
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2007-07-12

Autonomic Product Development Process Automation Autonomic Product Development Process Automation

John E. Daley
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Daley, John E., "Autonomic Product Development Process Automation" (2007). Theses and Dissertations.
965.
https://scholarsarchive.byu.edu/etd/965

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/965?utm_source=scholarsarchive.byu.edu%2Fetd%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

AUTONOMIC PRODUCT DEVELOPMENT PROCESS AUTOMATION

by

John Daley

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

August 2007

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

John Daley

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Jordan J. Cox, Chair

Date Jeffrey C. Humpherys

Date Christopher A. Mattson

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of John Daley in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2)
its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the graduate committee and is ready for submission
to the university library.

Date Jordan J. Cox

Chair, Graduate Committee

Accepted for the Department

 Matthew R. Jones
Graduate Coordinator

Accepted for the College

 Alan R. Parkinson
Dean, Ira A. Fulton College of Engineering
and Technology

ABSTRACT

AUTONOMIC PRODUCT DEVELOPMENT PROCESS AUTOMATION

John Daley

Department of Mechanical Engineering

Master of Science

Market globalization and mass customization requirements are forcing companies

towards automation of their product development processes. Many task-specific software

solutions provide localized automation. Coordinating these local solutions to automate

higher-level processes requires significant software maintenance costs due to the

incompatibility of the software tools and the dynamic nature of the product development

environment. Current automation methods do not provide the required level of flexibility

to operate in this dynamic environment.

An autonomic product development process automation strategy is proposed in

order to provide a flexible, standardized approach to product development process

automation and to significantly reduce the software maintenance costs associated with

traditional automation methods. Key elements of the strategy include a formal approach

to decompose product development processes into services, a method to

describe functional and quality attributes of services, a process modeling algorithm to

configure processes composed of services, a method to evaluate process utility based on

quality metrics and user preferences, and an implementation that allows a user to

instantiate the optimal process.

Because the framework allows a user to rapidly reconfigure and select optimal

processes as new services are introduced or as requirements change, the framework

should reduce burdensome software maintenance costs associated with traditional

automation methods and provide a more flexible approach.

ACKNOWLEDGMENTS

The completion of this work would not have been possible without the support of

many people. I am especially grateful for the experience of working with Brent Staubach

and Jeff Perlak in the Systems Optimization group at Pratt & Whitney and for their role

in securing funding for the project. A special thanks is also due to my committee—Dr.

Jordan Cox, Dr. Jeffrey Humpherys, and Dr. Christopher Mattson—for their insight and

guidance. Finally, I am thankful for the unwavering faith and patience of my dear wife

Jacqueline.

 vii

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

1 Introduction... 1

2 Background ... 5

2.1 Service Oriented Architecture .. 5

2.2 Web Services .. 6

2.3 Commercial Product Development Process Automation Tools 7

2.4 Autonomic Systems .. 8

2.5 Software Agents.. 10

2.5.1 Agents in Product Development ... 10

2.5.2 Agents and Dynamic Process Configuration .. 11

2.6 Ontologies... 12

2.6.1 Semantic Web ... 13

2.6.2 Web Ontology Language for Services (OWL-S).. 14

2.6.3 Quality of Service Ontology ... 18

3 Method ... 21

3.1 Decomposing Product Development Processes into Reusable Services 21

3.2 Defining Functional Descriptions for the Services... 23

3.3 Defining Nonfunctional Descriptions for the Services..................................... 26

3.4 Service Discovery and Process Modeling Algorithm....................................... 28

 viii

3.5 Process Analysis and Selection... 30

3.6 Process Instantiation ... 34

4 Implementation ... 37

4.1 Service Decomposition ... 38

4.2 Functional Descriptions .. 40

4.3 Nonfunctional Descriptions .. 43

4.4 Publishing ... 45

4.5 FIPER Process Manager ... 47

4.5.1 FIPER Library Access .. 47

4.5.2 Service Discovery and Process Modeling... 49

4.5.3 Process Optimization .. 56

4.5.4 Process Instantiation ... 60

4.6 Process Modeling Examples... 65

4.6.1 Changing Fidelity.. 65

4.6.2 Parallel Paths, Multiple Queries, Complex Dataflow................................... 66

4.6.3 Hierarchy... 71

4.6.4 Pruning.. 74

4.7 Benefits ... 77

5 Related Work .. 79

5.1 Dynamic Workflow .. 79

5.2 Process Optimization .. 81

5.3 Service Selection Using Quality of Service.. 82

6 Conclusion ... 85

7 References .. 87

Appendix A. Engineering Analysis Ontology ... 93

 ix

Appendix B. Service Descriptions.. 95

 xi

LIST OF TABLES

Table 3.1 QoS aggregation functions..33

Table 4.1 Service abstract parameters (simplified names) ...42

Table 4.2 Quality of Service descriptions...44

 xii

 xiii

LIST OF FIGURES

Figure 2.1 OWL-S description [21] ..14

Figure 2.2 OWL-S service profile classes and properties [21]...16

Figure 3.1 Process modeling algorithm (Business Process Modeling Notation [34])..........29

Figure 4.1 FIPER Design Gateway...37

Figure 4.2 FIPER Script component...40

Figure 4.3 Abstract parameters ...42

Figure 4.4 Abstract parameters organized in aggregate parameters43

Figure 4.5 QoS description ...44

Figure 4.6 Published services listed in the FIPER library ..45

Figure 4.7 Service organization in the FIPER library...46

Figure 4.8 Service description ..46

Figure 4.9 FIPER Process Manager..48

Figure 4.10 Search constraints applied to the Yellow Pages ..50

Figure 4.11 Sixteen impeller design process alternatives...51

Figure 4.12 Impeller design process 1 ..52

Figure 4.13 Impeller design process 2 ..52

Figure 4.14 Impeller design process 3 ..52

Figure 4.15 Impeller design process 4 ..52

Figure 4.16 Impeller design process 5 ..53

Figure 4.17 Impeller design process 6 ..53

Figure 4.18 Impeller design process 7 ..53

 xiv

Figure 4.19 Impeller design process 8 ..53

Figure 4.20 Impeller design process 9 ..54

Figure 4.21 Impeller design process 10 ..54

Figure 4.22 Impeller design process 11 ..54

Figure 4.23 Impeller design process 12 ..54

Figure 4.24 Impeller design process 13 ..55

Figure 4.25 Impeller design process 14 ..55

Figure 4.26 Impeller design process 15 ..55

Figure 4.27 Impeller design process 16 ..55

Figure 4.28 Dataflow schematic ...56

Figure 4.29 Process analysis ...57

Figure 4.30 Optimizing for cost..58

Figure 4.31 Optimizing for reliability...59

Figure 4.32 Optimizing for multiple objectives..59

Figure 4.33 Process instantiation into the FIPER Design Gateway......................................60

Figure 4.34 Process execution in the FIPER Runtime Gateway ..61

Figure 4.35 The CATIA service updates the impeller blade and exports IGES files...........62

Figure 4.36 The HyperMesh service creates meshes for finite element calculations...........62

Figure 4.37 The FLUENT service determines pressure on the impeller blade surfaces63

Figure 4.38 The ANSYS service creates stress plots..64

Figure 4.39 Republishing services into the FIPER library ...64

Figure 4.40 Lower fidelity analysis ..65

Figure 4.41 PTS models..66

Figure 4.42 PTS dynamic configuration...67

Figure 4.43 PTS complex dataflow ..68

 xv

Figure 4.44 PTS parallel paths..69

Figure 4.45 PTS multiple queries ...70

Figure 4.46 PTS multiple dataflow mappings ..71

Figure 4.47 Thermometer ...72

Figure 4.48 Thermometer design process...72

Figure 4.49 Dynamically configured thermometer process..73

Figure 4.50 Thermometer sub-process ...74

Figure 4.51 Respirator design process ..75

Figure 4.52 Respirator sub-process dataflow..76

Figure 4.53 Respirator sub-process workflow..77

1

1 Introduction

Market globalization and mass customization requirements are forcing companies

towards automation of their product development processes. The benefits of automation

include reduced cost and decreased cycle time for new product introduction.

Additionally, automation can provide a foundation for standardizing the product

development process.

Many task-specific software solutions provide localized automation.

Coordinating these local solutions to automate higher-level processes presents a

significant challenge due to the incompatibility of the software tools. An even greater

challenge to automation is the dynamic nature of the product development environment.

Markets, competitors, technologies, and methods are constantly changing and demand

flexibility in the automation approach.

Current automation methods do not provide the required level of flexibility to

operate in this dynamic environment. Even small changes in the product development

environment can result in large additional software investment in order to customize the

implementation to the new environment. However, such an approach is analogous to

shooting at a moving target.

2

New formalized strategies and technologies for managing and automating product

development processes are needed in order to make automation cost-effective in the long-

term. Not surprisingly, similar trends to those in product development automation are

also occurring across many other functional areas of business. In an effort to address

some of these business concerns, there have been many recent developments in the

information technology industry. Some of these developments include Service Oriented

Architecture (SOA) and Web services.

Despite the benefits that these new developments offer, product development

processes tend to be more complex and dynamic than many other traditional business

processes and will require additional support to reap the full benefits of automation.

Autonomic systems and semantic web services provide possible enabling solutions when

used within an overarching product development process automation strategy. This

research proposes such a strategy.

The goal of this research is to provide a flexible, standardized approach to product

development process automation in order to significantly reduce the software

maintenance costs associated with traditional automation methods. This will be

accomplished through the following objectives:

1. Formalize an approach to decompose product development process into reusable

services.

2. Define functional descriptions for the services based on a product development

ontology.

3. Define nonfunctional descriptions for the services based on a Quality of Service

(QoS) ontology.

3

4. Develop a service discovery algorithm that will utilize functional descriptions to

identify services that can meet specified objectives.

5. Develop a process modeling algorithm that will dynamically configure the

identified services into candidate processes that can meet the specified objectives.

6. Develop a process analysis algorithm that will utilize the nonfunctional

descriptions and user preferences to evaluate the overall utility of the candidate

processes and identify the optimal process.

7. Develop an automated method by which a user can instantiate the identified

process for execution or further development.

8. Demonstrate the flexibility of the proposed approach with a specific product

development process.

4

5

2 Background

This chapter provides an overview of relevant theory and technology necessary

for the development of an autonomic approach to product development process

automation. This previous work includes Service Oriented Architecture (SOA), Web

services, autonomic systems, software agents, and ontologies.

