The effect of elevation on the distribution of sibling species in the *Simulium arcticum* complex (Diptera: Simuliidae)

Gerald F. Shields
Carroll College, Helena, Montana

Gregory M. Clausen
Carroll College, Helena, Montana

Christina S. Marchion
Carroll College, Helena, Montana

Tracy L. Michel
Carroll College, Helena, Montana

Kathryn C. Styren
Carroll College, Helena, Montana

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/wnan

Recommended Citation

Shields, Gerald F.; Clausen, Gregory M.; Marchion, Christina S.; Michel, Tracy L.; Styren, Kathryn C.; Riggin, Callie N.; Santoro, Tonya D.; and Strizich, Lindee M. (2007) "The effect of elevation on the distribution of sibling species in the *Simulium arcticum* complex (Diptera: Simuliidae)," *Western North American Naturalist: Vol. 67 : No. 1 , Article 5.*
Available at: https://scholarsarchive.byu.edu/wnan/vol67/iss1/5

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
The effect of elevation on the distribution of sibling species in the *Simulium arcticum* complex (Diptera: Simuliidae)

Authors
Gerald F. Shields, Gregory M. Clausen, Christina S. Marchion, Tracy L. Michel, Kathryn C. Styren, Callie N. Riggin, Tonya D. Santoro, and Lindee M. Strizich

This article is available in Western North American Naturalist: https://scholarsarchive.byu.edu/wnan/vol67/iss1/5
Black flies (Diptera: Simuliidae) are often composed of cytologically differentiated and reproductively isolated sibling species (cytotypes), which can be observed when polytene chromosomes of larval salivary glands are analyzed (Rothfels 1979). The recognition of sibling species is based on sex-linked rearrangements, fixed chromosomal inversions, autosomal polymorphisms, the presence or absence of B chromosomes, or a combination of all these (Rothfels 1956, Rothfels et al. 1978, Shields and Procunier 1982, Newman 1983, Procunier and Shemanchuk 1983, Allison and Shields 1989). Often, sex-linked chromosomal rearrangements occur as paracentric inversions that are heterozygous in males and homozygous in females, with males of each sibling having a unique inversion. The numerous discoveries of reproductively isolated siblings of black flies among what were originally considered by conventional taxonomists as single morphospecies suggest that these chromosomal rearrangements promote or at least accompany the diversification process in these insects. The prevalence of sibling species among morphospecies of black flies provides an opportunity to investigate the causes of sibling distribution and to describe adaptation at the local level. Studies that test hypotheses about the causal determinants of distribution and attempt to explain reasons for the mechanisms of site selection by various black fly siblings are important and largely unexplored (Adler et al. 2004).

The Simulium arcticum complex of western North America is a case in point. We originally described 5 siblings (S. arcticum—standard, arcticum III-1, arcticum III-2, arcticum III-3, and arcticum IL-3.4) of this complex from Alaska and western Canada (Shields and Procunier 1982). These siblings have now been formally recognized as S. brevicercum, S. arcticum sensu strictu (s.s.), and S. negativum, respectively (Adler et al. 2004). Two additional siblings, S. arcticum III-18 and S. arcticum IIIS-9, were subsequently described from the Athabasca River drainage of Alberta, Canada, by Procunier and Shemanchuk (1983) and by Procunier (1984), respectively. Two more sibling species, S. apricarium, and S. chromatinum, have recently been recognized (Adler et al. 2004). An additional 16 taxa of the S. arcticum complex have been described as cytotypes (populations having unique sex-linked chromosomal rearrangements but for which there is yet no firm evidence of

1Department of Natural Sciences, Carroll College, 1601 N. Benton Avenue, Helena, MT 59625-0002.
2E-mail: gshields@carroll.edu
reproductive isolation; Adler et al. 2004, Shields unpublished data). With additional cytogenetic analyses, particularly where 2 or more cytotypes are found in sympatry, and additional morphological study, these types may prove to be good biological species as well.

