
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2007-03-06

Observational Studies of Software Engineering Using Data from Observational Studies of Software Engineering Using Data from

Software Repositories Software Repositories

Daniel Pierce Delorey
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Delorey, Daniel Pierce, "Observational Studies of Software Engineering Using Data from Software
Repositories" (2007). Theses and Dissertations. 1049.
https://scholarsarchive.byu.edu/etd/1049

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1049?utm_source=scholarsarchive.byu.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

OBSERVATIONAL STUDIES OF SOFTWARE ENGINEERING

USING DATA FROM SOFTWARE REPOSITORIES

by

Daniel Pierce Delorey

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

April 2007

Copyright c© 2007 Daniel Pierce Delorey

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Daniel Pierce Delorey

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Charles D. Knutson, Chair

Date Christophe Giraud-Carrier

Date Scott N. Woodfield

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Daniel
Pierce Delorey in its final form and have found that (1) its format, citations, and bib-
liographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Charles D. Knutson
Chair, Graduate Committee

Accepted for the
Department Parris K. Egbert

Graduate Coordinator

Accepted for the
College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical
Sciences

ABSTRACT

OBSERVATIONAL STUDIES OF SOFTWARE ENGINEERING

USING DATA FROM SOFTWARE REPOSITORIES

Daniel Pierce Delorey

Department of Computer Science

Master of Science

Data for empirical studies of software engineering can be difficult to obtain.

Extrapolations from small controlled experiments to large development environments

are tenuous and observation tends to change the behavior of the subjects. In this

thesis we propose the use of data gathered from software repositories in observational

studies of software engineering. We present tools we have developed to extract data

from CVS repositories and the SourceForge Research Archive. We use these tools to

gather data from 9,999 Open Source projects. By analyzing these data we are able to

provide insights into the structure of Open Source projects. For example, we find that

the vast majority of the projects studied have never had more than three contributors

and that the vast majority of authors studied have never contributed to more than

one project. However, there are projects that have had up to 120 contributors in a

single year and authors who have contributed to more than 20 projects which raises

interesting questions about team dynamics in the Open Source community. We also

use these data to empirically test the belief that productivity is constant in terms of

lines of code per programmer per year regardless of the programming language used.

We find that yearly programmer productivity is not constant across programming

languages, but rather that developers using higher level languages tend to write fewer

lines of code per year than those using lower level languages.

ACKNOWLEDGMENTS

First and foremost, thank you to my wife, Natalie, and our daughters, Alexia and

Abigail, for their patience and support during those times they didn’t see me as

often as we all wished.

I am grateful to Dr. Charles Knutson for the time he spent advising my research

and editing this thesis.

I also thank Dr. Christophe Giraud-Carrier for his valuable insights and suggestions

which have improved this thesis.

I acknowledge Alex MacLean and Scott Chun for their collaboration on the research

reported here.

Finally, thank you to my parents, Kevin and Betsey Delorey, for their love and en-

couragement.

Contents

1 Introduction 1

1.1 Empiricism in Software Engineering Research 1

1.2 Thesis Statement . 3

1.3 Thesis Layout . 3

2 A Comprehensive Evaluation of Production Phase SourceForge

Projects 5

2.1 Introduction . 5

2.2 Related Work . 8

2.3 Data Collection . 9

2.3.1 CVS Data Collection . 11

2.3.2 SFRA Data Collection . 15

2.3.3 Data Collection Summary . 17

2.4 Applications of Collected Data . 17

2.4.1 The SourceForge Community 18

2.4.2 Analysis of Authors Per Project 20

2.4.3 Analysis of Projects Per Author 22

2.5 Conclusions . 24

3 Do Programming Languages Affect Productivity? 27

3.1 Introduction . 27

3.2 Related Work . 27

viii

3.3 Data Collection . 29

3.3.1 Data Preparation . 30

3.4 Data Analysis . 33

3.5 Results . 35

3.6 Conclusions . 37

4 Conclusion 39

4.1 Contributions . 39

4.1.1 Contributions of the Tools . 39

4.1.2 Contributions of the Empirical Studies 41

4.1.3 Contributions of the Methodology 41

4.2 Future Work . 42

A Documentation for the SourceForge Research Archive Plus 45

A.1 Overview . 45

A.2 SourceForge Research Archive Plus 47

A.2.1 The Query Interface . 48

A.2.2 The Main Menu Functions . 50

B Documentation for cvs2mysql 57

B.1 Overview . 57

B.2 cvs2mysql . 57

B.2.1 Invoking cvs2mysql . 58

B.2.2 CVS Repository Processing 61

References 71

ix

List of Figures

2.1 Count of projects started per year based on CVS logs 19

2.2 Count of authors joining per year based on CVS logs 19

2.3 Distributions of authors per project by project age in years with out-

liers excluded . 21

2.4 Distributions of authors per project by project age in years with out-

liers included . 22

2.5 Distributions of projects per author by time in years since the author’s

first commit . 23

3.1 Estimated Average Productions . 36

A.1 The SourceForge Research Archive Web Interface 46

A.2 The SFRA+ Main Window . 48

A.3 The SFRA+ File Menu . 50

A.4 The SFRA+ Login Window . 51

A.5 The SFRA+ Query Menu . 53

A.6 The SFRA+ Tools Menu . 54

A.7 Partial ER Diagram Showing the Users Table and Foreign Key Children 56

B.1 An Example of a CVS Log for a Single File 64

B.2 Database Schema Used by cvs2mysql 67

x

List of Tables

2.1 Projects Registered Per Year Compared to Projects Reaching Produc-

tion Phase by August, 2006 . 18

2.2 SourceForge Users Registered Per Year Compared to Authors Included

in Our Study . 20

2.3 Percentage of Projects with Three or Fewer Authors 22

2.4 Percentage of Authors Contributing to One Project 23

3.1 Top ten programming languages by popularity rankings 29

3.2 Potential explanatory factors considered 31

3.3 Explanatory factors excluded from our analysis 33

3.4 Pair-wise language comparisons . 36

xi

Chapter 1

Introduction

1.1 Empiricism in Software Engineering Research

In the keynote address at the 18th International Conference on Software Engineering

in 1996, Victor Basili of the University of Maryland wrote, “Software Engineering

needs to follow the model of other physical sciences and develop an experimental

paradigm for the field” [2]. Researchers in many areas of software engineering have

responded to this call by increasing both the quantity and the rigor of the experiments

used to validate their claims. Empirical software engineering experiments are reported

in [1, 7, 10, 16, 25–27], as well as many others. There have also been a number of books

and papers published to guide researchers in designing and implementing empirical

software engineering experiments [2, 4, 18, 20, 33, 35].

There are, however, those who argue that software engineering research is still

of little use to practitioners. For a more detailed treatment, see [32]. One argument is

that software engineering experiments tend to be too small and too contrived for their

results to be reliably extrapolated to real-world software development environments.

Another argument is that researchers either focus on issues that are of little concern

to practitioners or attempt to prescribe solutions without fully understanding their

effects in actual development environments. To answer these concerns and make

software engineering research more useful to practitioners, many more large-scale

empirical studies based on real-world data are needed to provide insight into the

1

current state of software engineering practice, to identify where improvements can

be made, and to demonstrate why the solutions proposed by researchers generate

improvements in those areas.

The most favorable type of empirical study is a controlled experiment. The

results of appropriately designed and implemented controlled experiments can be gen-

eralized to the larger population from which the subjects are selected and can be used

to infer a cause-and-effect relationship between the independent and dependent vari-

ables (assuming the other confounding factors have been controlled appropriately).

Unfortunately, large-scale real-world controlled experiments are not feasible in the

software engineering space. Researchers do not run small controlled experiments on

graduate student subjects by choice, but rather because large controlled experiments

of professional software engineers are prohibitively expensive. In addition, given the

effects that observation has been shown to have on human behavior [13] and the num-

ber of potential confounding factors, it is questionable whether an effective controlled

experiment in software engineering is possible regardless of cost.

When controlled experiments are impractical, observational studies can often

be effective. The results of observational studies may be compelling because the num-

ber of subjects can be larger and the researcher exerts less control over the process.

However, the results of observational studies cannot be generalized to a larger pop-

ulation, and they cannot be used to infer cause-and-effect relationships. In software

engineering research, very large observational studies based on real-world data are

possible, although the conclusions must often be based on imprecise or indirect met-

rics.

Recently it has been recognized that a wealth of data for observational studies

of software engineering is available in software repositories [6] and the mining of soft-

ware repositories has emerged as a promising area of research. Workshops on mining

software repositories have been held concurrently with the International Conference

2

on Software Engineering (ICSE) the last three years [8, 9, 12]. The research presented

in these workshops has used data produced as a natural result of software develop-

ment to answer many interesting and important questions about the state of Open

Source Software development.

The advantages of using the data in software repositories for observational

studies are clear and compelling. The data are historical and were produced via

a real-world process that was not manipulated by researchers to produce contrived

artifacts that were unnatural to the process in order to allow some predetermined

measurement. Thus, the researcher does not contaminate the data and the subjects

do not modify their behavior due to observation. In addition, the data are plenti-

ful. There are over 100,000 projects hosted on SourceForge.net alone with publicly

accessible data available on the web site, through the FLOSS Mole project [14], and

through the SourceForge.net Research Data Archive [21].

The disadvantages of using software repository data in observational studies

are also clear. Rarely do the data provide a precise direct metric to answer a question

of interest. Instead researchers using these data must craft methods of approximating

their ideal metrics using the indirect metrics data available.

1.2 Thesis Statement

We assert that we can gather data from software repositories for use in observational

studies which provide insights into the state of software engineering practice and

empirically test hypotheses about software engineering.

1.3 Thesis Layout

We gathered data from 9,999 Open Source projects hosted on SourceForge. We used

these data to investigate the sizes of open source development groups and the activity

3

of open source developers that contributed to projects between 2000 and 2005. We

also use these data to statistically test an assertion made by Brooks [3] and others

[30, 34] that programmers write the same number of lines of source code per year

regardless of the programming language they are using.

Chapter 2 is a paper currently under external review in which we present the

tools we developed to gather the data we use in our analyses. These tools are SFRA+

which provides a rich interface for accessing the SourceForge Research Archive hosted

at the University of Notre Dame [21] and cvs2mysql which extracts historical data

from CVS repositories and produces an SQL script which can be imported into a

MySQL database. In addition, we present some preliminary results obtained using

these data to describe the relationships between developers and projects in the Open

Source community.

Chapter 3 is a paper currently under external review in which we use the

data gathered with the tools presented in Chapter 2 to test the assertion of constant

programmer productivity regardless of programming language. We test the assertion

for the ten most popular programming languages used in the SourceForge projects.

The two appendices are user manuals for applications we developed as part of

this research. Appendix A is the user manual for SFRA+ and Appendix B is the user

manual for cvs2mysql.

4

Chapter 2

A Comprehensive Evaluation of Production Phase Source-

Forge Projects: A Case Study Using cvs2mysql and the

SourceForge Research Archive

2.1 Introduction

In order for an empirical study of software engineering to have descriptive power,

it must be based on a substantial amount of data from multiple distinct software

projects. The nature of software development dictates that practitioners rarely, if

ever, undertake an identical project twice. Thus, research that identifies the factors

that resulted in the success or failure of a single project, while anecdotally interesting,

cannot provide the general purpose description necessary to understand the nuances

of the impacts of those factors in disparate contexts.

Collecting enough data from software projects to allow descriptive empirical

studies can be problematic. Two of the most troublesome concerns when collecting

data for empirical studies of software engineering (which are typically in direct con-

flict) are the cost of the data collection and the impact of the data collection on the

process being measured.

