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ABSTRACT 
 
 
 

COMPILATION AND GENERATION OF MULTI-PROCESSOR 

ON A CHIP REAL-TIME EMBEDDED SYSTEMS 

 

Randall S. Klingler 

Department of Electrical and Computer Engineering 

Master of Science 

 

 Current FPGA technology has advanced to the point that useful embedded 

System-on-Programmable-Chips (SoPC)s can now be designed. The Real Time Processor 

(RTP) project leverages the advances in FPGA technology with a system architecture that 

is customizable to specific real-time applications.  The design and implementation of the 

framework for architecting such a system from ANSI-C code is presented.  The Small 

Device C Compiler (SDCC) was retargeted to the RTP architecture and extended to 

produce a generator directive file.  The RTPGen hardware generator was created to 

consume the directive file and produce a highly customized top-level structural VHDL 

file that can be synthesized and programmed onto an FPGA such as the Xilinx Spartan-3.  

Thus, an application specific multiprocessor real-time embedded system is realized from 

ANSI-C code. 
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Chapter 1: Introduction 

 Current trends in system design show migration toward tighter integration.  It is 

now common for processors, memory, and custom hardware to all be contained on a 

single System-on-Chip (SoC) device.  Several recent innovations in hardware/software 

co-design target these SoCs in an effort to improve embedded system performance and 

design [1, 2, 3].  Even more recently, advances in Field Programmable Gate Arrays 

(FPGAs), such as the Xilinx Spartan-3 and Virtex II [4] have made it possible to design 

powerful and easily customizable System-on-Programmable-Chip (SoPC) devices.  

These SoPCs, with their low non-recurring engineering costs and extensive 

customizability represent an increasing portion of embedded system designs.  An FPGA 

has abundant hardware elements but only limited on chip memory space, causing code 

software to be relatively more expensive.  For an FPGA, specialized hardware 

implementations have the triple benefit of being faster, cheaper, and more predictable 

than equivalent software implementations. 

 With abundant hardware resources, an FPGA is a perfect target for a hardware 

assisted real-time embedded system.  The Real Time Processor (RTP) project combines 

the use of customized hardware and a small software real-time operating system (RTOS) 

to take advantage of the strengths inherent in an FPGA.  The RTP project has been given 

application support through the Small Device C Compiler (SDCC) targeted to the RTP 
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architecture, hereafter referred to as the SDCC-RTP compiler, and the RTPGen hardware 

generator.  These application supports, coupled with a VHDL component library 

comprise the entire C-to-FPGA system. 

1.1 – RTP Motivation 

 As FPGAs increase in gate count and memory capacity, SoPCs will continue to 

increase in popularity.  The RTP infrastructure was designed to take advantage of this 

continual improvement in technology, as discussed in the following sections.  The RTP 

project was also created for the purpose of focusing on the strengths of FPGA technology 

in embedded designs.  Chapter 2 describes the RTP system architecture in detail. 

1.2 – RTP Goals 

 The RTP project was designed with the objective of accomplishing the following 

goals: 

• To create the infrastructure to implement customized real-time systems 

• To design a flexible and scalable system framework that targets state-of-the-art 

FPGA technology and that will grow with FPGA advances 

• To provide multiprocessor support 

• To utilize a standard C interface for system development 

• To support resource sharing in a uniform and reliable manner 

• To find the right balance between doing functions in hardware and software 
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1.3 – Related Work 

 The Streams-C C-to-FPGA compiler [5] synthesizes stream-oriented circuits for 

FPGA based computers from a modified version of the C language.  The Streams-C 

compiler is also comprised of a small number of libraries and functions added to the C 

language.  It is primarily targeted to stream-oriented computation on FPGA-based 

parallel computers.  It synthesizes hardware circuits for a target FPGA board (currently 

the Annapolis Microsystems Wildforce board) containing multiple FPGAs, external 

memories, and interconnect.  The Streams-C compiler allows the programmer to specify 

directives to the hardware generator, in the form of pragmas, and uses a pre-processor to 

convert predefined functions into pragmas.  It is shown in [6] that the Streams-C VHDL 

can give a development speedup of 5 to 10 over hand-coded VHDL, at a penalty of area 

utilization (up to 4 times), and circuit speed (up to 50%). 

 Handel-C [7] is designed for C-to-FPGA compilation, and supports soft core 

processors, such as the Xilinx Microblaze, and the Altera NIOS.  Handel-C includes a 

basic component library, and adds simple constructs to ANSI-C that support direct 

generation of hardware.  Its primary function is the implementation of algorithms in 

hardware, and it is targeted primarily to software engineers.  It enables concurrent 

hardware and software development within a modified C language environment.  Some 

of the extensions to ANSI-C include: flexible data widths, parallel processing, and 

communication between parallel elements. 

 Neither Streams-C nor Handel-C are targeted for real-time embedded 

applications, whereas the RTP design is intended primarily for this purpose.  It provides 

hardware to support an RTOS, and is designed to work in a multiprocessor architecture. 
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 There has also been a fair amount of work done on minimizing code size.  Prior 

work in this area, in the order in which they are performed, includes: 

• Compiler optimizations (many of which are discussed in Chapter 3) 

• Peephole rules [12] are used to statically analyze the code generated by the 

compiler and replace sub-optimal code patterns with optimal ones 

• Code compression which requires additional hardware for decompression at run 

time [13] 

 The RTP design leverages the SDCC compiler optimizations coupled with a set of 

peephole rules for code footprint minimization. 

1.4 – Goals for the SDCC-RTP Compiler and the RTPGen Hardware Generator 

 The first goal for the SDCC-RTP compiler is to modify the base compiler to allow 

for proper function call handling of the RTP specific functions that create tasks, 

resources, and devices.  This modification allows the compiler to interface conveniently 

with the generator by means of a generator directive file.  The second goal for the SDCC-

RTP Compiler is to minimize the code size required while maintaining code correctness.  

Since on chip memory is a scarce resource on an FPGA, a minimal code size will help to 

lessen the effects of memory limitations.  A third goal, which is tightly integrated with 

the first goals is to have the code well documented for ease of maintenance and future 

updates as the RTP architecture continues to evolve. 

 The main goal for the RTPGen Hardware Generator is to produce a top level 

structural VHDL file that will synthesize a real-time, application specific system to a 

Xilinx Spartan-3.  This is accomplished by analyzing the compiler-produced generator 
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directive file to determine the equivalency groups of tasks, resources, and devices 

specified by the application programmer in ANSI-C code.  A minimal set of hardware 

components from the RTP VHDL component library are instantiated to create a system 

specifically customized to run the application code. 

1.5 – Contributions 

 The new architecture requires new tools to exploit its technological advances.  In 

this thesis I will present the following contributions: 

1. I helped define the system-level architecture for the RTP project. 

2. I wrote the code generator for the SDCC-RTP compiler, which allows the user to 

develop applications for the RTP system using ANSI-C code and a set of 

predefined RTP specific function calls. 

3. I created a set of peephole optimizations for the RTP architecture that reduce code 

size while preserving correctness.  I also created a separate peephole optimizing 

engine to further analyze and compact the code size. 

4. I designed a methodology to extend the SDCC-RTP compiler to interface with the 

RTPGen hardware generator. 

5. I wrote the code for the RTPGen hardware generator, which speeds development 

time and eliminates human error by automating system generation using a correct-

by-construction methodology.  It produces structural hardware VHDL files that 

are highly customized to the application code. 

6. I produced a much needed document (Chapter 3) that outlines a step-by-step 

method for retargeting the SDCC compiler to new architectures which can be: 
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a. Published on the SDCC web site. 

b. Used to help others wanting to retarget SDCC. 

c. Used as a reference for courses on code generation. 

1.6 – Outline of Thesis 

 This thesis will discuss the implementation of a real-time application specific C-

to-FPGA system, written in C.  This approach differs from the previously discussed C-to-

FPGA implementations [5, 6, 7] in that the application C code is compiled to assembly, 

with the minimal set of hardware required to execute the code being instantiated.  

Chapter 2 describes the RTP system-level architecture.  Chapter 3 steps through the 

process of retargeting (porting) the SDCC compiler to the RTP architecture.  Chapter 4 

discusses the generator support provided by the SDCC-RTP compiler.  Chapter 5 

discusses the assembler and linker.  The implementation of the RTPGen hardware 

generator, along with an example embedded system is found in Chapter 6.  Chapter 7 

contains the conclusion and future research ideas. 
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Chapter 2: Real-Time System on a Programmable Chip 

 The Real Time Processor (RTP) system architecture has features that make it 

especially suited for hosting real-time applications.  It is based on a flexible and scalable 

framework of multithreaded multiprocessors tightly coupled with on-chip resources and a 

hardware assisted Real-Time Operating System (RTOS).  It uses a light-weight 16-bit 

RISC-like processor with instructions to support 32-bit arithmetic.  It also uses an 

innovative task and resource management component called the Task-Resource Matrix 

(TRM).  The RTP System is targeted to FPGAs, in particular the Xilinx Spartan 3-

1500™. 

2.1 – RTP Architecture Overview 

 A multiprocessor embedded system allows multiple high priority tasks to run 

concurrently, maximizing the efficiency of real-time applications, and allowing processor 

resources to be dedicated to servicing hard real-time deadlines.  Tasks are able to 

communicate through shared resources for synchronization and message passing.  These 

shared resources must be statically declared in application code for proper system 

generation.  Tasks must also be statically declared, and thus cannot be dynamically 

created nor destroyed, nor can they dynamically migrate between processors. 
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2.1.1 – RTP System Components 

 A block diagram of the system architecture is shown in Figure 2.1.  Figure 2.1 is 

only representative of one of many configurations possible for the system. 

 

 

Figure 2.1: RTP System Architecture General Overview 
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Not shown in Figure 2.1 are the block RAMs for code and data memory for each 

processor. 

 The architecture is composed of the following elements, which are primitives 

available in the VHDL component library of the RTPGen hardware generator: 

• An array of 1 to n processors, initially limited to 16 maximum.  Each processor 

has its own local memory for code and data.  All tasks on the processor share that 

memory. 

• Each processor has its own local I/O space of up to 256 ports.  A 16-bit I/O bus is 

connected to all local peripherals used by that processor, such as serial ports, 

queues, network interfaces, etc.  All tasks that use the same I/O device must 

reside on the same processor. 

• Peripherals that can be shared by two or more tasks, whether they reside on a 

single processor or on multiple processors, need to be synchronized among the 

competing tasks.  This is done using system “resources” in this architecture.  

These include hardware implementations of semaphores, events, mutexes, timers, 

scratchpad memories, interrupt sources, and similar types of circuits that help 

manage shared resources of any type.  Resources can be locked by a single task if 

mutual exclusion is required. 

• The “task-resource matrix” is an innovative feature of the architecture that 

controls the sharing of resources in a unified way.  It contains a “resource node” 

for each task that needs access to a resource.  The resource node keeps track of 

pending requests and grants for a resource.  The task-resource matrix provides 

information to the scheduler about what tasks are “blocked” waiting for a 
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resource.  This new circuit provides important hardware assistance to the RTOS 

by keeping track of the tasks that are waiting for specific resources. 

• A task module for each task contains information about the task, such as the task 

id, the processor id of where it is executing, its priority, and the value of a timeout 

counter for the task.  This counter allows the task to set a time-limit that it will 

wait for a resource.  Task priority can be dynamically changed, supporting 

operations such as priority inheritance to solve the priority inversion problem. 

• A shared global resource bus is used to access system resources and task modules. 

• The scheduler finds the highest priority ready-task for each processor each cycle 

and passes their task IDs to their respective processors. 

 Along with the aforementioned features of the RTP architecture, there are some 

restrictions.  Processors do not share data or program memory, and the architecture is 

restricted to reside on a single FPGA. 

2.1.2 – The Task-Resource Matrix 

 The Task Resource Matrix (TRM), as seen in Figure 2.1, defines the interaction 

between all tasks and resources in the system.  The TRM does this by tracking the 

allocation of system resources to tasks, synchronization of tasks, and maintaining mutual 

exclusion for shared resources.  It is physically organized by rows of tasks and columns 

of resources.  Once all of the tasks and resources have been defined, a resource node is 

placed at the intersection of tasks and resources.  The RTP RTOS uses the TRM to allow 

each resource to be locked for exclusive use of a task when needed. 
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 Each resource node has interface pins that connect to a task, a resource, a 

processor, and the TRM.  It is through these interfaces that the RTP system facilitates 

inter-process communication.  The Task Resource Matrix and the pin interfaces of 

processors, tasks, resources, and resource nodes is discussed in much more detail in [11]. 

2.1.3 – The Scheduler 

 The real-time scheduler function has been moved entirely from software to 

hardware.  In conjunction with the TRM, the scheduler determines which tasks are ready 

to run and then signals to each processor its highest priority ready-task.  To implement 

priority scheduling, “ready” signals are produced by the TRM to signify which tasks are 

ready to run.  The scheduler compares the priority of all ready tasks, giving higher 

priority tasks precedence.  There is always at least one ready task per processor, the “idle 

task”, which is the lowest priority task and never blocks on any resource.  In order for the 

scheduler to perform optimally, it is necessary to support task priority inheritance by 

temporarily raising the priority of a low-priority task holding a resource that is needed by 

a high-priority task.  Priority inheritance is managed under control of the RTOS. 

 Additional details regarding the hardware implementation of the scheduler can be 

found in [11]. 

2.1.4 – Context Switching 

 Traditionally, context switching requires disabling interrupts, saving all registers 

and other state information for the active task, restoring another task’s state information 

and then re-enabling interrupts.  This can require hundreds of instructions if done in 
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software.  When interrupts are re-enabled, a higher priority interrupt may be pending, 

causing yet another context switch. 