2.1 Service Oriented Architecture

Service Oriented Architecture (SOA) provides a flexible approach that allows a

business to quickly adapt to changing conditions and requirements. Essentially SOA is

an information technology (IT) architecture that supports transformation of existing IT

infrastructure into a set of linked services that can be accessed when needed over a

network. These services can by efficiently combined to accomplish specific business

objectives [1].

For product development process automation a SOA provides a highly reusable

set of automation services. Each of these services performs a single function that can be

combined with other services to build larger processes [2]. This means that when

business needs change, new processes can be rapidly configured without recoding

software.

6

A significant additional benefit is that the implementation is hidden from a user

who is only aware of the functionality exposed through the service interface. This

reduces software maintenance costs when changes are necessary for a particular service

implementation, because these changes can be isolated. This is in stark contrast to typical

product development automation methods that essentially hardwire multiple external

dependencies into software through traditional coding. In this latter approach, changes in

business need may require extensive overhauls to the code.

2.2 Web Services

Essentially, at a high level a Web service is a unit of work that handles a specific

functional task. More technically speaking, a Web service is a software interface that

describes a collection of operations that can be accessed over the network through

standardized XML (eXtensible Markup Language) messaging [1].

Integrating software across multiple operating systems, programming languages,

hardware, and networks into larger processes requires a nonproprietary, adaptable

environment. Web services are a key component of this environment. Web service

standards provide a non-proprietary framework that ensures compatibility of services

within a company intranet and across the Internet. The standards provide details for Web

service description, messaging, and publication [3]. Web service technologies enable

platform- and programming language-independent communication between applications.

Essentially, SOA and Web services provide the structure for releasing deeply

locked business functions out of legacy code and exposing those functions to the

enterprise in a consistent fashion [2]. For product development process automation, this

7

consistent representation of service functionality increases overall system flexibility.

Additionally, it reduces software maintenance costs for automation projects in much the

same way that part standardization reduced product maintenance costs in the 19th century.

2.3 Commercial Product Development Process Automation Tools

Several commercial tools have been developed during the past decade in an effort

to improve the effectiveness of product development automation. The most popular of

these tools are FIPER (Federated Intelligent Product EnviRonment) and ModelCenter.

FIPER was originally developed as a four year project sponsored by the National

Institute of Standards and Technology and is currently a product managed by Engineous

Software, Inc. The main purpose for its development was to create an environment that

allows an engineer to easily integrate various software applications into a single process.

FIPER provides a graphical modeling environment that allows a user without

software development skills to conveniently create an engineering process using a

standard library of templates for common engineering tasks. These templates are well-

integrated with a variety of third-party software application such as Word, Excel,

CATIA, MATLAB, ANSYS, etc. Additionally, optimization and experimental designs

can be conveniently configured to drive FIPER process models.

FIPER features a web-based architecture that can be used in a client-server mode

in order to share engineering process models and design activities around the globe and

with business partners. Additionally, the client-server mode features distributed

computing capabilities.

8

The software also exposes an application programmatic interface (API) that can

be used to develop custom templates to interface with proprietary codes or commercial

applications not covered by the standard library.

ModelCenter by Phoenix Integration is another commercial integration software

that is very similar to FIPER. The primary differences between the two include that

ModelCenter is not integrated with as many third-party software applications, and the

API documentation is not as extensive.

 Several case studies have demonstrated the effectiveness of these tools in

reducing cycle time and adding flexibility to process automation [24]. The tools

themselves provide no overall strategy for product development process automation.

However, because of the richness of the API provided in FIPER, the current

implementation of this work will demonstrate how an autonomic product development

process automation strategy can make use of FIPER or a similar tool to provide a

significant increase in process automation flexibility.

2.4 Autonomic Systems

Despite the benefits of SOA, Web services, and commercial tools, product

development processes tend to be more complex and dynamic than many other traditional

business processes and will require additional strategies to reap the full benefits of

automation. Theoretically, autonomic systems enable dynamic adjustments to changing

environments such as the product development environment.

Autonomic computing systems are analogous to the autonomic nervous system of

the human body. Processes within the human body such as heart beat, breathing,

9

digestion, thermal management, etc., are crucial to survival and wellbeing. Yet, these

processes are not managed through conscious effort. Instead, the system can be viewed

as a self-managed system that operates autonomously in behalf of the human being.

Autonomic computing systems strive to provide similar self-management.

Two key components of self-management in autonomic computing include self-

configuration and self-optimization [4]. Self-configuration means that the system will

automatically reconfigure to best handle environmental changes. Self-optimization

means that the system continuously looks for ways to optimize itself. It will monitor its

components and fine-tune its workflow to achieve system goals [5].

An autonomic approach to product development process automation provides

several significant benefits. Self-configuration enables dynamic process modeling that

will reduce costly maintenance tasks associated with reconfiguring an automated process

when changes are needed. Additionally, these reconfigured processes may exhibit higher

efficiencies because concurrent and extraneous tasks can be identified and handled

automatically. Self-optimization means that optimal processes can quickly be identified

when changes occur. These benefits will provide a more flexible and cost-effective

strategy to product development process automation.

Web services have been identified as a key ingredient in autonomic systems. Web

services provide a reusable set of services. Software agents represent another key

ingredient that provides the autonomic behavior necessary to dynamically configure these

services. Additionally, ontologies provide the semantics needed for agents to understand

their environment and to be able to properly configure services into larger processes to

10

meet system objectives. Web services have been discussed previously. Agents and

ontologies will be discussed below.

2.5 Software Agents

Lander explains that there is no clear definition of an agent [6]. However, a

common, high level definition is that an agent is a computer system capable of

independent action on behalf of a user [7]. Despite lacking a rigorous understanding of

what an agent is, implementations have been quite diverse and varied, spanning multiple

disciplines. Several of these implementations have been in product development.

2.5.1 Agents in Product Development

The use of agents in product development is not a new idea. Karpowitz provides a

broad literature review of agent system implementations in product development [8].

This literature demonstrates that agent-based systems can be used to create more flexible

approaches to product development. The most relevant of this literature is summarized

below.

• Agents may be used to integrate heterogeneous, knowledge-based design tools

into an adaptable system [6].

• Multi-agent systems require minimal changes to existing tools and processes [9].

• Agent teams can be used in the conceptual design phase to find optimal

configurations [10].

• A design-oriented model can be used with an agent system to create an automated

product development system [11].

11

• Agents can be used to integrate product design, manufacturing analysis, and

process planning in a distributed computing environment [12].

• Agent systems can be used to integrate conceptual design and process planning to

optimize product form and structure and to reduce manufacturing cost [9].

• Existing agent-based systems for product development and process planning

automation include PACT, SHARE, First-Link, Next-Link, Process-Link, and

DIDE [12] [13].

2.5.2 Agents and Dynamic Process Configuration

Aside from general agent applications in product development, more specific

research exists in using agents to configure processes. Specifically, the following

research shows that agents can discover and select Web services in order to create larger

applications or processes using ontologies and system languages:

• Business Process Execution Language (BPEL) can be used to express the initial

social order of a multi-agent system. This language can be extended to allow

agents to compose adaptable workflows of Web services [14].

• Agents can be used to build an application by selecting Web service

implementations that best match the quality criteria of the application [15].

• Ontologies and semantic Web service descriptions can be used to dynamically

discover potential workflows to meet system objectives [16].

• Agents can be used to create dynamic workflow for simple design tasks [6].

The above literature is very helpful in describing key technologies and methods

that are necessary to enable autonomic product development process automation. The

12

work shows that processes can be configured dynamically and that the best services can

be selected. However, additional work is still required to formulate a standardized

approach for product development. In particular, ontological frameworks must be

explored to describe product development service functionality and quality in order to

enable dynamic discovery and selection of services for a real industry context. Next, a

methodology for evaluating and optimizing larger processes composed of these services

is needed.

2.6 Ontologies

Ontologies are essentially sets of terms that are organized and described in such a

way that a machine can process them. For example, a weather ontology could be defined

so that a software agent could give recommendations to users about what clothes they

should wear. Obviously, the agent would need to know something about “rain,”

“temperature,” “wind,” etc. These sets of terms along with other important information

such as attributes and relationships could comprise an ontology.

Ontologies are crucial to autonomic process automation. An ontology that

describes service functionality enables the system to dynamically discover services that

can meet system objectives and build larger processes using these services. An ontology

to describe service quality allows the system to determine which process is best, given

user quality preferences. Ontological frameworks for the Internet have been in

development during the past decade and provide valuable insight into the use of

ontologies for autonomic process automation within an enterprise. These frameworks

can be broadly classified under the umbrella of the Semantic Web.

13

2.6.1 Semantic Web

The Semantic Web provides machine interpretable meaning to the current Web in

a “. . . common framework that allows data to be shared and reused across application,

enterprise, and community boundaries” [17]. Currently on the Web, data that is hidden

away in HTML (HyperText Markup Language) files is useful in some context but not in

others. On a global scale it is difficult to process this information in an efficient way.

The Semantic Web can be thought of as a globally linked database that would allow users

to efficiently process Web content and use it in dynamic ways [18].

For example, a traveler may be planning to fly home to attend a baseball game.

This activity requires information regarding local sport events, weather, and flight

schedules. Each piece of information is presented in various websites, and theoretically,

it should be possible to glean necessary information from the different sites and create a

travel plan. However, all the information is described using HTML, meaning that the

traveler must use search engines and trial and error to manually gather all of the

necessary information. In the Semantic Web a travel plan could be more dynamically

generated because the diverse information could be automatically discovered and linked

together.

The hype around the Semantic Web began around 1999 and has been growing

steadily ever since. Despite the hype Semantic Web technologies are still in their

infancies, and despite the apparent potential, there is little consensus about the likely

direction and characteristics of the early Semantic Web [18].

Two key technologies for the Semantic Web are the Resource Description

Framework (RDF) and the Web Ontology Language (OWL). RDF is used to represent

14

information and to exchange knowledge in the Web. OWL is used to publish and share

ontologies, supporting advanced Web search, software agents, and knowledge

management [19]. OWL is intended to provide a language that can be used to describe

the classes and relations between them that are inherent in Web documents and

applications [19]. An essential extension within OWL is the Web Ontology Language for

Services (OWL-S) which provides support specific for Web services. OWL-S is the

Semantic Web technology most relevant to this work and will be described in the next

section.

2.6.2 Web Ontology Language for Services (OWL-S)

OWL-S is an OWL ontology for describing Web services. It enables users and

software agents to automatically discover, invoke, compose, and monitor Web services.