The costs associated with collecting data from software engineering projects

can range from fairly inexpensive (such as electronically distributing surveys to a

group of developers or paying college students a nominal sum to participate in a

brief experiment) to extremely expensive (such as funding an experimental software

5

development organization consisting of multiple developers, managers, and support

staff). Unfortunately, there tends to be an inverse relationship between the cost of

the data collection process and the quality, reliability, and general applicability of the

data collected.

The impacts of data collection on the software development process can in-

clude both changes to the process itself and changes in the behavior of the developers.

These issues are analogous to those observed by Jain [15] when monitoring computer

hardware performance. Adding measurements that require the production of previ-

ously nonexistent artifacts changes the development process in significant ways with

potentially unintended and unrecognized consequences. In addition, observation of

human subjects often changes their behavior in unanticipated ways as demonstrated

by the Hawthorne effect and the placebo effect. As with the cost of data collection,

there is a tradeoff to be made between the effects of the changes to the development

process and the precision of the data collected.

In addition to the data quality tradeoffs for both data collection costs and

process change requirements, there tends to be a direct relationship between the

amount of process control required and the cost of data collection. Observational

case studies, especially those using historical data, tend to reduce the data collection

costs while limiting the amount of process control available. Controlled experiments

increase the level of control while raising the costs to sometimes prohibitive levels.

One way to balance the tradeoffs between data quality, data volume, and data

cost is to use the natural by-products of actual software projects as source data for

empirical studies. Every successful software engineering process produces measurable

data of varying utility. At best, various documents and metrics are created or gath-

ered, lending insight into the development history. At worst, source code is developed

and can be examined for meaningful clues. We refer to these as existing artifacts.

Of course, there are advantages and disadvantages to using these existing artifacts in

6

empirical studies. The advantages are that they are plentiful, they are relatively in-

expensive to collect, and they accurately represent the software development process

that produced them without imposing artificial modifications. The disadvantages are

that they do not allow the researchers control over the development process, they

often do not provide direct metrics to answer the question of interest, and, as with

all observational data, they can only be used to provide compelling evidence, not to

infer cause and effect.

Many of the existing artifacts of software development processes are stored in

version control repositories and project management systems. These artifacts may in-

clude source code, documentation, developer tasks, bug reports, and feature requests.

Useful data for empirical studies can be extracted from all of these artifacts.

To demonstrate the wealth of information that can be extracted from exist-

ing repositories, we have collected artifacts from nearly 10,000 open source projects

hosted on SourceForge. We chose open source software development as our target

domain for a number of reasons. The most obvious, of course, is the availability

of the artifacts. Considerably more effort would have been required to collect arti-

facts for 10,000 commercial or governmental software development projects. Beyond

the availability, however, open source development offers interesting opportunities

for descriptive empirical studies because of its emergent nature. Rather than being

driven by centralized administration or vision, the behavior of open source software

development groups emerges from the behavior of autonomous individuals.

In this paper we describe the process we followed and the tools we developed

to collect data from software artifacts. We also give brief examples of the descriptive

information we can extract from these data.

7

2.2 Related Work

Many of the benefits of using existing artifacts in empirical software engineering

studies were identified by Cook et al. [6]. The authors emphasize the expense and

intrusion imposed by traditional empirical methodologies in which the researchers

identify metrics that could be used to answer their questions of interest and then

modify the development process to produce the data necessary to calculate those

metrics. The authors make the additional point that such changes to the development

process in existing companies are often rejected by the engineers thus dooming the

experiment from the beginning. These concerns are all the more critical in the open

source development environment where the researchers do not even have the modicum

of control they may have in an industrial setting. Also, the authors point out that

traditional methods often ignore the past history of a project, focusing instead on

the post-data-collection time period exclusively, despite the fact that most existing

organizations have at least some form of historical data which may be mined for

information.

Koch et al. [17] demonstrated many descriptive statistics that can be calcu-

lated from the data in CVS repositories and public discussion groups in their study

of the GNOME project. Among the metrics they present are the number of lines of

code added and removed per developer, the number of commits per developer, and

the number of weeks contributed to the project per developer along with correla-

tions between these values. In addition, the authors graph the growth of the various

modules of the project over time in terms of lines of code. The information in this

paper provides an empirical basis for understanding how the GNOME project is or-

ganized and how that organization has evolved over time—a necessary first step in

determining why this project has succeeded while others have failed.

German et al. created softChange [11], a tool that extracts what authors

call software trails from CVS repositories, BugZilla repositories, and mailing list

8

archives and converts them into facts. The authors report having used softChange

to process the data of five large open source projects—GNOME, Mozilla, Evolution,

PostgreSQL, and GNU gcc. The information gathered from these projects is used to

record and compare modification request which the authors identify as a set of files

changed and committed together to fix a bug or add a feature.

Robles et al. [29] developed CVSAnalY which gathers data from cvs log files,

inserts them into a MySQL database, performs a set of analyses, and produces sum-

mary statistics and graphics. In June, 2006, CVSAnalY was run on the entire set

of then-active SourceForge projects with publicly available CVS repositories. The

collected data set is available through the authors of CVSAnalY.

In addition to the tools that have been created for gathering data from publicly

available sources, various archives of these data are being kept. The FLOSS Mole

project [14] regularly crawls SourceForge, FreshMeat, and RubyForge. The data are

available for download in their raw form or in a relational database which is made

publicly available through a web query form. Madey et al. [21] have partnered with

Open Source Technology Group (OSTG) to create the SourceForge Research Archive

(SFRA) which makes monthly dumps of the back-end database of SourceForge avail-

able to researchers. Researchers wishing to access the SFRA must sign a licensing

agreement. These data are also accessed through a web query form.

2.3 Data Collection

We used two sources of data in this project – the CVS repositories of SourceForge and

the SourceForge Research Archive (SFRA) hosted at the University of Notre Dame.

Projects hosted on SourceForge have three version control options: 1) CVS, hosted

by SourceForge; 2) Subversion, hosted by SourceForge; 3) Version control systems

privately hosted by individual projects. We chose to focus on the CVS repositories

because at the time of our data collection in August, 2006, 92.5% (155,293 projects)

9

of the projects hosted on SourceForge were using SourceForge hosted CVS reposi-

tories compared to only 4.4% (7432 projects) using SourceForge hosted Subversion

repositories.

The data collected by CVS are the file name, path and an optional free-form

description for each file, and the revision number, revision date, author, file state, a

count of lines added and removed, and a free-form message for each revision. Revisions

are tracked on a per file basis and commits are non-atomic. Clearly, any information

that can be gleaned from these meager data can also be calculated from the data

of more robust version control systems, providing a confidence in the extensibility of

these results to other version control systems.

We chose to use the SFRA because the data was well-structured for the types

of queries we had planned. Also, since the data represents a direct dump of the

SourceForge database, we had less concern that errors may have been introduced

during the data collection process. We still expect that there are errors in the SFRA

data, but we feel more comfortable assuming that they are randomly distributed

errors caused by the SourceForge users and not systematic errors caused by flaws in

the data collection tools.

In order to exploit the relationships between the data in the CVS repositories

and the data in the SFRA, it was necessary to combine the data into a single relational

database. To accomplish this, we developed two tools, cvs2mysql (see Appendix B)

and SFRA+ (see Appendix A), that collect the data from the two systems and write

them into SQL scripts that import the data into a MySQL 5.0 database. Throughout

the development of these tools, our overarching goal was to keep the coupling between

the various steps as low as possible so that the tools would not impose our data

collection process on future researchers, but would instead be useful in many analyses.

10

2.3.1 CVS Data Collection

We first considered using softChange or CVSAnalY in our CVS data collection, but

found that neither suited our needs. Both were robust tools that included the entire

tool chain the authors used in their own analysis. For example, softChange is designed

for an analysis that considers data from a single CVS repository, a Bugzilla defect

tracking system, and mail archives with change logs. CVSAnalY is also designed to

gather data from a single CVS repository and, as part of the data gathering process,

produces a number of tables with derived statistics and graphical displays required

by the authors for their own research. Also, both these systems produce data files

for individual projects that are not designed to be combined with the data files they

produce for other projects.

Since our goals were not compatible with the data produced by these existing

tools, we developed our own tool for collecting histories of files and revisions from

CVS repositories and converting that data into MySQL import scripts. Our tool,

which we named cvs2mysql, was developed in Python. We designed it to be cross

platform compatible and it has been validated extensively on Windows XP, Cygwin,

Red Hat Enterprise Linux, and Mac OSX. In order to use cvs2mysql, Python 2.4 or

higher and a CVS client are required. The source code is currently available upon

request and we plan to make it publicly available in the near future.

The cvs2mysql Tool

The cvs2mysql scripts can process any CVS repository when given a valid CVS

root; however, due to the nature of our project, we extended the script to also allow

processing of SourceForge CVS repositories using either a single SourceForge project’s

unix group name or a text file containing multiple projects’ unix group names each

on a separate line. We found this approach to be the most appealing because it

11

allows cvs2mysql to be used for any project that needs to extract data from a CVS

repository while still streamlining our own processing.

Standard cvs2mysql processing follows four steps: 1) checkout a sandbox from

the project repository, 2) retrieve a log file for the repository, 3) parse the log file and

create a MySQL import script, 4) remove the sandbox and the log file. The execution

of these standard steps can be modified, however, using command line flags. So, for

example, the user may choose to keep the sandbox and the log file by skipping the last

step, thus allowing further processing of the source files. This modified processing

can also be used to forego the checkout and logging steps and process an existing

sandbox assuming a log file has already been retrieved.

The CVS checkout command used to retrieve a sandbox is run with the -r 1.1

option so that the initial revision of most files, including those that were removed from

the repository at some point, is retrieved. However, it is possible in CVS to manually

set the initial revision number for a file to something other than 1.1. cvs2mysql

detects these cases when it finds a record of a file in the log whose earliest revision

is not revision 1.1. In these cases, cvs2mysql will execute an additional checkout

operation for the file to retrieve the earliest revision. These earliest revisions are used

by cvs2mysql to determine the initial file size, a value that is not stored by CVS.

We find this method of calculating initial file size better than calculating initial file

size as a function of the current file size and the lines added and removed for each

revision for two reasons. First, it allows us to calculate initial file size even for files

that are currently or were at one time removed from the repository (moved to the

Attic in CVS terminology). Second, it removes the complexity of attempting to sum

the number of lines added and removed for files that have been branched.

A single log file for the entire repository is retrieved both to simplify log file

processing and to reduce the amount of network traffic. However, for larger projects,

the CVS server may fail to return a log file for the entire repository. In these cases,

12

cvs2mysql recovers from the error by attempting to recursively log parts of the repos-

itory individually. Logging begins in the top level directory of the repository. If the

initial log command fails, cvs2mysql attempts to retrieve logs for the subdirectories

and files of the failed directory individually. This behavior continues until either a

log has been retrieved for the entire repository or logging fails for an individual file.

CVS uses the RCS log file format; however, as noted by German et al. [11],

there is not a publicly available grammar documenting the structure of RCS log files.

We perfected our log file parsing through manual inspection of many RCS logs and

various script revisions while running cvs2mysql on over 16,000 SourceForge CVS

repositories.

In order to make cvs2mysql as widely applicable as possible, the data for

each project is dumped to a separate MySQL import script and the post processing

functions are separated from the data gathering functions. The import scripts are

structured so that multiple scripts can be imported into the same database without

modification thus simplifying the process of comparing individual projects or pooling

the data from multiple projects for use in a single analysis. Also, we have kept the

imported data as pure as possible by putting only the raw data gathered from the

CVS repositories into the import scripts. All subsequent processing is handled by

additional SQL scripts which store their results in tables separate from the CVS

data.

