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Abstract 

Two-point distribution functions are used here as to introduce “Microstructure Sensitive Design” 

in two-phase composites.  Statistical distribution functions are commonly used for the 

representation of microstructures and also for homogenization of materials properties. The use of 

two-point statistics allows the composite designer to include the morphology and distribution in 

addition to the properties of the individual phases and components.  Statistical continuum 

mechanics is used to make a direct link between the microstructure and properties (elastic and 

plastic) in terms of these two-point statistical functions.  An empirical form of the two-point 

statistical function is used which allows the construction of a composite Hull.  Two different 

composites (isotropic and anisotropic) are considered and the effect of anisotropy for the 

prediction of the elastic properties is discussed. 
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Nomenclature 

pij: Two-point probability function 

cij, nij : Emprical coefficients used in Corson’s probability equation 

r: Vecotor connected each two points in the microstructure 

c0, 0
! : Reference values  

A: Degree of anisotropy defined for the microstructure 

cijkl: Elastic constants 

Cijkl: Effective elastic constant (Components) 

C: Effective elastic constant (Matrix form) 

:,
ijij

!"  Stress and strain 

h : Ensemble average of variable h 

h
~ : Deviation component of variable h 

aijkl: the local inhomogeneity (Components) 

Gij: Green’s function 

Kijk,Kijkl: First and second derivative of Green’s function 
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 Keywords 

Aluminum, Anisotropic, Composite, Degree of anisotropy, Design, Elastic modulus, Elastic 
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1. Introduction 

Recently a methodology was developed by Adams  et. al. [1] that uses a spectral representation 

as a tool to allow the mechanical design to take advantage of the microstructure as a continuous 

design variable.  This new approach, called microstructure-sensitive design (MSD) uses a set of 

Fourier basis functions to represent the microstructure (e.g. single orientations) as the material 

set [1].  The combination of all these elements of microstructure states can be used to construct 

the property enclosure for any particular structure.  The procedure in this methodology can be 

summarized in the following: 

a- Microstructure representation: The microstructure and its details are represented by a set of 

Orthogonal Basis Functions 
n

!  .  

 !=
n

nnnn
CCF "" ),(  (1) 

Where
n
C ’s are the coefficients, determined for each individual microstructure. 

b- Properties and Constraints: The properties and constraints are represented in the same 

orthogonal space 
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P(!n, pn ) = pn!n

n

"  (2) 

c- Coupling: The properties and constraints can represent hyper planes in the property enclosure 

which is defined as a universe of all variation in the inter relation among several properties for 

the same microstructure. 

d- Designer Materials: Intersection of these planes defines the universe of all materials and 

microstructure (distributions) appropriate for design. This is similar to how Ashby’s Diagrams 

are being used in design [2].  

In the present paper, a similar methodology is developed and applied to a two-phase composite 

material.  The difference is the representation of the composite microstructure using empirical 

equations for the representation of two-point statistical distribution functions rather than spectral 

analysis.  In a polycrystalline material, each grain is considered as a state and an n-dimensional 

space is then used for the construction of one point distribution function for polycrystalline 

materials.  However a two-phase composite consists of only two phases and the n-dimensional 

material is reduced to a two-dimensional state assuming that the anisotropic property within each 

phase is ignored.  It is clear that such a construction that uses volume fraction of the second 

phase can only present a limited description of the composite.  In this paper, two-point 

correlation functions are used as additional parameters for the description of a composite.  Two-

point statistics can incorporate not only the distribution and interaction of the two phases but also 

information on the shape and morphology of each individual phase.  

MSD is presently taking advantage of “texture” in the form of Orientation Distribution Function 
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for the representation of polycrystalline materials [1].  Orientation Distribution Function (ODF) 

is a one-point statistical distribution function that only considers volume fractions (or number 

fractions) of crystallites with the same orientation.  Two-point statistical function can be used as 

a first order correction to the average representation.  Two point correlation functions [3, 4, 5, 6, 

7, 8, and 9] provide information about near neighbor and far field effects and allow the defect 

sensitive properties to be incorporated in the analysis.  The extension to higher order statistics 

adds a higher order of dimensionality in the Materials Hull.  It also presents two major 

improvements in the analysis for the calculation of effective properties and the evolution of 

microstructures [6, 8].   The composite formulation will be markedly enhanced by the use of two 

point correlations [3, 10, and 11].    

