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A= - During the data collecling and labeling process it 
is possible for  noise to be introduced into a dato set. As a 
result, the quality of the data set degrades and experiments 
and inferences derivedfrom the data set become less reliable. 
In th tpaper  we present an algorithm, called A N R  (auto- 
mati? noise reduction), as apltering mechanism lo identify 
and remove noisy data items whose classes have been misla- 
beled The underlying mechanism behind A N R  is based on 
a framework of multi-layer artificial neural networks. A N R  
assigns each data item a soft class label in the form of a class 
probability veclor, which is inirialized to the original chss la- 
bel and can be modified during training. When lhe noise 
level is reasonably small (< 30%), the non-noisy data is dom- 
inant in determining the network architecture and its output, 
and thus a mechanism for correcting mislabeled data can be 
provided by aligning class probability vector with the network 
output. Wdh a learning procedure for class probabilitj vector 
based on its difference from Ihe network output, theprobabil- 
ity of a mislabeled clars gradually becomes smaller while that 
of the correct class becomes larger, which eventually causes 
a correction of misueleddata after susfeient training. Afler 
training, those data items whose classes have been relabeled 
are then treated as noisy data and removedfrom the data set. 
We evaluate the performance of the A N R  based on 12 data 
sets drawn from the U C I  data repository. The results show 
that A N R  is capable of identifying a significant portwn of 
noisy &fa. An average increase in accuracy of 24.5% can be 
achievedat a noise levelof 25% by using A N R  as a training 
data filter for a nearest neighbor classifer, as compared to 
the one without using A N R  

1. INTRODUC’ITON 

Although much effort can be made to avoid noise during data 
collection, it is often difficult and sometimes impossible to 
completely exclude noise, which could be introduced dur- 
ing one of collecting tasks such as selecting, measuring, and 
recording. In the field of machine learning, neural networks 
and pattem recognition, a typical approach to evaluate the per- 
formance of a classifier is to test it on some real-word data sets. 
Clearly, the reliability of the evaluation depends on the quality 
of data sets, and it will inevitably be degraded by the noise 
included in the data sets. 

This issue was previously addressed in the area of instance- 
based learning, whose performance is particularly sensitive to 
noise in training data. To eliminate noise in a training set, WII- 
son used a 3-NN (Nearest Neighbor) classifier as a filter (or pre 
processor) to eliminate those instances that were misclassified 
by the 3-NN, and then applied I-NN as the classifier on the 
filtered data [I] .  Several versions of edited nearest neighbor 
algorithms applied certain criteria to select only a faction of 
original data, which serves as a mechanism to remove poten- 
tial noise and reduce storage [2, 3, 41. Aha et. al. proposed 
an algorithm to remove noise and reduce storage by retain- 
ing only those items that had g w d  classification records [5. 
61. Wilson and Martinez presented several instance-pruning 
techniques that were capable of removing noise and reducing 
storage requirement f7, 81. 

The idea of using selected instances in training data has also 
been applied to other types of classifiers. Winston proposed 
an approach to l ean  structural descriptions by selecting “near 
miss” instances while constructing the classifier [9]. John [IO] 
presented a method that first removed those instances pruned 
by a C4.5 tree [ I  I ]  and then built a new tree based on filtered 
data. Gamberger proposed a noise detection and elimination 
method based on compression measures and the Minimum De- 
scription Length principle [IZ]. Brodley and Fried1 applied an 
ensemble of classifiers as a filter to identify and eliminate mis- 
labeled training data [ 131. Teng [ 14,151 employed a procedure 
to identify and correct noise based on predictions from C4.5 
decision trees. In previous work [161, we proposed a neural 
network based method to identify and correct mislabeled data. 

