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A Noise Filtering Method Using Neural Networks

Xinchuan Zeng and Tony Martinez
Department of Computer Science
Brigham Young University, Prove, UT, 84602

E-Mail: zengx @cs.byu.edu, martinez@cs.byu.edu

Abstract — During the data collecting and labeling process it
is possible for noise to be introduced into a data set. As a
result, the guality of the data set degrades and experiments
and inferences derived from the data set become less relinble.
In this paper we present an algorithm, called AN R (auto-
matic noise reduction), as a filtering mechanism to identify
and remove noisy data items whose classes have been misla-
beled The underlying mechanism behind ANR is based on
a framework of multi-layer artificial neural networks. ANR
assigns each data item a soft class label in the form of a class
probability vector, which is initialized to the original class la-
bel and can be modified during training. When the noise
level is reasonably small (< 30%), the non-noisy data is dom-
inant in determining the network architecture and its output,
and thus a mechanism for correcting mislabeled data can be
provided by aligning class probability vector with the network
output. With a learning procedure for class probability vector
based on its difference from the network output, the probabil-
ity of a mislabeled class gradually becomes smaller while that
of the correct class becomes larger, which eventually causes
a correction of mislabeled data after sufficient training. After
training, those data items whose classes have been relabeled
are then treated as noisy data and removed from the data set.
We evaluate the performance of the AN R based on 12 data
sets drawn from the U CT data repository. The results show
that ANR is capable of identifving a significant portion of
noisy data. An average increase in accuracy of 24.5% can be
achieved at a noise level of 25% by using ANR as a training
datq filter for a nearest neighbor classifier, as compared to
the one without using AN R.

1. INTRODUCTION

Although much effort can be made to avoid noise during data
collection, it is ofien difficult and sometimes impossible to
completely exclude noise, which could be introduced dur-
ing one of collecting tasks such as selecting, measuring, and
recording. In the field of machine learning, neural networks
and pattern recognition, a typical approach to evaluate the per-
formance of aclassifier is to test it on some real-word data sets.
Clearly, the reliability of the evaluation depends on the quality
of data sets, and it will inevitably be degraded by the noise
included in the data sets.
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This issue was previously addressed in the area of instance-
based learning, whose performance is particularly sensitive to
noise in training data. To eliminate noise in a training set, Wil-
son used a 3-NN (Nearest Neighbor) classifier as a filter (or pre
processor} to eliminate those instances that were misclassified
by the 3-NN, and then applied 1-NN as the classifier on the
filtered data [1]. Several versions of edited nearest neighbor
algorithms applied certain criteria to select only a faction of
original data, which serves as a mechanism to remove poten-
tial noise and reduce storage [2, 3, 4]. Aha et al. proposed
an algorithm to remove noise and reduce storage by retain-
ing only those items that had good classification records [5,
6]. Wilson and Martinez presented several instance-pruning
techniques that were capable of removing noise and reducing
storage requirement {7, 8]. .

The idea of using selected instances in training data has also
been applied to other types of classifiers. Winston proposed
an approach to learn structural descriptions by selecting “near
miss” instances while constructing the classifier [9]. John [10]
presented a method that first removed those instances pruned
by a C4.5 tree [11] and then built a new tree based on filtered
data. Gamberger proposed a noise detection and elimination
method based on compression measures and the Minimum De-
scription Length principle [12]. Brodley and Friedl applied an
ensemble of classifiers as a filter to identify and eliminate mis-
labeled training data [13]. Teng [14, 15] employed a procedure
to identify and correct noise based on predictions from C4.5
decision trees. In previous work [16], we proposed a neural
network based method to identify and correct mislabeled data.