Recent improvements in electron microscopy and image analysis have led to new techniques for 

analyzing the structure of polycrystalline materials at the scale of the crystalline grains. 

Orientation Imaging Microscopy (OIM) provides information on the spatial arrangement of 

lattice orientations in polycrystalline structures and is based on Kikuchi diffractometry [12].   

Measurements of local orientation and misorientation of polycrystalline materials are now 

possible.  For the composite, if the orientation of each phase is ignored, the correlation functions 

can be measured using imaging techniques (optical, SEM...).  The use of OIM for the 

measurement of orientation for a multiphase composite can introduce a large amount of detail 

and higher order statistical formulations will be needed to incorporate such information for MSD 

and microstructure analysis. 

In this paper we take advantage of anisotropy in the microstructure of a two-phase composite as 
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a parameter for design. The methodology presented here is an application of a framework for 

“Microstructure Sensitive Design” for the case of composites.  The earlier work in this effort 

concentrated on polycrystalline materials.  The main issue within this methodology is the 

microstructure representation and in the earlier work [1] a one-point statistical function 

(Orientation Distribution Function) was used in the form of Spherical Harmonics.  In the present 

paper a two-point statistical function representation is used for the representation of the 

microstructure of a two-phase composite.    Such a representation will allow us to link the 

microstructure to elastic properties.  Such a representation will allow us to identify and classify 

composites based on the desired set of properties (inverse methodology).  Finally an example of 

design criteria is provided and the methodology is then used to identify the composite material 

which satisfied the required constraints. 

 

2. Representation of Heterogeneity 

The prediction of mechanical property from the details of the microstructure such as phase, 

crystalline grain distribution and morphology has received special attention in the mechanics and 

materials community [3,4].  The mathematical description of heterogeneity has received some 

breakthroughs in the last three decades with the works of Kröner and Beran [13, 14, and 15].  

More progress has been achieved to calculate the effective properties by making simple 

assumptions about the microstructure distribution (random, isotropic, and periodic 

microstructures) or the shape of the second phase (spherical, ellipsoidal…).  These studies have 
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relied primarily on the one-point probability functions (number or volume fractions of individual 

states within the microstructure), which ignored shape and geometric characteristics of the 

microstructure.  It was realized that in order to use the measured materials heterogeneity it is 

necessary to incorporate two and higher order probability functions. Progress was hindered due 

to lack of experimental techniques to obtain two and three-point correlation functions.  These 

techniques are now available to measure individual crystalline orientation in polycrystalline 

materials.  Extension of this effort to non-random microstructures requires proper definition of 

nth degree statistical correlation functions. For a detailed description of the theoretical discussion 

and the derivations please refer to work of Garmestani [6,7,8], Beran [16], and Adams [4,17].  A 

statistical continuum mechanics approach for both elastic and inelastic deformation of 

composites was introduced earlier [6, 7, and 8].  In this paper, the elastic formulation for the 

isotropic distribution will be extended to include anisotropy.   

 For two-phase composite structures, the application of two-point statistics requires two different 

sets of probability functions: The first set can be chosen to describe the probability distribution 

functions for the interaction of the two phases.  This reduces the problem to a composite 

formulation ignoring the crystalline phase for each component.  The two phases can then be 

taken as isotropic (or anisotropic) phases and the effect of textures can be incorporated in the 

anisotropy parameters in the constitutive relations.  The second set can consist of the probability 

distribution functions for the individual crystalline phases. This means incorporating the effect of 

orientation for each phase.  

Based on the arguments presented earlier, the first approach will use the composite formulation 
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and develop the property space for the two-phase structure.   In this analysis Lame’s constants 

are known for two basis isotropic phases. 