The schema (see Figure B.2) for the data produced by cvs2mysql consists

of two tables, cvs file and cvs revision, indexed by the project name and the author

name respectively. For SourceForge projects, the project name is the project’s unix

group as listed on SourceForge and the author name is the author’s SourceForge user

name. For projects processed using a CVS root, the project name defaults to the

empty string, but may be set manually by the user; the author name is the CVS user

name for the repository being processed. Indexing by the project’s unix group name

13

and the author’s SourceForge user name for SourceForge projects rather than by some

arbitrary numerical identifier allows the data collected using cvs2mysql to be easily

joined to other sources of SourceForge data such as the SFRA and the FLOSSMole

data which both have tables that can be joined using these values.

The SourceForge CVS Data

To validate the functionality of cvs2mysql, we used it to gather data from the projects

in the SFRA August 2006 dump that meet the following criteria: 1) the project’s

development stage is set as Production/Stable or Maintenance, 2) the project is active,

3) the project uses CVS, 4) the project is open source. We chose the first two criteria

as indicators of project success. There is a significant number of projects created on

SourceForge that never get beyond the inception phase. These projects represent a

significantly different population than the one we wish to study. The third and fourth

criteria indicate those projects we are able to study using the cvs2mysql tool. Again,

cvs2mysql can only process CVS repositories and requires the original source code

in order to determine the initial file sizes.

There are 16,580 projects in the August, 2006 SFRA schema that meet our

criteria. We used cvs2mysql to process the CVS repositories of all these projects.

However, during our processing, we found that approximately 40% of the projects

did not have useable CVS repositories either because the CVS repository had never

been used by the developers, the CVS repository was not publicly available using

anonymous pserver access, or the repository had become corrupted. Excluding these

projects, there were 9,999 projects with usable CVS repositories.

We collected data for the 9,999 SourceForge projects that met our criteria and

had usable CVS repositories between September 8, 2006 and September 21, 2006.

These data were converted into 9,999 individual MySQL import scripts which we

imported into a MySQL 5.0 database. These import scripts are currently available

14

upon request and will be made publicly available along with the cvs2mysql source

code.

2.3.2 SFRA Data Collection

The Source Forge Research Archive (SFRA) is a joint project between the University

of Notre Dame and the Open Source Technology Group (OSTG) to make monthly

dumps of the SourceForge back-end database available to the research community.

The dumps are stored in a PostgreSQL database. However, the data is licensed

under a strict agreement which limits the ways in which it can be distributed, so the

database may only be accessed through a restrictive web query form.

To increase the efficiency of our data gathering and overcome certain short-

comings of the existing interface of the SFRA we created a Windows-based desktop

application using Delphi 5, which we named the SourceForge Research Archive Plus

(SFRA++). This application is available along with its source code upon request

and will be made publicly available soon. However, a user name and password are

required to access the SFRA and these must be obtained from the University of Notre

Dame group [21].

The SourceForge Research Archive Plus

One problem we encountered with the existing SFRA interface is that, although the

database schema changes with almost every monthly dump, only a single ER diagram

is provided and it is only partially accurate for the first of the available schemas. To

overcome the lack of information about the structure of the database, SFRA++ is able

to reverse engineer the structure for each of the schemas from the database itself, save

that structure to a local XML file, and produce ER diagrams. These automatically

generated ER diagrams are far from perfect. For example, we use a heuristic to

determine foreign key relationships because this information is not available in the

15

database. However, these ER diagrams do allow the user to see the main relationships

between the tables which is critical in determining what questions can be answered

with the data.

Another problem with the existing SFRA interface is that, instead of directly

querying the database using rich PostgreSQL select statements, queries must be run

through an arbitrarily restricted web form with only three text boxes—one for a select

clause, one for a from clause, and one for a where clause—each of which automatically

prefixes its contents with the corresponding keyword. To solve this problem, SFRA++

is able to accept any valid PostgreSQL select statement, translate it into a form that

can be run using the web interface, and submit it to the web form.

A third problem with the existing SFRA interface is that results are returned

in comma, colon, or pound sign delimited text files or in an XML formatted file,

but no effort is made to replace the delimiters or existing XML formatted text in

the result set and no header row is included to identify the resultant fields. To

overcome the impossibility of interpreting delimited result files that have no header

information and may contain delimiters in the result fields, SFRA++ automatically

adds SQL commands to replace delimiters in all character based result fields and

also automatically reinserts the delimiters into the result fields before presenting the

results to the user.

SFRA++ automates many of the common tasks associated with using the

SFRA. It has a rich SQL editor with syntax highlighting. It automatically submits

formatted queries to the web interface, retrieves the results, and displays them in a

grid for easier manual browsing. In addition, we have included functions to export

result sets to both Excel files and MySQL import scripts so that the data can be

combined with data from other sources and analyzed more fully.

16

The SourceForge Research Archive Data

There are 130 tables in the August 2006 schema of the SFRA storing all the data

available on the SourceForge website as well as administrative data. The tables that

hold data on SourceForge users and projects are of particular interest to our study.

We used the SFRA query tool to retrieve the contents of 12 of these tables—those

linking users to projects and those with the tracker and forum data—and exported

the contents into MySQL import scripts. We imported these tables into the same

MySQL 5.0 database with the cvs2mysql data. Due to the licensing agreement of

the SFRA, we are unable to release these import scripts; however, they can be easily

recreated using SFRA++ by anyone who has access to the SFRA.

2.3.3 Data Collection Summary

In all, 9,999 import scripts for individual projects were generated using cvs2mysql and

imported into a MySQL 5.0 database with a grand total of 7,244,201 cvs file records

and 26,559,193 cvs revision records. In addition, 12 complete tables—including the

tables that store project data, user data, and all the tracker data—were extracted

from the SFRA and imported into the same MySQL 5.0 database. These two data sets

can be combined by joining the cvs file table to the groups table using the projects’

unix group names and by joining tables with user names to the cvs revision table

using the author field.

2.4 Applications of Collected Data

The data we have collected provide a historical view of the evolution of the Source-

Forge community. By combining the data from the entire SourceForge database with

the data from the CVS repositories of a large number of individual projects, we can

get a better understanding of the lifecycles of SourceForge projects and the relation-

17

Production by
Year Registered August, 2006 Percentage

1999 892 217 24.32%
2000 13374 1380 10.31%
2001 23740 1859 7.83%
2002 26766 1830 6.83%
2003 27649 1732 6.26%
2004 28909 1395 4.82%
2005 28599 998 3.48%
2006 17902 381 2.12%

Table 2.1: Projects Registered Per Year Compared to Projects Reaching Production
Phase by August, 2006

ships between authors and projects. In this section we provide examples of ways in

which these data may be used to describe the entire SourceForge community.

2.4.1 The SourceForge Community

The earliest project registration date on SourceForge is October, 1999. However, the

CVS logs for the projects we studied go as far back as December, 1983. In fact,

290 of the 9,999 projects have CVS logs prior to October, 1999 indicating that these

projects were migrated to SourceForge some time after their inception. Figure 2.1

graphs the number of projects started per year based on the CVS logs. Note that the

downward trend after 2004 is a remnant of our choosing to study only those projects

in the Production/Stable or Maintenance phases of their lifecycle. A comparison

of the number of projects registered on SourceForge versus the number of projects

that reached the Production/Stable or Maintenance phases by August, 2006 is shown

in Table 2.1. The smaller number of projects registered in 2006 is a result of our

collecting the data in September, 2006.

In addition to describing projects, our data gives insight into the behavior

of a large number of open source developers. In total, 23,838 distinct user names

were recorded in the CVS data. Of these, 618 were not user names that were ever

18

Figure 2.1: Count of projects started per year based on CVS logs

Figure 2.2: Count of authors joining per year based on CVS logs

19

Included in
Year Registered Our Study Percentage

1999 2810 441 15.69%
2000 98656 2158 2.18%
2001 221504 3494 1.57%
2002 214596 3989 1.85%
2003 226145 4320 1.91%
2004 220864 4026 1.82%
2005 228429 3389 1.48%
2006 160674 1588 0.98%

Table 2.2: SourceForge Users Registered Per Year Compared to Authors Included in
Our Study

registered on SourceForge. Some of these user names were created automatically by

the SourceForge system to facilitate anonymous commits for those projects that allow

it. The rest were user names that were used in the repositories of migrated projects

prior to their migration to SourceForge. Figure 2.2 shows the number of authors

joining one or more of our projects per year based on the CVS logs. In this case

the downward trend after 2004 is interesting because it suggests that the number of

developers per project was remaining approximately constant rather than increasing.

Table 2.2 gives a comparison between the number of authors joining one or more of

the projects in our study per year and the number of user names registered per year

on SourceForge. To put these percentages into context, it is important to note that

only 14.2% of the users registered on SourceForge have been granted CVS write access

on at least one project, a necessary prerequisite for contribution to any project that

does not allow anonymous CVS write access.

2.4.2 Analysis of Authors Per Project

The number of authors contributing to the CVS repository of an open source project

implies something about the popularity and level of interest in the success of the

project. Figures 2.3 and 2.4 show side-by-side box plots of the distributions of the

20

Figure 2.3: Distributions of authors per project by project age in years with outliers
excluded

number of developers contributing to a project for each year, measured from the date

of the first commit to the project’s CVS repository. In Figure 2.3, the extreme values

are excluded to show detail. In Figure 2.4, the extreme values are included to show

range.

Identical patterns to the ones in Figures 2.3 and 2.4 are observed whether the

time granularity is years, quarters, or months except that the range of the extreme

values shrinks somewhat as the time period is decreased. The median number of

developers per project is 1. Three quarters of the projects have between 1 and 2

developers. Table 2.3 lists the percentages of projects that have had three or fewer

developers per month, quarter, year, and over their entire development.

The fact that almost 83% of the projects studied have never had more than

three developers in their life time and almost 91% have never had more than three

in a given month raises interesting questions for future research. Is there something

fundamental about open source development that favors smaller development groups?

21

Figure 2.4: Distributions of authors per project by project age in years with outliers
included

All Time 82.7%
Per Year 87.3%
Per Quarter 89.5%
Per Month 91.2%

Table 2.3: Percentage of Projects with Three or Fewer Authors

If so, what is different about the organization of the 10–20% of outlier projects that

allows them to have up to 120 active contributors?

2.4.3 Analysis of Projects Per Author

The number of projects to which an author contributes can suggest something about

the author’s level of commitment to open source development as well as the author’s

availability and ability to multi-task. Figure 2.5 shows a side-by-side box plot of the

distributions of the number of projects to which an author contributes for each year

22

Figure 2.5: Distributions of projects per author by time in years since the author’s
first commit

All Time 86.6%
Per Year 90.5%
Per Quarter 92.5%
Per Month 94.2%

Table 2.4: Percentage of Authors Contributing to One Project

measured from the date of the first commit made by the author to the CVS repository

of any of the projects studied.

As with the distributions in Figures 2.3 and 2.4, the project per author dis-

tributions do not change regardless of the level of time granularity. The median and

75th percentile is 1 project per author. Table 2.4 shows the percentages of authors

who have contributed to only one project per month, quarter, year, and over their

entire tenure.

For the projects we studied, the vast majority of authors devoted themselves

exclusively to a single project at a time and a large portion of them have only ever

23

contributed to one of the projects studied. These numbers also suggest potential

avenues for future research. For the authors who never contribute to more than one

project, how do they select the project to which they contribute? For the authors who

contribute to multiple projects, especially those extreme outliers who are involved in

up to 18 projects in a single year, are they able to split their time effectively and

how do their contributions on an individual project basis compare to those of the

developers dedicated to a single project?

2.5 Conclusions

The use of data collected from the existing artifacts of unaltered software processes

can overcome some of the problems associated with empirical software engineering

experiments based on contrived environments and altered processes. The data are

plentiful, inexpensive to collect, and accurately reflect the process that created them.

However, the use of software artifacts in empirical research is not a panacea.

We must remember that data collected from the artifacts of an uncontrolled process

are observational and do not constitute a random sample. As such, the data may

be used to provide compelling evidence but not necessarily to infer cause and effect

or to generalize. We must, therefore, carefully report how and where the data were

collected to avoid confusion about what conclusion may be drawn.