OWL-S consists of a set of markup language constructs. Figure 2.1 describes the three

key files used in OWL-S. These files—profile, grounding and model—describe what a

service does, how to access it, and how it works.

Figure 2.1 OWL-S description [21]

15

The traditional approach to describing a Web service is through the Web Service

Description Language (WSDL). A WSDL document for a service describes inputs,

outputs, and methods as defined in the service interface. This information can be made

available to potential consumers of the service through a public registry with a Unique

Resource Identifier (URI) to the service’s WSDL. However, for a person or machine to

understand the functionality of the service based solely on WSDL would require a great

amount of familiarity with the service and would not allow for the service to be more

dynamically discovered or used within a larger framework with ease.

With this in mind OWL-S provides an ontological representation of service

functionality that goes beyond WSDL. Within OWL-S a service profile provides

information regarding service inputs and outputs. Additionally, OWL-S distinguishes

between basic inputs/outputs (I/O) and conditions known as preconditions and

postconditions. Preconditions reflect what is required before a service can execute and

postconditions specify what will be accomplished by the service.

The difference between standard I/O and these conditions is at least two-fold—

conditions are normally at a higher level of abstraction and conditions may not be

reflected in an actual flow of data to or from the service. In essence these conditions

capture business logic. Additionally, the meaning of these conditions can be explained in

a machine-readable way through the Web Ontology Language (OWL).

Essentially, WSDL does describe how to access and use a service but says

nothing about what it does. OWL-S, on-the-other-hand, facilitates the automation of

Web service tasks including automated Web service discovery, execution, interoperation,

composition and execution monitoring [20].

16

The OWL-S service profile document is the key ingredient needed for dynamic

discovery and selection of a Web service. The service profile is a description that

describes what a service does. A diagram describing the OWL-S Service Profile can be

seen below.

Figure 2.2 OWL-S service profile classes and properties [21]

The service profile tells what the service does, in a way that a service-seeking

agent can determine whether the service meets the required objectives. The profile

includes a description of what is accomplished by the service, limitations on service

applicability and quality of service, and requirements that the service requester must

satisfy to use the service successfully [21].

The service profile does not mandate a specific representation of services. Instead

OWL subclassing can be used to create specialized service profiles. OWL-S provides

17

one possible representation through the class Profile. An OWL-S Profile describes a

service as a function of three basic types of information: what organization provides the

service, what function the service computes, and a host of features that specify

characteristics of the service [21]. An outline of this information follows.

1.1. serviceName

1.2. textDescription – briefly what the service offers, what it requires, etc.

1.3. contactInformation – humans or individuals responsible for the service.

1.4. Functional Description

1.4.1. Information Transformation

1.4.1.1.Inputs

1.4.1.2.Outputs

1.4.2. State Change

1.4.2.1.Preconditions

1.4.2.2.Postconditions

1.5. Profile Attributes

1.5.1. serviceParameter

1.5.1.1.serviceParameterName

1.5.1.2.sParameter

1.5.2. serviceCategory

1.5.2.1.categoryName

1.5.2.2.taxonomy

1.5.2.3.value

1.5.2.4.code

18

1.6. Service Type and Product

1.6.1. serviceClassification

1.6.2. serviceProduce

For this work, the most important elements of the OWL-S Service Profile are the

functional descriptions of service I/O and profile attributes. The combination of these

two elements should allow a software agent to identify a compatible service (one whose

preconditions and postconditions match user objectives) and the best service (a

compatible service with the best quality attributes).

OWL-S is very specific in the functional description of the service which defines

the information transformation (inputs and outputs) and the state changes (preconditions

and postconditions). However, conceptually OWL-S provides no direction on how

profile attributes should be used to represent the quality of the service. Therefore, an

additional ontology extension is needed to dictate how services can be rated against one

another. A Quality of Service (QoS) ontology provides this needed extension.

2.6.3 Quality of Service Ontology

QoS (Quality of Service) represents the performance properties of a service.

These properties could include delay, throughput, cost, or any number of metrics. A QoS

ontology provides a defined set of quality metrics for describing services that can be used

by a machine to reason about which service is best under given conditions

An effective QoS ontology can be structured in order to effectively manage QoS

attributes and ensure flexibility and reuse for creating domain-specific lower ontologies.

Maximilien et al [26] describe a QoS ontology with three levels of abstraction. In their

work the upper ontology provides generic quality definitions and relationships. The

19

middle ontology provides specific attributes that are common across all services. Finally,

this middle ontology can be complemented by a domain-specific lower ontology.

Specific, middle ontology quality attributes include availability, capacity, economic,

interoperability, performance, reliability, robustness, scalability, security, integrity, and

stability.

The middle ontology definition draws on substantial previous work. For example,

additional suggestions for Web service quality attributes include exception handling,

accuracy, accessibility, regulatory, supported standard, and completeness [28] [29].

Additionally, Chatterjee provides additional classifications for precision and accuracy for

general resources within distributed systems and is not limited to Web services [30].

The QoS ontology described by Maximilien et al is generic enough to describe

quality attributes for product development services. The ontology can then be

complemented by additional domain ontologies within product development one at a time

or in a hierarchal fashion depending on organizational needs.

20

21

3 Method

A formal method will be developed to provide a step by step procedure for

implementing autonomic product development process automation. This method

provides a flexible, standardized approach to product development process automation in

order to significantly reduce the software maintenance costs associated with traditional

automation methods.

3.1 Decomposing Product Development Processes into Reusable Services

Before product development processes can be decomposed into services, they

must first be formally described. To this end, approaches such as the Product

Transformation Schematic (PTS) proposed by Roach et al [22] or other graph-based

methods can be used. For example, using the PTS methodology product development

processes can be described mathematically in terms of transformation functions and sets

of inputs and outputs that as a whole represent the design of a particular product. These

transformation functions can be used as the basis for the identification of potential

services as demonstrated by Karpowitz [8].

Once potential services are identified by using a process decomposition technique

such as the PTS, it is still necessary to determine the level of abstraction that will be

appropriate for the services and the scope of each service. Additional guidelines can be

22

applied to this end. For example, Young [23] recommends that services can be created in

a way to maximize key attributes. These attributes ensure service reuse and other

benefits of a Service Oriented Architecture. Each of these attributes is described briefly

below.

1. Modular Composability – A service should be sufficiently independent so that it

can be reused in new contexts.

2. Modular Understandability – A service should support one distinct concept so that

it can easily be understood by a person or machine.

3. Modular Continuity – Service interfaces should hide implementation details in a

way that small changes in the service do not require changes in other services or

consumers of the service.

4. Direct Mapping – A service should map to a specific problem domain so that they

are self-contained and independent.

5. Information Hiding – A service should not expose internal data structures.

6. Loose Coupling – A service should have few known dependencies with other

services.

It is significant to understand the difference between the scope of a software

application and the scope of the services which are developed that make use of the

application. A software application usually provides a wide range of functionality.

However, consistent with modular understandability and the other key attributes, services

that wrap a particular software application should, in general, each support one unique

concept and not the entire functionality of the application. This is particularly important

in product development process automation in which individual services will need to be

23

composed into a larger business process. Following the guidelines described above will

facilitate a rapid integration of these services into a larger process.

Using the discussed methodologies, the product development process can be

effectively decomposed into reusable services. These services by themselves provide a

solid foundation for automation, and provide needed reuse in order to reduce costly and

time-intensive software coding. However, additional techniques can be applied in order

to facilitate dynamic orchestration of these services into larger processes that can meet

system level objectives. These techniques will be discussed in the next sections.

3.2 Defining Functional Descriptions for the Services

Functional service descriptions enable dynamic orchestration of services by

ensuring that each service is used in the proper context and mapped correctly with other

services. The functionality of a given service is represented by its accompanying set of

inputs, outputs, and methods as defined in its interface and an accompanying WSDL

(Web Service Description Language) document. However, as described previously

OWL-S can be used to provide more semantic meaning to the functional description

through preconditions and postconditions linked to an ontology.

The use of this higher level ontological description of service functionality in an

industry context is significant. Particularly in a traditional product development setting,

the lower-level I/O developed for software tool automation can be extensive and quite

diverse. Likely, there will be a lack of standards to the documentation, much less

particular naming conventions for parameters and methods. Even if naming conventions

and standards do exist, managing this across departments, organizations, and/or business

24

partners is exceptionally daunting. However, by using concepts from OWL-S and related

frameworks the I/O can be effectively managed at the business logic level.

This is especially advantageous for engineering analysis applications because the

business logic I/O level can be abstracted into a physics-based ontology that will be

particularly unaffected by typical product development environment changes related to

changing markets, new products, and the latest technologies.

One example of a physics-based ontology for engineering analysis classifies

analysis parameters according to an n-dimensional vector. The first element of the vector

defines the discipline such as structural, thermal, fluids, etc. The second element defines

the discipline-specific analysis type. The third element defines the dimensionality of the

analysis. Finally, any number of additional elements can be used to provide further

description within each discipline as appropriate. Each vector represents a subspace that

can be populated with appropriate analysis parameters that are then uniquely defined.

Then, each service description contains a list of the vectors and analysis

parameters specific to that service. These parameters can also be grouped appropriately

within preconditions and postconditions.

For example, imagine that a structural analysis of a simple, statically loaded beam

or other structure is required. A functional representation of a service that can provide

this analysis could be as follows:

<postcondition>Analysis.Structural.Static.3D.MAX_STRESS</ postcondition >

25

In this example “Analysis” is the ontology being used, “Structural.Static.3D” is a

three dimensional vector and “MAX_STRESS” is an acceptable keyword defined for use

within the “Structural.Static.3D” subspace. A precondition to the service could be

information regarding the structure geometry such as

<precondition>Analysis.Geometry.Solid.3D.PART</precondition>

It is significant to note that while the parameters “MAX_STRESS” and “PART”

in this case provide a high level representation of actual dataflow to and from the service,

this will not always be the case. For example, consider a billing service that has as a

precondition parameter “CREDIT_CARD_EXISTS.” This parameter would be useful to

describe a control flow (sequence of execution) relationship with another service that

provides credit card information and has “CREDIT_CARD_EXISTS” as a postcondition.

In both the structural analysis service and the billing service, the preconditions are useful

to infer relationships with other services at a business logic level, and can be used to

determine sequential control flow and parallel execution paths.

In the structural analysis case, the precondition also provides a generic

representation of eventual dataflow but this does not have to be the case and the

parameters should be thought of as abstract representations of I/O. Non-abstract

parameters can be specified in the preconditions and postconditions. However, this is to

be discouraged because it can enforce a more rigid coupling with other services and

inhibits more dynamic interaction.

