16.92 15.93 16.53 16.84 15.76 17.39 16.15 15.19 16.97 16.76 16.69
50 18.41 17.42 14.51 15.45 17 15.99 16.58 17.06 15.74 17.39 16.18 15.5 17.02 16.82 16.74
50.5 18.5 17.58 14.55 15.35 17.09 16.03 16.69 16.81 15.8 17.41 16.21 15.17 17.09 16.97 16.81
51 18.59 17.53 14.59 15.46 17.14 16.05 16.68 16.76 15.81 17.42 16.25 15.23 17.16 16.93 16.89
51.5 18.65 17.51 14.71 15.45 17.22 16.07 16.7 16.7 15.85 17.43 16.26 15.24 17.22 16.98 16.95
52 18.74 17.5 14.84 15.53 17.29 16.06 16.72 16.72 15.84 17.66 16.21 15.25 17.29 17.06 17.06
52.5 18.83 17.29 14.94 15.56 17.39 16.13 16.7 16.72 15.81 17.53 16.23 15.28 17.37 17.12 17.12
53 18.91 17.47 15.05 15.56 17.46 16.21 16.7 16.72 15.88 17.57 16.29 15.31 17.46 17.17 17.19
53.5 18.97 17.49 15.15 15.58 17.53 16.19 16.72 16.7 15.88 17.57 16.36 15.31 17.53 17.24 17.28
54 18.99 17.46 15.31 15.6 17.57 16.25 16.74 16.69 15.91 17.62 16.29 15.32 17.59 17.55 17.34
54.5 19.05 17.46 15.36 15.6 17.65 16.29 16.74 16.66 15.94 17.63 16.32 15.32 17.62 17.34 17.42
55 19.03 17.45 15.46 15.62 17.73 16.3 16.74 16.68 15.98 17.69 16.3 15.33 17.71 17.39 17.48
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2. COMPUTER CODE

B.1 One Group Solution

1 setwd(’/Users/John/Documents/Thesis/Project/’)

2 library(nlme)

3 #rm(list=ls())

4
5
6 index <- rep(1, 15) %x% seq(1, 111, 1)

7 control <- read.csv(’control.csv’, header=T)

8 control.tendon <- control[,seq(2, 30, 2)]

9
10 png(file="ControlGroup.png", bg="white")

11 plot(index*30/60, c(10, rep(35, 1664)), xlab="Minutes",

12 ylab="Temperature (Degrees Celcius)", main="Control Group",

13 type=’n’)

14 for(i in 1:15) {

15 lines(seq(0, 55, .5), unlist(control.tendon[i]), lty=i)

16 }

17 dev.off()

18
19 icepack <- read.csv(’icepack.csv’, header=T)

20 icepack.tendon <- icepack[,seq(2, 30, 2)]

21
22
23 png(file="IcePackGroup.png", bg="transparent")

24 plot(index*30/60, c(10, rep(35, 1664)), xlab="Minutes",

25 ylab="Temperature (Degrees Celcius)", main="Ice Pack Group",

26 type=’n’)

27 for(i in 1:15) {

28 lines(seq(0, 55, .5), unlist(icepack.tendon[i]), lty=i)

29 }

30 dev.off()

31
32 whirlpool <- read.csv(’whirlpool.csv’, header=T)

33 whirlpool.tendon <- whirlpool[,seq(2, 30, 2)]

34
35 png(file="WhirlpoolGroup.png", bg="transparent")

36 plot(index*30/60, c(10, rep(35, 1664)), xlab="Minutes",
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37 ylab="Temperature (Degrees Celcius)", main="Whirlpool Group",

38 type=’n’)

39 for(i in 1:15) {

40 lines(seq(0, 55, .5), unlist(whirlpool.tendon[i]), lty=i)

41 }

42 dev.off()

43
44
45
46 #Control

47 control <- read.csv(’control.csv’, header=T)

48 control.tendon <- control[,seq(2, 30, 2)]

49 control.temperature <- unlist(control.tendon)

50 subject <- seq(1, 15, 1)%x%rep(1, 111)

51 index <- rep(1, 15) %x% seq(1, 111, 1)

52 respondent <- 1:15 %x% rep(1, 111)

53 dummy <- rep(1, 1665)

54 control.X <- cbind(rep(1, length(index)), index)

55 source(’../Splines/default.knots.sf’)

56 knots <- default.knots(index)

57 control.Z <- outer(index, knots, "-")

58 control.Z <- control.Z*(control.Z>0)

59 control.grouped <- groupedData(control.temperature~index|dummy,

60 data=data.frame(index, control.temperature))