In the present study, we collected data from the CVS repositories of 9,999 open

source projects hosted on SourceForge. Our study includes only those projects that

are open source, use SourceForge hosted CVS repository as their version control sys-

tem, and had reached the Production/Stable or Maintenance phases of their lifecycle

by August, 2006. This set of projects is the inferential base for our conclusions.

We found that the vast majority of the projects we studied are developed en-

tirely by three or fewer authors and that the vast majority of the authors contribute

exclusively to a single project. However, there is large variation for the projects and

24

authors that exceed these bounds. Some of the projects studied received contribu-

tions from more than 100 authors in a single year and some of the authors studied

contributed to more than 20 projects in a single year.

The data we have collected can be used to study relationships beyond those

we have presented in this paper. The CVS data is file and revision based, tracking

the history of line changes over time, making it particularly well-suited to studies of

the distributions of file types and of the rates of change per file.

As the methods for collecting and combining data from disparate sources ma-

ture, we expect to see more large scale analyses comparing and contrasting software

development efforts across the open source community. In addition, studies compar-

ing data gathered from open source projects with those gathered in commercial and

governmental software development settings will be of particular interest as they will

help to calibrate and contextualize results based solely on open source projects.

25

26

Chapter 3

Do Programming Languages Affect Productivity? A Case

Study Using Data from Open Source Projects

3.1 Introduction

Brooks is generally credited with the assertion that annual lines-of-code programmer

productivity is constant, independent of programming language. In making this asser-

tion, Brooks cites multiple authors including [30] and [34]. Brooks states, “Productiv-

ity seems constant in terms of elementary statements, a conclusion that is reasonable

in terms of the thought a statement requires and the errors it may include.” [3] (p.

94) This statement, as well as the works it cites, however, appears to be based primar-

ily on anecdotal evidence. We test this assertion across ten programming languages

using data from open source software projects.

3.2 Related Work

Various studies of productivity in software development have been reported, including

[19, 22, 23, 28].

Empirical studies of programmer productivity differ in the productivity mea-

sures used, the types and quantities of data used, the explanatory factors considered,

the goals of the study, and the conclusions reached.

27

The most common productivity metrics are lines of code per unit time [23] and

function points per unit time [19, 22, 28]. While compelling arguments are made in

the literature for both of these metrics, we use lines of code both because the assertion

we are testing was stated in terms of lines of code.

Studies of software development productivity tend to rely on observational

data collected from commercial projects. Maxwell et al. use data collected from

99 projects from 37 companies in eight European countries [23] and data gathered

from 206 projects from 26 companies in Finland [22]. Premraj et al. use an updated

version of the same data set with over 600 projects [28]. Liebchen et al. use a data

set representing more than 25,000 projects from a single company [19]. Our data

set was collected from the CVS repositories of 9,999 open source projects hosted on

SourceForge.

The data sets used in these studies were each compiled manually with some

level of subjectivity and transformation. Given this level of human involvement, the

factors they consider are at a high level of abstraction. For example, the data set

in [23] contains among its variables seven COCOMO factors, including required reli-

ability, execution time constraints, and main storage constraints, each with discrete

ordinal values between 1 and 6. Our data set contains only those features that can

be calculated from the data in a CVS repository. As such, our data is limited con-

ceptually but has the advantages of being concrete, objective, and simple to gather.

In each of the papers cited, the stated goal of the study was to identify the

major factors influencing programmer productivity. The models developed in these

studies were intended to be either predictive, explanatory, or both. Our goal is not

to construct a predictive or explanatory model. Rather, we seek only to develop a

model that sufficiently accounts for the variation in our data so that we may test the

significance of the estimated effect of programming language.

28

Project Author File Revision LOC Final
Rank Rank Rank Rank Rank Rank

C 1 1 2 2 1 1
Java 2 2 1 1 2 2
C++ 4 3 4 4 3 3
PHP 5 4 3 3 4 4
Python 7 7 5 5 5 5
Perl 3 5 9 9 6 6
JavaScript 6 6 6 8 10 7
C# 9 9 7 6 7 8
Pascal 8 10 8 7 8 9
Tcl 11 8 10 10 9 10

Table 3.1: Top ten programming languages by popularity rankings

3.3 Data Collection

The data we use in our analysis comes from the CVS repositories of open source

projects hosted on SourceForge. The tools we developed and methods we employed

in collecting the data are described in Section 2.3.

As CVS manages individual changes (called revisions) it records the author of

the change, the date and time the change happened, the number of lines that were

added to and removed from the file, and a mandatory free-form message supplied

by the author. These minimal data can be combined to produce a rich set of values

describing the environment in which the change was made.

We collected data from the CVS repositories of 9,999 projects hosted on

SourceForge. Our population for the data collection was the set of projects that met

the following criteria: 1) the project’s development stage is set as Production/Stable

or Maintenance; 2) the project is active; 3) the project uses CVS; 4) the project is

open source.

We gathered the entire history for each of the 9,999 CVS repositories and

stored the resulting data in a MySQL relational database using a tool we developed

29

called cvs2mysql (see Section 2.3.1). The resulting raw data contains records for

7,244,201 files and 26,559,460 changes to those files made by 23,838 developers.

3.3.1 Data Preparation

Of the more than 19,000 different file extensions represented in the SourceForge data-

base, we identified 107 unique programming language extensions. In order to limit

the scope of our study to the languages that are most widely used, we produced an

ordered list of the most popular programming languages represented in the database.

Popularity is defined here in terms of: 1) total number of projects using the language;

2) total number of authors writing in the language; 3) total number of files written

in the language; 4) total number of revisions to files written in the language; and

5) total number of lines written in the language. We ranked each language using

these five metrics and calculated the average ranking for each language. We then

ranked the languages by their average rankings to determine an overall ranking. We

chose to focus on the top 10 programming languages which are listed along with their

rankings in Table 3.1. These 10 languages are used in 89% of all projects, by 92% of

all authors, and account for 98% of the files, 98% of the revisions, 99% of the lines

of code in our data set. The next three most popular languages are Prolog, Lisp,

and Scheme, none of which can be easily compared to imperative and object-oriented

languages on a line by line basis given the differences in programming paradigm.

We compare annual productions per programmer per language in an effort to

limit the impact of normal variations in the amount of time individual programmers

commit to development over smaller time periods. Data collection was limited to the

time period from January 1, 2000 to December 31, 2005.

Our model of aggregating the lines written across authors, programming lan-

guages, and years assumes that every line committed to CVS by an author was written

30

Language Related Factors Per Year

For the Current Year
Months since first recorded use
Active projects using this language
Active authors using this language
Current files written in this language
Total number of lines written in this language

Aggregated Over Prior Years
Total projects having used this language
Total authors having used this language
Total files written in this language
Total number of lines written in this language

Author Related Factors Per Year
For the Current Year

Months since first contribution
Active projects with contributions
Number of programming languages used
Current files edited
Total number of lines written

Aggregated Over Prior Years
Total projects with contributions
Total number of programming languages used
Total files edited by this author
Total number of lines written by this author

Language Specific Author Related Factors Per Year

For the Current Year
Months since first contribution
Active projects with contributions
Current files edited

Aggregated Over Prior Years
Total number of lines written
Total projects with contributions
Total files edited by this author

Temporal Factor
Calendar Year

Table 3.2: Potential explanatory factors considered

31

by that author during the year in which it was committed. However, we identified

six ways in which this assumption can be violated:

• Migration – An existing CVS repository created by multiple authors and/or

over multiple years is migrated to SourceForge by a single author.

• Dead File Restoration – When a dead file is restored in CVS, the contents are

not differenced against the pre-removal version.

• Multi-Project Files – Authors may contribute the same file to multiple projects.

• Gatekeepers – Gatekeepers receive credit for all the lines they commit even if

they were not the author.

• Batch Commits – An author may work for more than a year before committing

the changes.

• Automatic Code Generation – The tools an author uses to program may auto-

matically generate lines of code which the author then commits to CVS.

While the data collected by CVS does not allow us to definitively identify all

cases that violate our assumptions, we have taken steps to exclude as many offending

cases as possible while sacrificing as few of the cases that do not violate our assump-

tions as is reasonable. To remove the migration cases, we excluded initial revisions

for all files in our data set. To remove the dead file restoration cases, we excluded all

revisions that followed a “dead” revision. After removing these, however, significant

unrealistic outliers remained in our data set. To remove these outliers, we limited our

population to those authors who had written fewer than 80,000 lines of source code in

a single year. Since we believe that those authors who wrote more than 80,000 lines

in a single year are exhibiting one of the non-population behaviors described above,

we also exclude from our analysis the projects to which they contributed.

After limiting target programming languages and removing observations

deemed to be outside our population, our target data contains records of 673,528

32

Factors Excluded Due to High Variance Inflation Factors (VIF Value)
Total authors having used the programming language in prior years (1860)
Total authors using the programming language in the current year (258)
Total projects having used the programming language in prior years (68)
Files written in the programming language in the current year (51)
Active projects using the programming language in current years (12)

Factors Excluded Due to Low Correlation with the Dependant Variable (Correlation)
Months since the first recorded use of the programming language (0.0071)
Calendar Year (0.0093)

Factors Excluded Due to Practically Insignificant Coefficients (Coefficient)
Total number of lines written in the language during the current year (0.0000)
Total number of lines written in the language during prior years (0.0001)

Factors Removed During Variable Selection Using the Cp Statistic
Total number of languages used by the author during prior years
Total number of files written in the language during prior years

Table 3.3: Explanatory factors excluded from our analysis

files, 4,198,724 revisions, and 16,197 authors. These data are aggregated across au-

thor, programming language, and year into 34,566 observations in our final data set.

3.4 Data Analysis

The goal of our data analysis is to determine whether there is evidence in the data we

have collected that programming languages affect annual programmer productivity.

Our dependant variable in this analysis is the lines of code committed to the CVS

repositories of selected SourceForge projects by an individual author in a single year.

Our independent variable is the programming language being used. We test all pair-

wise differences between the languages, adjusting our confidence intervals using the

Tukey-Kramer Honest Significant Difference for multiple comparisons.

Clearly there are factors other than programming language that affect pro-

grammer productivity. Before testing the significance of the programming language

effect, we must account for the effects of these confounding variables. We do this by

including the confounding factors in a multiple linear regression analysis along with

the independent variables so that their effects can be separated. The potential con-

founding factors we consider in this analysis are listed in Table 3.2. It is important to

note that our goal is only to separate confounding effects before testing our indepen-

33

dent variable. Our model is not intended to be predictive or explanatory. Therefore,

we do not report the coefficients or the p-values of the confounding factors.

We develop our model by first excluding the programming language and con-

sidering only the confounding factors as independent variables. We systematically

remove independent variables until we achieve the simplest model that still explains

a significant portion of the variation in our data. To this model we then add the

programming language factor and test its significance. The procedure for reducing

the model is explained below.

We begin by removing independent variables that are highly correlated. Using

correlated independent variables in a multiple regression leads to a condition known

as multicolinearity which can affect the precision of estimates in unexpected ways.

The Variance Inflation Factor (VIF) is a measure of multicolinearity. A VIF value

grater than 10 is considered large. Using multicollinearity analysis we remove five of

the independent variables. These variables along with their VIF values are listed in

Table 3.3.

We next remove independent variables that have no explanatory power. To

be useful as an independent variable in a multiple linear regression, a variable must

have a linear relationship with the dependent variable. Correlation is a measure of

linear relationship. Using the correlation between each independent variable and the

dependant variable methods we are able to remove two of the independent variables.

These variables along with their correlation coefficients are listed in Table 3.3.

Fitting a regression on the remaining variables we find that two of the vari-

ables have an estimate coefficient equal to or near zero. These coefficients are not

statistically significant, but more importantly, they are not practically significant ei-

ther, so they are removed. These variables along with their estimated coefficients are

listed in Table 3.3.