26

The proposed ontological representation is extendable to capture the physics-

based functionality of any engineering analysis. A representation similar to the analysis

vector has been used by Bailey et al [24] in their “simulation engine” to describe

simulation tools for analyzing generic products. The proposed engineering analysis

ontology described herein extends this framework to describe specific functional

parameters within each service. For a fuller definition of the ontology see Appendix A.

Once these functional descriptions have been defined for services, it is then

theoretically possible to orchestrate these services into higher level processes based on

requirements for specific results. However, in a typical product development

environment there may be several or many process alternatives. The best process will

depend on the QoS (Quality of Service) required under the circumstances and the QoS

provided by the services. Functional descriptions do not provide QoS information;

therefore, service descriptions must include additional nonfunctional QoS descriptions in

order to facilitate process selection among competing processes. These nonfunctional

descriptions are described in the next section.

3.3 Defining Nonfunctional Descriptions for the Services

In order to analyze the overall utility of a process, it is first necessary to be able to

identify quality performance of process components. A Service Oriented Architecture

enables a standards based approach in which process components are embodied as

services with formal descriptions. Nonfunctional QoS attributes can be defined within

the service descriptions.

27

The QoS attributes should be based on metrics relevant to the particular

organizational domain. An effective QoS ontology can be used in order to effectively

manage QoS attributes and ensure flexibility and reuse for creating these domain-specific

lower ontologies. Maximilien et al [26] describe a QoS ontology with three levels of

abstraction that will be used here. In their work the upper ontology provides generic

quality definitions and relationship. The middle ontology provides specific attributes that

are common across all services. Finally, this middle ontology can be complemented by a

domain-specific lower ontology. The quality attributes of the middle ontology draw on

previous work in web service semantics and distributed systems [28] [29] [30].

The QoS ontology described by Maximilien et al is generic enough to describe

quality attributes for product development services. The ontology can then be

complemented by additional domain ontologies within product development one at a time

or in a hierarchal fashion depending on organizational needs. This is important because

an organization wishing to implement the proposed method may not have empirical data

to support a wide variety of QoS metrics. By supporting a few key metrics initially based

on available data and possibly subjective criteria, initial QoS description can be made for

services that can then be adjusted later through a more elaborate tracking system.

For example, consider the engineering analysis ontology described in the previous

section. Such an ontology could include initial lower ontology QoS metrics such as

variable cost (subclass of cost), precision, reliability, and execution time (subclass of

performance). For a particular organization, precision may be more easily measured for

engineering analysis by an additional QoS metric subclass called r-squared. R-squared

could represent the statistical r-squared value obtained when comparing experimental and

28

historical data. The ontology would also likely include information such as units and

limits. An example of such an engineering analysis ontology can be found in Appendix

A and will be used later to demonstrate a specific implementation.

3.4 Service Discovery and Process Modeling Algorithm

Implementations of the procedures described in this section will depend on the

specific software tools being used. An implementation will be described later using

FIPER. However, the concepts are presented at a high level in this section in order to

delineate between theory and practice.

Once services have been created and described, they are ready to be published and

registered with the system. Registration includes updating a system registry including a

functional map (“yellow pages”) and service provider map (“white pages”). The

functional map consists in an alphabetical listing of functions (postconditions). The entry

for each function includes all potential registered providers. In the provider map, on the

other hand, services are listed in alphabetical order and a list of functions and

nonfunctional attributes are listed under each service entry. By maintaining these two

sets of registry maps, queries can be performed efficiently.

After the services are registered a user can query the system for one or more

postconditions. The system then searches the functional map and identifies all services

that provide the specified postcondition. Then the system instantiates each of the

candidate services and places each of them into a new process model. Within each

process model, each of the preconditions of the newly instantiated service becomes a new

query to the system. If the new search returns more than one candidate process, then the

29

process model is cloned for each additional candidate. A graphical description of the

algorithm is shown in the figure below.

Figure 3.1 Process modeling algorithm (Business Process Modeling Notation [34])

As the algorithm proceeds, dataflow connections are made between matching

postconditions and preconditions. Usually these dataflow connections are between

abstract parameters but can also be between non-abstract parameters. In the case that

they are abstract, the main purpose is to provide a visual connection between services that

30

is viewable by a human for later use. Additionally, this provides an abstract process

definition that can then be implemented in different ways depending on product data. In

the case that the parameters are not abstract, the process may be immediately executable,

and the process modeling algorithm is effectively determining the most efficient routing

within the implemented automation.

The algorithm continues this backwards mapping approach until no more

candidate processes are returned for preconditions or all of the preconditions have been

satisfied. Unsatisfied preconditions are identified as requiring attention by a user. A user

then needs to look at the unsatisfied preconditions and decide if they can be satisfied

through user input or will require creation of a new service.

Another significant feature of the algorithm is that it allows for multiple queries to

be made by a user simultaneously. In this case, the algorithm must first check to see if

results of already instantiated services are available in order to reduce redundancy in the

process models. If an instantiated service already provides the queried result, then the

algorithm simply tags that result as a match for the query and continues the search. This

can be extremely useful in building a process model that requires multiple results.

The algorithm also flags all queries so that a user can quickly distinguish them

from other service outputs. Execution of the algorithm yields one or more process

models that can provide the queried results.

3.5 Process Analysis and Selection

Once process models have been composed, they can then be analyzed based on

QoS descriptions in the services. In the dynamic product development environment

31

multiple functionally similar processes may exist with similar results. The best of these

candidate processes will provide the best overall quality. Overall quality is not a static

measure and depends on user preferences. For example, in some cases it would be

desirable to select a process with the highest reliability while in another case time may be

the dominating constraint. Overall quality can be represented with a utility function as

follows:

∑
=

=
n

i
ii PQU

1
 (3.1)

where U is the utility of a given process and Qi and Pi are respectively the service quality

and user preference for each quality attribute i. Qi should also be normalized into z-

scores as recommended by Maximilien et al [33] in order to appropriately compare

different quality attributes that may use different scales.

Calculating Qi will depend on the specific quality attribute and its corresponding

aggregation function. Some specific aggregation functions have been identified in other

research [27]. Aggregation functions that will be used in analyzing a later example

include cost, precision, reliability, and execution time and will be described below.

The total cost of a particular process composed of services with solely variable

costs can be defined as

∑
=

=
n

j
jji tvC

1
 (3.2)

32

where vj and tj are respectively the variable cost and execution time for each service j that

belongs to a process i from above. This could be an appropriate cost model for an

engineering analysis scenario in which software licensing agreements for particular tools

could be in terms of a fixed amount of money per unit time of use.

 Precision is easily calculated by finding the value of the service with the

minimum precision level as follows:

}min{ ji vP = . (3.3)

 Process reliability is a product of the reliability ratings of all services in the

process. Thus,

 ni rrrR ...21= . (3.4)

Execution time is computed in a sequential path by summing up the execution

times of each service in the path. For a more general case in which a process may

contain parallel paths, the execution time is the maximum execution time found across all

possible sequential paths. In equation form this gives

}max{ pi TT = (3.5)

where

∑
=

=
n

k
kp tT

1
. (3.6)

33

In the above, Ti is the execution time for process i, Tp is the sum of the execution times

for each possible path p, and tk is the execution time for each service k in each path p.

 These aggregate functions are summarized in the table below.

Table 3.1 QoS aggregation functions

Criteria Aggregation Function

Cost ∑
=

=
n

j
jji tvC

1

Precision }min{ ji vP =

Reliability ni rrrR ...21=

Execution Time
}max{ pi TT = ,

∑
=

=
n

k
kp tT

1

After applying the specific aggregate functions, the process utility can be

calculated as described and the process with the highest utility is selected as the optimal

process. As user preferences change, the system can readjust the utility scores

accordingly and find the new optimal process.

It should be pointed out that this method for optimizing processes is a global

rather than local optimization method. This is due to the fact that decisions on individual

service selection based on QoS are never made. Instead process selection decisions are

made based on overall process utility after services have been selected based on purely

functional criteria. Zeng et al point out this distinction and provide an additional local

method [27]. Although, their research focused on runtime service selection whereas this

work is purely design time. This design time perspective for product development is an

34

extremely important preliminary to any future runtime research because it complements

the current role of human designers who will want, at least initially, to have a static

runtime process in order to evaluate the effectiveness of the proposed automation

framework.

3.6 Process Instantiation

Once the optimal process has been identified, a user will need to instantiate the

process or an alternate process in order to execute or further configure the process. This

is easily enabled by using a formal process modeling language such as Business Process

Execution Language (BPEL) or any other sophisticated XML-based process modeling

language supported with a design time and runtime environment. FIPER makes use of a

proprietary XML-based process modeling language. Because the proposed method is

currently implemented through software extensions on top of FIPER it is very easy to

instantiate, modify, and execute models through a graphical user interface driven by an

underlying XML-based process model.

As described previously, services connected through abstract data types represent

an abstract process. This abstract process can then be further configured by an engineer.

For example, specific product data such as computer-aided design (CAD) files may need

to be pointed to within a particular service. Also additional dataflow connections may

need to be made between non-abstract parameters by a human user. These non-abstract

parameters may not adhere to any particular ontology and it would therefore not be

possible for the process modeling algorithm to find connections between these

parameters.

35

Once the abstract process has been instantiated and any necessary configuration

steps have been made, it can then be executed. As an alternative to execution, the entire

process or parts of the process could be published into the registry to constitute a new

service that would then be more sophisticated than the initial services used to create it.

This new service would then be available in the registry to be used dynamically along

with the other services.

36

37

4 Implementation

The proposed approach to autonomic product development process automation

has been implemented through software customization on top of FIPER. As described

previously, FIPER provides a sophisticated process modeling language that can be used

to represent processes. The processes can be modeled through an intuitive graphical

interface called the Design Gateway (see Figure 4.1).

Figure 4.1 FIPER Design Gateway

38

The FIPER architecture is essentially web-based and supports publishing and

executing services across a network. Additionally, FIPER provides an extensive

application programmatic interface (API) in Java that can be used to efficiently develop

services. This research also demonstrates that the API can also be used effectively as an

interface with middleware in order to discover and select services, and model processes

dynamically.

An example process will now be described in order to illustrate the

implementation and highlight key aspects of the proposed approach. This process is an

automated engineering analysis for an impeller design. A similar analysis was presented

in Karpowitz [8]. This similar analysis will be used in order to highlight improvements

over the previous implementation as suggested by Karpowitz as well as to demonstrate

other key differences in the approach.