In this paper we present a noise filtering algorithm, called
AN R (automatic noise reduction), to identify and remove mis-
labeled instances in a data set. AN R is based on the frame-
work and mechanism of multi-fayer neural networks trained by
backprepagation. It assigns a class probability vector to each
pattern in the data set. While the network itself is trained by
standard backpropagation, the class probability vector is con-
stantly updated using a learning procedure such that it becomes
closer to the output of the network. The output of the network
is determined by the architecture and weight settings of the
network, which are the results of previous training based on
all patterns in the whole data set. For a small mislabeled level
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(e.g. < 30%), the network will be predominantly determined
by those correctly labeled patterns. Thus, through training,
the output of the network becomes more consistent with the
class probability vector of correctly labeled patterns and less
consistent with those of mislabeled patterns. With this mech-
anism, the class probability vector of mislabeled patterns can
be gradually medified and eventually changed to the correct
class label after sufficient training. After training, AN R treats
those patterns whose class labels have been changed as noise
and removes them from the data set. There are three reasons
to choose removing them from the data set instead of keeping
them with a newly assigned class label. First, a small fraction
of correctly labeled patterns could be mistakenly identified as
noise, and thus it would add extra noises if keeping them in the
data set. Second, even if a mislabeled pattern is identified, it
may be assigned to an incorrect class label if there are more
than two classes. Third, removing a small portion of a data set
has a small impact on the quality of a classifier that is trained
on this data set, unless the data set is very small. However,
keeping even a small fraction of noise is more detrimental to
the quality of a classifter.

The AN R procedure presented in this work has the following
distinct features compared to previous approaches for similar
tasks. (i). In previous work [e.g., 13, 14, 15], a data set was
first divided into a training set S and a test set T'. The noise in
T was identified through predictions made by classifiers con-
structed from 5. However, because S consists of the same
percentage of noise as T, those predictions may not be reli-
able. In contrast, AN R includes all instances in the process
and allows every instance to change its class [abel, without re-
lying on a pre-constructed classifier. (ii). By vsing a contin-
uous class probability vector, AN R allows a large number of
hypotheses about class labeling to interact and compete with
each other simultaneously, and thus enables them to smoothly
and incrementally converge to an optimal or near-optimat solu-
tion. This type of search strategy has been shown efficient on a
large solution-space for NP-class optimization problems using
relaxation-type neural networks [17]. (iii). Using multi-layer
feed-forward networks as classifiers can take advantage of their
high capacity for fitting the target function. (iv). Both nomi-
nal and numerical attributes can be easily handled by AN R (in
contrast, each attribute needs to be nominal in [14, 15]).

We have tested the performance of AN R on 12 data sets drawn
from the UCI data repository. The results show that for most
data sets, AN R is capable of identifying more than half of the
mislabeled items while keeping a small error rate of misidenti-
fying non-noisy data. Using AN R as a noise filter for training
data can increase the accuracy of a nearest neighbor classifier
by an average of 24.5% on the 12 data sets.

II. AUTOMATIC NOISE REDUCTION ALGORITHM

Let .S be an input data set in which some instances have
been mislabeled, Our task is to find a procedure to identify
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and remove those mislabeled instances and thea output a fil-
tered data set S. Let o be the non-mislabeled fraction and 3
(= 1 — a) the mislabeled fraction of input data set S. Let § (e)

sub
be the correctly labeled subset and Sﬁumb) the mislabeled sub-
set (Sifl}b + Sifb) = 5). The instances in S Ef‘}b have a tendency

of strengthening the regularities possessed in S, while those in
Sf,?,,} have a tendency of weakening the regularities due to the
random nature of mislabeling. However, if the mislabeled frac-
tion is small (i.e.,, § << @), the trend of maintaining the reg-
ularities due to S'<) will be dominant. The strategy of ANR
is to apply the regularities discovered by a neural network in

5%). to correct those mistabeled instances in S

We choose a multi-layer neural network as the underlying clas-
sifier to capture the regularities contained in S because neural
networks with one hidden-layer have the capability of approx-
imating any function {18] and they have demonstrated capabil-
ity of detecting and representing regularities in a data set. The
format and procedure applied in AN R are the same as those of
standard backpropagation networks except for the following.