The presence of 9 species and an additional 16 potential cytospecies within this complex suggests, not only extreme genetic diversity, but also the potential to study environmental correlates with the taxon-specific chromosomal variation. Given the diversity of types within our study area, we speculated that some might be adapted to higher mountainous regions and to colder temperatures in spring while others might be adapted to lowland/prairie locations where temperatures of streams are generally higher. We know that altitude affects species diversity in black flies given that 63 species have been found in the Sierra Nevada region of California, whereas only 28 species occur in the prairie region of North Dakota south to Oklahoma, an area 12 times larger than the Sierra Nevada region (Adler et al. 2004).

We studied the cytogenetics of the 4 most abundant taxa of the *S. arcticum* complex in west central Montana: *S. brevicercum*, *S. arcticum* s.s., *S. apricarium*, and *S. arcticum* III-18 (see Results and Discussion for a description of this taxon). Given the diversity within the *S. arcticum* complex here, we hypothesized that 1 or more types might be characterized by differential use of habitats along elevational gradients. Alternatively, if no ecological habitat selection were operative, the taxa would be randomly distributed throughout the 5 drainages.

METHODS

We sampled 15 collection sites in 5 different drainages (Table 1) at monthly intervals from April through August. We acknowledge that elevations for the 3 categories: high, intermediate, and low—are not consistent among drainages; rather, we emphasize elevational differences within drainages. All sites were sampled by a minimum of 3 researchers, who spent equal amounts of time (usually 45–60 minutes) at each site sampling all substrates including trailing vegetation, rocks, branches, and logs. All larvae of black flies, regardless of species, were removed with forceps and placed in a vial containing fresh, cold Carnoy’s fixative (3 parts 100% ethanol: 1 part glacial acetic

<table>
<thead>
<tr>
<th>Drainage and site</th>
<th>Elevation (m)</th>
<th>Temperature range (°C)</th>
<th>Frequency of siblings/cytotypes</th>
<th>Drainage and site</th>
<th>Elevation (m)</th>
<th>Temperature range (°C)</th>
<th>Frequency of siblings/cytotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOULDER RIVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bison Creek</td>
<td>1661</td>
<td>2–15</td>
<td>19 29 1 1</td>
<td>High Ore</td>
<td>1479</td>
<td>2–10</td>
<td>9 54 0 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cardwell</td>
<td>1260</td>
<td>7–15</td>
<td>0 0 54 0</td>
</tr>
<tr>
<td>LITTLE BLACKFOOT RIVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kading C.</td>
<td>1720</td>
<td>8</td>
<td>7 2 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliston</td>
<td>1478</td>
<td>7–12</td>
<td>111 61 0 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garrison</td>
<td>1263</td>
<td>9–18</td>
<td>4 3 56 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TROUT CREEK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vigilante C.</td>
<td>1424</td>
<td>10–12</td>
<td>1 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mile 6.1</td>
<td>1349</td>
<td>10–12</td>
<td>25 8 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth</td>
<td>1193</td>
<td>8–13</td>
<td>32 8 85 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLINT CREEK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campground</td>
<td>1606</td>
<td>10–13</td>
<td>26 18 0 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philipsburg</td>
<td>1473</td>
<td>12–14</td>
<td>24 14 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall</td>
<td>1275</td>
<td>5–16</td>
<td>20 8 9 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANYON CREEK/LITTLE PRICKLY PEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canyon Creek</td>
<td>1335</td>
<td>6–13</td>
<td>20 65 0 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPCC</td>
<td>1148</td>
<td>3–11</td>
<td>0 179 56 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth</td>
<td>1056</td>
<td>8–12</td>
<td>0 37 18 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collection vials were placed on wet ice until we returned to the laboratory where the Carnoy’s fixative was changed repeatedly until it appeared colorless (usually 4 changes). At each site we recorded temperature of stream water to the nearest degree centigrade and elevation to the nearest meter with a Suunto portable altimeter. The altimeter was calibrated to 1181 m above sea level (ASL) at the Helena International Airport before each collection run. Larvae were sorted to morphospecies in the laboratory, using the criteria of Currie (1986). Subsets of all sample collections in Carnoy’s fixative are maintained in the G.F. Shields Simuliid Collection in the Department of Natural Sciences at Carroll College, Helena, Montana. Penultimate and ultimate instar larvae of the *S. arcticum* complex from each site were sorted and placed in a fresh vial of Carnoy’s fixative. Polytene chromosomes of the salivary glands and gonads of each larva were stained in Feulgen (Rothfels and Dunbar 1953), and chromosome complements were scored for variation by comparing them to the standard chromosome maps for the *S. arcticum* complex (Shields and Procunier 1982, Adler et al. 2004). The latest progression of meiosis and the presence or absence of supernumerary or B chromosomes were determined from the same slides as those having polytene chromosomes. Since female larvae within the *S. arcticum* complex, excepting larvae of *S. saxosum* and *S. apricarium*, usually possess the standard chromosome sequence in each homologue, we were unable to assign females to specific siblings or cytotypes when they occurred sympatrically with other taxa of the *S. arcticum* complex. Consequently, we restricted our analyses to males.