34

Finally, the last step in reducing our model is to fit regressions using all possible

subsets of the remaining variables and pick the model that best satisfies a model-

fitting criterion. The model fitting criterion we use is the Cp statistic. The Cp

statistic focuses directly on the trade-off between bias due to excluding important

independent variables and extra variance due to the inclusion of too many variables.

Using Cp selection on the remaining 16 independent variables, we find the model with

the lowest Cp statistic in which all independent variables are significant contains 14

independent variables. The two independent variables excluded from this model are

listed in Table 3.3.

Our final model contains 14 independent variables. Again, the goal of our

analysis is not to create a predictive or an explanatory model but rather to control as

much of the variation in the data as possible before testing the significance of the effect

of programming language on average annual programmer productivity. Therefore, we

do not explicitly present the independent variables included in our model to prevent

the casual reader from interpreting our model as explanatory or predictive. For the

curious reader, the independent variables included in our model can be determined

using Table 3.2 and Table 3.3. The R2 for our model is 0.80 meaning that it explains

80% of the variation in our data. All the independent variables are statistically

significant at p < 0.05. The model is significant at p < 0.0001.

3.5 Results

To test the assertion that programmer productivity is constant in terms of lines of

code per year regardless of the programming language being used, we fit a model con-

sisting of the 14 independent variables selected in Section 3.4 to adjust for variation

in programmer ability and programming language use. To this model, we add indi-

cator variables for the programming languages we are considering. By running the

analysis nine times and using a different language as the reference each time, we are

35

JavaScript Perl Tcl Python PHP Java C C++ C#

Perl 0.46
Tcl 0.60 1.00

Python 0.00 0.00 0.76
PHP 0.00 0.00 0.08 0.72
Java 0.00 0.00 0.02 0.18 1.00

C 0.00 0.00 0.00 0.01 0.53 1.00
C++ 0.00 0.00 0.00 0.00 0.01 0.07 0.59

C# 0.00 0.00 0.00 0.02 0.26 0.50 0.83 1.00
Pascal 0.00 0.00 0.00 0.00 0.10 0.26 0.60 0.99 1.00

Table 3.4: Pair-wise language comparisons

Figure 3.1: Estimated Average Productions

able to determine the estimated differences between the languages and the standard

errors for each of those estimates which we then use to test the significance of the

differences.

The null hypothesis for our tests is that there will be no difference in estimated

average annual productions per programmer for any of the languages. However, we

find evidence in the data to reject the null hypothesis for 24 of the 45 pair-wise

comparisons. The p-values for the comparisons, adjusted using the Tukey-Kramer

Honest Significant Difference for multiple comparisons are listed in Table 3.4. The

shaded cells are the comparisons for which we reject the null hypothesis with 95%

confidence or greater. To clarify the magnitudes of the differences, Figure 3.1 shows

the estimated average annual productions for each language.

Using Table 3.4 and Figure 3.1 together we can observe groupings in the lan-

guages. Python, which sits near the middle of the range of estimated annual produc-

tions, for example, follows a different paradigm from the languages on each end of the

36

range (JavaScript and Perl on the left and C, C++, C#, and Pascal on the right),

but it is not significantly different from the other languages near the middle (Tcl,

PHP, and Java). Further analysis may reveal that programming language paradigm

influences programmer productivity.

3.6 Conclusions

We find significant evidence in our data that, even after accounting for variations

in programmers and environments, programming languages are associated with sig-

nificant differences in annual programmer productivity. The reader must be careful,

however, not to infer a cause-and-effect relationship based solely on this study. Our

analysis relies on observational data gathered from SourceForge.net CVS reposito-

ries. This is a strength in that the data represent an unaltered software development

environment. However, it does limit the inferences we can make both in terms of

cause-and-effect and generalization.

Nevertheless, the results of this study suggest a number of interesting avenues

for future research. For example, there is a general progression in Figure 3.1 from

newer, higher-level interpreted languages to older, compiled languages. This progres-

sion may imply a relationship between the level of abstraction of a language and the

speed at which developers can write source code in that language. Brooks supported

the assumption of constant productivity as “reasonable in terms of the thought a

statement requires and the errors it may include.” However, it is quite possible that

today’s higher-level languages require more thought per line or allow more errors per

line than their predecessors. More research is needed to better understand the trade-

offs between the power provided by languages with higher levels of abstraction and

the cognitive load placed on their users.

We expect that this model of using large-scale, longitudinal studies of Open

Source projects to empirically test long-held assumptions in software engineering re-

37

search will become more prevalent as the tools and methods for collecting and an-

alyzing data from software repositories mature. Such studies are necessary in order

to build a more firm foundation for understanding the similarities and differences

between Open Source and other software development models.

38

Chapter 4

Conclusion

In this thesis we have argued in support of the use of data gathered from soft-

ware repositories in observational studies of software engineering. We have presented

the tools we developed to simplify the process of gathering data from the SourceForge

Research Archive [21] and from CVS repositories [5]. We have also provided examples

of how the data collected with these tools can be used in exploratory analyses as well

as in observational studies.

4.1 Contributions

The contributions made by this research to the field of Computer Science, and more

specifically to the study of Software Engineering, can be broken into three categories:

1) the contributions of the tools for use by the research community, 2) the contribu-

tions of the empirical studies which add to the knowledge of the research community,

and 3) the contributions of proposed methodology to the ongoing development of an

”experimental paradigm for the field” [2].

4.1.1 Contributions of the Tools

The tools we have presented in this thesis, cvs2mysql and SFRA+, are unique in

their design and in their functionality. Rather than developing tools that are specific

to our research, we have designed our tools to be general purpose. Each tool performs

39

a single task simply. The results of the tools can be combined as desired by the user,

but it is not necessary for users to perform all the steps of our analyses when using

our tools.

cvs2mysql takes as input a CVS repository and produces as output an SQL

import script containing all the historical data available from the repository. In addi-

tion to processing any CVS repository given the CVS root, cvs2mysql streamlines the

processing of SourceForge CVS repositories by requiring only either a single project’s

unix group name or a file containing a list of project unix group names. The struc-

ture of the schema produced by cvs2mysql is remarkably simple consisting of only

two tables. Also, a single SQL script is produced for each repository even if multi-

ple repositories are processed during a single invocation of cvs2mysql and the SQL

scripts produced for each repository are structured so that they can be imported into

a properly structured database regardless of the contents of the tables. Existing data

are not effected by importing additional cvs2mysql SQL scripts and the records in

the SQL scripts are correctly linked despite the presence of the existing data. For a

complete discussion of cvs2mysql, see Appendix B.

SFRA+ replaces the existing interface of the SourceForge Research Archive and

provides additional functionality which greatly increases the usability of this excellent

resource. In addition to removing the SQL formatting restrictions imposed by the

existing interface, SFRA+ automatically retrieves, parses, and displays the results of

queries. Beyond the querying functionality, SFRA+ has the ability to reverse engineer

the structure of the database and produce ER diagrams which are extremely helpful

in discovering relationships between the data. SFRA+ also exports query results to

SQL scripts so that they may be imported into a MySQL 5.0 database and combined

with other data sets such as those produced by cvs2mysql. For a complete discussion

of SFRA+, see Appendix A.

40

4.1.2 Contributions of the Empirical Studies

In this thesis we have presented one exploratory analysis and one observational study.

Each of these demonstrated a way in which data from software repositories can be

used.

The exploratory analysis focused on the relationship between authors and

projects in Open Source development. We found that 82.7% of projects have never

had more than three contributors in their entire existence and that 91.2% have never

had more than three contributors in a single month. We also found that 86.6% of

developers have never contributed to more than one Open Source project and that

94.2% have not contributed to more than one project in a single month.

The observational study tested the assertion made by Brooks [3] and others

[30, 34] that annual programmer productivity in terms of lines of code is constant

regardless of the programming language being used. In order to test this assertion,

we first developed a model to control the variations in our data. Our model consisted

of 14 independent variables and explained 80% of the variation in the data. Using

this model, we then tested the significance of the programming language effect. We

found that there were significant differences in the annual lines-of-code produced by

developers using different programming languages.

While the studies reported in this thesis cannot necessarily be used to infer

causality or to generalize the conclusions to a larger population, the data sets are suf-

ficiently large that our results can be used to provide compelling evidence in support

of causality and generalization.

4.1.3 Contributions of the Methodology

In this thesis we claim that the appropriate experimental paradigm for software en-

gineering research is large-scale observational studies based on data gathered from

artifacts produced by real-world software development processes rather than small

41

controlled experiments conducted in artificial environments. Our reasons for this are

two-fold. First, data gathered from existing software artifacts are more plentiful and

more easily available than data collected during controlled experiments. Second, by

using the natural by-products of the software development process, researchers can

avoid the problems associated with monitoring and observing human subjects. While

we acknowledge the drawbacks of observational studies, such as the inability to infer

causation or to generalize the results, we assert that these are outweighed by the

benefits of utilizing orders of magnitude more data and avoiding the negative effects

of observing human subjects.

4.2 Future Work

One avenue of future work indicated by our research lies in the creation of addi-

tional tools. While CVS is currently the most popular version control system used by

Open Source projects, it is not the only system in use nor is it likely to remain the

most popular forever. Other systems such as Subversion and BitKeeper are increas-

ing in popularity and are already used by some high-profile Open Source projects.

In addition, more robust systems such as SourceSafe and ClearCase are often used

by commercial development organizations. Future research that developed tools to

extract data from version control systems other than CVS as well as research into

a standardized schema that would allow data from various systems to be combined

would be of great use.

Another option for future research based on this thesis would be to extend

the empirical studies we present and to develop and test hypothesis for the questions

they raise. For example, in this thesis we have only explored the relationship between

authors and projects. Exploratory analyses of the relationships between authors

and files and between multiple authors are likely to provide additional insights into

the Open Source development community. In addition, we have raised numerous

42

questions in the course of these studies. For example, the results of the observational

study suggest that developers using higher-level languages, and especially languages

with a more multi-paradigm feature set, tend to write fewer lines of code per year on

average. This could suggest that those languages place a higher cognitive demand on

their users, or it could suggest that those languages are more specialized than their

imperative or object-oriented counter parts causing them to less generally utilized.

Finally, the bold claims we have made about the relative merits of observa-

tional studies and controlled experiments demand further scrutiny and comment from

the research community. Surveys of the techniques used by social scientists to limit

the impact of observation on human subjects and to gather measurements without

disturbing existing systems will be especially impactful.

43

44

Appendix A

Documentation for the SourceForge Research Archive Plus

A.1 Overview

The SourceForge Research Archive (SFRA) is a collaboration between the Open

Source Technology Group and the University of Notre Dame [21]. Monthly dumps

of the SourceForge.net back-end database are archived at the University of Notre

Dame and made available to academic researchers who sign a licensing agreement.

The data are stored in a PostgreSQL database with each dump in a separate schema.

The schemas contain between 73 and 139 tables. Access to the database is provided

through a password protected web interface shown in Figure A.1.

The monthly dumps of the SourceForge.net database are an excellent source

of SourceForge project data which allows researchers to avoid the time commitments

and potential data corruption involved in gathering these data indirectly through the

SourceForge.net website. However, the following limitations we encountered in using

the existing SFRA interface render the system, if not unusable, at least less than

desirable.

• Unconventional and seemingly unnecessary formatting requirements have been

placed upon the user. For example, queries must be broken into three parts

and entered into three separate text boxes on a web form. These text boxes

are labeled Select, From, and Where; each must be filled with the content of

the corresponding clause of the query excluding the key word from the label

45

Figure A.1: The SourceForge Research Archive Web Interface

which is automatically added to the clause by the processing Perl script. Also,

all table names used in the query must be prefixed with their schema name

causing the user to enter the same schema name potentially many times.