In the standard procedure, each instance v in S has the follow-
ing format:
v = (x,y) (1)

where X = (z1,%2,...,%5) is the feature vector of v, and f is
the number of features; y is the class (category) label of v,

In AN R, a class probability vector is attached to each instance
vin S:
v = (%¥,p) (2}

where p = (p1,p2, -, P} is the class probability vector of v
and ¢ is the number of class labels, In addition, there are an
input U; and cutput V; assigned for each node. V; is determined
by U; through the sigmoid activation function:

V; = (3)

LS

(14 tanh(g—‘))

where ug = 0.02 is the amplification parameter that reflects the
steepness of the activation function.

The weights in the network are updated using the standard
backpropagation procedure. For each instance the class prob-
ability vector p is initially set to the original class label. A
leaming procedure is applied to update p during training, For
each node representing a class 4, the input U; is first updated
based on the difference between p; and the network output,
and the output V; is then updated from IJ; according to Eq. (3).
The class probability vector p is updated by assigning V; to
pi and then normalized to 1. Thus after each update, p gets
closer to the output node value. As long as the noise level is
reasonable small, the regularities of a data set can be reflected
in the architecture and weight setting of the network after suf-
ficient training. Thus a mislabeled class probability vector can



be gradually changed to a correct one through this learning pro-
cedure.

The basic steps of ANR are explained in the following (for
each parameter we tried different settings and chose the value
with the best performance):

» The weights of the network are initially set randomly with
uniform distribution in the range [—0.05,0.05]. The initial
number of hidden nodes is setto be 1.

¢ For each instance v = (x,y,p) (where y is the initial class
Iabel), its output vector V is initially set as follows, V,
(the cutput probability for class y) is set to be a large frac-
tion D (=0.95), and then (1-12) is divided equally into the
other (' — 1) output components. The input U is then de-
termined from the corresponding output using the inverse
sigmoid function.

« For each training instance v, the weights in the network
and the probability vector p for v are updated using the
following procedure:

(i). Update the network weights by standard backpropa-
gation (leaming rate L,, = 0.2, momentum M, = 0.5).
(it). For each class i, the input U; is updated using for-
mula:

U,' = U,‘ + Lp(O{ —p,—) (4)

where O; s the value of output node ¢ for instance v, and
L, {(=0.0005) is the learning rate for probability vector.
Vi is cal¢ulated from U; by Eg. (3). p is then updated by:

=V (5)

and then p is normalized to 1 (sum of p; is equal to 1).
(iii). The class label y for instance v (= (x,y,p)) is also
updated using the following formula:

y = argmaz;i{p:|(z =1,2,..0)} (6)

« After every N, (= 20) epochs, the sum of squared errors
(SSE) is calculated to monitor the progress of the train-
ing. Instead of using SSE directly, we use an adjusted
version SSEH), which is calculated by

SSECeY) — goplstd | gophn) 4 gopldist) (7

where SSE{¢td) is the standard SSE. SSEY™ is an ad-
ditional term taking into account the effects of the number
of hidden nodes. More hidden nodes can usually lead to
a smaller SSE©*?), but with a higher possibility of over-
fitting. To reduce this effect, we add an additional error
term SSE*™) using an empirical formula:

SSE™ = A (H - 1)N(C - 1)/C (H<T)
= (A{I-1)+A:(H-NIN{C-1)/C (H>T) (8)

where H is the number of hidden nodes, [ is the number
of input nodes, N is the number of instances in the data
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set, and C is the number of classes. A, (= 0.05) and A»
(= 0.2) are two empirical parameters. SSE{*™ increases
with H (it increases relatively slow when H < I and more
rapidly when > I}.

5SS (2%t} is another term that takes into account the de-
viation of the current class distribution from the initial
(original) one. Tt is based on the assumption that misla-
beling has a random nature and thus the class distribution
is expected to be same before and afier the correcting pro-
cedure, An error term SSE(#61) s added to reflect the
difference between the distributions. Let ¢ be the class
distribution vector q defined by

N N N¢
a=(q.02,-290) = (30 35~ (@
where IV is the total rumber of instances in the data set,
and IV; is the number of instance; labe]eq with class i
G=12..,0C) Let q(init) = (q}tmt),qétmt},mq(cz'mt))
and qlevrr) = (qgc"’”,qg‘“”’, ...q((:?"")) be the initial
and current class distribution vector respectively. Then
SSE!diet) js calculated using the formula

c
. N(C — -
SSE(d:sl) — __(_CIC'_]')_*Z B:D; * maz(q‘(curr)’q?mt))
=1
o (10)
where D; = tqgcuf") _ gl /qg""” is the difference
fraction between ¢ and ¢/ B, is an empiri-

cal parameter determined by: B; = 0.1 when D; < 0.05;
B; =1.0 when D; > 0.05.