4.1 Service Decomposition

The first step in implementing the autonomic automation strategy is to identify the

reusable services that can accomplish the individual process tasks. The previously

described method for identifying services was applied. As in the Karpowitz example, the

process was subdivided into the following tasks:

1. Update the parametric models for structural and air solid wedges.

2. Create surface and volume meshes for the air solid wedge.

3. Determine surface pressure values for the air solid wedge.

4. Create surface and volume meshes for the structural wedge.

5. Determine maximum stress values for the structural wedge.

39

After identifying these tasks, specific CAx tools were selected for each task and

the necessary functionality of each was wrapped in a service. Four services were

developed including a CATIA service, HyperMesh service, FLUENT service, and an

ANSYS service. The CATIA service updates the geometric models. The HyperMesh

service creates meshes based on the geometry. The FLUENT service determines surface

pressure for the air solid wedge using the mesh. Finally, the ANSYS service determines

the maximum stress values for the structural wedge.

Additionally, in order to introduce complexity into the example four additional

services were also created—CAD2, Mesh2, Fluids2, and Stress2. As the service names

imply each of these additional services is identical to a corresponding previously created

service (e.g. CATIA and CAD2 are identical). This added complexity simulates an

industry product development setting in which multiple tools, methods, and technologies

may provide similar results. The flexible automation approach presented here will

identify all potential process configurations using the available services and then identify

the optimal process appropriate for a given set of requirements.

For simplicity all of the services were implemented using FIPER Script

components rather than Web services. The Script component is a basic template that

allows a user to insert Java code inside the component to support any desired

functionality.

40

Figure 4.2 FIPER Script component

The Script uses the Dynamic Java interpreter [35] to run the Java code.

Additionally, any necessary input and output parameters can easily be attached to the

component to facilitate dataflow between other services. If a Web service

implementation is used instead, then this service can be linked into the FIPER

environment via a FIPER Web service component or through developing a custom

component to wrap the Web service.

4.2 Functional Descriptions

As identified throughout this work, it is important to describe the function of the

services at a business logic level so that services can be compared and matched within a

41

robust ontological framework. For example, although a CATIA service is currently

implemented to provide a solid modeling service for the impeller, the CAD2 service also

provides the same functionality. Without a scaleable strategy for describing inputs and

outputs on each of these services, there would be no way to enable dynamic interactions

between services to enable greater system flexibility. As already shown these higher

level functional descriptions can be defined using preconditions, postconditions, and an

ontology to manage naming conventions.

To implement these functional descriptions in FIPER a new data type was

created. FIPER parameters can be of several types including Boolean, Real, and String.

Additionally, new types can be implemented. In this case an “Abstract” type was

developed. The type is called Abstract because it cannot be used to represent real data. It

is used to describe preconditions and postconditions. It is a different type so that it will

flag the user and the system that it is distinct from other data types. It is important to note

that under a normal Web service implementation this additional functional description

could be achieved by using the OWL-S (Web Ontology Language for Service). The

Abstract types implemented in this work are an analogy to the OWL-S preconditions and

postconditions, albeit a simplified one adapted for the FIPER environment.

The conditions or abstract parameters for the services were defined using the

engineering analysis ontology previously described and are summarized in the table

below.

42

Table 4.1 Service abstract parameters (simplified names)

Task Abstract Input
Parameters

Abstract Output
Parameters Services

Stress
analysis

PART,
TOTAL_PRESSURE MAX_STRESS ANSYS, Stress2

Fluid
analysis MESH TOTAL_PRESSURE FLUENT, Fluids2

Mesh
creation PART MESH HyperMesh, Mesh2

Geometry
update MASTER_PARAMETERS PART CATIA, CAD2

The parameter and service names used in Table 4.1 are simplified for

convenience. The full names can be found in the full service descriptions found in

Appendix A, and are consistent with the engineering analysis ontology previously

described.

Abstract parameters for the CATIA service implemented in FIPER are shown in

Figure 4.3.

Figure 4.3 Abstract parameters

43

Additionally, these abstract parameters can be organized using FIPER aggregate

parameters if desired (see Figure 4.4). In this way many abstract parameters could be

organized efficiently according to the vector subspaces described previously for the

engineering analysis ontology (e.g. “Analysis.Geometry.Solid.3D”).

Figure 4.4 Abstract parameters organized in aggregate parameters

4.3 Nonfunctional Descriptions

QoS (Quality of Service) metrics were also defined for each service based on the

engineering analysis ontology. These metrics included variable cost, execution time,

reliability, and precision. These metrics are summarized in Table 4.2. A complete

service description including these QoS metrics can be found in Appendix B.

44

Table 4.2 Quality of Service descriptions

Service Variable
Cost

Execution
Time Reliability Precision

CATIA 11.75 19 0.80 1.00
CAD2 9.75 28 0.81 1.00
HyperMesh 1.75 30 0.90 1.00
Mesh2 0.75 27 0.85 1.00
FLUENT 1.75 90 0.95 0.87
Fluids2 2.75 50 0.97 0.94
ANSYS 3.75 20 0.95 0.91
Stress2 4.75 15 0.94 0.84

The QoS descriptions were each placed in the FIPER component description

fields as shown below.

Figure 4.5 QoS description

45

In the absence of empirical data, values for the metrics were chosen somewhat

arbitrarily except in the case of execution times for which some data existed. In future

implementations these ratings could be monitored and adjusted dynamically using other

agent-based frameworks described previously.

4.4 Publishing

After each service was created and described with both functional attributes

(abstract parameters) and nonfunctional attributes (QoS metrics), each service was

published into the FIPER library as a FIPER model (see Figure 4.6 and Figure 4.7).

Figure 4.6 Published services listed in the FIPER library

46

Figure 4.7 Service organization in the FIPER library

Library attributes were used to describe the QoS metrics for each service as

shown below.

Figure 4.8 Service description

47

4.5 FIPER Process Manager

Once services are published into the FIPER library, they can then be combined

together into larger processes. FIPER functionality allows a human user to create

processes using a graphical interface with “drag and drop” functionality. Dynamic

selection and configuration of services into processes by an agent or another software

application is not supported in FIPER but was implemented in Java using the FIPER API.

The new application, the FIPER Process Manager, has the full functionality

necessary to implement autonomic product development process automation. Key

features of the Process Manager include:

• FIPER library access

• Registry management

• Service discovery and process modeling

• Process analysis

• Process optimization

• Process instantiation into the standard FIPER Design Gateway

These features will be described in more detail using the impeller design example.

4.5.1 FIPER Library Access

A view of the FIPER Process Manager can be seen in Figure 4.9. The Process

Manager contains a “Controls” panel at the top and a “Views” panel at the bottom. The

Controls panel is used to query the Process Manager in order to configure and optimize

processes. The Views panel is used to display results returned by the Process Manager

based on the queries.

48

Figure 4.9 FIPER Process Manager

49

The Views panel contains four tabs: “Service Registry,” “Workflow,”

“Dataflow,” and “Analysis.” The Workflow and Dataflow tabs display currently

configured processes. The Workflow tab provides a view of the sequence of process

steps while the Dataflow tab shows the flow of data or message flow between services.

Finally, the Analysis tab provides analysis information based on the process QoS.

The Service Registry tab contains three tabs: “FIPER Library,” “Yellow Pages,”

and “Provider Info.” The FIPER Library tab provides a standard view of the FIPER

library. The Yellow Pages tab provides a list of available outputs and corresponding

service providers that are published in the FIPER library. Provider Info describes each of

the service providers including inputs, outputs, and quality metrics.

As shown in Figure 4.9, all of the impeller services previously described were

published into the FIPER library and are viewable in the FIPER Library tab. All other

FIPER library functionality is also available here.

4.5.2 Service Discovery and Process Modeling

The Controls panel contains three tabs: “Modeling,” “Optimization,” and

“Preferences.” The Optimization tab is used to select the optimal process. The

Preferences tab can be used to set various options such as whether to configure process

paths in parallel or to configure paths only in series.

The Modeling tab contains three panels: “Search Constraints,” “Process

Searches,” and “Process Creation.” Search Constraints acts as a filter to extract

information from the FIPER library about available services and to populate the Yellow

Pages in the Service Registry. For example, Figure 4.10 shows the Yellow Pages

updated with only services of the designated ontology, parameter type, and library type.

50

Figure 4.10 Search constraints applied to the Yellow Pages

51

A significant aspect of applying filters for the Yellow Pages is that this provides a

way for the process modeling algorithm to more efficiently search available services to

configure processes.

In the Process Searches panel queries can be submitted for new process searches.

After processes have been created, they can be saved, discarded, or instantiated into the

standard FIPER Design Gateway using the Process Creation panel.

For the impeller design case a query of “Structural_Static_3D_MAX_STRESS”

was submitted using the Process Searches panel tab. The Process Manager then executed

the process configuration algorithm described previously and created the sixteen process

combinations that could provide the queried result. All sixteen processes were then

displayed to the user in the Views panel as seen in Figure 4.11 through Figure 4.27. In

this case the process configuration was straightforward because there are four process

steps with two possible services at each step for a total of sixteen combinations.

Figure 4.11 Sixteen impeller design process alternatives

52

Figure 4.12 Impeller design process 1

Figure 4.13 Impeller design process 2

Figure 4.14 Impeller design process 3

Figure 4.15 Impeller design process 4

53

Figure 4.16 Impeller design process 5

Figure 4.17 Impeller design process 6

Figure 4.18 Impeller design process 7

Figure 4.19 Impeller design process 8

54

Figure 4.20 Impeller design process 9

Figure 4.21 Impeller design process 10

Figure 4.22 Impeller design process 11

Figure 4.23 Impeller design process 12

55

Figure 4.24 Impeller design process 13

Figure 4.25 Impeller design process 14

Figure 4.26 Impeller design process 15

Figure 4.27 Impeller design process 16

56

In addition to configuring the services in the proper sequence, the dataflow links

were also created based on matching the abstract parameters (see Figure 4.28).

Figure 4.28 Dataflow schematic

4.5.3 Process Optimization

After the sixteen processes were configured, it was then necessary to select an

optimal process. In order to perform this optimization, the aggregate QoS must be

computed for each process. The aggregate QoS functions described previously (see

Table 3.1) were implemented and the Process Manager applied these functions to each of

57

the processes and displayed this information in the “Analysis” tab (see Figure 4.29). The

absolute values of the aggregate QoS values were displayed as well as normalized, z-

score values.