• The complexity of the queries allowed by the web interface appears to be arbi-

trarily constrained to those with a select clause, a from clause, and a where

clause. This constraint would preclude queries using group by, having, order

by, and limit clauses, for example. By further testing the web interface and

hypothesizing the behavior of the underlying Perl script, we determined that

these more powerful queries could be run if the additional clauses were appended

to the end of a valid where clause.

• Results are returned in delimited text files or in XML formatted text files. For

the delimited files, no effort is made to replace the delimiters within the result

fields and no header line is included, leading to difficulties in interpreting the

46

results. The XML files are bloated, often to several times the size of the result

set, by the repeated inclusion of the field names for each record in the results.

• Very limited documentation of the structures of the various schemas is provided.

Despite the fact that the schema evolve, either slightly or significantly, between

each monthly dump, only a single Entity-Relationship (ER) diagram is provided.

This ER diagram is reported to represent the January, 2003 schema, however

the ER diagram lists only 69 tables while the schema contains 139.

Given the difficulties we encountered in using the existing interface, we devel-

oped our own tool to streamline the process of understanding the structure of the

database, querying the necessary tables, and analyzing the results of those queries.

We have named our tool the SourceForge Research Archive Plus (SFRA+).

A.2 SourceForge Research Archive Plus

The SourceForge Research Archive Plus (SFRA+) is a Windows based graphical desk-

top application developed using Borland Delphi 5 that automates and extends the

SFRA web interface. SFRA+ allows a user to interact with a rich SQL editor while au-

tomatically interfacing with the SFRA and separating the user from the frustrations

of its interface. SFRA+ also helps the user to better understand the data avail-

able in the SFRA by automatically reconstructing the structure of the database and

the relationships between the tables and displaying that information in an accessible

graphical form.

The main window of SFRA+ is shown in Figure A.2. There are five main

regions in this window. Starting from the top of the window, they are the main menu,

the schema tool bar, the SQL editor, the result grid, and the status bar. We discuss

the last four regions, which we call the query interface, together before presenting the

functions available through the menus.

47

Figure A.2: The SFRA+ Main Window

A.2.1 The Query Interface

The schema tool bar is located at the top of the query interface. From the drop-down

menu, the user selects the default schema against which queries should be run. The

toggle button to the right indicates whether the default schema should be prepended

to all unprefixed table names when a query is run. Note that the default schema

is only added to tables that do not have an explicit schema name provided by the

user. This prevents the user from having to add the schema to tables from the default

48

schema, but it does not preclude the user joining tables from separate schemas by

including the other schema name in the query.

Below the schema tool bar, the SQL editor provides a large syntax-highlighting

text area where the user can enter any valid PostgreSQL select statement formatted

as the user prefers. The only formatting limitation imposed by SFRA+ is that SQL

statements may not contain blank lines. Blank lines are used by SFRA+ to indicate

separation between multiple SQL statements. This allows the user to simultaneously

view and edit multiple statements in the editor. The contents of the editor are

maintained between invocations of the program so that the user will not lose their

work by inadvertently closing the program. The contents of the editor may also be

saved to or loaded from text files with a .sql extension.

When a query is run using SFRA+, the current statement in the SQL editor

(the one in which the caret1 is located) is parsed, prepared, formatted, and submitted

to the SFRA web form. The statement preparation includes adding SQL commands

to replace the delimiter characters in the text fields so that the result set can be

automatically parsed.

As queries are executed, progress messages are displayed in the status bar.

These messages indicate the success or failure of each step from statement parsing to

result retrieval. The status bar also displays the total number of records retrieved and

the total number displayed when a query is successfully completed. These numbers

differ for large result sets. While all records are retrieved from the SFRA regardless

of the size of the result set, a maximum of 4098 records are displayed in the result

grid in order to improve performance.

After the results of a successful query are retrieved from the SFRA web in-

terface, they are displayed in the result grid. The names of the individual fields are

placed in the header row, and the row widths and column heights are adjusted so

1What we refer to here is the flashing vertical line in the editor that indicates the insertion point
for the next typed character. This is also often referred to as a cursor.

49

Figure A.3: The SFRA+ File Menu

that all the field values are visible. The rows and columns can also be resized and

reordered manually if necessary. In addition, field values may be copied or edited.

A.2.2 The Main Menu Functions

The main menu consists of four menus: 1) the File menu, 2) the Edit menu, 3) the

Query menu, and 4) the Tools menu. The Edit menu contains only an Undo menu

item and a Redo menu item which affect the SQL editor. We do not expect that these

functions require further explanation. We will explain the functions provided by the

other three menus in turn.

The File Menu

The File menu shown in Figure A.3 provides the functions that allow the user to

manage SFRA+ related files on their local machine. There are six items in the File

menu grouped into four functional units.

The first item in the File menu raises the login window shown in Figure A.4

which allows the user to enter their SFRA authentication tokens. This login window is

also displayed the first time the program is invoked. Academic researchers can obtain

50

Figure A.4: The SFRA+ Login Window

access through the University of Notre Dame group. Without valid credentials users

will not be able to access the SFRA or the SFRA+. By checking the “Remember

my password” check box, users can avoid having to manually authenticate each time

they access SFRA+.

The second and third items in the File menu allow the user to save and load

the contents of the SQL editor. The SQL statements are saved in a plain text file with

a .sql extension. Any valid text file with this extension may be loaded regardless of

its contents.

The fourth item in the File menu allows the user to load an existing result

file into the result grid. Result files are are colon delimited text files with a .dat

extension. A new result file is created by SFRA+ each time a query is successfully

executed. These result files are stored in the application directory and are named

results.dat. To avoid the long delays associated with running complex queries

or retrieving large result sets, users may find it convenient to archive certain result

sets and later load them for further analysis without reexecuting the queries. It is

51

important to note that result sets loaded using this menu item will not display field

names in the header row since this information is not returned by the SFRA in the

result files. There is a similar function in the Query menu that does allow result sets

to be loaded with header information which will be explained in Section A.2.2

The fifth and sixth menu items in the File menu allow the user to export

the result set to forms that allow further analysis of the data. SFRA+ can export

results sets into Microsoft Excel workbooks or into MySQL import scripts. When

exporting to Excel, the field names are written as the first row of the worksheet.

Note that because of an internal limit in Excel, result sets with more than 65,536

records or more than 256 fields may not be exported to Excel. When exporting

to MySQL, SFRA+ generates an import script that will create a table with the

appropriate column definitions for the current result set, adds an insert statement

for each record in the result set, and includes any post-processing commands such as

constraint or index creation statements. The user is prompted to supply a name for

the table that will hold the result set. The user is also given the opportunity to view

and edit the table creation and post-processing statements before they are written to

the import script.

The Query Menu

The Query menu shown in Figure A.5 provides the query functions. These functions

involve the parsing and formatting of queries to prepare them for the SFRA web

interface as well as the retrieval and display of results. There are three items in the

Query menu.

The first item in the Query menu causes the current query to be prepared and

formatted but not submitted to the SFRA. Instead the formatted query is displayed

to the user in a three line output. Each line contains the exact text that would be

submitted to the SFRA web form if the query were run. This functionality can help

52

Figure A.5: The SFRA+ Query Menu

the user understand what SFRA+ is doing as it parses and modifies a query which

can be particularly useful if unexpected results are being returned.

The second item in the Query menu is similar to the “Load Results from File...”

item of the File menu except that it allows the user to identify a query that should be

parsed to determine the field names and field types for the result set before loading it

from the file. Ideally, the query used to load the result set would be the same query

used to retrieve it. However, this function may be used to re-label a result set or to

reduce or increase the number of columns in a result set. The number of fields and

the names of the fields displayed in the result grid match those of the query being

processed regardless of the number of fields in the result file. If the number of fields

in the query (n) is less than the number of fields in the result file (m), then only the

first n fields of the result set are displayed. If the number of fields in the query is more

than the number of fields in the result file, then the last n−m fields are displayed in

the grid but are empty for all records.

The third item in the Query menu provides the main functionality of SFRA+

by parsing the current query, submitting the prepared and formatted query to SFRA

web interface, retrieving the result set, and displaying the results in the grid. This

functionality is explained in detail in Section A.2.1

53

Figure A.6: The SFRA+ Tools Menu

The Tools Menu

The Tools menu shown in Figure A.6 provides the functions that aid the user in

understanding the available data. There are four items in the Tools menu.

The first item in the Tools menu retrieves data from the SFRA which is used to

reverse engineer the structure of the SFRA database. The SFRA data are stored in a

PostgreSQL database. PostgreSQL databases store the metadata used by SFRA+ in

the pg namespace, pg class, pg constraint, pg attribute, and pg type tables. To

improve performance and limit unnecessary transfers between the SFRA and client

machines, SFRA+ retrieves these data and stores them in an XML file on the local

machine so they can be loaded each time the program is run. These data are used by

SFRA+ to determine field names and types for query results, to display table details,

to reconstruct foreign key relationships, and to draw schema diagrams.

The second item in the Tools menu uses the data retrieved by the first item

to display table details for the current default schema. The names of each table and

the fields within each table are displayed in a collapsible tree structure providing the

user quick reference when writing queries. This view is not intended to show the

relationships between tables but instead corresponds directly to the schema details

available through the SFRA web site.

The third item in the Tools menu provides the functionality to create ER

diagrams for the schemas of the SFRA database automatically from the data in the

54

locally cached XML file. The ER diagrams can be generated for multiple schemas

at once, for a complete single schema, or for certain tables within a schema. If one

or more complete schemas are selected, all tables and relationships are included in

the diagram. If a partial ER diagram is chosen, the user may select the tables from

the schema to be included in the diagram. In addition, for a partial ER diagram,

the user may choose to include tables that are parents in a foreign key relationship

with the tables selected, tables that are children in a foreign key relationship with the

table selected, both, or neither. The complete ER diagrams are useful for observing

changes in the schemas over time. The partial ER diagrams are helpful when trying to

identify data related to a particular table. For all but one of the schemas in the SFRA

database, the foreign key constraints are not enforced in the database. This prevents

SFRA+ from directly reconstructing these relationships from the metadata stored in

the database. As a workaround, we have developed a set of heuristics which guess

foreign key constraints based on field name patterns, table names, and data types.

Figure A.7 shows an example of a partial ER diagram generated using SFRA+.

The fourth item in the Tools menu exports the complete list of foreign key

constraints detected for each schema in the locally cached XML file. A separate file is

created for each schema. Each foreign key relationship is written on a single line with

four tab delimited values: 1) the child table, 2) the foreign key field, 3) the parent

table, and 4) the primary key field. These files are superior to the ER diagrams for

quickly determining all the foreign key relationships for given table. They are also

convenient for manually validating the heuristics being used to determine foreign key

relationships.

55

Figure A.7: Partial ER Diagram Showing the Users Table and Foreign Key Children

56

Appendix B

Documentation for cvs2mysql

B.1 Overview

The Concurrent Versioning System (CVS) is among the most widely used version

management systems. Among the Open Source projects hosted on SourceForge.net

92.5% (155,293 projects) use CVS while only 4.4% (7432 projects) use its nearest

competitor, Subversion. Extensive details about the inner workings of CVS can be

found in the user’s manual, commonly referred to as “The Cederqvist” in honor of

the author of the program and the documentation [5].

As CVS archives versions of the files it manages, it maintains a history of

changes to those files. These file histories may be retrieved from the CVS server

in Revision Control System (RCS) [31] log format. These log files are useful for

understanding the changes that have been made to a single file over its lifetime,

but they are insufficient for more general project level analyses. In order to fully

exploit the relationships between the data stored in the history logs of the various

files managed by a CVS repository, it is necessary to transfer those data to a relational

database. To facilitate this data transfer, we developed cvs2mysql.