 The RTP System was designed to accelerate an RTOS with hardware resources.  

One specific area that was targeted is the overhead associated with context switching.  A 

traditional embedded system handles an incoming interrupt via two context switches: the 

interrupt service routine (ISR) must save the previous context before calling the interrupt 

handler, following which it must restore the context.  The RTP method of handling 

context switches eliminates the need to save and restore context in an ISR, and nearly 

eliminates the time cost associated with a context switch such that ISRs can be 

implemented as high priority tasks, blocked on the interrupt signal.  This is accomplished 

in hardware by giving each task its own register banks (including temporary registers), 

set of flags, and its own program counter.  The processor sends the task ID of the 

instruction through the pipeline along with the instruction.  To switch context, the 

hardware scheduler has only to provide the processor with the task ID of the highest 

priority task that is ready to execute. 

2.1.5 – The RTP Hardware Assisted RTOS 

 In a typical embedded system, an RTOS receives little or no support from the 

hardware.  It is required to perform context switches, manage memory, protect shared 

resources, pass messages, handle interrupts, and schedule tasks.  The vast majority of 

these functions are typically done in software by the kernel.  The Real Time Processor 

Operating System (RTPOS) is a basic micro-kernel that implements all the necessary 

functions for managing a real-time system.  It provides task structures, blocking and non-
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blocking communication between tasks via the resource primitives previously described, 

events, pre-emptive scheduling, priority inheritance, and system timers. 

 RTPOS is based in part on the Atalanta multiprocessor RTOS kernel as found in 

[15].  In the RTP system architecture, almost all of the functionality traditionally done in 

software is moved to hardware using customized instructions, a hardware scheduler, and 

the TRM.  The cost associated with this additional hardware is not prohibitive on an 

FPGA, where logic elements are abundant.  By moving many of the normal kernel 

functions to hardware, the size of the RTOS code in the scarce memory space on an 

FPGA is drastically reduced. 

 With the hardware assistance previously described, RTPOS is able to perform all 

of the traditional functions described in [15] while only needing a small amount of 

memory, about 315 machine instructions.  This small kernel size allows the RTPOS code 

to be stored locally for each processor in the system.  By comparison, MicroC-OS [16] 

compiled for a Xilinx MicroBlaze requires over 2000 instructions, roughly seven times 

greater.  It would take a similar increase in the number of instructions to implement the 

RTPOS purely in software. 

 Much greater detail regarding the RTPOS kernel including detailed descriptions 

of system calls and comparisons with the Atalanta and MicroC-OS kernels can be found 

in [17]. 

2.2 – The RTP Processor and Instruction Set Architecture 

 The RTP processor was initially designed to use a 16-bit instruction width, but 

that did not provide adequate encoding space, so an 18-bit instruction width is used.  This 
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works nicely with the block RAMs on the Spartan 3-1500 and Virtex II, which are also 

18-bits wide.  A single processor running a single task requires approximately 420 slices 

on a Xilinx Spartan 3-1500.  The RTP processor also includes several custom instructions 

that allow the RTOS to use small software kernel functions to control the hardware and 

manage application software. 

 The RTP processor instruction set includes a variety of custom instructions that 

directly manipulate the hardware for a specific task or resource to assist the RTPOS 

kernel.  These instructions require approximately 15% of the 18-bit instruction decode 

space of the RTP processor. 

 Resource specific control instructions in this new architecture include the 

following: 

• LOCK r: Attempt to reserve system resource r.  If unsuccessful, task is blocked 

until the resource becomes available. 

• NB-LOCK r: Attempt to reserve system resource r without blocking.  Return 

information about the task that has locked the requested resource.  Using this 

information, a task can determine if it successfully locked the resource, or if not, 

what other task has locked it. 

• REL r: Release system resource r so other tasks may reserve it. 

• RST r: Reset system resource r to initial state. 

• ENABLE r: Enable system resource r.  The meaning of this instruction varies for 

each resource. 

• DISABLE r: Disable system resource r.  The meaning of this instruction varies for 

each resource. 
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• SIG1 r: Send signal 1 to system resource r.  The meaning of this instruction varies 

for each resource. 

• SIG2 r: Send signal 2 to system resource r.  The meaning of this instruction varies 

for each resource. 

• READ r: Read the status of system resource r.  The meaning of this instruction 

varies for each resource. 

• WRITE r: Write to the status of system resource r.  The meaning of this 

instruction varies for each resource. 

Task specific control instructions include the following: 

• R_PRIO: Read task information about the current task and store it in a register.  

This information includes task ID, processor ID, task status flags, and task 

priority. 

• W_PRIO: Write the task information stored in a register to a specified task.  This 

is used primarily for priority inheritance. 

• R_TIME: Read the current task’s timeout counter. 

• W_TIME: Write a value to the timeout counter of the current task. 

 There are also 3 predefined functions calls that are handled by the compiler which 

facilitate the real-time processing framework (described in detail in Chapter 4).  Memory 

is accessed via register direct addressing only.  The instructions have the format 

“OPERATION destination, source” where several instructions do not require the source 

and/or destination fields.  Most instructions execute in 1 clock cycle.  Branching and real-

time support instructions may introduce stalls in the pipeline.  The implementation details 
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of the RTP processor can be found in [10].  The RTP instruction set is documented in 

Appendix D. 

2.3 – Related Work 

 Using separate register banks to reduce the penalty for context switching has been 

done before.  The SPARCLE processor, introduced in [18], used four banks of registers 

to store separate contexts.  When switching threads, a trap handler would save the old PC 

and status register, then change the current window pointer to the register bank for the 

new context, and finally restore the new PC and status register.  This greatly reduced the 

amount of data saved and restored by the trap handler.  The RTP architecture provides 

completely separate contexts for each task, including the PC and status register.  Context 

switching is done by the hardware scheduler, not in software as is done by the SPARCLE 

processor. 

 In the Silicon TRON project [19], hardware was used to shorten system calls and 

speed up scheduling.  Modules were created for event flags, semaphores, timers, tasks, 

the scheduler, and a control circuit that interfaced with the CPU using an interrupt and 

status register.  This reduced the RTOS kernel code size by half.  In [20], the time 

required for context-switching in a real-time system was reduced by 50% by adding a 

register cache to a MIPS R3000 core in an ASIC.  The RTP architecture extends these 

ideas by adding additional hardware to nearly eliminate the time cost of context-

switching and reduce further the RTOS kernel code size. 

 The RTP architecture uses a sparse task-resource matrix to manage system 

resources.  The TRM is somewhat similar to the matrix described in [21].  That research 
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described a dense task-resource matrix used for detecting deadlock via reduction of 

unused entries.  The RTP architecture uses the TRM to drive a hardware scheduler. 

2.4 – Additional Considerations 

 Four years ago when we first designed the RTP system architecture, we decided 

upon a custom processor to allow us the ability to define and implement in hardware a 

number of instructions that allowed us to manipulate the hardware directly for a specific 

resource or task.  However, the RTP system architecture would be equally viable with an 

off-the-shelf processor such as the Xilinx MicroBlaze.  The MicroBlaze has support for 

up to 8 Fast Simplex Link (FSL) connections, each of which can be connected to a 

coprocessor.  The custom instructions implemented in the RTP processor could be 

realized via custom coprocessor units attached to the FSL bus. 

 Without the use of the RTP processor, the RTP system architecture still provides a 

compelling methodology of handling interrupts by eliminating the need for interrupt 

handlers.  The hardware scheduler, in conjunction with the TRM, can point the processor 

directly to the task that is blocked on the interrupt.  Instead of the two full context 

switches usually required to process an interrupt, only a single context switch is needed 

to switch to the new task. 

 Using a processor such as the MicroBlaze would provide additional functionality 

not available in the RTP processor, such as hardware dividers, floating point support, and 

more. 



18 

 

 



19 

Chapter 3: Porting the SDCC Compiler 

 The Real Time Processor (RTP) hardware architecture is a vanilla 16-bit 

pipelined RISC-like architecture with some additional support for real-time processing.  

The architecture includes sixteen 16-bit registers, supporting native 16 and 32-bit 

arithmetic and logical operations.  It does not have a hardware integer divider, but will 

compile division/modulo operations to an optimized sequence of assembly instructions.  

There are 3 predefined functions calls that are handled by the compiler which facilitate 

the real-time processing framework.  Memory is accessed via register direct addressing 

only.  The instructions have the format “OPERATION destination, source” where several 

instructions do not require the source and/or destination fields.  Most instructions execute 

in 1 clock cycle.  Branching and real-time support instructions may introduce stalls in the 

pipeline.  The RTP instruction set is documented in Appendix D. 

 

 

 

 

 
 
 
 
Note: The remainder of this chapter is intended as a standalone document suitable for 
publication and/or classroom use. 
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 One major cost relating to the development of a new processor is the need to 

develop an accompanying C-compiler for that processor.  Rather than writing the Real 

Time Processor (RTP) compiler from scratch, three retargetable compilers were 

considered: GCC, LCC, and SDCC.  After considering the strengths and weaknesses of 

the three compilers, and the perceived difficulty of retargeting each compiler for the new 

architecture, SDCC was chosen as the base compiler.  This chapter describes the 

modifications necessary to the base SDCC compiler that are required to target a new 

architecture.  The February 26th, 2004 release of version 2.4 was used as the basis for this 

port.  The development environment consisted of Visual Studio 6.0 on a computer 

running Windows XP, and as a result some of the described changes may not apply to 

other development environments or platforms. 

3.1 – Decision to use SDCC 

 SDCC is an open source, retargetable, optimizing ANSI-C compiler [8] designed 

for 8-bit microprocessors.  It supports global sub-expression elimination, loop 

optimizations (loop invariant, strength reduction of induction variables and loop 

reversing), constant folding and propagation, copy propagation, dead code elimination, 

jump-tables for switch statements, a programmable register allocation scheme, a 

customizable peephole optimizer using a rule-based substitution mechanism, and it 

allows inline assembly code to be embedded anywhere in a function.  The specifics of the 

aforementioned optimizations are covered in detail in the SDCC documentation.  

Retargeting is accomplished by writing C code to translate the SDCC object code data 

structures to assembly instructions for the target architecture.  It also offers the flexibility 
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to provide custom translations for a list of function calls that are specified in the 

compiler. 

 SDCC was chosen due to its many optimizations, ease of handling the predefined 

RTP-specific function calls, and relative ease in developing the register allocation and 

code generation schemes.  Retargeting SDCC involves writing, or rewriting C code.  No 

other languages need to be learned, with the peephole rule language as a possible 

exception. 

3.2 – Base SDCC Complier Functionality 

 The SDCC compiler uses seven phases to compile C source code to optimized 

assembly.  The first 4 phases are architecture independent, while the last 3 phases are 

almost wholly dependent on the target architecture.  The phases (which are briefly 

described in the SDCC documentation [8]) are: 

• Parsing.  In this phase, the C source is parsed, and the abstract syntax tree (AST) 

is generated.  Syntax and semantic checking are done in this phase, as well as 

some high level optimizations. 

• iCode Generation.  This phase takes the AST from the first phase, and generates 

three-operand intermediate codes (iCodes) for an abstract architecture with 

unlimited registers.  Each of the registers is designated a unique name 

iTempXXX, where XXX represents a numeric value.  If desired, a human 

readable version of the iCodes can be printed to a file using the --dumpraw 

compiler flag. 
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• Code Optimizations.  This phase converts iCodes into basic blocks.  Basic 

blocks are blocks of sequential code which are guaranteed to execute without 

jumps or branches.  This attribute makes them easy to analyze and optimize.  The 

basic blocks are put through data and control flow analysis to perform the 

following optimizations: local and global common subexpression elimination, 

dead code elimination, and loop optimizations.  This sequence of optimizations is 

repeated each time the loop optimizations result in changes to the basic blocks. 

• Live Range Computation.  This phase determines when the iTemps are used, 

from initial assignment until final use. 

• Register Allocation.  The register allocation phase is actually two stages [9]:  

1) register allocation, where the set of variables that will exist in registers is 

determined, and 2) register assignment, where specific registers are chosen for 

each variable.  Architecture-specific expression folding, or register packing, is 

done in this phase which reduces register pressure.  This phase uses the live 

ranges computed in the previous stage to assign remaining iTemps to physical 

registers on the target architecture.  Code from similar architectures may be used 

as a basis for register allocation of a new architecture. 

• Code Generation.  This phase maps the iCodes to assembly instructions.  Very 

little code from similar architectures may be used within this phase.  However, the 

general methodology of assigning assembler operands to individual iCodes, as 

done in previously implemented architectures, is a good starting point for code 

generation. 
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• Peephole Optimizations.  This phase uses a rule-based matching system to 

optimize certain sequences of assembly code.  Few rules from existing 

architectures will apply to new architectures.  Appendix A lists the peephole 

optimizations for the RTP architecture. 

 The base SDCC compiler lexes and parses the C source file using FLEX, YAK, 

and BISON.  It then builds the abstract syntax tree (AST) from the output of the parser.  

Details regarding lexical analysis and parsing will not be discussed in this document, nor 

will details concerning the generation of the AST. 

 There are many options in the base SDCC compiler that are architecture specific.  

These options modify the handling of the code during code generation, with parameters 

such as memory models, data type representation sizes, and the various segments of 

memory in the target architecture.  They also specify architecture specific command-line 

option handling, and pragma processing. 