Figure 4.29 Process analysis

 The total utility of each process is the sum of the products of the z-score values

and the corresponding user preferences. These total utilities are additionally displayed

conveniently in the “Optimization” tab along with a panel to specify user QoS

preferences (see Figure 4.30). In this tab the user can specify new preferences and re-

optimize. To re-optimize, the Process Manager applies the new QoS preferences to

calculate new process utilities. The process with the highest utility is then identified as

58

the optimal process. As seen in Figure 4.30 through Figure 4.32, the optimal process can

change based on changes in QoS preferences.

Figure 4.30 Optimizing for cost

59

Figure 4.31 Optimizing for reliability

Figure 4.32 Optimizing for multiple objectives

60

4.5.4 Process Instantiation

Finally, after the optimal process has been configured the user can use the

“Controls” panel to save the process or instantiate it into the standard FIPER Design

Gateway (see Figure 4.33).

Figure 4.33 Process instantiation into the FIPER Design Gateway

Now a user can utilize the standard FIPER application to make any additional

changes to the process as desired and then execute the process in the FIPER Runtime

Gateway. Alternately, the user could publish the new process as a service back into the

FIPER library. In this way the implementation supports flexible creation of composite

services and process configuration at multiple levels of hierarchy.

61

To demonstrate the flexibility of this approach the newly instantiate abstract

process was then configured with product data for a particular impeller design and then

executed using the FIPER Runtime Gateway (see Figure 4.34).

Figure 4.34 Process execution in the FIPER Runtime Gateway

The execution of each service is nearly identical to the execution described by

Karpowitz in his impeller design example [88], except that in this case the FIPER

application handles all execution details. As described by Karpowitz the CATIA service

takes user inputs for master parameters and updates a parametric impeller model of the

impeller in CATIA V5. Once the model is updated, IGES (a neutral data format) files for

a structural wedge and air solid wedge are exported (see Figure 4.35).

62

Figure 4.35 The CATIA service updates the impeller blade and exports IGES files

Following execution of the CATIA service, the HyperMesh service uses the air

solid IGES file to build surface and volume meshes for finite element calculations as

shown in Figure 4.36.

Figure 4.36 The HyperMesh service creates meshes for finite element calculations

63

Next, the FLUENT service uses the HyperMesh output files and iterates through air

flow calculations to determine the pressure on the impeller blade surfaces. The final

solution is then exported in a text file. Additionally, a pressure distribution image is also

exported (see Figure 4.37).

Figure 4.37 The FLUENT service determines pressure on the impeller blade surfaces

Finally, the ANSYS service takes the data from the FLUENT service and the

structural IGES file and computes stress values for the structural wedge. This

information is exported as a text file and also as an image as shown in Figure 4.38.

64

Figure 4.38 The ANSYS service creates stress plots

Besides executing the process each of the services were also published back into

the FIPER library (see Figure 4.39). By republishing, these new service implementations

become available for dynamic configuration and immediate execution.

Figure 4.39 Republishing services into the FIPER library

65

4.6 Process Modeling Examples

Several additional examples demonstrate the ability of the process modeling

algorithm to efficiently reconfigure the process in a variety of situations.

4.6.1 Changing Fidelity

It is common in product design to analyze the product at increasingly higher

levels of fidelity as more and more product information is created. In the impeller design

example, the process modeling algorithm identified all alternative processes that could

provide the specified functionality, namely “Structural_Static_3D_MAX_STRESS.”

Using the engineering analysis ontology, this query explicitly requires a process that can

provide a three dimensional fidelity analysis. Specifying a slightly different query of

“Structural_Static_2D_MAX_STRESS” produces an entirely different process at a lower

fidelity as shown below. This demonstrates the ability of the system to reconfigure itself

for a new requirement such as fidelity.

Figure 4.40 Lower fidelity analysis

66

4.6.2 Parallel Paths, Multiple Queries, Complex Dataflow

The impeller design process example showed a sequential workflow, single query,

and only a few dataflow mappings. However, the process modeling algorithm can handle

parallel paths, multiple queries, and more dataflow mappings. This complexity can be

demonstrated using the PTS (Product Transformation Schematic) developed by Roach et

al [22]. As described previously, the PTS is a graph-based representation for designing a

product. Using FIPER, the multiple mappings defined by the PTS were implemented as

models and published into the FIPER library as shown below.

Figure 4.41 PTS models

Multiple queries were then submitted to the FIPER Process Manager. Figure 4.42

through Figure 4.46 show the results from the dynamic configuration. These results

demonstrate parallel paths, multiple queries, and complex dataflow.

67

Figure 4.42 PTS dynamic configuration

68

Figure 4.43 PTS complex dataflow

69

Figure 4.44 PTS parallel paths

70

Figure 4.45 PTS multiple queries

71

Figure 4.46 PTS multiple dataflow mappings

4.6.3 Hierarchy

Although complex, the PTS example is somewhat abstract. A more concrete

implementation of the PTS was developed for a consumer product. The design of a

thermometer (see Figure 4.47) was decomposed using the PTS methodology. The

thermometer design can be customized for each customer based on the customer’s

preferences for the shape of the casing, the sophistication of the electronics, and the

responsiveness of the heat sensor. The PTS representation describes how design artifacts

72

such as CAD models, drawings, process plans, and other technical documentation are

parameterized as templates that can then be updated based on specific customer inputs.

Figure 4.47 Thermometer

The PTS mappings were implemented as FIPER models as shown in Figure 4.48

and published into the library.

Figure 4.48 Thermometer design process

73

A query for the completely designed thermometer was then submitted to the

FIPER Process Manager. Figure 4.49 shows the resultant process. This figure is very

similar to Figure 4.43 from the PTS example because the PTS mappings (D, P, G, R, and

S) were used for the thermometer process. Within each of these PTS mappings, the

thermometer has product-specific sub-mappings. Figure 4.50 shows an expanded view of

the S mapping for the thermometer process. This example demonstrates how the system

can be used to dynamically configure a process at different levels of hierarchy.

Figure 4.49 Dynamically configured thermometer process

74

Figure 4.50 Thermometer sub-process

4.6.4 Pruning

A final example demonstrates the ability of the system to efficiently create a sub-

process from a larger process. The PTS methodology was again used to decompose a

theoretical product. The respirator is a consumer product that helps asthmatic patients on

cold days. It consists of an apparatus to fit against the mouth and a heating element

which warms cold air as the patient forces air through it during normal breathing. The

PTS representation of the respirator design process was implemented as one large FIPER

model as shown in Figure 4.51. As in the previous example, this process produces

75

multiple design artifacts including CAD models and various technical documents.

Additionally, it performs various analytical predictions such as cost and life.

Figure 4.51 Respirator design process

Individual sub-models from this larger model were published into the FIPER

library. Then, instead of querying the system for the entire design process, two

analyses—cost and life—were submitted as queries with the results shown below. These

results demonstrate how a sub-process can be efficiently constructed from a larger

process definition based on the desired objectives. This is similar to pruning the larger

process to arrive at the sub-process except in this case a bottoms-up approach is used.

76

Figure 4.52 Respirator sub-process dataflow

77

Figure 4.53 Respirator sub-process workflow

4.7 Benefits

The implementation outlined above provides several key benefits in automating

product development processes. First, the decomposition of processes into reusable

services increases automation efficiency because a standard template is available for a

new implementation instead of rewriting code.

Additionally, the process modeling algorithm provides a dynamic approach to

configuring processes. These processes are streamlined to provide the desired

functionality using concurrent paths and deterministic routings.

78

Two other benefits can be seen in the differences between the impeller design

example presented in this chapter and the example shown by Karpowitz. First, in this

work higher level functionality of the services has been captured through using abstract

parameters and an engineering analysis ontology. This provides an effective means to

dynamically identify alternate services and processes. Second, in this work a QoS

ontology implementation enables process comparisons and optimization.

Because the implementation allows a user to rapidly reconfigure automated

processes as new services are introduced or as requirements or technologies change, the

implementation provides needed flexibility in the dynamic product development

environment.

79

5 Related Work

Because this work is broad in its attempt to provide an overarching approach to more

effective product development process automation, there is no direct mapping between

this and any previous work. However, much related work has been done on key

components of this work including dynamic service discovery, selection, and to a much

lesser degree, process optimization. The most relevant of this related work includes

research by Karpowitz; Zeng; Maximilien, and Singh. Karpowitz’s work is the most

closely related and applies directly to product development, so it will be discussed first.

The work by Zeng is the next closely related and will be discussed second followed by

that of Maximilien and Singh.

5.1 Dynamic Workflow

Karpowitz presented a dynamic workflow framework for implementing product

development process automation involving web services and software agents [8]. Within

this framework, engineering processes are decomposed into specific tasks which are then

individually wrapped in a Web service. A service description is then provided to a

registry management agent that publishes the service to a registry. A knowledge agent

then uses the registry to call the standard reporting methods from the new service to

update the registry with additional descriptive information (e.g. inputs and outputs).

80

Once the service registry is populated, a specific desired output can be provided to the

system through a web browser. A configuration agent then determines the sequence (or

sequences) of service execution that can produce the desired output. This agent can also

grade each sequence based on some predetermined criteria. Finally, an execution agent

can choose the process sequence with the best grade and execute the sequence.

The system demonstrated that engineering processes can be decomposed into web

services. Additionally, it showed that simple services can be combined dynamically to

produce a specific output.

This work has attempted to improve on Karpowitz’s framework in the following

ways. First, the approach implements a new process modeling algorithm to include

bifurcation and multiple queries. A key aspect of the algorithm is its focus on dataflow.

Whereas the algorithm used by Karpowitz is primarily focused on building process

sequences, the dataflow focus of the new algorithm enables concurrent process flows and

multiple dataflow connections for more complex processes.

Second, this work defines functional descriptions for the services based on a

product development ontology to enable dynamic service discovery. These higher level

descriptions provide a more manageable ontological approach than simple name

matching on low level parameters.

Third, nonfunctional descriptions for the services based on a Quality of Service

(QoS) ontology are defined as well as a method to evaluate overall process utility. This

enables process comparisons and optimization to use resources more effectively within

an enterprise.

81

Fourth, this approach was implemented on top of a commercial product

development process integration software (FIPER) in order to facilitate human interaction

with the system and make use of a more sophisticated process modeling language to

support more complex processes.

5.2 Process Optimization

Zeng et al [27] focus their research on selecting Web services for composition

into larger services. As in this work, their’s selects an optimal process based on a utility

function. This utility function takes into account both QoS and user preferences.