In this paper we present a noise filtering algorithm, called 
A N R  (automatic noise reduction), to identify and remove mis- 
labeled instances in a data set. A N R  is based on the frame- 
work and mechanism of multi-layer neural networks trained by 
backpropagation. It assigns a class probability vector to each 
pattem in the data set. While the network itself is trained by 
standard backpropagation, the class probability vector is con- 
stantly updated using a learning procedure such that it becomes 
closer to the output of the network. The output of the network 
is determined by the architecture and weight settings of the 
network, which are the results of previous training based on 
all pattems in the whole data set. For a small mislabeled level 
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(e.g. < 30%), the network will be predominantly determined 
by those correctly labeled patterns. Thus, through training, 
the output of the network becomes more consislent with the 
class probability vector of correctly labeled patterns and less 
consistent with those of mislabeled patterns. With this mech- 
anism, the class probability vector of mislabeled patterns can 
be gradually modified and eventually changed to the correct 
class label after sufficient training. After training, A N R  treats 
those patterns whose class labels have been changed as noise 
and removes them from the data set. There are three reasons 
to choose removing them from the data set instead of keeping 
them with a newly assigned class label. First, a small fraction 
of correctly labeled pattems could be mistakenly identified as 
noise, and thus it would add extra noises if keeping them in the 
data set. Second, even if a mislabeled pattern is identified, it 
may be assigned to an incorrect class label if there are more 
than two classes. Third, removing a small portion of a data set 
has a small impact on the quality of a classifier that i s  trained 
on this data set, unless the data set is very small. However, 
keeping even a small fraction of noise is more detrimental to 
the quality of a classifier. 

The A N R  procedure presented in this work has the following 
distinct features compared to previous approaches for similar 
tasks. (i). In previous work [e.g., 13, 14, 151, a data set was 
first divided into a training set S and a test set T. The noise in 
T was identified through predictions made by classifiers con- 
structed from s. However, because S consists of the same 
percentage of noise as T, those predictions may not be reli- 
able. In contrast, A N R  includes all instances in the process 
and allows every instance to change its class label, without re 
lying on a pre-constructed classifier. (ii). By using a contin- 
uous class probability vector, A N R  allows a large number of 
hypotheses a b u t  class labeling to interact and compete with 
each other simultaneously, and thus enables them lo smoothly 
and incrementally converge to an optimal or near-optimal solu- 
tion. This type of search strategy has been shown efficient on a 
large solution-space for NP-class optimization problems using 
relaxation-type neural networks 1171. (iii). Using multi-layer 
feed-forward networks as classifiers can take advantage of their 
high capacity for fitting the target function. (iv). Both nomi- 
nal and numerical attributes can be easily handled by A N R  (in 
contrast, each attribute needs to be nominal in 114. IS]). 

We have tested the performance of A N R  on 12 data sets drawn 
from the UCI data repository. The results show that for most 
data sets, A N R  is capable of identifying more than half of the 
mislabeled items while keeping a small error rate of misidenti- 
fying non-noisy data. Using A N R  as a noise filter for training 
data can increase the accuracy of a nearest neighbor classifier 
by an average of 24.5% on the 12 data sets. 

11. AUTOMATIC NOISE REDUCTION ALGORITHM 

Let S be an input data set in which some instances have 
been mislabeled, Our task is to find a procedure to identify 

and remove those mislabeled instances and then output a fil- 
tered data set S. Let a be the non-mislabeled fraction and /3 
(= 1 - a) the mislabeled fraction of input data set S. Let S!% 
be the correctly labeled subset and Si:) the mislabeled sub- 
set (Si:; + $:) = s). The instances in s!:; have a tendency 
of strengthening the regularities possessed in S, while those in 
Si:) have a tendency of weakening the regularities due to the 
random nature of mislabeling. However, if the mislabeled frac- 
tion is small (i.e., /3 << a), the trend of maintaining the reg- 
ularities due to $:; will be dominant. The strategy of A N R  
is to apply the regularities discovered by a neural network in 
Si$ to correct those mislabeled instances in Si:?. 

We choose a multi-layer neural network as the underlying clas- 
sifier to capture the regularities contained in S because neural 
networks with one hidden-layer have the capability of approx- 
imating any function [ I  81 and they have demonstrated capabil- 
ity of detecting and representing regularities in a data set. The 
format and procedure applied in A N R  are the same as those of 
standard backpropagation networks except for the following. 

In the standard procedure, each instance U in S has the follow- 
ing format: 

where x = (zl,az, ..., xf) is the feature vector of U, and f is 
the number of features; y is the class (category) label of U. 