« For a fixed number of hidden nodes, H SSE{4} js

compared to the stored best (minimum) of the previ-
ous $SE@H) in our experiment), the calculated error
S55E(e4) js compared with the stored best (minimum)
of the previous SSE(e4) after each N, (= 20) epochs. If
it is smaller, then it will replace the previous one as the
new best SSE(4} and be stored for future comparison
and retrieval, along with the current network configura-
tion and class probability vectors. If no better SSE (a4
is found afier N,, (= 10) of N, epochs (equivalent to
N, * Ny, = 20%10 = 200 epochs), we assume that the best
configuration for fixed H hidden nodes has been found
and then we begin the training with I + 1 hidden nodes.

« If two consecutive additions of hidden nodes do not yield

a better result, it is assumed that the best configuration has
been found for the data set and then training is stopped.

» The items whose class labels have been changed from

their initial labels are identified, and they are then treated
as noise and removed from the data set.

II. EXPERIMENTS

We tested AN R on 12 data sets drawn from the U CT machine
leaming data repository [19]. The performance was evaluated



based on accuracy of identifying mislabeled items, error of in-
correctly identifying noisy data, and accuracy comparison be-
tween a nearest neighbor classifier with AN R (as a noise filter
for training data} and one without AN R. For each parame-
ter setting with a given data set, 20 stratified 10-fold cross-
validations were conducted to achieve reliable performance es-
timations.

In each of 10 iterations for one stratified 10-fold cross-
validation, 9 folds of data are used as the training set S and
the other fold as the testing set 7. We oblain a mislabeled
training set S, by mislabeling a fraction § of output classes
in S using the following process. For each class ¢ (i=1,2,...,C),
i N; instances (IV; is the number of instances of class 1) are ran-
domly mislabeled to one of the other (C-1) classes (i.e., classes
1, 2.... i-1, i+1,..C). Among the SNV instances, the number of
instances labeled to class j is proporticnal to the population of
class j (same as ¢; defined in Eq. {9)). With this procedure, S,
keeps the same class distribution as S, which is consistent with
the assumption of random mislabeling. AN R is then applied
to filier noise in S,,.

One performance measurement for AN R is the accuracy of
noise tdentification, which is defined as the ratio of identified
mislabeled items over all mislabeled items:

M,

ACC,; = —B“ﬁ“

(11)

where AC'C,; represents the accuracy of noise identification
{ni), MEY is the number of mislabeled items that have been

correctly identified by AN R as noise, and SN is the total num-
ber of mislabeled items.

Another performance measurement is the error of incorrectly
identifying noisy data, which is defined as the ratio of items
that have been incorrectly identified by AN R as noise over ali
non-mislabeled items:

M2,

ERR.,-"' = m

(12)

where ERR,; represents the error of noise identification (ni),

and M l(,i)r 1s the number of items that were not mislabeled but
have been mistakenly identified by AN R as noise. Note that

( o+ M2V is the total number of items that have been

identified by AN R as noise.

The performance of AN R was also evalvated by comparing
the test-set accuracies of the following two classifiers using the
nearest neighbor mle 12, 20): classifier NIV R, based on the
training set S, that have been filtered by AN R and classifier
NNR,, based on the mislabeled set S, without using ANR
(both using 1-nearest neighbor). Both NN R, and NN R, use
the same T as the testing set.

29

The accuracy for one stratified 10-fold cross-validation is the
total number of correctly classified instances in all the 10 iter-
ations divided by the total number of instances in the data set
{(IS]+ |TP. For each data set, we conduct 20 such stratified
10-fold cross-validations and then average them.