Additionally, they provide several aggregation functions as in this work in order to

evaluate QoS of entire processes. They provide a rigorous mathematical approach to the

optimization problem and present two methods for optimization—local and global. In

the local method service selection decisions are based on each individual service QoS. In

the global method services are only selected after considering aggregated QoS metrics

across the entire process.

Their work is complementary to this work because their focus is runtime selection

and the focus of this work is design time selection. Both works present different QoS

aggregation functions that could be used together to support further QoS extensions.

The major difference between their work and this work is their optimization

problem at runtime versus this work’s optimization problem at design time. In the former

case, they provide an extensive definition of a graph representation of an execution path.

Nodes on the graph represent tasks that can be executed by a set of candidate services

based on functional requirements. They define an execution plan as the execution of the

82

execution path after selecting a single candidate service at each node. In this work each

task can also be executed by a set of candidate services. However, candidate services

may also include a composite of several services that are dynamically composed during

the process modeling stage. In other words, in this work optimization is done across an

execution path with expandable nodes. On the other hand their work is more

sophisticated in including conditional paths to support runtime decision making.

Additionally, this work focuses on product development specifics such as

ontological frameworks for functional descriptions and QoS metrics for engineering

analysis services.

5.3 Service Selection Using Quality of Service

Maximilien and Singh have provided a significant amount of research in the use

of multiagent systems for dynamically selecting web services. They have developed a

full ontological representation for QoS [26] that can be extended into specific domains

such as product development. They have also developed trust and reputation models for

using Web services and a method for agents to dynamically monitor and adjust quality

ratings [31] [32]. Additionally, they have integrated these theories into full multiagent

system implementations [15] [33].

Their work has impacted this work in a variety ways. First, this work uses their

QoS ontology for describing nonfunctional service attributes [26]. Several quality

metrics were subclassed from their middle ontology in order to provide an example for

engineering analysis.

83

Second, concepts from their trust model [33] were used to develop the process

utility equation used in this work. However, the formulation used here was much less

sophisticated, and did not incorporate trust and reputation factors. Future work could

include these factors as well as their multiagent approaches in this regard. Such future

work would provide a mechanism for dynamically monitoring and certifying QoS

attributes whereas the current implementation relies on central management by a human

user.

Third, their work makes use of various multiagent system implementations. This

work does not make use of a multiagent system implementation. The implementation in

the current work relies on human users and a single service registry. Some

experimentation was done using the Java Agent Development Environment (JADE) to

perform process configuration queries across a network. However, this experimentation

turned out to be somewhat peripheral to this work.

In the future such multi-agent implementations may become important as the

framework is extended to operate in more open environments and additional concepts of

self-management and autonomic systems are supported. Additionally, agent

collaboration may enable autonomic product development design once the current work

on autonomic product development processes is complemented by autonomic product

data management.

Finally, it is important to point out that a significant difference between this work

and their work is that the focus of this work is on creating larger processes using Web

services and then selecting optimal processes at design time whereas their work focuses

on selecting optimal services during runtime. This design time perspective for product

84

development is an extremely important preliminary to any future runtime research

because it complements the current role of human designers who will want, at least

initially, to have a static runtime process in order to evaluate the effectiveness of the

proposed automation framework.

85

6 Conclusion

The framework presented in this work provides a flexible, standardized approach

to product development process automation. Key elements of the framework include a

formal approach to decompose product development processes into reusable services, a

method to describe functional and quality attributes of services, a process modeling

algorithm to configure processes composed of services, a method to evaluate process

utility based on quality metrics and user preferences, and an implementation that allows a

user to instantiate the optimal process.

Significant contributions to improve product development process automation

effectiveness can be described as follows. First, the decomposition of processes into

reusable services increases automation efficiency because a standard template is available

for a new automation implementation. Thus software maintenance is reduced for new

automation projects because less new code is required.

Second, the process modeling algorithm provides a dynamic approach to

configuring processes. The algorithm streamlines these processes to provide the desired

functionality using concurrent paths and deterministic routings.

Third, in this work higher level functionality of the services has been captured

through using abstract parameters and an engineering analysis ontology. This provides

an effective means to dynamically identify alternate processes. These alternates provide

86

flexible process definitions for an enterprise and reusable templates available for

implementation.

Fourth, in this work a QoS ontology implementation enables process comparisons

and optimization. This QoS ontology also facilitates better process benchmarking and

ensures that best practices are used within an organization.

Fifth, this approach provides a means to instantiate and modify processes, thus

complementing the role of a human user and providing a model driven design to the

process automation activity.

Finally, a process automation activity has been demonstrated for a realistic

engineering analysis, thereby demonstrating the flexibility and merits of the approach

within an industry context.

The current framework should be tested within a commercial enterprise before the

scalability and effectiveness of the approach can be proved. Future work may also

include increased self-management using agent-based frameworks. Such self-

management tasks would include dynamic monitoring and certifying of QoS attributes,

mapping parameters across multiple ontologies, and runtime support.

87

7 References

[1] IBM. “New to SOA and Web Services.” http://www-

128.ibm.com/developerworks/webservices/newto/, (accessed 15 May 2006).

[2] IBM. “Transforming Legacy Applications Into An SOA Framework.”

ftp://ftp.software.ibm.com/software/solutions/pdfs/Transforming_legacy_application

s_into_an_SOA_framework.pdf, (accessed 15 May 2006).

[3] Web Services Interoperability Organization. “WS-I Basic Profile Version 1.1.”

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html, (accessed 15 May

2006).

[4] IBM. “The Vision of Autonomic Computing.”

http://researchweb.watson.ibm.com/autonomic/research/papers/AC_Vision_Comput

er_Jan_2003.pdf, (accessed 16 May 2006).

[5] IBM. “The Eight Elements.”

http://researchweb.watson.ibm.com/autonomic/overview/elements.html, (accessed

16 May 2006).

[6] Lander, S.E. “Issues in Multiagent Design Systems.” IEEE Expert 12, no. 2 (1997):

18-26.

88

[7] Wooldridge, M. An Introduction to MultiAgent Systems. New York: John Wiley &

Sons, 2002.

[8] Karpowitz, D.J. “A Dynamic Workflow Framework for Mass Customization Using

Web Service and Autonomous Agent Technologies.” M.S. thesis, Brigham Young

University, 2006.

[9] Feng, S.C. “Preliminary Design and Manufacturing Planning Integration Using Web-

based Intelligent Agents.” Journal of Intelligent Manufacturing 16 (2005): 423-437.

[10] Campbell, M.I., J. Cagan, and K. Kotovsky. “A-Design: An Agent-based Approach

to Conceptual Design in a Dynamic Environment.” Research in Engineering Design

11 (1999): 172–192.

[11] Birmingham, W.P., and T.P. Darr. “Automated Design for Concurrent Engineering.”

IEEE Expert 9, no. 5, (1994): 35-42.

[12] Sun, J., Y.F. Zhang, and A.Y.C. Nee. “A Distributed Multi-agent Environment for

Product Design and Manufacturing Planning.” International Journal of Production

Research 39, no. 4, (2001): 625-645.

[13] Shen, W., D.H. Norrie, and J.P.A. Barthes. Multi-Agent Systems for Concurrent

Intelligent Design and Manufacturing. London: Taylor and Francis, 2001.

[14] Buhler, P.A., J.M. Vidal, and H. Verhagen. “Adaptive Workflow = Web Services +

Agents.” Proceedings of the International Conference on Web Services, Las Vegas,

NV, 2003. 131-17. CSREA Press. 2003)

89

[15] Maximilien, E.M., and M.P. Singh. “Agent-based Architecture for Autonomic Web

Service Selection.” In Proc. of the 1st International Workshop on Web Services and

Agent Based Engineering, Sydney, Australia, July 2003.

[16] Laukkanen, M., and H. Helin. “Composing Workflows of Semantic Web Services.”

In Proc. of the 1st International Workshop on Web Services and Agent Based

Engineering, Sydney, Australia, July 2003.

[17] World Wide Web Consortium. “Semantic Web.” http://www.w3.org/2001/sw/,

(accessed 17 May 2007).

[18] Palmer, S.B. “The Semantic Web: An Introduction.”

http://infomesh.net/2001/swintro/, (accessed 17 May 2007).

[19] World Wide Web Consortium. “OWL Web Ontology Language Guide.”

http://www.w3.org/TR/owl-guide/, (accessed 17 May 2007).

[20] DAML. “DAML Services.” http://www.daml.org/services/owl-s/, (accessed 17 May

2007).

[21] World Wide Web Consortium. “OWL-S: Semantic Markup for Web Services.”

http://www.w3.org/Submission/OWL-S/, (accessed 17 May 2007).

[22] Roach, G.M., J.J. Cox, and C.D. Sorenson. “The Product Design Generator: A

System for Producing Design Variants.” International Journal of Mass

Customization 1, no. 1, (2005): 83-106.

[23] Young, J.M. “Nesting Automated Design Modules in an Interconnected

Framework.” M.S. thesis, Brigham Young University, 2005.

90

[24] Bailey, M.W., and W.H. VerDuin. “FIPER: An Intelligent System for the Optimal

Design of Highly Engineered Products.” http://www.engineous.com/resources.htm,

(accessed 17 May 2007).

[25] Kao, K.J., C.E. Seeley, S. Yin, and R.M. Kolonay. “Business-to-Business Virtual

Collaboration of Aircraft Engine Combustor Design.” In Proc. of the Design

Engineering Technical Conferences, Chicago, Illinois, 2003.

[26] Maximilien, E.M., and M.P. Singh. “A Framework and Ontology for Dynamic Web

Services Selection.” IEEE Internet Computing 8, no. 5 (September 2004): 84-93.

[27] Zeng, L., B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.

“QoS-Aware Middleware Web Services Composition.” IEEE Transactions on

Software Engineering 30, no. 5, (May 2004): 311-327.

[28] World Wide Web Consortium. “QoS for Web Services: Requirements and Possible

Approaches.” http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/, (accessed 16 May

2007).

[29] Ran, S. “A Model for Web Services Discovery with QoS.” SIGecom Exchanges 4,

no. 1, (2004): 1-10.

[30] Chatterjee, B.S.S., M.D.J.J. Sydir, and T.F. Lawrence. “Taxonomy for QoS

Specification.” Workshop on Object-Oriented Real-Time Dependable systems

(WORDS ’97), IEEE CS Press, 1997.

[31] Maximilien, E.M., and M.P. Singh. “Toward Autonomic Web Services Trust and

Selection.” In Proc. of 2nd International Conference on Service-Oriented

Computing, New York, New York, November 2004.