![Map of west central Montana indicating the 5 drainages and 15 collection sites at which abundance and presence-absence frequencies of *Simulium brevicercum*, *S. arcticum* s.s., *S. apricarium*, and *S. arcticum* III-18 were determined. The 5 drainages are underlined while enclosed circles designate the 3 sites (high, intermediate, and low) within each of these drainages at which larvae were collected. CC—Canyon Creek, LPPC—Little Prickly Pear Creek.](image-url)
For each of the 3 elevational categories, we summarized presence-absence statistics for each of the taxa and mean abundance for each of the siblings and cytotypes. Then we used analysis of variance (ANOVA) to test whether mean abundance of each sibling differed across the 3 elevations. We also used contingency analysis to test whether presence/absence for each taxon was associated with elevation (Zar 1984).

RESULTS AND DISCUSSION

Cytological Description of *S. arcticum* III-18

Simulium arcticum III-18 was originally described by Santoro (2004) from the Canyon Creek site (Fig. 1). The proximal breakpoint of this inversion in the long arm of chromosome II is just after the 3rd band of the “little three” in section 55, and its distal breakpoint is before the “distal three” in section 57 (Fig. 2). Meiosis in III-18 advances to anaphase of 1st division and this cytotype has no B chromosomes. Linkage to the Y chromosome is apparently complete because all 63 larvae having this specific inversion were males. *Simulium arcticum* III-18 has been found only in Granite, Jefferson, Lewis and Clark, and Powell Counties of west central Montana. It is the 3rd most abundant taxon (17.1% of males) at the Elliston site of the Little Blackfoot River.

Distributional Analysis of Major Taxa

A total of 2839 larvae of the *S. arcticum* complex were analyzed. Of these, 720 were of siblings and cytotypes that were either absent or too infrequent at 1 or more sites to analyze here. Of the 2119 remaining larvae, 991 were female; thus, our analysis was based on 1128 male larvae of *S. brevicercum*, *S. arcticum* s.s., *S. apricarium*, and *S. arcticum* III-18. Frequency distributions of these taxa at each of the 15 collection sites are shown in Table 1. Mean abundances for these taxa at each of the 3 elevational categories indicated that most larvae of *S. apricarium* (44.4) occurred at low elevations while most larvae of *S. arcticum* s.s. (63.2), *S. brevicercum* (33.8), and *S. arcticum* III-18 (9.0) occurred at intermediate elevations (Table 2). Analysis of variance testing for

Table 2. Mean abundances and standard errors (in parentheses) of each sibling/cytotype at each elevation.