3.3 – Required Changes to Base SDCC Compiler 

 The SDCC compiler was originally designed to target 8-bit architectures, and byte 

addressable memory schemes.  The RTP architecture is a 16-bit architecture, with byte 

addressable (and word aligned) memory.  Memory and register allocation, and memory 

addressing all required several changes to the base SDCC compiler.  Wherever possible, 

the RTP port avoids making changes to the base SDCC compiler source files, as they are 

used by the other supported architectures.  The changes that must be made to the base 

compiler are always preceded by if (TARGET_IS_RTP) {} to guarantee that other 

ports will not be affected.  A more rigorous handling of 16-bit architectures would 
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include modifications to the PORT structure with options for memory width and 

alignment, and register sizes.  This approach was not taken, as the RTP port is not a part 

of the official SDCC source tree, and such an approach would require a multitude of 

changes that would make it difficult to sync with the latest stable branch of the source 

tree. 

 The base SDCC compiler assumes an 8-bit architecture, and therefore allocates 

memory for data structures and registers on the byte-level.  This is problematic when 

targeting the RTP’s 16-bit architecture, as register allocation and memory addressing 

must be done on the 2-byte word level to avoid memory misalignment exceptions.  A 

modification to SDCCmem.c is required for the functions allocParm, allocLocal, 

and deallocLocal, so that the amount of memory allocated for character variables is 

padded when it will cause a non-character data element to have a misaligned memory 

address.  To further guarantee that non-character data is accessed on word boundaries, 

when code is emitted to allocate memory for any data element, an assembler pragma 

“.even” is emitted before the allocation. 

 For register allocations, each call to getSize() (a helper function that returns 

the size of an element in the symbol table) is halved, except in the case of character 

variables.  With an 8-bit scheme getSize() returns the number of bytes for each data 

type, which directly corresponds to the number of 8-bit registers required.  A 16-bit 

architecture requires the number of 16-bit words for register allocation and memory 

addressing, including stack offset pointers. 

 Word-aligned memory requires changes to the symbol table function for struct 

size computations.  The base SDCC compiler allows structs and arrays to be placed at 
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any offset in memory, and allows them to have odd valued sizes.  If a member of a struct 

is not a character, it requires that it be word aligned for memory access.  The symbol 

table function compStructSize() computes the size of a struct, and therefore was 

modified to take into account word alignment for non-character elements.  The size of the 

entire struct is also modified to guarantee an even number of bytes. 

 In addition to the above mentioned changes, several modifications must be made 

to the port.h and SDCCmain.c files.  At the very beginning of port.h, all of the supported 

target architectures are given a unique ID.  A new entry must be added at the end of the 

list for the new architecture.  After the assignments of unique IDs are several macros 

(TARGET_IS_<port>) that are used to test which architecture is being targeted.  A 

new macro should also be created at the end of this list.  The last few lines in port.h 

provide each of the supported architectures with an extern PORT <port>_port 

declaration for use throughout the base SDCC compiler.  An additional declaration 

should be provided for the new architecture.  The final necessary change is in 

SDCCmain.c, beginning at approximately line 275.  At this point in the code an array of 

all targetable architectures is defined, and the new architecture should be appended to the 

end of this list as well. 

 If desired, SDCC_vc.h can be modified such that only one architecture is 

supported by the compiled binary.  This is done by modifying the end of the file to 

contain a #define OPT_DISABLE_<port> line for all unsupported ports defined in 

port.h. 

 Targeting the SDCC compiler to a specific architecture for code generation 

requires the creation of the following 6 files: 
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• main.c, main.h – These files define the built-in functions that should be trapped 

by the compiler, the default port variables, and the peephole optimization rule 

files.  Also, keywords that pertain to the architecture can be specified here in 

order to be properly handled by the lexer.  Some port specific functions are also 

defined here if needed, as well as any declarations and definitions that need a 

global architectural scope.  The main.c source file also contains code to process 

pragma statements. 

• ralloc.c, ralloc.h – These files are used to describe the layout of the register file, 

and the manner in which registers should be allocated for code generation.  Also 

specified are general purpose and scratch register allocation, and any special 

purpose registers that may be required for the architecture.  The live ranges for 

registers are computed by the base SDCC compiler during creation of iCodes and 

basic blocks, and subsequently used within ralloc.c for the register allocation and 

assignment.  Any port specific register packing is done in ralloc.c. 

• gen.c, gen.h – These files are used for the assembly code generation.  An in-depth 

understanding of the ISA for the target architecture is a pre-requisite.  A 

familiarity with the target architecture’s memory addressing modes is also a pre-

requisite. An understanding of the data structures that the base SDCC compiler 

generates and the way they map to the original source code is extremely helpful.  

The gen.h header file contains the definition of assembly operands and operand 

types, while gen.c contains the assembly code generation routines. 

 The changes required for code generation will be covered in this chapter, while 

Chapter 3 discusses the changes required for trapping the predefined RTP function calls. 
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3.4 – The SDCC-RTP Compiler: Code Generation 

 Porting of the SDCC compiler is accomplished in the last 3 stages discussed in 

Section 3.2.  The remainder of this chapter will discuss the details of assigning port 

options, implementing a register allocation scheme, generating assembly code, and a 

method of generating peephole optimizations to optimize and reduce code size. 

3.4.1 – Port Options (main.*) 

 The source files main.c and main.h are the files that pertain to port-specific 

options.  The header file is used to declare any variables that require a global scope for 

the architecture specific files.  In the RTP port, there are no declarations or definitions 

required in main.h. 

 The main.c source file is used to declare architecture-specific variables and 

functions.  The most important aspect of main.c is the declaration of all port specific 

options, primarily the variables within the PORT structure.  These variables are used 

throughout the base SDCC compiler to determine the methods for handling iCode 

generation, memory segmentation, and several optimizations.  The prototypes of the 

built-in functions that will require special handling are defined within a special structure 

called builtins, which is discussed in more detail in Chapter 3.  Any special 

keywords that should be parsed and appropriately handled by the code generator are also 

defined in main.c.  Finally, several helper functions are defined that are called by the base 

compiler to parse command line options, parse #pragmas, and appropriately handle 

parameter passing via registers. 
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 The comments contained within the structure definition in port.h are extremely 

helpful.  Another useful resource for assigning port options is to refer to a previously 

targeted architecture’s PORT declaration as an example. 

3.4.2 – Register Allocation (ralloc.*) 

 The main function for register allocation is _<port>_assignRegisters 

(eBBlock **ebbs, int count), which is a function call specified in the 

architecture’s PORT structure.  This function is called by the base SDCC compiler, and 

takes as parameters a pointer to a list of basic blocks, and the number of basic blocks that 

require register assignment.  Registers must be allocated per given function, so the list of 

basic blocks passed in will only contain the basic blocks for the current function. 

 A basic block is composed of various elements, most of which aid in control flow 

and dataflow analysis.  The elements of the basic block that factor into register allocation 

are 1) iCode *sch, which is a linked list of the iCodes contained by the block, and 2) 

the integers fSeq and lSeq, which are used in conjunction with the seq field of each 

iCode to determine the locality of iCodes with respect to basic blocks. 

Table 3.1: Register Assignments 

Registers Purpose 
R0-R3 Scratch registers (caller saved) 
R4-R8 General purpose registers (callee saved) 
R9 (and R10) Return value registers 
R9-R12 Parameter passing registers 
R13 Stack pointer 
R14 Frame pointer 
R15 Return register 
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 The RTP register file is made of 16 16-bit registers, with the registers assigned as 

listed in Table 3.1.  Note that R10 is only needed as a return register for 4-byte variables.  

The register types and register file layout are defined in ralloc.h. 

 The sequence outlined below is architecture independent, but the implementation 

of the register packing and register allocation functions that are called is highly 

architecture specific.  Register allocation for the RTP architecture is done by taking each 

of the following steps in order: 

• Pack the registers for each basic block, using architecture-specific 

optimizations to reduce register requirements.  Specific optimizations are 

discussed following this list. 

• Recompute the live ranges for all basic blocks, in the event that register 

packing altered the positions (or existence) of some variables.  This is done 

through a call to a helper function within the base SDCC compiler, 

recomputeLiveRanges (ebbs, count). 

• Analyze the recomputed live ranges to determine the type and number of 

registers required (register allocation). 

• Assign physical registers to the variables that require them (register 

assignment). 

• Create the register mask, and update the corresponding field for each iCode.  

The register mask is used to determine all registers that are active during the 

use of the specified iCode, and can be used for other optimizations during 

code generation. 
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• Call the helper function redoStackOffsets(), which will update the 

stack size and stack offsets required by the function, now that registers are 

given a definite assignment. 

• Get a pointer to the first iCode in the chain for the basic block, by calling 

iCodeLabelOptimize (iCodeFromeBBlock (ebbs, count)). 

• Call the code generation procedure gen<port>Code (iCode *ic) to 

generate code for the current function. 

 The code found in the AVR-specific register packing was used as a basis for the 

RTP register packing, and is very straightforward.  The following paragraphs will discuss 

the various register packing scenarios. 

 First, true symbols (symbols that do not have the iTemp field set) that are used in 

an assignment to an iTemp (i.e. iTempXX = TrueSym OP operand), and are 

subsequently used in an assignment such as TrueSym = iTempXX.  The latter assignment 

can be replaced with the former assignment, which is the definition of iTempXX.  This 

will free up the registers used in the second assignment operation, and will most likely 

shorten the live range of such registers. 

 Second, there are several cases where register use is unnecessary, such as the 

address of a true symbol, rematerializable data, and addition and subtraction operations 

that use a rematerializable operand in conjunction with a literal.  In these cases, the 

operands in question need not be stored in registers because they can very easily be 

determined.  Rematerializable data and operands are by definition such data and operands 

that are the result of an operation that can be computed at compile time, and therefore 

need not be assigned to registers. 
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 Thirdly and lastly, in register packing, there are several cases where the register is 

needed for only one use, and possibly can be optimized away.  In the case of variable 

casting for integral promotion, for instance, if the register use being analyzed is the only 

use of the arithmetic operation involved in the cast, then the cast can be replaced by the 

result of the arithmetic operation.  In the case of return values, redundant moves can be 

optimized away. 

 After register packing is performed, register allocation and assignment must be 

performed.  Register allocation involves checking all of the various live ranges for 

registers that are in use.  For all iTemps that are needed for a given live range, the number 

of required registers is computed based on the size of the data stored by the iTemp.  The 

type of register required is also determined at this stage.  If the value will be needed 

across function calls, then a general purpose register is preferred to avoid excessive 

saving and restoring of registers.  Otherwise, a scratch register is adequate. 

 Finally, register assignment takes place.  All iTemps that require registers are 

assigned to physical registers in the architecture.  When the number of physical registers 

required for a given live range exceeds the number of physical registers available, iTemps 

are said to “spill” onto the stack, which results in an increased stack size, and assignment 

of stack offsets to iTemps. 

3.4.3 – Code Generation (gen.*) 

 After registers have been assigned, the next step is to generate code.  Code 

generation is the mapping of intermediate code instructions to machine-specific assembly 

code instructions.  Each intermediate code instruction has a specific operation that needs 
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to be performed.  In the RTP architecture there are 40 operation codes that are recognized 

by the code generation algorithm.  These operation codes are listed in Table 3.2.  There 

are several other operation codes defined in sdccy.h that may be recognized by other 

architectures that provide support for them.  If the options to transform the various 

comparison operations to equivalent forms are enabled in main.c, even fewer operation 

codes will be necessary. 

Table 3.2: RTP Recognized iCode Operation Codes 

Operation Code Notes 
! Logical NOT 
~ Bitwise complement 
UNARYMINUS Unary minus 
IPUSH Push onto stack 
IPOP Pop from stack 
CALL Procedure call 
PCALL Procedure call via pointer 
FUNCTION Function startup boilerplate 
ENDFUNCTION Function cleanup boilerplate 
RETURN Return from procedure/function 
LABEL Generate label 
GOTO Goto label 
+, -, *, /, % Add, subtract, multiply, divide, modulo
>, <, LE_OP, GE_OP, NE_OP, EQ_OP Comparisons {>, <, <=, >=, !=, ==} 
AND_OP, OR_OP && and || 
^, |, BITWISEAND Bitwise XOR, OR, AND 
INLINEASM Generate inline assembly 
LEFT_OP, RIGHT_OP Left and right shifting 
GET_VALUE_AT_ADDRESS Get pointer value 
= Set pointer value or Assign 
IFX If X statement 
ADDRESS_OF Generate address of variable 
JUMPTABLE Create jump table 
CAST Variable casting 
RECEIVE Parameters being received 
SEND Parameters being passed 
ARRAYINIT Array initialization 
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 The gen.h header file contains definitions for the various assembly operand types 

(literal, register, pointer, etc), and a structure that contains all pertinent information about 

the assembly operand, including type, memory segment, size, and value.  Each iCode 

references up to three operands: result, left, and right.  The code generator determines 

which operands are valid based on the operation code, and creates one or more assembly 

operands for the corresponding iCode operand. 

 All ANSI-C compliant source code1 can be broken down into a combination of 

the operation codes listed in Table 3.2.  In most cases, only a single iCode is needed to 

generate code.  In the few remaining cases, it may be necessary to look at the next iCode 

in the chain for example to determine the branch target after a comparison operation.   

 Figures 3.1 through 3.3b illustrate an example of the flow from C code to 

assembly code for the RTP processor.  Figure 3.1 shows the original C source code that 

will be used in this example.  There are several iCode operations in this short example: 

assignment, increment/decrement, multiplication, comparisons, and a function call.  The 

variable c is a global variable, so it will not be allocated a register.  In the doubleit 

function, op is passed in via r9, the first parameter passing register, and since r9 is also 

the return value register, no additional register allocation is required.  In the main 

procedure, a, i, and result are local variables and will be allocated registers.  The 

variable b is not allocated a register because its value is a constant (rematerializable), and 

is replaced inline with the scalar value 2. 