2.1 Two-Point distribution Function 

The statistical details of a microstructure can be represented by an n-point probability 

distribution function.  The volume fractions, f1 and f2 define the one-point probability 

distribution function that can be used to give an estimate of the effective properties.   The details 

of the shape and morphology of the microstructure including the interaction of the second phase 

can only be realized by using higher order distribution functions [3, 10].   A two-point 

distribution function can be defined as a conditional probability function when the statistics of a 

three-dimensional vector “r” is investigated once attached to each set of the random points in a 

particular microstructure.  The exponential form of the distribution function as proposed by 

Corson has been shown to be appropriate for random microstructures [10].  It is represented as, 

 ( ) [ ]ijn
ijijijij rcrP !+= exp"#  (3) 

Where r is a vector in this equation, however in isotropic case, the probability doesn’t depend on 

the direction and r is assumed to be a scalar. 

For a two-phase composite, i and j correspond to phases 1 and 2.  This reduces the number of 

two point functions to four, P11(r), P12(r), P21(r), and P21(r). Normality relations for a two-phase 

composite and the statistical limitations (p12=p21) require that only P11 be treated as the 

independent variable and α and β are functions of volume fractions. In Eq. (3) the empirical 

coefficient cij is a scaling parameter representing the correlation distance and can be reformulated 
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into an anisotropic form, 

 ( ) ( )( )0
0 sin(1, !!! ""+= AAcac ijij  (4) 

However, nij can be shown to be equal to 1 for a random structure [18]. A three dimensional form 

of Eq. (3) can also be introduced.  The present form is sufficient when the statistical information 

is uniform in one dimension for the composite. The three dimensional form requires data from a 

variety of sections through the sample.  In Eq.(4), “A” is a material parameter that represents the 

degree of anisotropy in a microstructure such that A=1 corresponds to an isotropic 

microstructure.  Assuming that two perpendicular sections are chosen for the analysis of a 

composite, we will be able to calculate two anisotropy parameters in these two sections.  

2.2 Definitions and the Procedure 

To estimate the elastic constants the equilibrium equation has to be solved:  

 0
,
=

jij
!  (5) 

The relation between elastic stress and strain can be shown by: 

 

))(2/1(

)()()(

ijjiij

klijklij

klijklij
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C

xxcx

!!+!!=

=

=

"

"#

"#

 (6) 

Symbol < h > denotes the ensemble average over grains (phases. components…) at state h. So 

ijklc is the average of the local stiffness defined as follows: 
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ijklijklijkl dVxc
V

xcc )(
1

)(  (7) 

The same definition is applicable for stress, strain and compliance. The local moduli and 

compliance as well as the local stress and strain can be defined as a perturbation from the 

average (mean) values <..> by defining a new parameter !
"
#

$
%
& ~
..  as in  the following equations: 
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 (8) 

Where )(~ xcijkl , )(~ xsijkl , )(~ xijkl! , and )(~ xijkl! are, respectively, the deviation of stiffness, 

compliance, stress and strain at each point from the average value.  The following equations 

should be always satisfied as a result of statistically homogenous media:  

 
0)(~,0)(~

0)(~,0)(~

==

==

xx

xsxc

ijklijkl

ijklijkkl

!"

 (9) 

2.3 Effective Elastic Constants 

Statistical continuum mechanics analysis is used to predict the elastic properties of a composite.  

The theoretical framework has been developed for isotropic distributions in composites by 

Garmestani, et. al. [6, 7] and for a textured polycrystalline material by Adams et.al. [16, 19].  