<table>
<thead>
<tr>
<th>Elevation</th>
<th>S. brevicercum</th>
<th>S. arcticum s.s.</th>
<th>S. apricarium</th>
<th>S. arcticum III-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>14.6 (4.6)</td>
<td>23.0 (11.7)</td>
<td>0.2 (0.2)</td>
<td>2.8 (1.4)</td>
</tr>
<tr>
<td>Medium</td>
<td>33.8 (19.9)</td>
<td>63.2 (30.8)</td>
<td>11.8 (11.1)</td>
<td>9.0 (7.8)</td>
</tr>
<tr>
<td>Low</td>
<td>11.2 (6.4)</td>
<td>11.2 (6.6)</td>
<td>44.4 (13.8)</td>
<td>0.4 (0.4)</td>
</tr>
</tbody>
</table>

For each of the 3 elevational categories, we summarized presence-absence statistics for each of the taxa and mean abundance for each of the siblings and cytotypes. Then we used analysis of variance (ANOVA) to test whether mean abundance of each sibling differed across the 3 elevations. We also used contingency analysis to test whether presence/absence for each taxon was associated with elevation (Zar 1984).
the effects of elevation on abundance indicated that \textit{S. apricarium} abundance was significantly influenced by elevation (Table 3). Furthermore, \textit{S. apricarium} abundance was significantly higher (post hoc Tukey HSD test: $P = 0.025$) at low-elevation sites than at high-elevation sites.

Contingency analyses testing for differences in presence/absence of types across the 3 elevations indicated a significantly greater proportion of \textit{S. apricarium} at low elevations (Fig. 3) and a significantly greater proportion of \textit{S. arcticum} III-18 at high elevations (Fig. 4). The results support our original hypothesis that there may be elevational separation in larval habitats among the taxa. Among the 1128 larvae analyzed, only 1 individual of \textit{S. apricarium} was found at any of the 5 high-elevation sites. Alternatively, \textit{S. apricarium} was present at all low-elevation sites and abundant at 3 of these. The single \textit{S. apricarium} male at Bison Creek (1661 m ASL) was found late in the season (15 August) and in 15°C water. Thus, an interplay between elevation and water temperature may influence distribution of this sibling. The formal epithet \textit{S. apricarium} used by Adler et al. (2004) literally means “of the open” and refers to its presence in low-elevation prairie habitat. Among the 1128 male larvae identified chromosomally to sibling, only 4 \textit{S. apricarium} were observed above 1475 m, a result indicating a strong presence at low-elevation sites for this sibling.

\textit{Simulium arcticum} III-18 did not occur among the larvae analyzed from the 3 sites of the Trout Creek drainage, and only 2 individuals of this cytotype occurred in the entire Boulder River drainage, albeit at intermediate and high elevations. Thus, we are reluctant to speculate on the ecological distribution of this rare cytotype. With the exceptions of Cardwell (low elevation) and Little Prickly Pear Creek and its mouth (intermediate and low elevations, respectively), \textit{S. brevicercum} was found at 12 of the 15 sampled sites and \textit{S. arcticum} s.s. was absent only at the Cardwell site. Thus, we suggest that these 2 siblings may not be limited by elevation or temperature.

Distributions of the 4 taxa of the \textit{S. arcticum} complex in this study could also be influenced by their histories. Present distributions of the 4 taxa differ greatly. \textit{Simulium brevicercum} has a large distribution from Alaska south