 

                                                 
1 There are several deviations from ANSI-C compliance.  See section 8.2 of the SDCC documentation for 
further details. 
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Figure 3.1: C source code for RTP code generation example 

 When this code is first parsed by SDCC-RTP, the iCode chains contained in 

Figure 3.2 are created (comments added in parentheses), with the exception that LABEL 

iCodes for entry into doubleit and main have been omitted.  The iCodes in each  

 1: char c; 
 2:  
 3: int doubleit (int op) { 
 4:   return (op*2);  
 5: } 
 6: 
 7: int main() { 
 8:  
 9:  int a, b, i, result; 
10: 
11:  a = 1; 
12:  b = 2; 
13:  c = ‘q’; 
14:  result = 0; 
15: 
16:  for (i = 0; i < 10; i++) 
17:    a = a * b; 
18: 
19:  while (c != ‘m’) 
20:    c--; 
21: 
22:  if ( a < 1024) 
23:    result = 1; 
24: 
25:  switch(c) { 
26:    case ‘q’ : 
27:      a = doubleit(a); 
28:      break; 
29:    case ‘m’: 
30:      result = 2; 
31:      break; 
32:    default: 
33:      result = 3; 
34:  } 
35:  if (a != 2048) 
36:    result = 4; 
37: 
38:  Return result; 
39:} /* main */ 
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Figure 3.2: iCode chain for RTP code generation example 

Chain 1: 
 1: FUNCTION (doubleit) 
 2: RECEIVE (parameter) 
 3: LEFT_OP (left shift) 
 4: RETURN (return value from doubleit) 
 5: ENDFUNCTION 
 
Chain 2: 
 1: FUNCTION (main) 
 2: ‘=’ (assignment for variable ‘a’) 
 3: ‘=’ (assignment for variable ‘c’) 
 4: ‘=’ (assignment for variable ‘result’) 
 5: ‘=’ (assignment for variable ‘i’) 
 6: LABEL 1a (for loop jump target) 
 7: ‘*’ (multiply operation) 
 8: ‘-’ (decrement variable ‘i’) 
 9: IFX (comparison on ‘i’; branch LABEL 1b; jump LABEL 1a) 
10:   LABEL 1b (for loop completed jump target) 
11: LABEL 2a (while loop jump target) 
12: NE_OP (comparison of c != ‘m’) 
13:   IFX (branch LABEL 2b) 
14: ‘-’ (decrement variable c) 
15: GOTO (jump to LABEL 2a) 
16: LABEL 2b () 
17: ‘<’ (comparison of a < 1024) 
18:   IFX (branch LABEL 3) 
19: ‘=’ (assignment for result = 1) 
20: LABEL 3 (comparison jump target) 
21: EQ_OP (c == ‘q’) 
22:   IFX (branch LABEL 4a) 
23: EQ_OP (c == ‘m’) 
24:   IFX (branch LABEL 4b) 
25: GOTO (jump to LABEL 4c – default switch target) 
26: LABEL 4a () 
27: SEND (set up parameters for doubleit) 
28: CALL (call doubleit) 
29: ‘=’ (assign a = doubleit(a)) 
30: GOTO (LABEL 4d) 
31: LABEL 4b 
32: ‘=’ (assign result = 2) 
33: GOTO (LABEL 4d) 
34: LABEL 4c 
35: ‘=’ (assign result = 3) 
36: LABEL 4d (switch jump target) 
37: NE_OP (compare a < 2048) 
38    IFX (branch LABEL 5) 
39: ‘=’ (assign result = 4) 
40: LABEL 5 (comparison jump target) 
41: RETURN (return value of ‘result’) 
42: ENDFUNCTION (main) 
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chain are processed sequentially.  There are some cases where iCodes are created during 

code generation.  One example of this can be found in Chain 2 iCode 10, which has been 

underlined.  In this case, the IFX iCode creates a LABEL iCode to use as a branch target.  

Note that this iCode is not inserted into the chain, but is simply created and used 

dynamically. 

 It should also be noted that in Figure 3.2, the iCodes that are indented 2 spaces are 

either created during code generation (line 10), or are processed jointly with the iCodes 

that precede them (iCodes 13, 18, 22, 24, and 38).  This will result in different sequences 

of assembly instructions being generated for the same iCode operation when processed 

jointly than when processed individually. 

 Figure 3.3 contains portions of the assembly code generated from the iCode 

chains in Figure 3.2.  First is listed the header and initialization code as well as the 

doubleit function.  The iCodes that are listed in Chain 1 from Figure 3.2 are included in 

assembly comments with the corresponding lines of the doubleit function.  Figure 3.3 

also contains an excerpt from the main function, and lists the corresponding iCodes from 

Chain 2 in Figure 3.2.  For a full listing of the generated assembly code, including 

peephole rule optimization comments, please see Appendix B. 

 It is recommended in porting the SDCC compiler to maintain a separate code 

generation procedure for each different iCode operation.  This allows for easy debugging 

of generated assembly code, and quickest time to release.  The tradeoff in this 

implementation decision is sub-optimal code, which may be optimized via additional 

peephole rules. 
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Figure 3.3: Assembly code for RTP code generation example 

 .module example1 
 .globl _main 
 .globl _doubleit 
 .globl _c 
 .area DSEG ;(DATA) 
_c:: 
 .even 
 .ds 1 
 
 .area GSFINAL ;(CODE) 
.globl __sdcc_init_data 
__sdcc_init_data: 
 ret ;return to caller 
 .area CSEG ;(CODE) 
 
_doubleit: 
 push r14  ;(1.1) 
 mov r14,r13 ;(1.1) 
 sll r9,0x1 ;(1.2,1.3,1.4) 
_ret_doubleit:  ;(1.5) 
 pop r14  ;(1.5) 
 ret   ;(1.5) 

  
; excerpt from _main: 
 mov r4, 0x1 ;(2.2) 
 mov r0,0x71 ;(2.3) 
 mova r1, _c ;(2.3) 
 st r0,0(r1) ;(2.3) 
 mov r5, 0x0 ;(2.4) 
 mov r6, 0xa ;(2.5) 
L00016:   ;(2.6) 
 mov r0,0x2 ;(2.7) 
 mul r4,r0  ;(2.7) 
 sub r6, 0x1 ;(2.8) 
 be L00027 ;(2.9) 
 jmp L00016 ;(2.9) 
L00027:   ;(2.10) 
L00003:   ;(2.11) 
 mova r0, _c ;(2.12) 
 ld r1, 0(r0) ;(2.12) 
 cmp r1, 0x6d ;(2.12) 
 be L00005 ;(2.13) 
 mova r2, _c ;(2.14) 
 ld r1, 0(r2) ;(2.14) 
 sub r1, 0x1 ;(2.14) 
 st r1, 0(r2) ;(2.14) 
 jump L00003 ;(2.15) 
L00005:   ;(2.16) 
 mova r0,0x400 ;(2.17) 
 cmp r4,r0  ;(2.17) 
 bge L00007 ;(2.18) 
 mov r5, 0x1 ;(2.19) 
L00007:   ;(2.20) 
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3.4.4 – Peephole Rules (peeph.def) 

 Optimal code generation is an NP-complete problem.  Devising a code generation 

algorithm that always generates the most optimal code is impractical if not impossible.  A 

simple way to improve sub-optimal code is to pass the generated assembly language 

instructions through a peephole optimizer [12].  A peephole optimizer recognizes certain 

instruction patterns, and replaces them with optimized instruction patterns.  Each of these 

replacement patterns is called a peephole rule.  This optimization process is given the 

name “peephole” because it is limited to analyzing a small portion of the code at any 

given time. 

 One method for creating a set of peephole rules is to examine the assembly source 

code generated for several different source files, and look for patterns of instructions that 

occur frequently.  There may be instruction sequences that are not only sub-optimal, but 

entirely unneeded.  A peephole rule should be created for this sequence to eliminate it 

entirely.  A good rule of thumb in both hardware and software design is to make the 

common cases fast, while ensuring that the difficult cases remain correct. 

 There are other cases where the compiler emits code that does not take into 

account all of the side effects of certain instructions.  For example, there may be cases 

where the first instruction sets the flags required for a branching operation, but the 

compiler produces a compare instruction in addition to the branch.  The compiler may be 

altered to take this into account, but more likely the lower cost alternative is to use 

peephole rules to optimize this code sequence. 

 The built in peephole optimizer for the SDCC compiler is used at compile time, 

and therefore cannot comprehend optimizations that span two separate iCode chains.  
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This particular shortcoming makes itself manifest in global declaration code, especially if 

multiple global variables are being initialized to the same value.  Because of this 

limitation, a separate Perl-based peephole optimization program was designed to further 

reduce the code footprint.  Perl was chosen due to its excellent ability to parse and 

manage text. 

 A certain subset of peephole rules can be applied to all architectures.  The current 

set of peephole rules for the RTP architecture are listed in Appendix A. 
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Chapter 4: The SDCC-RTP Compiler 

 One particular advantage of SoPCs is the ability to customize the system 

architecture for each different application.  As real-time embedded applications are 

compiled for the RTP architecture, information about the specific resource needs of each 

task in the application is collected and stored so that the system generator can instantiate 

application-specific custom hardware.  The SDCC-RTP compiler targets the RTP 

instruction-set architecture, which contains special instructions that facilitate the efficient 

use of the custom hardware.  The number of processors, the number of tasks, the devices, 

and the required system resources must all be determined statically at compile-time 

because only the minimal hardware necessary will be instantiated by the system 

generator.  The dynamic creation or deletion of tasks cannot be supported as it is in 

software-based architectures. 

4.1 – Built-in Functions 

 The built-in functions are used to statically declare the hardware resources, 

devices, and tasks of the system at compile time.  The definitions associated with any 

hardware element must be declared in a global.h header file.  The template for the 

global.h header file defines the different resource and device types available for the RTP 

architecture.  As new devices or resources are implemented, additional items can be 
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added to the global header file definitions.  The global header file is also used to specify 

all device and resource descriptor numbers as they are unique in the global scope.  The 

device I/O space of each processor is private, but actual device numbers must remain 

globally unique.  This is done by treating the device numbers as (processor number, I/O 

address) pairs.  The global IDs are not limited to 0..255 like I/O addresses are.  Figure 4.1 

shows the template for the global.h header file.  This global header file is included by the 

source files for all processors in the system, allowing them to reference global devices 

and resources. 

 
 

 

Figure 4.1: The global.h Header File Template 

#ifndef __GLOBAL_H__ 
#define __GLOBAL_H__ 
 
enum resource_type { 
  ZRESOURCE, MUTEX, DIS_EVENT, CON_EVENT, 
  SEMAPHORE, TIMER, INTERRUPT, READER, WRITER }; 
 
enum device_type { 
  ZDEVICE, FIFO_READER, FIFO_WRITER, TRANSMITTER, RECEIVER, 
  SCRATCHMEM, FP_ADD, FP_MUL }; 
 
#pragma NUMPROCS_4 
 
/* Resources */ 
/* Mutexes */ 
#define MUTEX1    1 
#define MUTEX2    2 
 
/* Devices */ 
/* FIFOS */ 
#define FIFO1_QU1 1 
#define FIFO2_QU2 2 
 
#endif 
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 The specification of resource and device numbers (also called device descriptors 

in some operating systems) is done via #define RES_NAME <NUM> statements.  The 

preprocessor replaces all #defines with their definition, which means the compiler will 

see these values as if they were literals, and not variables.  Literals are passed directly 

through the compiler’s AST, and are much easier for the compiler to use to build its 

intermediate task-resource symbol table than integer variables.  Were the device and 

resource numbers to be specified as variables, it would be virtually impossible to share 

global descriptor numbers between different source files, as each processor has its own 

data memory. 

 All processors must have their code contained within a separate source file, and 

must specify their processor number with a #pragma PROC<num> line.  The separate 

source files are required because each processor has its own code memory.  An advantage 

of using separate source files is that the main procedure becomes the idle task for the 

given processor.  The PROC<num> pragma is parsed by the compiler and sets a global 

RTP processor variable.  This pragma also creates an assembly directive of the form 

.proc_num PROC_NUM that allows the assembler/linker to produce a memory size 

generator directive.  After parsing this pragma, the RTPsys.gen generator directive file is 

either created if it does not exist, or loaded into the intermediate symbol table if it does 

exist.  To avoid unnecessary recompilation of unchanged processors, only the values for 

the current processor are updated in the directive file.  In global.h, the total number of 

processors must be specified by the #pragma NUMPROCS_<num> line. 
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 If a built-in function is called without a #pragma PROC<num> line, the 

compiler will terminate with a fatal error, and will print an error message to the 

application engineer. 

 The application engineer declares hardware resources, devices, and tasks through 

the use of the following function calls in the application code: 

 

1) int OpenResource (int TYPE, int glob_rd_num, int task_id); 

All tasks that use any hardware resource must declare such use by means of this function 

call.  This function specifies that a resource of type TYPE must be generated for the 

system.  The global resource descriptor number and the id number of the task that will 

use the resource are also passed in as parameters.  Resources are not restricted to a single 

processor, nor to a single task within a single processor.  The only error checking that is 

done by the compiler is to verify that the TYPE specified is consistent across all 

processors and corresponds to an existing hardware resource component available within 

the RTP VHDL library.  There are no limitations to the number of processors or tasks 

that can use a given resource as long as they call this function before use. 