61 control.fit <- lme(control.temperature~-1 + control.X,

62 random=pdIdent(~-1+control.Z), data=control.grouped)

63 summary(control.fit)

64 control.beta.hat <- control.fit$coef$fixed

65
66 control.sig.eps.hat <- control.fit$sigma

67 control.sig.u.hat <-

68 control.sig.eps.hat*exp(unlist(control.fit$modelStruct))

69
70 #Plot of fit

71 num.grid <- 111

72 x.grid <- seq(min(index),max(index),length=num.grid)

73 X.grid <- cbind(rep(1,num.grid),x.grid)

74 Z.grid <- outer(x.grid,knots,"-")

75 Z.grid <- Z.grid*(Z.grid>0)

76 control.fhat.grid <- X.grid%*%control.beta.hat +

77 Z.grid%*%t(control.u.hat)

78 plot(index, c(10, rep(35, 1664)), xlab="Minutes",

79 ylab="Temperature (Degrees Celcius)", pch=subject, type=’n’)

80 for(i in 1:15) {

81 lines(seq(1, 111, 1), unlist(control.tendon[i]), col=’red’,

61



82 lty=i)

83 }

84 lines(x.grid,control.fhat.grid, col="red", lwd=3, lty=1)

85
86 #Icepack

87 icepack <- read.csv(’icepack.csv’, header=T)

88 icepack.tendon <- icepack[,seq(2, 30, 2)]

89 icepack.temperature <- unlist(icepack.tendon)

90 subject <- seq(1, 15, 1)%x%rep(1, 111)

91 index <- rep(1, 15) %x% seq(1, 111, 1)

92 dummy <- rep(1, 1665)

93 icepack.X <- cbind(rep(1, length(index)), index)

94 source(’../Splines/default.knots.sf’)

95 knots <- default.knots(index)

96 icepack.Z <- outer(index, knots, "-")

97 icepack.Z <- icepack.Z*(icepack.Z>0)

98 icepack.grouped <- groupedData(icepack.temperature~index|dummy,

99 data=data.frame(index, icepack.temperature))

100 icepack.fit <- lme(icepack.temperature~-1 + icepack.X,

101 random=pdIdent(~-1+icepack.Z), data=icepack.grouped)

102 summary(icepack.fit)

103 icepack.beta.hat <- icepack.fit$coef$fixed

104 icepack.u.hat <- unlist(icepack.fit$coef$random)

105 icepack.sig.eps.hat <- icepack.fit$sigma

106 icepack.sig.u.hat <-

107 icepack.sig.eps.hat*exp(unlist(icepack.fit$modelStruct))

108
109 #Plot of fit

110 num.grid <- 111

111 x.grid <- seq(min(index),max(index),length=num.grid)

112 X.grid <- cbind(rep(1,num.grid),x.grid)

113 Z.grid <- outer(x.grid,knots,"-")

114 Z.grid <- Z.grid*(Z.grid>0)

115 icepack.fhat.grid <- X.grid%*%icepack.beta.hat +

116 Z.grid%*%icepack.u.hat

117 plot(index, icepack.temperature, pch=subject, type=’n’)

118 for(i in 1:15) {

119 lines(1:111, unlist(icepack.tendon[i]), lty=i, col=’blue’)

120 }

121 lines(x.grid,icepack.fhat.grid, col="blue", lwd=3, lty=2)

122
123
124 #whirlpool

125 whirlpool <- read.csv(’whirlpool.csv’, header=T)

126 whirlpool.tendon <- whirlpool[,seq(2, 30, 2)]
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127 whirlpool.temperature <- unlist(whirlpool.tendon)

128 subject <- seq(1, 15, 1)%x%rep(1, 111)

129 time <- rep(1,15) %x% seq(0,55,.5)

130 dummy <- rep(1, 1665)

131 whirlpool.X <- cbind(rep(1, length(time)), time)

132 source(’../Splines/default.knots.sf’)

133 knots <- default.knots(time)

134 knots <- append(knots, 5, after=2)

135 knots <- append(knots, 25, after=12)

136 whirlpool.Z <- outer(time, knots, "-")

137 whirlpool.Z <- whirlpool.Z*(whirlpool.Z>0)

138 attr(whirlpool.Z, "dimnames") <- NULL

139 whirlpool.grouped <- groupedData(whirlpool.temperature~time|

140 dummy, data=data.frame(time, whirlpool.temperature))

141 whirlpool.fit <- lme(whirlpool.temperature~-1 + whirlpool.X,

142 random=pdIdent(~-1+whirlpool.Z), data=whirlpool.grouped)