B.2 cvs2mysql

cvs2mysql is a cross-platform application developed in Python that takes as input a

CVS repository and produces an SQL script for importing the data into a MySQL

57

database. We have extensively validated cvs2mysql by running it against more than

16,000 CVS repositories. In processing these repositories, we ran cvs2mysql in Win-

dows XP, Cygwin, Red Hat Enterprise Linux, and Mac OSX environments to assure

that the behavior was consistent across all these systems.

cvs2mysql comprises six separate script files. The main script is

cvs2mysql.py. This script manages the user input, responds to command line op-

tions, prints a help message when necessary, and prepares the input for the other

scripts. Three of the scripts, project.py, file.py, and revision.py, define classes

which correspond to the three logical units encountered while processing a CVS log.

The sqlscript.py script defines the class that generates the SQL scripts from the

gathered data. The file patterns.py holds the regular expression patterns used in

parsing the log files.

In order to use cvs2mysql, a Python distribution and a CVS client must be

installed on the local machine. The python scripts include the necessary header to

make them executable from the command line on typical system configurations under

Windows, Cygwin, Linux and Mac OSX. They may also be run from within a Python

interpreter if desired. The invocations of CVS made by cvs2mysql assume that the

CVS client binary is in the executable path. If this is not the case, the path to cvs

variable in the patterns.py script must be changed to indicate the correct path.

Note that because of the inner workings of the Python os.popen command, this path

may not contain any spaces on Windows systems.

B.2.1 Invoking cvs2mysql

As a command line application, cvs2mysql receives input from the user in the form

of command line flags and command line arguments. In addition to the standard -h

and --help flags which cause cvs2mysql to print usage instructions, there are three

58

types of flags recognized by cvs2mysql: input options, output location, and processing

options. The first two are mandatory while the third is optional.

Input Options

We designed cvs2mysql to process any CVS repository given the CVS root. In

addition, because our primary use for cvs2mysql was to gather data from the CVS

repositories of SourceForge projects, we extended cvs2mysql to process SourceForge

project repositories given only the project’s Unix name from SourceForge.net and

to process multiple SourceForge projects given a text file with a single project Unix

name per line. These input options are controlled by command line flags which can

be specified in either short or long forms following typical conventions. The input

options are mutually exclusive, meaning that exactly one of the input options, along

with a valid argument, must be specified for each invocation of cvs2mysql.

• -r REPOSITORY or --repository=REPOSITORY to process a single repository

• -p PROJECT NAME or --project=PROJECT NAME to process a single SourceForge

project

• -f FILE NAME or --file=FILE NAME to process multiple SourceForge projects

from an input file

The second option is handled by the cvs2mysql.py script as an extension of the first

option and the third option is handled as an extension of the second. That is, when

processing a SourceForge project, the CVS root for the SourceForge CVS repository

is generated programmatically from the project name and passed to the function that

handles the -r. Similarly, when a file of SourceForge project names is processed, each

is read from the file and passed to the function that handles the -p. The function

that receives the CVS root creates a Project object for the repository and calls the

process function of that object.

59

Output Location

As it processes a CVS repository, cvs2mysql creates both directories and files includ-

ing a local copy of the contents of the repository (called a sandbox), a log file, and

an SQL script. The user must specify the location in which these should be created

using the -o or --output command line flags giving as an argument a directory using

either an absolute or a relative path.

Processing Options

There are two types of processing options recognized by cvs2mysql. The first type

alters the steps performed when processing a CVS repository. There are five main

steps cvs2mysql performs when processing a CVS repository which are explained in

detail below. Four of these steps may be skipped using the following command line

flags. Note, however, that there are certain additional requirements involved with

skipping the first or second step.

• --no-checkout — This option prevents cvs2mysql from retrieving a local copy

of the repository. If this option is used, cvs2mysql verifies that a source di-

rectory for the repository is in the correct location inside the output directory.

cvs2mysql aborts with an error if this option is used and no source directory is

provided.

• --no-log — This option prevents cvs2mysql from retrieving a log file for the

repository. If this option is used, cvs2mysql verifies that a log file for the

repository is in the correct location inside the output directory. cvs2mysql

aborts with an error if this option is used and no log file is provided.

• --no-script — This option prevents cvs2mysql from generating an SQL

script.

60

• --keep-files — This option prevents cvs2mysql from deleting the sandbox

and log file used during processing.

All combinations of these options are allowed by cvs2mysql; however, some

combinations, such as the one that includes all four options, are less useful than

others.

The second type of processing option allows the user to provide a value for

the project name cvs2mysql uses to tag all the file records gathered from a CVS

repository. By default, when processing a SourceForge repository, cvs2mysql tags

all the files with the project’s SourceForge Unix name. When processing any other

CVS repository, the files are not tagged. Using the -t or --tag option, the user can

specify a tag that is be used in place of these default values.

B.2.2 CVS Repository Processing

As mentioned above, cvs2mysql performs five main steps when processing a CVS

repository: 1) retrieve a local copy of the repository from the server, 2) retrieve a log

of the repository from the server, 3) parse the log file and extract the relevant data,

4) generate an SQL script for the repository, and 5) delete all the files created during

processing except for the SQL script.

Retrieving the Repository Contents

A local copy of the CVS repository contents is retrieved from the server using a CVS

checkout command. The checkout command is run with the -r 1.1 option which

causes revision 1.1 of each of the files to be returned. CVS revision numbers are

defined as follows: “A revision number always has even number of period-separated

decimal integers. By default revision 1.1 is the first revision of a file.” [5] While it

is possible to explicitly change the initial revision number or any subsequent revision

number, 1.1 is the most common initial revision number. Files for which there is no

61

revision 1.1 or for which revision 1.1 is not the initial revision are handled separately

during log parsing.

We retrieve the initial revision of each file to simplify the process of determining

the initial size of each file. While CVS does track the lines added to and removed

from a file for all subsequent revisions, it does not record either the initial size of the

file when it was added to the repository or the number of lines added to the file by

the initial revision. While others have tried calculating the initial file size from the

current size of the file by adding to the current size all the lines removed by previous

revisions and subtracting all the lines added by previous revisions, we have found

that this method is computationally expensive and likely to be inaccurate when files

have been branched or removed from the repository at some point in the past.

If the CVS client fails to retrieve a complete local copy of the repository,

cvs2mysql exits with an error and print a message alerting the user that processing for

the repository has failed. Unless the --keep-files option has been used, cvs2mysql

deletes any files that were created before exiting.

Retrieving the History Log

Our goal when retrieving the history log is to obtain a single log file with the RCS

logs for every file in the repository. This is advantageous both because it simplifies

the parsing of the logs and because it reduces the traffic between the client and

the server. However, some repositories are so large or have such long histories that

communications time out before the server can prepare and return the complete log

file.

To allow the processing of large repositories and still retrieve only a single log

file, cvs2mysql has a recursive error recovery mechanism. A CVS log command is

then run on the top level directory of the repository. If the command fails, a cvs

log command is run for each directory and file within the top level directory. This

62

recursive processing continues until either the entire repository has been logged or

logging fails for an individual file.

Logging begins with an empty log file on the local machine. The results of each

log command are redirected to a temporary log file. If the command succeeds, the

contents of the temporary log file are appended to the main log file. If the command

fails, the temporary log file is overwritten by the subsequent log command. When

the entire directory has been logged the main log file contains the entire log history

for every file that has ever existed in the repository.

Parsing the History Log

As noted in [11], there is no published grammar for RCS logs. This makes parsing

them particularly difficult. However, some discussion of RCS logs is provided in [24].

After reviewing this material, comparing the source code for both CVSAnalY [29] and

softChange [11] (two other applications that parse CVS logs), performing more than

a dozen detailed manual verifications of CVS logs parsed by cvs2mysql, and running

cvs2mysql on more than 16,000 CVS repositories without errors, we are confident in

the accuracy of our parsing algorithm.

An example CVS log is shown in Figure B.1. Clearly this simple log does

not illustrate all the special cases that can occur. This example is meant only to show

the common case to identify the data that can be collected from CVS logs. The log

shows the complete history for one file from the Claros In Touch project hosted on

SourceForge. This file, named .classpath, has two revisions. Both revisions were

made by the same author. The first revision was made when the file was added to the

repository and the second was made when it was removed from the repository. Neither

revision has a descriptive message beyond the automatically generated “*** empty

log message ***” and the file was never branched or tagged. All things considered,

63

Figure B.1: An Example of a CVS Log for a Single File

it is quite a boring log, but it nicely demonstrates the common case without taking

up more space than is necessary.

The first line of the log provides the absolute path of the file on the CVS

server. Notice that the path includes a directory named Attic. The Attic is a

special directory within CVS repositories where removed files are kept. When a file is

“removed” from a CVS repository using the CVS remove command, it is not actually

deleted. Instead, it is move to the Attic. All of the history for the file is maintained

and the file can be recovered either by using an explicit checkout or update command

with the file name or by adding a new file to the repository in the same location with

the same name as the original file.

The second line of the log gives the relative path of the file within a sandbox.

This is the path to the file beginning in the directory where the CVS checkout

command was run.

The third line of the log lists the most recent revision number. This revision

is referred to as the head of the file and is the revision that is returned on a checkout

command if no -r option is used.

64

The fourth line of the log lists the default branch for the file. An empty branch

value indicates the file is committed on the main branch. If a default branch has been

set for the file, this value has a string similar to a revision number but with an odd

number of period-separated decimal integers for each branch. Branch strings are the

common prefix of all the revision numbers on the branch.

The fifth and sixth lines of the log are used to control access to the file. The

locks line lists revisions that have been locked along with the user name that locked

the revision. Locks prevent other users from making changes to the file on the locked

revision’s branch. The strict directive at the end of the line guarantees that locks

are strictly enforced. The access list line can be used to allow only certain users

to edit the file by explicitly listing their user names. An empty access list allows

any user with access to the repository to edit the file.

The seventh line of the log controls the process used when versioning the

file. CVS automatically updates certain header comments in text files using keyword

substitutions and standardizes line endings as is manages revisions. There are six

available modes [5]. Of these, the most interesting for our purposes is the -kb mode

which prevents CVS from replacing keyword values or standardizing line breaks. This

mode is used to prevent CVS from corrupting binary files which may contain bit

patterns that appear to be keywords or non-standard line endings when interpreted

as ASCII text.

The eighth line of the log lists the total number of revisions that have been

made to the file and the number of revisions recorded in the current log. These

numbers may differ if the data-range option is used when running the CVS log

command. This is never the case when using cvs2mysql.

The ninth line of the log indicates the beginning of the description of the file

provided by the user when adding the file to the CVS repository. The description is

free-form text and may span multiple lines. The end of the description is marked by

65

the beginning of the revisions sections indicated by the pattern of ‘-’ characters on

line ten.

Beginning on line ten of the log, the revisions section contains the details of

each revision of the file. Individual revision logs begin after the pattern observed on

line ten of the log and end either at the beginning of the next revision log or at the

end-of-file-log pattern of ‘=’ characters seen on the last line of Figure B.1.

The first line of a revision log lists the revision number. As discussed above,

this number is always an even number of period-separated decimal integers. CVS

automatically increments the last decimal integer in the revision number when ver-

sioning files. Revision numbers may be set manually by the user, but they must still

follow the same pattern. Revisions with the same prefix are considered to be on the

same branch by CVS.

The second line of a revision log contains the date and time of the revision, the

author of the revision, the state of the file after the revision, and the number of lines

added to and deleted from the file by the revision. The format of the date and time

is controlled by the CVS repository configuration files. The default is UTC format.

The author value is the user name of the CVS user that committed the changes to the

repository. The range of allowed state values is also controlled by the CVS repository

configuration as discussed in [5]. For our purposes, the most interesting state is dead

which indicates that the file was removed from the repository by the revision. The

lines added and deleted values are always integer values.

The third line of a revision log begins the free-form message provided by the

user that committed the changes. The message continues until the end of the revision

log. Unlike the file description, the revision message is required by CVS and occupies

at least one line in the log. The revision message may cover multiple lines.