91

[32] Maximilien, E.M., and M.P. Singh. “Reputation and Endorsement for Web

Services.” SIGecom Exchanges 3, no. 1, (2001): 1-10.

[33] Maximilien, E.M., and M.P. Singh. “Multiagent System for Dynamic Web Services

Selection.” Workshop on Service-Oriented Computing and Agent-Based

Engineering, Ultrecht, Netherlands, July 2005.

[34] Havey, M. Essential Business Process Modeling. Sebastopol, CA: O’Reilly Media,

Inc., 2005.

[35] Hillion, S. “Dynamic Java.” http://koala.ilog.fr/djava/, (accessed 22 May 2007).

92

93

Appendix A. Engineering Analysis Ontology

<ontologies>
 <ontology name="Analysis">
 <discipline name="Geometry">
 <analysisType name="Solid">
 <dimensionality name="3D">
 <condition>MASTER_PARAMETERS</condition>
 <condition>PART</condition>
 </dimensionality>
 </analysisType>
 <analysisType name="Surface"></analysisType>
 <analysisType name="Wireframe"></analysisType>
 </discipline>
 <discipline name="Meshing">
 <analysisType name="Grid">
 <dimensionality name="3D">
 <condition>MESH</condition>
 </dimensionality>
 </analysisType>
 </discipline>
 <discipline name="Fluids">
 <analysisType name="Incompressible">
 </analysisType>
 <analysisType name="Compressible">
 <dimensionality name="3D">
 <condition>TOTAL_PRESSURE</condition>
 </dimensionality>
 </analysisType>
 </discipline>
 <discipline name="Structural">
 <analysisType name="Static">
 <dimensionality name="3D">
 <condition>MAX_STRESS</condition>
 </dimensionality>
 </analysisType>
 <analysisType name="Modal"></analysisType>
 <analysisType name="Creep"></analysisType>

94

 <analysisType name="Impact"></analysisType>
 <analysisType name="Fracture"></analysisType>
 </discipline>
 <discipline name="Thermal"></discipline>
 <discipline name="Cost"></discipline>
 <discipline name="Forging"></discipline>
 <discipline name="Other"></discipline>
 <QoS_metrics>
 <QoS name="Precision">
 <QoS name="RSquared">
 <qValue>
 <min>0.0</min>
 <max>1.0</max>
 <type>real</type>
 </qValue>
 </QoS>
 </QoS>
 <QoS name="Cost">
 <QoS name="VariableCost">
 <qValue>
 <units>USD/hours</units>
 <type>real</type>
 </qValue>
 </QoS>
 </QoS>
 <QoS name="Performance">
 <QoS name="ExecutionTime">
 <qValue>
 <units>seconds</units>
 <min>0.0</min>
 <max>null</max>
 <type>real</type>
 </qValue>
 </QoS>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <min>0.0</min>
 <max>1.0</max>
 <type>real</type>
 </qValue>
 </QoS>
 </QoS_metrics>
 </ontology>
</ontologies>

95

Appendix B. Service Descriptions

<services>
 <service name="org.apdl.Analysis.Geometry.Solid.3D.Update.CATIA">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>11.75</min>
 <max>11.75</max>
 <typical>11.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>5.0</min>
 <max>30.0</max>
 <typical>19.0</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>0.80</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>1.0</min>
 <max>1.0</max>
 <typical>1.0</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>

<precondition>Analysis.Geometry.Solid.3D.MASTER_PARAMETERS</precondition>
 <postcondition>Analysis.Geometry.Solid.3D.PART</postcondition>
 </conditions>
 </service>

96

 <service name="org.apdl.Analysis.Meshing.Grid.3D.Hypermesh">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>1.75</min>
 <max>1.75</max>
 <typical>1.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>15.0</min>
 <max>45.0</max>
 <typical>30.0</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>0.9</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>1.0</min>
 <max>1.0</max>
 <typical>1.0</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>
 <precondition>Analysis.Geometry.Solid.3D.PART</precondition>
 <postcondition>Analysis.Meshing.Grid.3D.MESH</postcondition>
 </conditions>
 </service>
 <service name="org.apdl.Analysis.Fluids.Compressible.3D.Fluent">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>1.75</min>
 <max>1.75</max>
 <typical>1.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">

97

 <qValue>
 <min>20.0</min>
 <max>1000.0</max>
 <typical>90.0</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>0.95</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>0.50</min>
 <max>0.95</max>
 <typical>0.87</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>
 <precondition>Analysis.Meshing.Grid.3D.MESH</precondition>

<postcondition>Analysis.Fluids.Compressible.3D.TOTAL_PRESSURE</postcondition>
 </conditions>
 </service>
 <service name="org.apdl.Analysis.Structural.Static.3D.Ansys">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>3.75</min>
 <max>3.75</max>
 <typical>3.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>10.0</min>
 <max>50.0</max>
 <typical>20.0</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>0.95</typical>
 </qValue>
 </QoS>

98

 <QoS name="RSquared">
 <qValue>
 <min>0.50</min>
 <max>0.98</max>
 <typical>0.91</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>
 <precondition>Analysis.Geometry.Solid.3D.PART</precondition>

<precondition>Analysis.Fluids.Compressible.3D.TOTAL_PRESSURE</precondition>
<postcondition>Analysis.Structural.Static.3D.MAX_STRESS</postcondition>

 </conditions>
 </service>
 <service name="org.apdl.Analysis.Geometry.Solid.3D.Update.CAD2">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>9.75</min>
 <max>9.75</max>
 <typical>9.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>9.0</min>
 <max>39.0</max>
 <typical>28.0</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>0.81</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>1.0</min>
 <max>1.0</max>
 <typical>1.0</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>

99

<precondition>Analysis.Geometry.Solid.3D.MASTER_PARAMETERS</precondition>

 <postcondition>Analysis.Geometry.Solid.3D.PART</postcondition>
 </conditions>
 </service>
 <service name="org.apdl.Analysis.Meshing.Grid.3D.Mesh2">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>0.75</min>
 <max>0.75</max>
 <typical>0.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>12.0</min>
 <max>42.0</max>
 <typical>27.0</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>0.85</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>1.0</min>
 <max>1.0</max>
 <typical>1.0</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>
 <precondition>Analysis.Geometry.Solid.3D.PART</precondition>
 <postcondition>Analysis.Meshing.Grid.3D.MESH</postcondition>
 </conditions>
 </service>
 <service name="org.apdl.Analysis.Fluids.Compressible.3D.Fluids2">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>2.75</min>

100

 <max>2.75</max>
 <typical>2.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>20.0</min>
 <max>500.0</max>
 <typical>50.0</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>0.97</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>0.55</min>
 <max>0.97</max>
 <typical>0.94</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>
 <precondition>Analysis.Meshing.Grid.3D.MESH</precondition>

<postcondition>Analysis.Fluids.Compressible.3D.TOTAL_PRESSURE</postcondition>
 </conditions>
 </service>
 <service name="org.apdl.Analysis.Structural.Static.3D.Stress2">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>4.75</min>
 <max>4.75</max>
 <typical>4.75</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>9.0</min>
 <max>20.0</max>
 <typical>15.0</typical>
 </qValue>
 </QoS>

101

 <QoS name="Reliability">
 <qValue>
 <typical>0.94</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>0.50</min>
 <max>0.98</max>
 <typical>0.84</typical>
 </qValue>
 </QoS>
 </description>
 <conditions>
 <precondition>Analysis.Geometry.Solid.3D.PART</precondition>

<precondition>Analysis.Fluids.Compressible.3D.TOTAL_PRESSURE</precondition>
<postcondition>Analysis.Structural.Static.3D.MAX_STRESS</postcondition>

 </conditions>
 </service>
 <service name="org.apdl.Analysis.Structural.Static.2D.StressCalculations">
 <description>
 <ontology>Analysis</ontology>
 <QoS name="VariableCost">
 <qValue>
 <min>0.01</min>
 <max>0.01</max>
 <typical>0.01</typical>
 </qValue>
 </QoS>
 <QoS name="ExecutionTime">
 <qValue>
 <min>0.01</min>
 <max>1.0</max>
 <typical>0.5</typical>
 </qValue>
 </QoS>
 <QoS name="Reliability">
 <qValue>
 <typical>1.0</typical>
 </qValue>
 </QoS>
 <QoS name="RSquared">
 <qValue>
 <min>0.40</min>
 <max>0.60</max>
 <typical>0.55</typical>

102

 </qValue>
 </QoS>
 </description>
 <conditions>

<precondition>Analysis.Geometry.Solid.2D.MASTER_PARAMETERS</precondition>
<precondition>Analysis.Fluids.Compressible.2D.TOTAL_PRESSURE</precondition>
<postcondition>Analysis.Structural.Static.2D.MAX_STRESS</postcondition>

 </conditions>
 </service>
</services>

	Autonomic Product Development Process Automation
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Service Oriented Architecture
	2.2 Web Services
	2.3 Commercial Product Development Process Automation Tools
	2.4 Autonomic Systems
	2.5 Software Agents
	2.5.1 Agents in Product Development
	2.5.2 Agents and Dynamic Process Configuration

	2.6 Ontologies
	2.6.1 Semantic Web
	2.6.2 Web Ontology Language for Services (OWL-S)
	2.6.3 Quality of Service Ontology

	3 Method
	3.1 Decomposing Product Development Processes into Reusable Services
	3.2 Defining Functional Descriptions for the Services
	3.3 Defining Nonfunctional Descriptions for the Services
	3.4 Service Discovery and Process Modeling Algorithm
	3.5 Process Analysis and Selection
	3.6 Process Instantiation

	4 Implementation
	4.1 Service Decomposition
	4.2 Functional Descriptions
	4.3 Nonfunctional Descriptions
	4.4 Publishing
	4.5 FIPER Process Manager
	4.5.1 FIPER Library Access
	4.5.2 Service Discovery and Process Modeling
	4.5.3 Process Optimization
	4.5.4 Process Instantiation

	4.6 Process Modeling Examples
	4.6.1 Changing Fidelity
	4.6.2 Parallel Paths, Multiple Queries, Complex Dataflow
	4.6.3 Hierarchy
	4.6.4 Pruning

	4.7 Benefits

	5 Related Work
	5.1 Dynamic Workflow
	5.2 Process Optimization
	5.3 Service Selection Using Quality of Service

	6 Conclusion
	7 References
	Appendix A. Engineering Analysis Ontology
	Appendix B. Service Descriptions