 

2) int OpenDevice (int TYPE, int dev_num, int task_id, int 

base_addr, int size, int glob_rd_num, int off_chip_pin_num); 

All tasks that share the same I/O devices must be assigned to the same processor.  There 

are exceptions to this rule in the case of hardware FIFOs and scratchpad memory.  In the 

RTP VHDL library, a hardware FIFO is composed of both a reader device and a writer 

device.  These FIFO readers and writers can reside on the I/O buses of the same or 
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different processors.  The OpenDevice function specifies that a device of type TYPE 

must be generated for the system.  The global device descriptor number, the task id 

number, and the base I/O address are also passed in as parameters.  An optional size 

parameter is also passed in for devices that can vary in size, which currently only pertains 

to FIFO and scratchpad memory devices.  The final two parameters are also optional for 

devices that will utilize a resource or an off-chip pin.  The compiler checks to see that the 

device does not already exist on another processor, and if it does, prints an error message 

to the user.  On a given processor there is no limitation to the number of tasks that can 

share a device as long as they call this function before use.  Only one task can use a 

specific device at a given time, therefore if a device is shared between tasks a mutex 

resource should be used to ensure exclusive access to the device. 

 

3) int CreateTask ((void *) t_main, int t_priority, int 

stack_size, (void *) arg1, (void *) arg2); 

This function takes five parameters: a function pointer to the task’s main routine, the 

initial task priority id (which is also the task id), the required stack size, and two pointer-

sized arguments for the task’s main routine.  When the compiler parses this function call, 

each parameter is passed along to a function call in the RTOS, _createtask, which 

initializes the task table, and starts the task.  The task table contains the stack size, task 

main routine start location, and two arguments for each task on the processor.  The 

application engineer is the best judge for which tasks require the highest priority, and 

which tasks should be run concurrently.  This is why the priority must be specified with 
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task creation.  The compiler will catch an attempt to assign the same priority to two tasks 

on the same processor, and will print a corresponding error message. 

4.1.1 – Compiler Support for Built-in Functions 

 The base SDCC compiler provides support to define a list of functions with their 

prototypes that will be given special support in the compiler.  The original intent of this 

support was to bridge functions implemented in hardware to application code; however, 

the SDCC-RTP compiler uses this list of predefined functions as the means by which to 

trap the three special functions listed above and use their parameters to create the 

intermediate symbol table described in the following section. 

 The built-in functions are declared using the structure type definition listed in 

Figure 4.2.  The final entry must be given as {NULL, NULL, 0, {NULL}} to specify 

the end of the array.  As mentioned in Figure 4.2, the comments listed before the helper 

function typefromStr describes the manner in which return and parameter types 

should be specified within the structure. 

 

 

Figure 4.2: Built-in Function Structure Type Definition 

 When the code generation algorithm sees a SEND iCode operation code, it checks 

to see if the iCode’s builtinSEND field is masked.  If so, the code generation 

typedef struct builtins { 
  char *name; /* name of built-in function */ 
  char *rtype; /* return type given as string */ 
  int  nParms; /* number of parameters (max 8) */ 
  char *parm_types[MAX_BUILTIN_ARGS]; /*param type as string*/ 
} builtins; /* see typefromStr for more details */
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algorithm will call a special routine that handles the built-in functions, called 

genBuiltIn.  In the general case, this routine should do the following: 

• Call getBuiltinParms, which will populate an array of operands that 

contains the parameters passed into the built-in function. 

• Compare the built-in function name against the list of built-in functions to 

determine which to generate code for. 

• Handle the built-in function in the appropriate manner. 

 In the case of the SDCC-RTP compiler, the final step builds the intermediate 

symbol table entry for the current function, and provides a return value to the callee.  In 

the case of the CreateTask built-in function, the RTOS function create_task is 

also called in order to initialize the task’s startup table, which contains stack size, 

arguments, and initial PC address.  The assembly code for the RTOS is included in 

Appendix C. 

4.2 – Intermediate Symbol Table 

 A small intermediate symbol table (IST) of generator directives is created and 

modified using the globally shared definitions in global.h and calls to the above three 

functions so that the proper generator directive file can be created (updated) upon 

successful compilation.  The intermediate symbol table is contained in a single global file 

RTP_ist.dat.  This file is stored in binary format as human readability is not required.  As 

mentioned earlier, this symbol table only modifies entries for the currently specified 

processor.  The format of the IST is found in Figure 4.3. 
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Figure 4.3: Intermediate Symbol Table for Generator Directives 

4.3 – Generator Directives 

 The three built-in function calls create entries in the IST, which in turn produce 

specific generator directives that signal to the RTPGen hardware generator the nature and 

grouping of the tasks, devices, and system resources.  The RTP architecture uses a system 

specific customized task-resource matrix (see Fig. 2.1) for allocating system resources to 

tasks, keeping track of task state, and maintaining mutual exclusion for shared resources. 

 The compiler generated directive file is created upon successful compilation of 

each processor.  The file is created directly from the IST, and is done in ASCII format.  

This lends itself to human readability so that the application engineer can review the final 

directive file.  The format of the ASCII directive file is as follows, with each directive 

line terminated by a newline character: 

 

struct _RTP_TaskInfo { 
  int proc_id; 
  int task_id; 
  int task_priority; 
  int stk_size; 
  struct _RTP_TaskInfo *nextTask; 
}; 
 
struct _RTP_directives { 
  int res_or_dev; /* 0 = res, 1 = dev */ 
  int type; 
  int res_dev_num; 
  int task_id; 
  int proc_id; 
  int size; /* if needed, for device */ 
  int res_id; /* if needed, for device */ 
  int off_chip_pin_num; /* if needed, for device */ 
  struct _RTP_directives *nextDir; 
}; 
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P_<NUM_PROCS> 

M_<PROC_ID> :CODE_SIZE :CODE_FNAME :DATA_SIZE :DATA_FNAME 

T_<ID> :Proc_ID :TASK_PRIORITY 

R_<glob_RD_num> :TYPE :PROC_ID :TASK_ID 

D_<glob_DD_num> :TYPE :PROC_ID :TASK_ID :BASE_ADDR :SIZE 

:RES_ID :PIN_NUM 

 The P_ directive specifies to the generator the number of processors in the system.  

The M_ directive is created by the assembler/linker to provide the code and data memory 

sizes and filenames required for the given processor.  The T_ directive specifies to the 

generator the task modules that need to be created for the given processor at the specified 

priority level.  The R_ directive specifies a task-resource node in the task-resource matrix 

for the given processor and task.  The D_ directive specifies a device that is accessed by 

the given processor and task, with its base address and optional size parameter specified.  

The resource id and pin number parameters are also optional for devices.  The P_, R_ and 

D_ directives describe to the generator each hardware unit that must be instantiated in the 

top level VHDL file. 
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Chapter 5: The Assembler and Linker 

 After the C source files have been compiled to assembly language instructions, 

the assembler and the linker take the assembly files created by the compiler and generate 

machine code and data memory images that are downloaded onto an FPGA.  This chapter 

will first discuss the implementation details of the assembler followed by the 

implementation details of the linker. 

5.1 – The Assembler 

 The purpose of the assembler is to translate the assembly instructions created by 

the compiler into machine code instructions.  The as-rtp assembler is based on the 

ASXXXX assembler, a freeware retargettable assembler included in the SDCC source 

tree.  The ASXXXX assembler consists of two main parts: 1) the “generic” part that 

remains unchanged between architectures, and 2) the architecture specific code that 

specifies the manner in which the byte-codes should be emitted. 

 The generic part of the ASXXXX assembler parses and lexicographically 

analyzes the assembly source code, and builds the symbol table.  In order to properly 

interface with the architecture-specific labels and keywords that should be recognized, a 

mnemonic structure must be created that lists all of the recognized mnemonics, and the 

corresponding bit-patterns that should be generated for each mnemonic.  These 
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mnemonics are categorized by syntactic groupings, i.e., arithmetic, control, or branch 

operations. 

 The architecture specific code must do the following: 

• Receive the mnemonic from the generic part to lookup the syntactic group. 

• Reads the correct number of operands based on syntactic group. 

• Determine the operands for the op-code, using a helper function to retrieve 

operand types. 

• Determine the actual op-code (byte-code) based on operand types, i.e., 

register-register or register-literal. 

• Emit byte-code, or relative code if relativeness cannot yet be determined. 

 The assembler creates a .rel file, which is the relocatable code file that the linker 

will process.  The format of the .rel file can be seen in Table 5.1.  The Assembler begins 

Table 5.1: Assembler Relocatable File Format 

Line Type Format 
Meaning 

Example(s) 

XH (1st line) %c%c 
Hex format, MSB first 

XH 

H (2nd line) H %d areas, %d global symbols 
Summary 

H 5 areas, 4 global symbols 

M (3rd line) M <module name> 
Module name 

M example 

A A <seg> size %d flags %d 
Area (segment) information 

A CSEG size 6E flags 0 

S S <symbol> [Ref|Def|Abs]%d 
Global Symbol in current segment 

S _main Def0008 

T T aa <addr> <inst> <inst> <inst> 
True code emitted 

T 03 0000 1500E 0400E (code) 
T 03 0000 F3 3A 77 22 (data) 

R R aa <addr> <how> <symbol> 
Relocatable patch instructions 

R 03 0001 AREA_MOVA SSEG 
R 03 0007 JUMP _ex1_code 
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the .rel file with 3 lines that describe the contents of the remainder of the file to the linker.  

All global symbol definitions pertain to the most recent segment specified on an A line.  

T lines contain either code or data emissions, within relative code or data space of the 

specified segment.  If the relativity of the code is not yet known, then an R line is emitted 

to signal to the linker that the code must be patched at link-time.  Table 5.2 lists the six 

Relocatable patch instructions. 

Table 5.2: Assembler Relocatable Patch Instructions 

Patch Instruction Resolution 
DATA Patches a 16-bit address reference in a data segment 
MOVA Patches 2 16-bit addresses in a “MOVA Rx, Symbol” instruction 
MOVL Patches lower 16-bit address in a “MOVA Rx, Symbol” instruction 
MOVH Patches upper 16 bit address in a “MOVA Rx, Symbol” instruction 
JUMP Patches a 12-bit absolute address in a jump or call instruction 
BRCH Patches a 10-bit PC-relative address in a branch instruction 
 
 
 
 The code for a given source file may refer to symbols (either code or data) that 

exist in a separate source file or segment.  The assembler emits code on a per-segment, 

per-source-file basis, which is why the relativity of the code may be unknown at time of 

assembly. 

5.2 – The Linker 

 The purpose of the linker is to take the relative code emitted by the assembler and 

to patch up each relocatable address with an actual address.  The final output of the linker 

is executable machine code and data memory images for each processor required by the 
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system.  In comparison to the amount of code required by the assembler, the linker is 

very simplistic. 

 The linker utilizes a module/segment approach to link the assembled code.  Each 

.rel source file is considered a module, and within each module there are different 

segments for code and data.  See table 5.3 lists the valid segments that have been 

predefined in both the assembler and the linker.  

Table 5.3: RTP Segments 

Segment Description Type 
CSEG Code Segment Code 
GSINIT Global and Static Initialization Segment Code 
GSFINAL Global and Static Final Segment Code 
DSEG Data Segment Data 
SSEG Stack Segment Data 

 
 
 
 For each module, the linker starts to build pieces of each defined segment as they 

are encountered.  If the linker finds multiple pieces of the same segment in different 

locations within the same module, the assembled code or data is appended to the current 

contents of that segment.  Within each segment will be the three line types described in 

the previous section as R, S, and T.  True code and global symbols are placed in the 

memory images as they are, and data structures are created for the relocatable code.  

When all modules have been read in, the linker uses the specific patch instructions to 

iterate through all of the relocatable code, and assign to each an actual memory location, 

as all true code and global symbols now have specific memory addresses. 
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 After all of the relocatable code has been relocated, what is left is a true image of 

code and data memory.  The linker then outputs a single CODE segment, which is 

created with ordering of the sub-segments as follows: 

1. GSINIT code, if present 

2. GSFINAL code, if present 

3. CSEG code, if present 

 The DATA segment is created such that the DSEG and SSEG are together in the 

same file.  The total length of the DSEG and the total length of the SSEG are added 

together and rounded to the nearest 1K bytes, as the DATA on the FPGA must fit into an 

even number of block RAMs.  The DSEG is placed at the bottom of this allocated DATA 

segment, and the SSEG is placed at the top of the DATA segment, to allow the stack to 

grow downward.  If the RTP platform were enhanced to support malloc or similar 

memory allocation mechanisms, then an additional HSEG (Heap segment) would need to 

be defined, and would be placed in the DATA segment just above the DSEG to allow the 

heap to grow upward. 

 The Linker can take command line arguments to specify the file format of the 

output code and data files as either Intel .hex format, which can be used in an RTP 

simulator, or as Xilinx .coe and .xcp format, which are used as input files for the RTPGen 

Hardware Generator. 
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Chapter 6: The RTPGen Hardware Generator 

 Once compilation from C to RTP assembly instructions has been done, the system 

generator will have the necessary directives to begin architecting the system.  Figure 6.1 

shows the complete dataflow for C-to-FPGA compilation.  The RTPGen Hardware 

Generator takes as inputs the assembly files and the generator directive file produced by 

the SDCC-RTP compiler, and ultimately outputs several VHDL and EDIF files.  This 

process will be described in more detail throughout this section. 