143 summary(whirlpool.fit)

144 whirlpool.beta.hat <- whirlpool.fit$coef$fixed

145 whirlpool.u.hat <- unlist(whirlpool.fit$coef$random)

146 whirlpool.sig.eps.hat <- whirlpool.fit$sigma

147 whirlpool.sig.u.hat <-

148 whirlpool.sig.eps.hat*exp(unlist(whirlpool.fit$modelStruct))

149
150 #Plot of fit

151 num.grid <- 111*2

152 x.grid <- seq(min(time),max(time),length=num.grid)

153 X.grid <- cbind(rep(1,num.grid),x.grid)

154 Z.grid <- outer(x.grid,knots,"-")

155 Z.grid <- Z.grid*(Z.grid>0)

156 whirlpool.fhat.grid <- X.grid%*%whirlpool.beta.hat +

157 Z.grid%*%whirlpool.u.hat

158 png(file="WhirlpoolFit2.png", bg="transparent")

159 plot(time, whirlpool.temperature, pch=subject, type=’n’)

160 for(i in 1:15) {

161 lines(unique(time), unlist(whirlpool.tendon[i]), lty=i)

162 }

163 lines(x.grid,whirlpool.fhat.grid, col="blue", lwd=3, lty=1)

164 abline(v=5)

165 abline(v = 25)

166
167 dev.off()
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B.2 Three Group Solutions

1 library(nlme)

2 setwd("~/Documents/Thesis/Project")

3
4 control <- read.csv(’control.csv’, header=T)

5 icepack <- read.csv(’icepack.csv’, header=T)

6 whirlpool <- read.csv(’whirlpool.csv’, header=T)

7
8 control <- control[seq(1, 111, 1),seq(2,30, 2)]

9 icepack <- icepack[seq(1, 111, 1),seq(2,30, 2)]

10 whirlpool <- whirlpool[seq(1, 111, 1),seq(2,30, 2)]

11 names(control) <- rep(" ", 15)

12 names(icepack) <- rep(" ", 15)

13 names(whirlpool) <- rep(" ", 15)

14
15 temperature <- rbind(t(t(unlist(control))),

16 t(t(unlist(icepack))), t(t(unlist(whirlpool))))

17
18 n <- length(temperature)

19
20 time <- rep(seq(0, 55, .5), 45)

21
22
23 K <- 20

24
25 knots <- quantile(unique(time), seq(0,1,length=K+2))[-c(1, K+2)]

26 #Adjust for treatment change points

27
28 knots.1 <- c(2.5, 5)

29 knots.2 <- quantile(c(5, 25), seq(0, 1, length=11))[-c(1)]

30 knots.3 <- quantile(c(25, 55), seq(0,1, length=10))[-c(1, 10)]

31 knots <- c(knots.1, knots.2, knots.3)

32 names(knots) <- NULL

33
34 index.control <- (1:(n/3))

35 index.icepack <- n/3 + (1:(n/3))

36 index.whirlpool <- 2*(n/3) + (1:(n/3))

37
38
39 int.control <- rep(0, n)

40 int.icepack <- rep(0, n)

41 int.whirlpool <- rep(0, n)
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42
43 int.control[index.control] <- 1

44 int.icepack[index.icepack] <- 1

45 int.whirlpool[index.whirlpool] <- 1

46
47 X <- cbind(int.control, int.icepack, int.whirlpool,

48 int.control*time, int.icepack*time, int.whirlpool*time)

49
50 Z.overall <- outer(time, knots, "-")

51 Z.overall <- Z.overall*(Z.overall > 0)

52
53 Z <- cbind(Z.overall*int.control, Z.overall*int.icepack,

54 Z.overall*int.whirlpool)

55
56
57 block.ind <- list(1:K, (K+1):(2*K), (2*K+1):(3*K))

58 Z.block <- list()

59
60 for (i in 1:length(block.ind))

61 Z.block[[i]] <- as.formula(paste("~Z[,c(",paste(block.ind

62 [[i]],collapse=","),")]-1"))

63
64 dummy <- rep(1, n)

65 dimnames(temperature)[[1]] <- 1:n

66 dimnames(X)[[2]] <- c("control", "icepack", "whirlpool",

67 "time*control", "time*icepack", "time*whirlpool")

68 tendon <- groupedData(temperature~X|dummy,

69 data=data.frame(X, temperature))

70
71 fit <- lme(temperature~-1+X, data=tendon,

72 random=pdBlocked(Z.block, pdClass="pdIdent"))