<table>
<thead>
<tr>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>0.405</td>
</tr>
<tr>
<td>1.97</td>
<td>0.182</td>
</tr>
<tr>
<td>5.02</td>
<td>0.026b</td>
</tr>
<tr>
<td>0.94</td>
<td>0.416</td>
</tr>
</tbody>
</table>

aDependent variable = abundance.
bSignificant.
to Alberta, Montana, Utah, and California. *Simulium apricarium* occurs in 9 states of the Rocky Mountain region primarily to the south and west of Montana, while *S. arcticum* s.s. is distributed in an area about one-third that size in Idaho, Montana, Alberta, and British Columbia primarily northwest of Montana (see Adler et al. 2004:814–822 for information on present distributions). Possibly, these siblings have come into relatively recent contact after prolonged adaptation to different environmental conditions. Alternatively, *S. arcticum* IIL-18 has been found at only 4 sites in a 4-county region in west central Montana. *Simulium arcticum* IIL-18 and 10 other cytotypes have very limited distributions in Montana (Shields unpublished data). Unlike the broadly distributed siblings mentioned above, the distributions of cytotypes and their presence with other siblings and cytotypes suggest the possibility of an in situ origin. Although allopatic speciation cannot be ruled out, the distributions of all these cytotypes could also be explained by a sympatric speciation model similar to one suggested by Rothfels (1989).

Stream velocity and depth can be predictors of the distributions of black fly species (Adler and McCreadie 1997). Thus, *S. apricarium* may simply be adapted to slower moving streams while *S. arcticum* IIL-18 may be adapted to more rapidly moving waters descending from higher elevations. We cannot address this issue here because each of the 5 drainages studied was chosen only for its elevational relief, and velocity and depth were not measured.

It is more likely that eggs and larvae of *S. brevicericum*, *S. arcticum* s.s., and *S. arcticum* IIL-18 “drift” downstream during and after egg deposition rather than eggs or larvae of *S. apricarium* somehow moving long distances upstream. We know little about movement of eggs after they have been laid (Adler et al. 2004), but it has been estimated that larvae of some species may drift hundreds of kilometers downstream (Rubtsov 1964).

Santoro (2004) suggested that sibling group composition within the *S. arcticum* complex was similar at 2 sites along the Little Blackfoot River. While this may be true for limited study of 2 sites at similar elevations, it is not the case when multiple drainages including sites at various elevations are studied throughout the summer as shown here.

Distribution of siblings may also be influenced by availability of nutrients concentrated at outflows (Adler and Kim 1984, Wotton 1988, McCreadie and Colbo 1992). We collected samples in the Flint Creek drainage as it flows from Georgetown Lake, Granite County (1944 m ASL), throughout the summer of 2004 and found only *S. vittatum*, which inhabits lake outflows in western North America (Adler 1986, Ciborowski and Adler 1990). The Flint Creek Campground site, at which we found only *S. arcticum* types, is only 1.6 km downstream from the outlet of Georgetown Lake but 335 m lower in elevation. Possibly, a combination of the effects of accumulated nutrients at this lake outflow and elevation influence the distributions of both *S. vittatum* and members of the *S. arcticum* complex there.

Studies such as this may lead to the elucidation and importance of environmental cues that influence the location of egg-laying by female black flies. Based on our observations elevation may influence the distribution of *S. apricarium* and *S. arcticum* IIL-18 in west central Montana. Whether this distribution is determined by history, elevation, temperature, adaptation to local environments, or a combination of all of these factors must await additional study.

Acknowledgments

The James J. Manion Fund of the Department of Natural Sciences at Carroll College provided supplies and stipends for students. The National Geographic Society (NGS grant #7212-02 to Shields) provided funds for travel and equipment. The M.J. Murdock Charitable Trust (MJMCT grant #2003196 to Shields) provided supplies, stipends for students, and support for travel. The Department of Natural Sciences at Carroll College provided space and equipment. We especially thank Dr. Peter H. Adler of the Department of Entomology, Clemson University, for help with identification of larvae and chromosomes and for his continued support of our work. Drs. John Addis and Grant Hokit of the Department of Natural Sciences, Carroll College, reviewed a draft of this manuscript and helped with statistical analyses, respectively. We also thank Judith Pickens and Pat, John, and Kelly Shields for help with collection of larvae.
LITERATURE CITED

Received 14 November 2005
Accepted 6 July 2006