 The ability to customize the system architecture for each different real-time 

application is exploited by having the compiler statically analyze the application code to 

determine: 

• how many processors are required, 

• the number of tasks, 

• the static assignment of each task to a specific processor, 

• the default task priority within each processor, 

• what resources are needed by each task (what nodes are needed in the task-resource 

matrix), 

• the amount of code and memory for each processor, and 

• what I/O devices are used by each processor. 
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Figure 6.1: Dataflow for C-to-FPGA Compilation 

 Once the compiler (and in the case of code and memory size, the assembler) has 

extracted these parameters, the RTPGen hardware generator can proceed with 

architecting the system.  After parsing the generator file, the RTPGen hardware generator 

passes all of the assembly files to the assembler and linker to produce one set of files per 

processor, which includes code and data memory files.  The RTPGen hardware generator 
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takes the output of the linker and runs the .coe and .xcp files through the Xilinx coregen 

to generate the memory image files for each processor. 

 A complete basic set of the resource and device modules, as well as the RTP 

processor, has been compiled as a library of VHDL and EDIF entities.  The top level 

VHDL file created by the RTPGen hardware generator calls the elements in the library 

and the elements created by the Xilinx coregen program to assemble the entire 

architecture.  These entities are instantiated and integrated together in order to be 

synthesized specifically for the given application. 

6.1 – Instantiation of Processors 

 The RTPGen hardware generator takes as its main input the RTPsys.gen generator 

directive file.  This file is described in detail in Section 4.3.  As the generator directive 

file is parsed, each device and/or processor is instantiated in memory.  The assembly 

source files for each processor must be contained in a file named proc<proc_num>.asm.  

The data and instruction memory images for each processor, once assembled and linked, 

will be contained in files named proc<proc_num>.[data|code].<extension>.  The M_ 

directive in RTPsys.gen will specify these filenames.  When the M_ directive is parsed, 

the processor interface and declaration are instantiated, as well as the corresponding data 

and memory block rams and interfaces. 

 The RTP processor contains ports to interface with: data memory, instruction 

memory, the scheduler, I/O devices, resources, tasks, the Task Resource Matrix, and 

specific nodes in the Task Resource Matrix.  The hardware implementation of the RTP 

processor, resources, devices, and the Task Resource Matrix is the subject of [10]. 
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6.2 – Creation of Tasks, Resources, and Devices 

 When the RTPGen hardware generator processes a T_ directive, a task interface 

and declaration are instantiated, allocating the task to a specific processor, and assigning 

the task the specified priority.  All of the tasks assigned to the same processor share the 

same code and data memory.  A hardware scheduler determines which tasks will execute 

on which processor at a given time.  Each task contains signals to interface with: a 

specific processor, the scheduler, and a resource node. 

 The R_ and D_ directives specify resources and devices that need to be 

instantiated.  Resource modules are instantiated in a manner described in the following 

section that allows them to be shared between the tasks on all processors that need them.  

Resource modules interface with processors and resource nodes.  Device modules are 

used for I/O, and are instantiated along the processor I/O bus of the specified processor 

only.  They are not shared between processors.  Devices interface with processors and 

off-chip inputs/outputs. 

6.3 – RTP Simptris Example 

 To better illustrate the RTP C-to-FPGA system, this section will walk through an 

example embedded design.  The basis of this example will be the BYU ECEn 425 

Simptris Lab.  Simptris is a tetris-like game, but with only two types of pieces: corner 

pieces and straight pieces.  It uses an interrupt scheme to signal when new pieces arrive, 

pieces touch the bottom of the screen, lines are cleared, etc.  For the purpose of this 

example what would have been an interrupt in Simptris will be signaled via semaphores. 
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Figure 6.2: RTP System Diagram for Simptris Example 

One processor (P0) will generate all of the interrupts (i.e. act as the game engine), while a 

second processor (P1) will service all of the interrupts (i.e. play the game). 

 For this example, the RTP system diagram can be seen in Figure 6.2.  Code and 

data block RAMs are not shown.  Hardware FIFOs are used to pass messages between 
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the two processors, and between two of the tasks on the second processor.  Several mutex 

resources are used by both processors to protect shared memory locations.  The boxes 

labeled “X” signify nodes in the TRM.  For the sake of space in the diagram, the 

FIFO_READER and FIFO_WRITER resources have been combined into one entry in the 

figure, with the corresponding resource nodes being marked “R” or “W” to distinguish 

between the two.  P0T0 and P1T0 are the idle tasks for each processor and are therefore 

not shown in the system diagram. 

 Resources labeled “Q1”, “Q2”, “Q3”, and “Q4” are all queue resources, 

connected to hardware FIFOs for message passing.  The resources labeled “Game Over”, 

“New Piece”, “Touch Down”, “Recvd Cmd”, “Sent Cmd”, “Line Clear” and “Tick” are 

interrupts, implemented in this example as semaphores.  “Mutex 1, “Mutex 2”, and 

“Mutex 3” are mutex resources used to protect shared memory, and “Sem 1” is a 

semaphore resource used in processor 0 as a means of stepping the game engine.  A more 

detailed description of what each resources is used for is included in the description of 

each task below. 

 The global system header file, as seen in Figure 6.3 contains defines for all of the 

resource and device types and IDs.  Each FIFO device has a single device ID, however 

both a FIFO_READER and FIFO_WRITER device type must be created for each FIFO 

in order to both read from and write to the queue. 
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Figure 6.3: RTP Simptris global.h 

enum resource_type { 
  ZRESOURCE, MUTEX, DIS_EVENT, CON_EVENT, 
  SEMAPHORE, TIMER, INTERRUPT, READER, WRITER }; 
 
enum device_type { 
  ZDEVICE, FIFO_READER, FIFO_WRITER, TRANSMITTER, RECEIVER, 
  SCRATCHMEM, FP_ADD, FP_MUL }; 
 
#pragma NUMPROCS_2 
 
/* Resources */ 
/* Mutexes */ 
#define MUTEX1             1 
#define MUTEX2             2 
#define MUTEX3             3 
 
/* Semaphores */ 
#define SEM1               5 
#define SEM2               6 
 
/* Readers / Writers */ 
#define QU1_R              7 
#define QU1_W              8 
#define QU2_R              9 
#define QU2_W              10 
#define QU3_R              11 
#define QU3_W              12 
#define QU4_R              14 
#define QU4_W              15 
 
/* Interrupts */ 
#define INT_GameOver       35 
#define INT_NewPiece       36 
#define INT_TouchDown      37 
#define INT_RecvdCmd       38 
#define INT_LineCleared    39 
#define INT_Tick           40 
#define INT_SentCmd        41 
 
/* Devices */ 
/* FIFOS */ 
#define FIFO_QU1  1 
#define FIFO_QU2  2 
#define FIFO_QU3  3 
#define FIFO_QU4  4 
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 The ten tasks shown in Figure 6.2 along with a brief description of what each task 

does and the other tasks with which it communicates are: 

• P0T1: Core task.  This task is responsible for generating the “Game Over”, “New 

Piece”, “Touch Down” and “Line Clear” interrupts.  It communicates directly 

with P0T2 via “Sem 1” to know when the game should process the playing field, 

with P0T4 via “Mutex 2” for processing slide and rotate commands and with 

P0T5 via “Mutex 1” for adding new pieces to the playing field.  Before signaling 

“Touch Down”, the information regarding the piece that has touched down is 

placed in Q3. 

• P0T2: Game Tick Task.  This task communicates with P0T1 via “Sem 1” that the 

game should process any pending commands, and move each piece on the playing 

field downward. 

• P0T3: Tick task.  This task is used to generate the “Tick” interrupt, which is used 

by P1 to keep track of statistics. 

• P0T4: Command task.  This task blocks on the “Sent Cmd” interrupt.  Once this 

interrupt has been signaled this task reads the command from Q1, which is 

populated by P1.  “Mutex 1” is used to protect the memory where the pending 

commands are stored until they can be processed by P0T1.  The “Recvd Cmd” 

interrupt is then generated after a small delay. 

• P0T5: Piece task.  This task generates new pieces for the playing field.  As the 

number of lines cleared increases, the delay between new pieces decreases.  This 

task communicates with P0T1 after each new piece is created.  It then places the 

piece information in Q2 to later be consumed by P1. 
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Figure 6.4: RTP Simptris proc0.c 

/* Create Resources and Nodes */ 
/*P0 T1 */ 
_OpenResource(MUTEX, MUTEX1, 1); 
_OpenResource(MUTEX, MUTEX2, 1); 
_OpenResource(SEMAPHORE, Sem_GameTick, 1); 
_OpenResource(WRITER, QU3_W, 1); 
_OpenResource(SEMAPHORE, INT_NewPiece, 1); 
_OpenResource(SEMAPHORE, INT_TouchDown, 1); 
_OpenResource(SEMAPHORE, INT_LineCleared, 1); 
_OpenResource(SEMAPHORE, INT_GameOver, 1); 
/*P0 T2 */ 
_OpenResource(SEMAPHORE, SEM1, 2); 
/*P0 T3 */ 
_OpenResource(SEMAPHORE, INT_Tick, 3); 
/*P0 T4 */ 
_OpenResource(SEMAPHORE, SEM2, 4); 
_OpenResource(SEMAPHORE, INT_RecvdCmd, 4); 
_OpenResource(READER, QU1_R, 4); 
_OpenResource(MUTEX, MUTEX2, 4); 
/*P0 T5 */ 
_OpenResource(MUTEX, MUTEX1, 5); 
_OpenResource(WRITER, QU2_W, 5); 
 
/* Create Devices */ 
_OpenDevice(FIFO_READER, FIFO_QU1, 4, 0, 8, QU1_R, NULL); 
_OpenDevice(FIFO_WRITER, FIFO_QU2, 5, 8, 8, QU2_W, NULL); 
_OpenDevice(FIFO_WRITER, FIFO_QU3, 1, 16, 32, QU3_W, NULL); 
 
/* Create Tasks */ 
task_error = _CreateTask((void *) Core_task, 1, 60, 0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) GameTick_task, 2, 30, 0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) Tick_task, 3, 30, 0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) Command_task, 4, 30, 0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) Piece_task, 5, 30, 0, 0); 
if (task_error) return task_error; 
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• P1T1: GameOver task.  This task blocks on the “Game Over” interrupt.  As this is 

the highest priority task on P1, the other tasks on P1 will be blocked until the 

system is reset once this interrupt is received. 

• P1T2: NewPiece task.  This task blocks on the “New Piece” interrupt.  Upon 

receiving this interrupt the piece information is retrieved from Q2, and the 

commands to be performed on the piece are communicated to P1T4 via Q4.  

“Mutex 3” is used to protect the shared memory region in P1 for tracking which 

pieces are still in play. 

• P1T3: TouchDown task.  This task blocks on the “Touch Down” interrupt.  Once 

received, it retrieves the information regarding which piece is out of play from 

Q3, and then blocks on “Mutex 3” to update P1’s piece tracking variables. 

• P1T4: Command task.  This task blocks on the “Recvd Cmd” interrupt.  When 

signaled, it blocks on Q4 until a new command is ready to be sent to P0.  To 

determine if the piece is still in play, “Mutex 3” is used to ensure that the most 

current piece information is available.  If the piece is not in play, the task blocks 

again on Q4 until a new command is ready.  Once a command is received for a 

piece in play, the command is placed in Q1 and the “Sent Cmd” interrupt is used 

to signal P0 that a new command is ready. 

• P1T5: Stats task.  This task keeps track of game statistics, such as the number of 

lines cleared and the number of game ticks signaled.  It uses non-blocking 

resource acquisition to allow it to process both “Line Clear” and “Tick” 

interrupts. 
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Figure 6.5: RTP Simptris proc1.c 

/* Create Resources and Nodes */ 
/*P1 T1 */ 
_OpenResource(SEMAPHORE, INT_GameOver, 1); 
/*P1 T2 */ 
_OpenResource(MUTEX, MUTEX3, 2); 
_OpenResource(SEMAPHORE, INT_NewPiece, 2); 
_OpenResource(READER, QU2_R, 2); 
_OpenResource(WRITER, QU4_W, 2); 
/*P1 T3 */ 
_OpenResource(MUTEX, MUTDX3, 3); 
_OpenResource(READER, QU3_R, 3); 
_OpenResource(SEMAPHORE, INT_TouchDown, 3); 
/*P1 T4 */ 
_OpenResource(MUTEX, MUTEX3, 4); 
_OpenResource(SEMAPHORE, SEM2, 4); 
_OpenResource(SEMAPHORE, INT_RecvdCmd, 4); 
_OpenResource(READER, QU4_R, 4); 
_OpenResource(WRITER, QU1_W, 4); 
/*P1 T5 */ 
_OpenResource(SEMAPHORE, INT_Tick, 5); 
_OpenResource(SEMAPHORE, INT_LineCleared, 5); 
 
/* Create Devices */ 
_OpenDevice(FIFO_WRITER, FIFO_QU1, 4, 0, 8, QU1_W, NULL); 
_OpenDevice(FIFO_READER, FIFO_QU2, 2, 8, 8, QU2_R, NULL); 
_OpenDevice(FIFO_READER, FIFO_QU3, 3, 16, 32, QU3_R, NULL); 
_OpenDevice(FIFO_WRITER, FIFO_QU4, 4, 58, 8, QU4_R, NULL); 
_OpenDevice(FIFO_READER, FIFO_QU4, 2, 58, 8, QU4_W, NULL); 
 
/* Create Tasks */ 
task_error = _CreateTask((void *) GameOver_task, 1, 12, 0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) NewPiece_task, 2, 12, 0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) TouchDown_task, 3, 12,0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) Command_task, 4, 12, 0, 0); 
if (task_error) return task_error; 
 
task_error = _CreateTask((void *) Stats_task, 5, 0, 0, 0); 
if (task_error) return task_error; 
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Figure 6.6: RTP Simptris RTPsys.gen 