Here, a brief discussion is provided for the calculation of the effective elastic constants for 
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isotropic distribution and will be extended to anisotropic distributions, 

Effective Elastic constants “C” of a composite are defined by the equation: 

  !" C=  (10) 

Where !  and !  are the average stress and strain respectively, and C is the effective elastic 

constant of the composite.  Applying Hill’s criteria the effective elastic constants can be written 

as (for details see paper by Garmestani, et. al. [6, 7]): 

 cacC +=  (11) 

Where the first term is the average elastic tensor and the second term is the average deviation of 

the elastic constants from the mean.  The fourth rank tensor a = (aijkl) is introduced here to 

represent the local inhomogeneity.  Therefore the effective property can now be defined by: 

 )()(~ xaxccC mnklijmnijklijkl +=  (12) 

By substituting local stress (Eq. (6)) into the equilibrium Equations (Eq. (5)), an equation for 

displacement is obtained. Differentiating the equation of displacement and multiplying the result 

by ijklc , the second term in Eq. (12) will be calculated by: 

[ ] !! "##=

V

pmrsijkukpum

V

mpmrsijkukpukursijku dXxcxcxxKdXxxcxcxxKxaxc ''''''' )(~)(~),()(~)(~),()()(~   (13) 

Where x and x′ are two different position in the media, and dX′ shows the volume integral on the 

volume element around the position x′. 

In which the correlation function is defined by: 
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( ) ( )
2222122121211111

' ~~~~~~~~~~ pccpccpccpccxcxc pmrsijkupmrsijkupmrsijkupmrsijkupmrsijku +++=  (14) 

And: 

 
( )
( ) 2/

2/

,,

,,

kmupumkpkpum

kupukpkpu

GGK

GGK

+=

+=
  (15) 

Where G is the Green’s function used for solving the equilibrium equations. For definition of 

Green’s function for isotropic and anisotropic cases, readers should refer to [7, 19].   

 

3. Results and Discussions: Composite Property Enclosure 

In this section the elastic properties are calculated for two types of composites.  First an isotropic 

composite with a randomly distributed second phase is considered.  In such a composite, the 

probability distribution functions are isotropic and independent of orientation.  In this case the 

probability functions in Eq. (3) are sufficient to characterize the microstructure. Next a special 

case of an anisotropic composite is considered such that the microstructure of any section 

perpendicular to a particular direction has the same statistics. The anisotropy is then considered 

in only two sections of the composite.  In the simulation of this microstructure, the probability 

distribution function changes with orientation and magnitude of the vector “r” on each section.  

The measurements of this composite on any section perpendicular to one particular direction 

provides the same statistical information within which the statistics maybe anisotropic.    
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3.1 Isotropic Distribution 

For a randomly distributed isotropic composite, the correlation functions are independent of 

orientation and can be taken out of the integral in the second term of Eq. (13).   The integrand 

then only includes the Green’s function and has to be integrated over the boundary of a sphere.   

It is proved that this integral goes to zero which  means there is no contribution from the two-

point statistics for an isotropic material and only the first integral or the one-point statistics 

(volume fractions) contributes to effective elastic property.  The two substituting phases are 

Aluminum and Lead with Lame’s constants of (! =64.286,µ =25) and (! =25.88, µ =4.926), 

respectively. The effective elastic modulus for an isotropic distribution is plotted as a function of 

volume fraction in Fig (1) and Fig (2). Several models have been studied to approximate the 

properties of heterogeneous materials [20,21,22,23] here Voigt upper bound and Ruess lower 

bound are calculated and shown in the graphs for a comparison with simulation results. Voigt 

assumes a uniform strain, and Reuss assumes uniform stress in both phases. [24, 25]. In general, 

upper bound and lower bound for some components of stiffness and compliance can be shown 

by the following equations: 

 
2

2

1

1

2

2

1

1

ijijijij

upper

ijij

iiiiiiii

upper

iiii

CfCfC

CfCfC

+=

+=
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 (16)         
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Where 1

iiii
C , 2

iiii
C , 1

ijijC , and 2

ijijC are diagonal terms of the forth rank elastic stiffness tensor for 

phase 1 and 2, and lowerupper

iiiiC , and lowerupper

ijijC , are upper and lower bounds.   