In ANR,  a class probability vector is attached to each instance 
U in S 

v = (X,Y)  (1) 

U = (.,Y,P) (2) 
where p = (p,, p 2 ,  ..., p c )  is the class probability vector of v 
and c is the number of class labels. In addition, there are an 
input U; and output V, assigned foreach node. Vi is determined 
by Ui through the sigmoid activation function: 

(3) 
1 U -  v. - -(1+ t a n h ( 2 ) )  

' - 2  210 

where uo = 0.02 is the amplification parameter that reflects the 
steepness of the activation function. 

The weights in the network are updated using the standard 
backpropagation procedure. For each instance the class prob- 
ability vector p is initially set to the original class label. A 
learning procedure is applied to update p during training. For 
each node representing a class i, the input Ui is first updated 
based on the difference between pi and the network output, 
and the output V; is then updated from U;  according to Q. (3). 
The class probability vector p is updated by assigning V; to 
pi and then normalized to 1. Thus after each update, p gets 
closer lo the output node value. As long as the noise level is 
reasonable small, the regularities of a data set can be reflected 
in the architecture and weight setting of the network after suf- 
ficient training. Thus a mislabeled class probability vector can 
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begraduallychangedtoacorrectonethroughthis learning pro- 
cedure. 

The basic steps of A N R  are explained in the following (for 
each parameter we tried different settings and chose the value 
with the best performance): 

The weights of the network are initially set randomly with 
uniform distribution in the range [-0.05,0.05]. The initial 
number of hidden nodes is set to he 1 ,  
For each instance U = (x, y,p)  (where y is the initial class 
label), its output vector V is initially set as follows. V, 
(the output probability for class y) is set to he a large frac- 
tion D (=0.95), and then (I-D) is divided equally into the 
other (C - 1) output components. The input U; is then de- 
termined from the corresponding output using the inverse 
sigmoid function. 
For each training instance U, the weights in the network 
and the probability vector p for U are updated using the 
following procedure: 
(i). Update the network weights by standard backpropa- 
gation (leaming rate L ,  = 0.2, momentum M ,  = 0.5). 
(ii). For each class i, the input U; is updated using for- 
mula: 

U: = U; + L,(Oi - p ; )  (4) 
where 0; is the value of output node i for instance U, and 
L, (= 0.0005) is the learning rate for probability vector. 
V, is calculated from U, by Eq. (3). p is then updated by: 

and then p is normalized to I (sum ofp; is equal to 1 ) .  
(iii). The class label y for instance v (= (x,y,p)) is also 
updated using the following formula: 

After every N e  (= 20) epochs, the sum of squared errors 
(SSE) is calculated to monitor the progress of the train- 
ing. Instead of using SSE directly, we use an adjusted 
version SSE("dj), which is calculated by 

,"SE(ndj) = SSE(sld) + SSE(h") + SSE(d"') (7) 

where SSE(s'd) is the standard SSE. SSE(h") is an ad- 
ditional term taking into account the effects of the number 
of hidden nodes. More hidden nodes can usually lead to 
a smaller SSE(s'd), but with a higher possibility of over- 
fitting. To reduce this effect, we add an additional enor 
term SSE(h") using an empirical formula: 

SSE(h") = A*(H - 1)N(C - 1)/C ( H  5 I )  

= (A1(I - l )+Az(H-I ) )N(C- l ) /C  (H > I) (8) 

where H is the number of hidden nodes, I is the number 
of input nodes, N is the number of instances in the data 

set, and C is the number of classes. AI (= 0.05) and Az 
(= 0.2) are two empirical parameters. SSE(h") increases 
with H (it increases relatively slow when H 5 I and more 
rapidly when H > I). 
SSE(d'") is another term that takes into account the de- 
viation of the current class distribution from the initial 
(original) one. It is based on the assumption that misla- 
beling has a random nature and thus the class distribution 
is expected to be same before and after the correcting pro- 
cedure. An error term SSE(d'*') is added to reflect the 
difference between the distributions. Let q be the class 
distribution vector q defined by 

where N is the total number of instances in the data set, 
and N: is the number of instances labeled with class i 
(i = 1,2, __., c). b t  q(init) = (qy),qlinit), ..,qr)) 
and q(CUm) = (qpl ,qz (c.4 , ...q$"")) be the initial 
and current class distribution vector respectively. Then 
SSE(di"t) is calculated using the formula 