P_2 
M_0 :4096 :proc0.code.hex :2048 :proc0.data.hex 
T_1 :0 :1 
T_2 :0 :2 
T_3 :0 :3 
T_4 :0 :4 
T_5 :0 :5 
R_1 :1 :0 :1 
R_2 :1 :0 :1 
R_5 :4 :0 :1 
R_12 :8 :0 :1 
R_36 :4 :0 :1 
R_37 :4 :0 :1 
R_39 :4 :0 :1 
R_35 :4 :0 :1 
R_5 :4 :0 :2 
R_40 :4 :0 :3 
R_6 :4 :0 :4 
R_38 :4 :0 :4 
R_7 :7 :0 :4 
R_2 :1 :0 :4 
R_1 :1 :0 :5 
R_10 :8 :0 :5 
D_1 :1 :0 :4 :0 :8 :7 :0 
D_2 :2 :0 :5 :8 :8 :10 :0 
D_3 :2 :0 :1 :16 :32 :12 :0 
M_1 :4096 :proc1.code.hex :2048 :proc1.data.hex 
T_1 :1 :1 
T_2 :1 :2 
T_3 :1 :3 
T_4 :1 :4 
T_5 :1 :5 
R_35 :4 :1 :1 
R_3 :1 :1 :2 
R_36 :4 :1 :2 
R_9 :7 :1 :2 
R_15 :8 :1 :2 
R_3 :1 :1 :3 
R_11 :7 :1 :3 
R_37 :4 :1 :3 
R_3 :1 :1 :4 
R_6 :4 :1 :4 
R_38 :4 :1 :4 
R_14 :7 :1 :4 
R_8 :8 :1 :4 
R_40 :4 :1 :5 
R_39 :4 :1 :5 
D_1 :2 :1 :4 :0 :8 :8 :0 
D_2 :1 :1 :2 :8 :8 :9 :0 
D_3 :1 :1 :3 :16 :32 :11 :0 
D_4 :2 :1 :4 :58 :8 :14 :0 
D 4 :1 :1 :2 :58 :8 :15 :0
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 After compiling and assembling the code for both processors, the RTPsys.gen file 

contains the lines listed in Figure 6.6.  With this input file, the RTPGen hardware 

generator can create the top-level VHDL file for the system.  A portion of the VHDL file 

created by the system generator can be seen in Figures 6.7, 6.8, and 6.9. 

 

 

Figure 6.7: RTP Simptris VHDL Declarations for Processor 0 

--------------------------------------------------------------------------- 
-- processor interface  Processor 0 
--------------------------------------------------------------------------- 
-- scheduler interface 
signal p0_tid     : std_logic_vector(3 downto 0) 
-- instruction memory interface 
signal p0_iaddr   : std_logic_vector(11 downto 0); 
signal p0_iout    : std_logic_vector(17 downto 0); 
signal p0_ien     : std_logic; 
-- data memory interface 
signal p0_daddr   : std_logic_vector(14 downto 0); 
signal p0_din     : std_logic_vector(15 downto 0); 
signal p0_dout    : std_logic_vector(15 downto 0); 
signal p0_we      : std_logic_vector(1 downto 0); 
-- i/o device interface 
signal p0_xid     : std_logic_vector(7 downto 0); 
signal p0_xrd     : std_logic; 
signal p0_xwr     : std_logic; 
signal p0_xin     : std_logic_vector(15 downto 0); 
signal p0_xout    : std_logic_vector(15 downto 0); 
-- resource-matrix interface 
signal p0_rid     : std_logic_vector(7 downto 0); 
signal p0_req     : std_logic; 
signal p0_gnt     : std_logic; 
signal p0_min     : std_logic_vector(15 downto 0); 
signal p0_mout    : std_logic_vector(15 downto 0); 
-- resource commands 
signal p0_enable  : std_logic; 
signal p0_disable : std_logic; 
signal p0_sig1    : std_logic; 
signal p0_sig2    : std_logic; 
signal p0_read    : std_logic; 
signal p0_write   : std_logic; 
signal p0_release : std_logic; 
signal p0_reset   : std_logic; 
signal p0_lock    : std_logic; 
signal p0_nb_lock : std_logic; 
-- task commands 
signal p0_ptid    : std_logic_vector(7 downto 0); 
signal p0_rd_time : std_logic; 
signal p0_wr_time : std_logic; 
signal p0_rd_prio : std_logic; 
signal p0_wr_prio : std_logic; 
--------------------------------------------------------------------------- 
-- task interface : Task 1 
--------------------------------------------------------------------------- 
signal p0t1_mout     : std_logic_vector(15 downto 0); 
signal p0t1_priority : std_logic_vector(3 downto 0); 
signal p0t1_ready    : std_logic; 
signal p0t1_sel      : std_logic; 
signal p0t1_readyin  : std_logic; 
signal p0t1_grantin  : std_logic; 
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 Figure 6.7 shows the signal declarations for processor 0 and one of its tasks.  

Figure 6.8 shows the instantiation of processor 0.  Finally, Figure 6.9 shows the 

instantiation of processor 0 task 1, and the scheduler for processor 0. 

 

 

Figure 6.8: RTP Simptris VHDL Instantiation of Processor 0 

--------------------------------------------------------------------------- 
-- processor 0 (5 tasks) 
--------------------------------------------------------------------------- 
-- processor 
P0 : processor_sch 
generic map ( 
  NTASKS => X"5", 
  PROC_ID => X"0" 
) 
port map ( 
  -- globals 
  clk                => clk, 
  reset              => rst, 
  -- data memory 
  DataMemInput       => p0_dout, 
  DataMemOut         => p0_din, 
  DataMemAddressOut  => p0_daddr, 
  DataMemWE          => p0_we, 
  -- inst memory 
  PCimem             => p0_iaddr, 
  ImemOutIR          => p0_iout, 
  InstMemEnable      => p0_ien, 
  -- device interface 
  IOinput            => p0_xin, 
  IODataOut          => p0_xout, 
  IOAddressOUT       => p0_xid, 
  EnableIOOut        => p0_xrd, 
  IOwe               => p0_xwr, 
  -- scheduler interface 
  SchedulerTaskIn    => p0_tid, 
  -- task interface 
  TaskIdAddress      => p0_ptid, 
  TRM_read_priority  => p0_rd_prio, 
  TRM_read_time      => p0_rd_time, 
  TRM_write_priority => p0_wr_prio, 
  TRM_write_time     => p0_wr_time, 
  --resource interface 
  TRM_request        => p0_req, 
  ResourceGranted    => p0_gnt, 
  ResourceAddressOut => p0_rid, 
  TRMDataOut         => p0_mout, 
  TaskResourceMatrixInput => p0_min, 
  TRM_disable        => p0_disable, 
  TRM_enable         => p0_enable, 
  TRM_lock           => p0_lock, 
  TRM_nb_lock        => p0_nb_lock, 
  TRM_release        => p0_release, 
  TRM_read           => p0_read, 
  TRM_write          => p0_write, 
  TRM_reset          => p0_reset, 
  TRM_sig1           => p0_sig1, 
  TRM_sig2           => p0_sig2 
); 
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Figure 6.9: RTP Simptris VHDL Instantiation of P0 Task 1 and Scheduler 

 In summary, the system generator uses the source files global.h, proc0.c and 

proc1.c to produce the top-level structural VHDL file for a custom architecture.  This 

--------------------------------------------------------------------------- 
-- task 1 
--------------------------------------------------------------------------- 
P0t1 : task 
generic map ( 
  PROC  => X"0", 
  TASK  => X"1" 
) 
port map ( 
  -- globals 
  clk        => clk, 
  msec_tic   => msec_tic, 
  rst        => rst, 
  PPPP       => p0_ptid(7 downto 4), 
  TTTT       => p0_ptid(3 downto 0), 
  data_in    => p0_mout(15 downto 0), 
  data_out   => p0t1_mout(15 downto 0), 
  -- commands from processor 
  read_time  => p0_rd_time, 
  write_time => p0_wr_time, 
  read_prio  => p0_rd_prio, 
  write_prio => p0_wr_prio, 
  nb_lock    => p0_nb_lock, 
  -- interface to task scheduler 
  priority   => p0t1_priority, 
  ready_out  => p0t1_ready, 
  -- interface to task-resource nodes 
  ready_in   => p0t1_readyin, 
  sel_task   => p0t1_sel, 
  grant_in   => p0t1_grantin 
); 
 
--------------------------------------------------------------------------- 
-- scheduler for processor 0 
--------------------------------------------------------------------------- 
P0_sc : scheduler 
generic map ( 
  PROC_ID   => X"0", 
  NUM_TASKS => X"5" 
) 
port map ( 
  Priority1 => p0t1_priority, 
  Ready1    => p0t1_ready, 
  Priority2 => p0t2_priority, 
  Ready2    => p0t2_ready, 
  Priority3 => p0t3_priority, 
  Ready3    => p0t3_ready, 
  Priority4 => p0t4_priority, 
  Ready4    => p0t4_ready, 
  Priority5 => p0t5_priority, 
  Ready5    => p0t5_ready, 
  Priority6 => gnd4, 
  Ready6    => gnd, 
<through Task15> 
  -- ReadyTask ID 
  ReadyTaskID => p0_tid 
); 
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custom architecture contains exactly the hardware necessary to execute the system 

provided in this example. 
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Chapter 7: Conclusions and Future Work 

 The SDCC-RTP C to FPGA design flow enables rapid development of System-

on-Programmable-Chip designs.  It is a self-contained set of development tools that 

allows the design engineer to provide C source code and a global.h file that specify the 

required number of processors, tasks, and resources, and then utilizes this information to 

build the top-level structural VHDL file.  Targeting FPGAs allows the designer to 

quickly and cost-efficiently develop a multi-processor real-time embedded SoPC. 

7.1 – Contributions Revisited 

 The introduction of this thesis detailed six contributions that were made.  These 

contributions were defining the RTP system-level architecture, porting of the SDCC 

compiler to the RTP architecture, creation of a set of peephole optimizations for the RTP 

architecture to reduce code size, extending the SDCC compiler to interface with the 

RTPGen hardware generator, development of the RTPGen hardware generator, and a 

document that can be used for porting the SDCC compiler to new architectures. 

 The RTP system architecture is described in Chapter 2.  The details of developing 

the SDCC-RTP code generator are contained in Chapters 3 and 4.  The details of the RTP 

assembler are found in Chapter 5.  Code generation and assembly are necessary to allow 

the RTP processor to execute code. 
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 The set of peephole optimization rules for the RTP architecture can be found in 

Appendix A.  These rules help to minimize the required code size for the generated 

assembly instructions from the compiler.  A discussion of peephole optimization rules is 

found in Section 3.4.4. 

 The RTPGen hardware generator can take the code generated by the SDCC-RTP 

compiler coupled with the directive file and create an optimized SoPC design.  This 

process is described in Chapter 6, including an example real-time system to better 

illustrate the RTP system architecture. 

 A helpful document that can be used to help others port the SDCC compiler to 

new architectures is found in Chapter 3, which is also intended to be published as a self-

contained document.  Chapter 3 can also be used as an additional reference for a course 

on compilers and code generation. 

7.2 – Future Work 

 Compiling code optimally is an NP-complete problem.  There are many factors 

that play into optimal code generation, such as optimal register allocation and 

assignment, or optimal code sequencing based on future operations (compiler look-ahead 

depth).  Any of these areas could be explored in greater detail. 

 One optimization that would significantly reduce code size would be to initialize 

the global data upon assembly declaration.  This would eliminate the need to use code 

space to perform the initializations. 
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 Another area that can potentially result in a significant reduction of code size is 

code compression with hardware support for decompression [13,14].  This methodology 

would require both hardware and compiler support. 