 {Insert Fig(1) and (2)}  

Fig (1) shows the variation of the elastic modulus for Al-Pb composite for different volume 

fractions of Aluminum.  It illustrates that the statistical model provides a good estimate for the 

elastic properties. The predictions of the statistical model seem to be closer to the upper bound 

for larger volume fractions and closer to the lower bound for smaller volume fractions. The 

difference between the predictions and the upper bound decreases from 80% to 13% as the 

second phase volume fraction increases. The statistical predictions for the shear modulus of the 

composite (commonly known as µ) are shown in Fig (2). Although the composite is considered 

to be isotropic, three elastic coefficients (C1111, C1122, and C1212) can be independently predicted 

for this simulation. The shear modulus, (µ ) can be calculated directly from the simulation as 

C1212.  It can also be predicted from C1111 and C1122 through the isotropic relation for µ . 

 ))(2/1( 11221111 CC !=µ  (17) 

These two values should be identical for an isotropic composite (
1212
C=µ ); whereas, in this 

simulation the probability distributions for the two phases will determine whether this is valid.  

The simulations show that the values obtained from 
1212
C  are very close to the upper bound. The 

differences between these calculated values and the upper bound is less than 4%. However the 

values obtained from ))(2/1( 11221111 CC !  are better estimates for the shear modulus (µ ) of the 
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composite.  It is observed that the results of the simulation are very close to the upper bound for 

the larger volume fractions of aluminum, and closer to the lower bound for smaller values of 

volume fractions.  The statistical values of E and µ  are also compared to Self-Consistent model 

[26] and they show good agreement with the model. The largest difference for both E and µ  is 

about 10%. 

 

3.2 Anisotropic Distribution 

The effect of anisotropy is examined here by considering a special type of a two-phase 

composite that gives the same anisotropic distribution in every plane perpendicular to a 

particular direction (Z-direction).  This means that the three-dimensional distribution function 

can be measured to be identical from any plane normal to this direction. The two individual 

phases of the composite are considered to be isotropic.  

As it was mentioned before volume fraction and the degree of Anisotropy (A) are considered as 

two design parameters in this work. In this section the degree of Anisotropy is calculated for 3 

samples of Al-Pb composite by having the distribution of p11. The volume fraction of Al in the 

samples is 20%, 30%, and 40% respectively. As an example the fitted curve through modified 

Corson’s equation for the case of 30% is shown in Fig. (3). The values of
1111
C ,

2222
C ,

3333
C , and 

1133
C  are calculated for the three samples and the effect of degree of anisotropy on property is 

studied in transverse plane. In Fig(4) the variation of anisotropy is shown for different values of 

A for the case of vol2=30%. It’s observed that as A gets closer to 1, C1111 gets closer to C2222 
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which corresponds to an isotropic distribution in transverse plane.  

{Insert Fig(3) ,(4), and (5)} 

Fig. (5) illustrates the property enclosure of the composite Al-Pb. Each point in this enclosure 

represents a microstructure distribution with a specific volume fraction and specific anisotropy 

“A”. Two elastic coefficients of the composite are shown for three different volume fractions 

(20%, 30% and 40%) of Al.  

In Table (1) the effective elastic coefficients 
1111
C and 

3333
C  of the composite are also calculated 

for three samples. In this particular microstructure, Z-direction may be considered such that the 

elastic properties in that direction,
3333
C , is smaller than

1111
C . It’s also evident that although the 

two phases are isotropic, the statistical model results in an anisotropic behavior for the elastic 

modulus.  

The contribution of the different higher order statistical terms for the calculation of 
1111
C  and 

3333
C  is also shown in this Table.   Term2 is the contribution from the two-point statistical 

functions that are included in the second integral equation of Eq. (13).  This contribution is 15% 

to 27% in calculation of 
1111
C .  For the case of 

3333
C , the contribution of the second term is 

between 31% and 47%.  As it was noted before, the second term does not contribute for the case 

of isotropy and is only observed in the anisotropic case.   
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3.3 Composite Design 

To illustrate the use of the present methodology in composite design, an example is given for a 

certain design project requiring a knowledge of the variations in the ratio of the elastic moduli 