66

Figure B.2: Database Schema Used by cvs2mysql

Writing the SQL Script

The database schema we developed to store the data extracted from CVS logs is

shown in Figure B.2. The structure of our schema is remarkably simpler than

those produced by other tools [11, 29], yet it provides the same data. Our schema is

designed to be easy to query and easy to join to other data sources such as [21] and

[14].

To avoid redundancy, only those data from the CVS log that cannot be recalcu-

lated are written to the SQL script by cvs2mysql. For example, RCS file, Working

file, and state from the most recent revision represent a set from which one value

can be calculated given the other two. In this case, we store Working file (as

file name and path in the cvs file table) and state (as state in the cvs revision

table) because these values are needed more often and are less amenable to recalcu-

lation. Other values from the CVS log that have been excluded to avoid redundancy

are head, total revisions, and selected revisions.

In addition to redundant data, there are data in the CVS log that we discard

because they are only partially available. For example, branch is time sensitive.

It represents the default branch for a file at the time the CVS log command was

67

run. However, historical data showing the changes in this value are not maintained

by CVS. Thus, the data is incomplete and any analyses involving this value would

be highly dependant on the point in time when cvs2mysql was used to process the

repository. Other values from the CVS log that have been excluded due to partial

availability are locks and access list.

All values not excluded due to redundancy or partial availability are included

in the schema shown in Figure B.2.

The file specific data, which are Working file (which is broken into a file

name and a relative path with in the repository), keyword substitution (which is

encoded as a binary value indicating whether the file is binary), and the description,

are stored in the cvs file table. In addition, the cvs file table has a column named

project unix group name which can be used to separate files from different projects

when multiple SQL scripts have been imported into the same database. If the -t or

--tag options were used when processing the repository, this field contains the user-

specified flag. If these options were not used, for SourceForge projects processed using

cvs2mysql this value is the “Project UNIX name” shown on the project’s SourceForge

web page. Using this value, the cvs file table can be joined to tables from [21] and

[14] as well as any other data source using SourceForge data which has tables indexed

by a project’s unix name.

The revision specific data, which are revision, date, author, state, lines

(separated into lines added and lines removed), and the log message, are stored in

the cvs revision table. The cvs revision table also has a file id field which is a

foreign key to the cvs file table. Also, for SourceForge projects, the author field is

the SourceForge user’s “Login Name” shown on their Developer Profile. This value

can also be used to join to tables in [21] and [14].

The SQL script produced by cvs2mysql when processing a CVS repository

contains only insert statements. We have separated the table creation from the

68

table population to simplify the process of importing data from multiple repositories

into the same database. We have included functions in the sqlscript.py to produce

the table creation script and an index creation script that creates the most commonly

needed indices for the tables.

By taking advantage of the auto-increment primary keys in MySQL, the SQL

scripts produced by cvs2mysql can be used to import their data into a properly

structured database regardless of the contents of the cvs file and cvs revision

tables prior to the insertion. File records are assigned new file id values and revi-

sion records are linked to the correct file record. The only caution when importing

data from multiple repositories is that if scripts representing distinct repositories have

identical project unix group name values, this field is no longer effective in separat-

ing the files from the two repositories. If this is a concern, the -t or -tag options

should be used to explicitly tag the files with differentiable project unix group name

values.

Deleting Files

To make cvs2mysql truly cross-platform compatible, it was necessary to avoid all

system specific API calls. This required us to use the shutil.rmtree function to

remove the temporary files rather than using faster system-specific functions. The

function recursively iterates through the directories removing the contents of the

directory before removing the directory itself. Removal of a directory fails if the

directory is not empty or if rmtree is denied access to a file or directory it is trying to

delete. In such cases, the temporary files may be removed manually once cvs2mysql

has finished processing.

69

70

References

[1] Victor R. Basili. The role of experimentation in software engineering: Past,

current, and future. In Proceedings of the 18th International Conference on

Software Engineering, pages 442–449, March 25-29, 1996 1996.

[2] Victor R. Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through

families of experiments. IEEE Transactions on Software Engineering, 25(4):456–

473, July/August 1999.

[3] Fredrick P. Brooks. The Mythical Man-Month: Essays on Software Engineering.

Addison Wesley, Boston, MA, 1995.

[4] Ruven E. Brooks. Studying programmer behavior experimentally: The problems

of proper methodology. Communications of the ACM, 23(4):207–213, April 1980.

[5] Per Cederqvist. Version management with cvs. http://ximbiot.com/cvs/manual,

2007.

[6] Jonathan Cook, Lawrence Votta, and Alexander Wolf. Cost-effective analysis of

in-place software processes. IEEE Transactions on Software Engineering, 24(8):

650–663, August 1998.

[7] Martha E. Crosby and Jan Stelovsky. How do we read algorithms? a case study.

IEEE Computer, 23(1):24–35, January 1990.

[8] Stephan Diehl, Ahmed E. Hassan, and Richard C. Holt. Report on msr 2005:

international workshop on mining software repositories. SIGSOFT Softw. Eng.

Notes, 30(5):1–3, 2005. ISSN 0163-5948. doi: http://doi.acm.org/10.1145/

1095430.1095433.

[9] Stephan Diehl, Harald Gall, Martin Pinzger, and Ahmed E. Hassan. MSR 2006:

the 3rd international workshop on mining software repositories. In ICSE ’06:

Proceeding of the 28th international conference on Software engineering, pages

1021–1021, New York, NY, USA, 2006. ACM Press.

71

[10] J. J. Dolado, M. Harman, M. C. Otero, and L. Hu. An empirical investiga-

tion of the influence of a type of side effects on program comprehension. IEEE

Transactions on Software Engineering, 29(7):665–670, July 2000.

[11] Daniel German. Mining cvs repositories, the softchange experience. In Pro-

ceedings of the First International Workshop on Mining Software Repositories

(MSR’04), pages 17–21, May 25, 2004 .

[12] Ahmed E. Hassan, Richard C. Holt, and Audris Mockus. Report on msr 2004:

International workshop on mining software repositories. SIGSOFT Softw. Eng.

Notes, 30(1):4, 2005. ISSN 0163-5948. doi: http://doi.acm.org/10.1145/1039174.

1039188.

[13] John D. Holden. Hawthorne effects and research into professional practice.

Journal of Evaluation in Clinical Practice, 7(1):65–70, 2001. doi: 10.1046/j.

1365-2753.2001.00280.x. URL http://www.blackwell-synergy.com/doi/abs/

10.1046/j.1365-2753.2001.00280.x.

[14] James Howison, Megan Conklin, and Kevin Crowston. Ossmole: A collabora-

tive repository for floss research data and analyses. In Proceedings of the First

International Conference on Open Source Software, July 11–15, 2005 .

[15] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling. Wiley-

Interscience, New York, NY, April 1991.

[16] Magne Jorgensen. An empirical study of software maintenance tasks. Journal of

Software Maintenance: Research and Practice, 7(1):27–48, Jan.-Feb 1995.

[17] Stefan Koch and Georg Schneider. Results from software engineering research

into open source development projects using public data. Diskussionspapiere zum

Ttigkeitsfeld Informationsverarbeitung und Informationswirtschaft, 22, 2000.

[18] Timothy Lethbridge, Susan Elliott Sim, and Janice Singer. Studying software en-

gineers: Data collection techniques for software field studies. Empirical Software

Engineering, 10(3):311–341, July 2005.

[19] Gernot Armin Liebchen and Martin Shepperd. Software productivity analysis

of a large data set and issues of confidentiality and data quality. In Proceedings

of the 11th IEEE International Software Metrics Symposium (METRICS 2005),

2005.

72

http://www.blackwell-synergy.com/doi/abs/10.1046/j.1365-2753.2001.00280.x
http://www.blackwell-synergy.com/doi/abs/10.1046/j.1365-2753.2001.00280.x

[20] R. Murray Linday and A. S. C. Ehrenberg. The design of replicated studies. The

American Statistician, 47(3):217–228, August 1993.

[21] Greg Madey. Sourceforge research data archive. http://www.nd.edu/˜

oss/ Data/ data.html, 2005.

[22] Katrina D. Maxwell and Pekka Forselius. Benchmarking software development

productivity. IEEE Software, pages 80–88, January 2000.

[23] Katrina D. Maxwell, Luk Van Wassenhove, and Soumitra Dutta. Software de-

velopment productivity of european space, military, and industrial applications.

IEEE Transactions on Software Engineering, 22(10):706–718, October 1996.

[24] Brian O’Donavan. RCS Handbook. 1992.

[25] Rachel Or-Bach and Ilana Lavy. Cognitive activities of abstraction in object

orientation: An empirical study. ACM SIGCSE Bulletin, 36(2):82–86, June

2004.

[26] Lutz Prechelt. An empirical comparison of seven programming languages. IEEE

Computer, 33(10):23–29, October 2000.

[27] Lutz Prechelt, Michael Philippsen, and Walter Tichy. Two controlled experi-

ments assessing the usefulness of design pattern documentation in program main-

tenance. IEEE Transactions on Software Engineering, 28(6):595–606, June 2002.

[28] Rahul Premraj, Martin Shepperd, Barbara Kitchenham, and Pekka Forselius.

An empirical analysis of software productivity over time. In Proceedings of the

11th IEEE International Software Metrics Symposium (METRICS 2005), 2005.

[29] Gregorio Robles, Stefan Koch, and Jesus Gonzalez-Barahona. Remote analysis

and measurement of libre software systems by means of the cvsanaly tool. In

Proceedings of the Second ICSE Workshop on Remote Analysis and Measurement

of Software Systems, May 24, 2004 .

[30] W. M. Taliaffero. Modularity. the key to system growth potential. IEEE Soft-

ware, 1(3):245–257, July 1971.

[31] Walter F. Tichy. RCS — a system for version control. Software — Practice and

Experience, 15(7):637–654, 1985. URL citeseer.ist.psu.edu/tichy85rcs.

html.

73

citeseer.ist.psu.edu/tichy85rcs.html
citeseer.ist.psu.edu/tichy85rcs.html

[32] James Tomayko. A historian’s view of software engineering. In Proceedings

of the 13th Conference on Software Engineering Education and Training, pages

103–110, March 6-8, 2000 .

[33] Claes Wholin, Per Runeson, Martin Host, Magnus Ohlsson, Bjorn Regnell, and

Anders Wesslen. Experimentation in Software Engineering: An Introduction.

Kluwer Academic Publishers, Boston, MA, 2000. ISBN 0-7923-8682-5.

[34] R. W. Wolverton. The cost of developing large-scale software. IEEE Transactions

on Computers, C-23(6):615–636, June 1974.

[35] Marvin Zelkowitz and Dolores Wallace. Experimental models for validating tech-

nology, May 1998.

74

	Observational Studies of Software Engineering Using Data from Software Repositories
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Empiricism in Software Engineering Research
	Thesis Statement
	Thesis Layout

	A Comprehensive Evaluation of Production Phase SourceForge Projects
	Introduction
	Related Work
	Data Collection
	CVS Data Collection
	SFRA Data Collection
	Data Collection Summary

	Applications of Collected Data
	The SourceForge Community
	Analysis of Authors Per Project
	Analysis of Projects Per Author

	Conclusions

	Do Programming Languages Affect Productivity?
	Introduction
	Related Work
	Data Collection
	Data Preparation

	Data Analysis
	Results
	Conclusions

	Conclusion
	Contributions
	Contributions of the Tools
	Contributions of the Empirical Studies
	Contributions of the Methodology

	Future Work

	Documentation for the SourceForge Research Archive Plus
	Overview
	SourceForge Research Archive Plus
	The Query Interface
	The Main Menu Functions

	Documentation for cvs2mysql
	Overview
	cvs2mysql
	Invoking cvs2mysql
	CVS Repository Processing

	References