73
74
75 beta.hat <- fit$coef$fixed

76 u.hat <- unlist(fit$coef$random)

77
78 sig.sq.eps <- fit$sigma^2

79 sig.sq.u <- sig.sq.eps*exp(2*unlist(fit$modelStruct))

80
81
82 plot(time, temperature, type=’n’)

83
84 j <- 1

85 for(i in 1:15){

86 points(time[j:(j+110)], temperature[j:(j+110)], pch=".",
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87 cex=3, col="red")

88 j <- j+111

89 }

90
91 for(i in 1:15){

92 points(time[j:(j+110)], temperature[j:(j+110)],pch=".",

93 cex=3, col="blue")

94 j <- j+111

95 }

96
97 for(i in 1:15){

98 points(time[j:(j+110)], temperature[j:(j+110)], pch=".",

99 cex=3, col="green")

100 j <- j+111

101 }

102
103 grid.control <- 1:111

104 grid.icepack <- (15*111+1):(16*111)

105 grid.whirlpool <- (30*111+1):(31*111)

106
107
108 X.grid <- X[c(grid.control, grid.icepack, grid.whirlpool),]

109 Z.grid <- Z[c(grid.control, grid.icepack, grid.whirlpool),]

110
111 fhat <- X.grid%*%beta.hat + Z.grid%*%u.hat

112
113 lines(time[1:111], fhat[1:111], col=’red’, lwd=3)

114 lines(time[(111+1):(2*111)], fhat[(111+1):(2*111)],

115 col=’blue’, lwd=3)

116 lines(time[(2*111+1):(3*111)], fhat[(2*111+1):(3*111)],

117 col=’green’, lwd=3)

118

B.3 Confidence Bands

1 ###############################

2 Confidence Bands

3
4 G <- sapply(pdMatrix(fit$modelStruct$reStruct), "*", fit$sigma^2)

5 G <- matrix(G, 60, 60)

6
7 G.inv <- solve(G)
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8 R.inv <- diag(1/sig.sq.eps, 4995)

9
10
11 C11 <- t(X)%*%R.inv%*%X

12 C21 <- t(Z)%*%R.inv%*%X

13 C22 <- t(Z)%*%R.inv%*%Z+G.inv

14
15 Chat <- cbind(rbind(C11, C21), rbind(t(C21), C22))

16 Chat <- solve(Chat)

17
18 se.control <- sqrt(diag(cbind(X[grid.control,], Z[grid.control,])

19 %*%Chat%*%t(cbind(X[grid.control,], Z[grid.control,]))))

20
21
22
23 ul.control <- fhat[1:111] + (sqrt(2)*sqrt(qf(.95, 2, 8))

24 *se.control)

25 ll.control <- fhat[1:111] - (sqrt(2)*sqrt(qf(.95, 2, 8))

26 *se.control)

27
28 se.icepack <- sqrt(diag(cbind(X[grid.icepack,], Z[grid.icepack,])

29 %*%Chat%*%t(cbind(X[grid.icepack,], Z[grid.icepack,]))))

30
31 ul.icepack <- fhat[(111+1):(2*111)] + (sqrt(2)*sqrt(qf(.95, 2, 8))*se.icepack)

32 ll.icepack <- fhat[(111+1):(2*111)] - (sqrt(2)*sqrt(qf(.95, 2, 8))*se.icepack)

33
34 se.whirlpool <- sqrt(diag(cbind(X[grid.whirlpool,], Z

35 [grid.whirlpool,])%*%Chat%*%t(cbind(X[grid.whirlpool,], Z

36 [grid.whirlpool,]))))

37
38 ul.whirlpool <- fhat[(2*111+1):(3*111)] + (sqrt(2)*sqrt(qf(.95, 2, 8))*se.whirlpool)

39 ll.whirlpool <- fhat[(2*111+1):(3*111)] - (sqrt(2)*sqrt(qf(.95, 2, 8))*se.whirlpool)

40
41 lines(seq(0, 55, .5), ll.control, col=’red’, lwd=3, lty=2)

42 lines(seq(0, 55, .5), ul.control, col=’red’, lwd=3, lty=2)

43 lines(seq(0, 55, .5), ll.icepack, col=’blue’, lwd=3, lty=2)

44 lines(seq(0, 55, .5), ul.icepack, col=’blue’, lwd=3, lty=2)

45 lines(seq(0, 55, .5), ll.whirlpool, col=’green’, lwd=3, lty=2)

46 lines(seq(0, 55, .5), ul.whirlpool, col=’green’, lwd=3, lty=2)

47
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