Table 1 shows the size and other properties of the data sets; size
ts the number of instances; #attr is the number of attributes;
#mum is the number of numerical (continuous) attributes;
#symb is the number of symbolic (nominal) attributes; #class
is the number of classes.

Table 1: Deseription of 12 IFC'T data sets

Data Set size | ffair | finum | #isymb | #class |
australian | 690 | 14 6 8 2
balance 625 | 4 [ 4 3
crx 690 | 15 [ 9 2
echoc 131 19 7 2 3
ecoli 336 | 7 7 0 8
hayes 93 4 0 4 3
heartc 303 [ 13 5 8 2
hearth 204 | 13 5 8 2
horse 366 | 26 12 14 3
iono 351 | 4 34 0 2
iris 150 | 4 4 0 3
led7 200 | 7 0 7 10

Figure 1 shows simulation results on the 12 tested data sets,
Four curves are displayed for each graph: “mi-acc-anr” is the
accuracy of noise identification as defined by ACC,,; in Eq.
(11); “ni-err-ant™ is the error of noise identification as defined
by ERE,; in Eq. (12); “nnr-anr” is the accuracy of nearest
neighbor classifier using AN R as a filter for its training set
while “nnr-no-ani™ is the one without using AN R. The graphs
show how these quantities vary with different mislabeling lev-
els {5). Each data point represents the accuracy averaged over
20 stratified 10-fold cross-validations, along with the corre-
sponding error bar with a 5% confidence level.

The results show that AN R performs well for most of these
data sets. AN R is capable of identifying a large fraction of
noise while keeping a low noise identification error rate. The
accuracies of the nearest neighbor classifiers using AN R are
significantly higher than those without using AN R (difference
between “nnr-no-anr’” and “nnr-anr”) for most data sets.

The amount of the performance improvement depends on the
noise level. As the noise level increases, the noise identifica-
tion accuracy ACCy,; decreases while the noise identification
error ERR,,; increases. The accuracies of both nearest neigh-
bor classifiers (with and without using AN R) decrease as the
noise level increases, but the most performance gain (accuracy
difference between the two classifiers) occurs in the middle
range of noise levels (between 20% to 30%). At the noise level
of 25%, the average ‘increase in accuracy over the 12 data sets
is 24.5% by using AN R for a classifier.
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For most data sets, AN K performs well when the noise level
is in the range not exceeding 30%. However, for several data
sets (e.g., ecoli, iris, led7), even when the noise level exceeds
30% {(but smaller than 45%) AN R stil} performs well. When
the noise level is reasonably small, non-noisy data in the train-
ing set is dominant and is capable of controlling the formation
of the network architecture, which can be used by ANE to
correct and identify noisy data. When the noise level reaches
or exceeds 50% (half of training data is noise), as can be ex-
pected, the performance degrades significantly (as shown in
Fig. 1). The performance of AN R varies with different data
sets, but the improvement by using AN R as a noise filter is
significant for most data sets.

IV. SUMMARY

In sumimary, we have presented a neural nefwork based ap-
proach — AN R — to filter noise in data sets. In this approach, a
class probability vector is attached to each instance and evolves
during neural network training. AV R combines the backprop-
agation network with a relaxation mechanism for training. A
learning algorithm is proposed to update the class probabil-
ity vector based on the difference of its current value and the
network output value. When the noise level in a data set is rea-
sonable small (< 30%), the architecture, weight settings and
cutput values of the network are determined predominantly by
those non-nosy data. This provides a mechanism to correct
noisy data by aligning the class probability vector with the neu-
ral network output.

We have tested the performance of AN R on 12 data sets drawn
from the UCT data repository by evaluating its capacity of
identifying noise and by comparing the accuracies of two ver-
sions of nearest neighbor classifiers, one using the training set
filtered by AN R and the other using the training set with-
out filtering, The results show that ANR is able to remove
a large fraction of noise with a small error of misidentifying
non-noise data. An average increase in accuracy of 24.5% can
be achieved at a noise level of 25% by vsing AN R as a train-
ing data filter for a nearest neighbor classifier, as compared to
the one without using ANR.
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