C3333/C1111.   The composite system will be limited to the one discussed in the previous sections 

(Al-Pb).  Let’s consider a certain design in which the ratio of the elastic moduli C3333/C1111 needs 

to be minimized.  The composite in this design project is quantified using the two-point 

statistical functions defined in equations 3 and 4.  The design variables are now defined based on 

two parameters:  volume fraction and degree of anisotropy as the representation of one and two 

point functions.  Let us consider the example above and for the purpose of illustration, the three 

microstructures above are considered.  It is clear that these three microstructures can be extended 

to a large set of microstructures by varying A and the volume fraction of the second phase.  The 

connection can be set up as an analytical tool for design using the homogenization relations 

explained above.  Calculating the ratio of C3333/C1111 for different values of vol (Al) and A 

(degree of Anisotropy), the statistical analysis above shows that for any given values of A, the 

composite has the lowest ratio of the longitudinal elastic property with respect to transverse 

elastic property at vol(Al)=30%(Fig.6).  It means this methodology can be used to predict the 

microstructure in a specific design.  The design constraints would lead us to a set of optimized 

properties as needed.  The microstructure of the composite is predicted in terms of the statistical 

parameters (here as volume fractions and degree of anisotropy factor). However this 

microstructure is not unique. For instance for this case, having vol(Al)=30% and A(degree of 

anisotropy)=0.0258, there are a variety of microstructures that ensure this specification. 
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Meanwhile, knowing these two parameters limits the microstructure to a subset of 

microstructures with a specific volume fraction and degree of anisotropy. Therefore two 

parameters defined in this section are adequate to represent the microstructure needed for design. 

 

4. Conclusions 

Microstructure Sensitive Design has been applied to a two-phase composite.  The key to MSD is 

the correct representation of the microstructure.  Here a simplified empirical form of the two-

point probability function is used for the microstructure representation instead of the spectral 

representation. The statistical formulation uses the two-point statistical functions to incorporate 

the effect of the microstructure distribution.  The results show that in the case of isotropic 

distributions the two-point statistics will not contribute to the effective properties but the 

statistical analysis can provide a better estimate for the effective properties.  In the case of 

anisotropic distribution, the two-point function can introduce anisotropy in the effective elastic 

properties.  Such anisotropy can be used as a parameter to engineer new composites with an 

imposed distribution.  These parameters and their concomitant properties are considered to be 

continuous design variables that can be used for optimization of composites.  An example is 

provided such that the design constraint can be reduced to a set of microstructures.  The design 

objectives and constraints are then communicated by specific iso-property surfaces in this space. 
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Fig (1). Effective elastic modulus of Al-Pb  v.s. volume fraction of the second phase 
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Fig (2). Effective elastic shear modulus of Al-Pb v.s. volume fraction of the second phase:  In this graph, 

the values ofµ   is calculated from the isotropic relation for µ (Eq.(17)). C1122 and C1111 in this relation 

are the statistical values. Also, the values of C1212 shown in the graph are directly calculated from the 

simulation. 
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Fig.(3). Modified Corson’s equation fitted to measured values of p11  
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Fig.(4) Variation of anisotropy for different values of A 
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Fig (5). Property enclosure of anisotropic composite Al-Pb  
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Table (1). The contribution of one-point and two-point correlation statistics in the calculation of effective 

elastic modulus C1111 and C3333 for anisotropic Al-Pb 

 

 

 

 

 

 

! of Al Upper Bound  
1111
C  Term1 Term2 

3333
C  Term1 Term2 Lower Bound 

20%     51.45 42.47 -6.58 2.39 41.89 -6.58 2.97     41.43 

30%     59.30 51.59 -6.49 1.20 46.99 -6.49 5.82     45.02 

40%     67.15 59.129 -5.85 2.17 53.92 -5.85 7.37     49.28 
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Fig (6). Composite Design: Minimizing the longitudinal /transverse property of anisotropic composite Al-

Pb  ( A represents the degree of Anisotropy in transverse direction) 
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