(10) 
where D; = Iql"""' - q~'" ' " ) /q~i" ' t l  is the difference 
fraction between Q!~"") and q~""'). B; is an empiri- 
cal parameter determined by: B; = 0.1 when Di < 0.05; 
B. = 1.0 when Di 2 0.05. 
For a fixed number of hidden nodes, H SSE(Odj) is 
compared to the stored best (minimum) of the previ- 
ous SSE(OdJ) in our experiment), the calculated error 
SSE("d') is compared with the stored best (minimum) 
of the previous SSE('dj) after each Ne (= 20) epochs. If 
it is smaller, then it will replace the previous one as the 
new best SSE("dj) and he stored for future comparison 
and retrieval, along with the current network configura- 
tion and class probability vecton. If no better SSE(Oa) 
is found after N,,, (= 10) of N. epochs (equivalent to 
Ne*" = 20*10= 200epochs),weassumethatthebest 
configuration for fixed H hidden nodes has been found 
and then we begin the training with H + 1 hidden nodes. . If two consecutive additions of hidden nodes do not yield 
a better result, it is assumed that the best configuration has 
been found for the data set and then training is stopped. . The items whose class labels have been changed from 
their initial labels are identified, and they are then treated 
as noise and removed from the data set. 

III. EXPERIMENTS 

We tested ANR on 12 data sets drawn from the UCI machine 
leaming data repository [19]. The performance was evaluated 
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based on accuracy of identifying mislabeled items, error of in- 
correctly identifying noisy data, and accuracy comparison be- 
tween a nearest neighbor classifier with ANR (as a noise filter 
for training data) and one without ANR. For each parame- 
ter setting with a given data set, 20 stratified IO-fold cross- 
validations were conducted to achieve reliable performance es- 
timations. 

In each of 10 iterations for one stratified IO-fold cross- 
validation, 9 folds of data are used as the training set S and 
the other fold as the testing set T. We obtain a mislabeled 
training set S, by mislabeling a fraction P of output classes 
in S using the following process. For each class i (i=l,2,..,,C), 
0 N ,  instances (N, is the number of instances of class i) are ran- 
domly mislabeled to one of the other (C- I )  classes (i.e., classes 
I ,  2 ,... i-I, i+l, ... C). Among the PN, instances, the number of 
instances labeled to class j is proportional to the population of 
class j (same as q, defined in Eq. (9)). With this procedure, S ,  
keeps the same class distribution as S, which i s  consistent with 
the assumption of random mislabeling. ANR is then applied 
to filter noise in S,. 

One performance measurement for ANR is the accuracy of 
noise identification, which is defined as the ratio of identified 
mislabeled items over all mislaheled items: 

where ACC,,; represents the accuracy of noise identification 
(ni),  df is the number of mislabeled items that have been 
correctly identified by ANR as noise, and PN is the total num- 
ber of mislabeled items. 

Another performance measurement is the error of incorrectly 
identifying noisy data, which is defined as the ratio of items 
that have been incorrectly identified by ANR as noise over all 
non-mislabeled items: 

where ERR,,, represents the error of noise identification (ni), 
and MA:; is the number of items that were not mislabeled but 
have been mistakenly identified by ANR as noise. Note that 
( M k ;  + M g ; )  is the total number of items that have been 
identified by ANR as noise. 

The performance of ANR was also evaluated by comparing 
the test-set accuracies of the following two classifiers using the 
nearest neighbor rule [2, 201: classifier NNR, based on the 
training set S, that have been filtered by ANR and classifier 
NNR, based on the mislabeled set S, without using ANR 
(both using I-nearest neighbor). Both NNR, and NNR, use 
the same T as the testing set. 

The accuracy for one stratified 10-fold cross-validation is the 
total number of correctly classified instances in all the 10 iter- 
ations divided by the total number of instances in the data set 
(IS1 + ITI). For each data set, we conduct 20 such stratified 
I0-fold cross-validations and then average them. 

Table 1 shows the size and other properties of the data szls; sue 
is the number of instances; #allr is the number of attributes; 
h u m  is the number of numerical (continuous) attributes: 
#symb is the number of symbolic (nominal) attributes; #class 
is the number of classes. 

Table I: Lkainption of 12 UCI data sets 

Figure 1 shows simulation results on the 12 tested data sets. 
Four curves are displayed for each graph: “ni-acc-ani‘ is the 
accuracy of noise identification as defined by ACC,,, in Eq. 
(1 I); “ni-err-ani‘ is the error of noise identification as defined 
by ERR,,, in Eq. (12); “nnr-an? is the accuracy of nearest 
neighbor classifier using ANR as a filter for its training set 
while “nnr-no-ani’ is the one without using ANR. The graphs 
show how these quantities vary with different mislabeling lev- 
els @). Each data point represents the accuracy averaged over 
20 stratified 10-fold cross-validations, along with the corre- 
sponding error bar with a 95% confidence level. 

The results show that ANR performs well for most of these 
data sets. ANR is capable of identifying a large fraction of 
noise while keeping a low noise identification error rate. The 
accuracies of the nearest neighbor classifiers using ANR are 
significantly higher than those without using ANR (difference 
between “nnr-no-ani‘ and “nnr-ani‘) for most data sets. 

The amount of the performance improvement depends on the 
noise level. As the noise level increases, the noise identifica- 
tion accuracy ACC,,, decreases while the noise identification 
error ERR,, increases. The accuracies of both nearest neigh- 
bor classifiers (with and without using ANR) decrease as the 
noise level increases, but the most performance gain (accuracy 
difference between the two classifiers) occurs in  the middle 
range of noise levels (between 2090 to 30%). At the noise level 
of 25%, the average‘increase in accuracy over the 12 data sets 
is 24.5% by using ANR for a classifier. 
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Figure I :  Simulation results on I2 data sets from U C I ,  where "nnr-no-ani' and "nnr-ani' represent test-set accuracies (%) of nearest neighbor classifiers 
without ANR and with ANR respectively, "ni-aec-ani' represents accuracy (%)of noise identification by ANR (ACG, defined in Eq. ( I  I ) ) ,  and "ni-err-ani' 
represents emor(%) of ANR (ER%, defined in Eq. (12)). 
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For most data sets, A N R  performs well when the noise level 
is in the range not exceeding 30%. However, for several data 
sets (e.g., ecoli, iris, led7), even when the noise level exceeds 
30% (but smaller than 45%) A N R  still performs well. When 
the noise level is reasonably small, non-noisy data in the train- 
ing set is dominant and is capable of controlling the formation 
of the network architecture, which can be used by A N R  lo 
correct and identify noisy data. When the noise level reaches 
or exceeds 50% (half of training data is noise), as can be ex- 
pected, the performance degrades significantly (as shown in 
Fig. I).  The performance of A N R  varies with different data 
sets, but the improvement by using A N R  as a noise filter is 
significant for most data sets. 

IV. SUMMARY 

In summary, we have presented a neural network based ap- 
proach - A N R  - to filter noise in data sets. In this approach, a 
class probability vector is attached to each instance and evolves 
during neural network training. A N R  combines the backprop- 
agation network with a relaxation mechanism for training. A 
learning algorithm is proposed to update the class probabil- 
ity vector based on the difference of its current value and the 
network output value. When the noise level in a data set is rea- 
sonable small (< m%), the architecture, weight settings and 
output values of the network are determined predominantly by 
those non-nosy data. This provides a mechanism to correct 
noisy data by aligning the class probability vector with the neu- 
ral network output. 

We have tested the performance of A N R  on 12 data sets drawn 
from the UCI data repository by evaluating its capacity of 
identifying noise and by comparing the accuracies of two ver- 
sions of nearest neighbor classifiers, one using the training set 
filtered by A N R  and the other using the training set with- 
out filtering. The results show that A N R  is able to remove 
a large fraction of noise with a small error of misidentifying 
non-noise data. An average increase in accuracy of 24.5% can 
be achieved at a noise level of 25% by using A N R  as a train- 
ing data filter for a nearest neighbor classifier, as compared to 
the one without using ANR. 
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