7.3 – Final Words 

 The primary motivation of this thesis is the belief that FPGA advances in size and 

speed continue to make compelling arguments for development of customized 

application-specific processing elements.  I believe I have provided the initial framework 

for developers to design such a system, and have the sincere hope that others will 

continue to improve upon my work. 
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Appendix A: Peephole Rules for the SDCC-RTP Compiler 

replace restart { 
  pop   %1 
  push  %1 
} by { 
  ; Peephole 1     removed pop %1 push %1 
} 
 
replace restart { 
  pop   %1 
  mov   %2,%3 
  push  %1 
} by { 
        ; Peephole 2     removed pop %1 push %1 
  mov   %2,%3  
} 
 
replace restart { 
  add %2, %1 
  mov %1, %2 
} by { 
  ; Peephole 3 removed mov %1, %2 
  add %1, %2 
}  
 
replace restart { 
  sub %1,%2 
  cmp %1,0 
  be  %3 
} by { 
  sub %1,%2 
  ; Peephole 4    removed cmp %1, 0 
  be  %3 
} 
 
replace restart { 
  push %1 
  pop %1 
} by { 
  ; Peephole 5 removed push %1 pop %1 
} 
 
 
replace restart { 
  mov  r1, %1 
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  mov  %2, r1 
} by { 
 ; Peephole 6 removed redundant mov r1, %1 
  mov %2, %1 
}  
 
replace restart { 
  mov  r0, %1 
  mov  %2, r0 
} by { 
  ; Peephole 7 removed redundant mov r0, %1 
  mov %2, %1 
} 
  
replace restart { 
  mov  r0, %1 
  add  %2, r0 
} by { 
  ; Peephole 8a removed mov r0, %1 (add) 
  add %2, %1 
}  
  
replace restart { 
  mov  r0, %1 
  addc  %2, r0 
} by { 
  ; Peephole 8b removed mov r0, %1 (addc) 
  addc %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  sub %2,r0 
} by { 
  ; Peephole 9a removed mov r0 %1 (sub) 
  sub %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  subc %2,r0 
} by { 
  ; Peephole 9b removed mov r0 %1 (subc) 
  subc %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  cmp %2,r0 
} by { 
  ; Peephole 10a removed mov r0 %1 (cmp) 
  cmp %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  cmpc %2,r0 
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} by { 
  ; Peephole 10b removed mov r0 %1 (cmpc) 
  cmpc %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  and %2,r0 
} by { 
  ; Peephole 11a removed mov r0 %1 (and) 
  and %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  andc %2,r0 
} by { 
  ; Peephole 11b removed mov r0 %1 (andc) 
  andc %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  or  %2,r0 
} by { 
  ; Peephole 12a removed mov r0 %1 (or) 
  or  %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  orc %2,r0 
} by { 
  ; Peephole 12b removed mov r0 %1 (orc) 
  orc %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  xor %2,r0 
} by { 
  ; Peephole 13a removed mov r0 %1 (xor) 
  xor %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  xorc %2,r0 
} by { 
  ; Peephole 13b removed mov r0 %1 (xorc) 
  xorc %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  cmp %2,r0 
} by { 
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  ; Peephole 14a removed mov r0 %1 
  cmp %2, %1 
} 
 
replace restart { 
  mov r0,%1 
  cmpc %2,r0 
} by { 
  ; Peephole 14b removed mov r0 %1 
  cmpc %2, %1 
} 
 
replace restart { 
  ld  r0, %1(%2) 
  mov %3,r0 
} by { 
  ; Peephole 15 removed mov %2, r0 
  ld  %3, %1(%2) 
} 
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Appendix B: Assembly for RTP Code Generation Example 

;-------------------------------------------------------- 
; File Created by SDCC : FreeWare ANSI-C Compiler 
; Version Real Time Processor 1.0Beta Mon Jan 30 22:07:11 2006 
 
;-------------------------------------------------------- 
 .module example1 
  
;-------------------------------------------------------- 
; Public variables in this module 
;-------------------------------------------------------- 
 .globl _main 
 .globl _doubleit 
 .globl _c 
;-------------------------------------------------------- 
;  ram data 
;-------------------------------------------------------- 
 .area DSEG ;(DATA) 
_c:: 
 .ds 1 
;-------------------------------------------------------- 
; overlayable items in  ram  
;-------------------------------------------------------- 
 .area OSEG ;((UNUSED in RTP) OVR,DATA) 
;-------------------------------------------------------- 
; external initialized ram data 
;-------------------------------------------------------- 
;-------------------------------------------------------- 
; global & static initialisations 
;-------------------------------------------------------- 
 .area GSFINAL ;(CODE) 
.globl __sdcc_init_data 
__sdcc_init_data: 
 ret ;return to caller 
;-------------------------------------------------------- 
; code 
;-------------------------------------------------------- 
 .area CSEG ;(CODE) 
;------------------------------------------------------------ 
;Allocation info for local variables in function 'doubleit' 
;------------------------------------------------------------ 
;op                        Allocated to registers r9  
;------------------------------------------------------------ 
; example1.c 3 
; ----------------------------------------- 
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;  function doubleit 
; ----------------------------------------- 
_doubleit: 
 push r14 
 mov r14,r13 
; example1.c 4 
 sll r9,0x1 
_ret_doubleit: 
 pop r14 
 ret 
;------------------------------------------------------------ 
;Allocation info for local variables in function 'main' 
;------------------------------------------------------------ 
;a                         Allocated to registers r4  
;b                         Allocated to registers  
;i                         Allocated to registers  
;result                    Allocated to registers r5  
;------------------------------------------------------------ 
; example1.c 7 
; ----------------------------------------- 
;  function main 
; ----------------------------------------- 
_main: 
 push r4 
 push r5 
 push r6 
 push r14 
 mov r14,r13 
 push r15 
; example1.c 11 
; Peephole 7 removed redundant mov r0, 0x1 
 mov r4, 0x1 
; example1.c 13 
 mov r0,0x71 
 mova r1, _c 
 st r0,0(r1) 
; example1.c 14 
; Peephole 7 removed redundant mov r0, 0x0 
 mov r5, 0x0 
; example1.c 16 
; Peephole 7 removed redundant mov r0, 0xa 
 mov r6, 0xa 
L00016: 
; example1.c 17 
 mov r0,0x2 
 mul r4,r0 
; example1.c 16 
; Peephole 9a removed mov r0 0x1 (sub) 
 sub r6, 0x1 
; Peephole 4    removed cmp r6, 0 
 be L00027 
 jmp L00016 
L00027: 
; example1.c 19 
L00003: 
 mova r0, _c 
 ld r1, 0(r0) 
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; Peephole 15    removed mov r1, r0 
; Peephole 10a removed mov r0 0x6d (cmp) 
 cmp r1, 0x6d 
 be L00005 
; example1.c 20 
 mova r2, _c 
 ld r1, 0(r2) 
; Peephole 9a removed mov r0 0x1 (sub) 
 sub r1, 0x1 
 st r1, 0(r2) 
 jump L00003 
L00005: 
; example1.c 22 
 mova r0,0x400 
 cmp r4,r0 
 bge L00007 
; example1.c 23 
; Peephole 7 removed redundant mov r0, 0x1 
 mov r5, 0x1 
L00007: 
; example1.c 25 
 mova r0, _c 
 ld r1, 0(r0) 
; Peephole 15    removed mov r1, r0 
; Peephole 10a removed mov r0 0x6d (cmp) 
 cmp r1, 0x6d 
 be L00008 
 mova r0, _c 
 ld r1, 0(r0) 
; Peephole 15    removed mov r1, r0 
; Peephole 10a removed mov r0 0x71 (cmp) 
 cmp r1, 0x71 
 be L00009 
 jump L00010 
; example1.c 27 
L00008: 
 push r14 
 push r0 
 push r1 
 push r2 
 push r3 
 mov r9,r4 
 call _doubleit 
 mov r6,r9 
 pop r3 
 pop r2 
 pop r1 
 pop r0 
 pop r14 
 mov r4,r6 
; example1.c 28 
 jump L00011 
; example1.c 30 
L00009: 
; Peephole 7 removed redundant mov r0, 0x2 
 mov r5, 0x2 
; example1.c 31 
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 jump L00011 
; example1.c 33 
L00010: 
; Peephole 7 removed redundant mov r0, 0x3 
 mov r5, 0x3 
; example1.c 34 
L00011: 
; example1.c 35 
 mova r0,0x800 
 cmp r4,r0 
 be L00013 
; example1.c 36 
; Peephole 7 removed redundant mov r0, 0x4 
 mov r5, 0x4 
L00013: 
; example1.c 38 
 mov r9,r5 
_ret_main: 
 pop r15 
 pop r14 
 pop r6 
 pop r5 
 pop r4 
 ret 
 .area CSEG ;(CODE) 
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Appendix C: RTP RTOS Assembly Source Code 

 .title Real-Time Processor Operating System 
 .subtitle composed by Matt Young, the Programmator 
 .module rtos 
 ;; NOTE - moved timeout value to r10 in re seek from r12, adjust 
not done yet 
 ; compiled with command: "as-rtp -xlos rtos.asm" 
 
 ; resource constants 
 suspend = 1 
 scheduler = 0 
 resourceRMW = 2 
 BLOCK = 3 
 NONBLOCK = 4 
 
 ; return codes 
 ERROR_CODE = 1 
 AOK_CODE = 0 
 
 ;; TASK FLAGS 
 READY_FLAG = 0x10 
 
 .area GSINIT 
 
 .org 0 
  
 and R3, 0  ; clear unused registers 
 and R4, 0 
 and R5, 0 
 and R6, 0 
 and R7, 0 
 and R8, 0 
 and R11, 0 
 and R12, 0 
 
 .globl __sdcc_init_data 
 
 ;; the very first thing to do is call __sdcc_init_data if we are 
task 0 
 
 r_prio R0 ; PPPP TTTT FFFF XXXX   XXXX=Priority FFFF = 
Flags PPPP = processor TTTT = Task 
 srl R0, 12 
 and R0, 0xF  ; R0 contains TTTT 
 cmp R0, 0 
 bne _nott0 
 mova R15, _nott0 
 mova R0, __sdcc_init_data 
 jre 0(R0) 
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_nott0: r_prio R0 ; PPPP TTTT FFFF XXXX   XXXX=Priority FFFF = 
Flags PPPP = processor TTTT = Task 
 mov R1, R0 
 srl R1, 12 
 and R1, 0xF  ; PPPP 
 mova R2, my_proc_id 
 st R1, 0(R2) ; store PPPP in my_proc_id 
 
 
 ; store PPPP in proc_id 
 srl R0, 8 
 and R0, 0xF  ; TTTT in R0 
 sll R0, 3 ; 8 * TTTT(8 = sizeof task table element 
 mova R1, tasktable 
 add R0, R1 ; &tasktable[TTTT] in DSEG 
 
 ld R1, 2(R0)   ; R1 = current stack size 
 mova R2, current_stack ; pointer to current top of stack 
 ld R14, 0(R2)  ; init R14 = SP 
 rsub R1, R14  ; R1 <- R14 - R1 = new top of stack 
 st R1, 0(R2) ; save new top of stack 
 
 ld R9,  4(R0) ; arg1 
 ld R10, 6(R0) ; arg2 
 mov R13, R14 ; init FP 
 ld R1,  0(r0) ; task procedure address 
 
 mova R15, _gsi1 ; but since call R doesnt exist, simulate it 
 jre 0(R1)  ; using 3 instructions: mova(2) and jre(1) 
 
  
_gsi1: call _task_sus  ; call RTOS 
 
forever:jump forever 
 
 ; end of GSINIT segment 
 
 .area CSEG 
 
 ;; regarding queues and mailboxes 
 ;; 0 offset address of queue or mailbox with empty and full flags 
 ;; 1 offset on gives us the message 
 ;; so, will the empty and full flags go directly into the task 
resource mat 
 ;; in other words, do we even need OS to check empty and full 
flags? 
 ;; all right, more here 
 ;; when i am writing to a queue, i have already obtained the write 
mutex 
 ;; however, when the queue become full, i attempt to lock on that 
 ;; same mutex to block until the queue is non full 
 ;; Does this even work? Is the write mutex lost when the queue 
fills? 
 
 ;; and are queues LIFOs, FIFOs? what? ie when they fill where do i 
write 
 ;; to once it isnt full anymore? 
 
 ; external address 
 
 
 ;;  for nb_lock, r_pri, w_pri  
 ;; task id (8 bits), status bits (4 bits), priority (4 bits) 
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 ;; R0-R3  scratch registers 
 ;; R4-R8 preserved 
 ;; R9-R12 parameter registers/return values 
 ;; R13 frame pointer 
 ;; R14 stack pointer 
 ;; R15 return address 
 
;; TASKS 
 
; rtp_task_sleep  
;;; task_slp (sleep_time) 
.globl _task_slp 
_task_slp: w_time  R9 ;puts us to sleep for R9 seconds  
  r_prio  R1;  read task priority 
  and  R1,0xEF;  reset ready flag 
  w_prio  R1;  suspend until timeout expires 
  or  R1, READY_FLAG;  set ready flag 
  w_prio  R1;  task is now ready again 
  rel  suspend ;  clear request of suspend 
  jre  R15 ;return 
 
 
; rtp_task_suspend - suspends forever 
;;task_sus() 
.globl _task_sus 
_task_sus: mov  R0, 0x0000 
  w_time  R0 ;write a 0 to timeout count, no 
expire 
  r_prio  R1 
  and  R1, 0xEF;  clear out the ready bit 
  w_prio  R1;  set the task to non-ready, tasks 
suspends 
 ;; ok, this code segment only reached if another task unsuspends 
us 
  jre  0(R15) ; only get here if suspend resource 
           ;; is reset by another task 
  
;rtp_task_reference - one instruction , probably doesnt need own 
function 
;; task_ref() 
.globl _task_ref 
_task_ref: r_prio R9 ;reads task reference info into R1 
  jre  R15 
 
.globl _lock  
;rtp_lock - disables preemption for processor - are we gonna do this 
_lock: ds  ;; disable scheduler  
  ret 
;;may not need this 
 
 
;; This function could better be built into the scheduler. 
;; A flag in the scheduler could disable scheduling. 
;; Maybe the scheduler itself could be addressed as a resource? 
;; disable scheduler  ; allow the running task to run until it blocks 
;; When the running task blocks, this flag clears itself 
;; anything requesting the TRM will automatically re-enable the 
scheduler  
 
.globl _unlock  
;rtp_unlock - reenables preemption 
_unlock: es  ;; enable scheduler 
  ret 
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;;may not need this 
 
 
;; RESOURCES 
.globl _re_sig 
;rtp_resource_signal - releases a resource 
;;res_sig(resource_id)  
_re_sig: rel  R9 ;releases resource passed in in R9  
  jre  0(R15) ;return 
 
;rtp_resource_gain- non-blocking lock on resource, event, etc 
;; using R9 to pass back a parameter here 
;;res_gain(resource_id) 
.globl _re_gain  
_re_gain: nb_lock  R1, R9 ;can we acquire the resource 
  r_pri  R0 ; read our task state 
  srl  R1, 8 ;  move task ids to lower 
  srl  R0, 8 ; byte to enable compare 
  cmp  R1, R0 ;comparison to check if we got it 
  mov  R9, AOK_CODE  
  be  GOT ;return to post routine if we got lock 
  mov  R9, ERROR_CODE ;move error code into R1 
GOT:  jre  0(R15) ;return 
 
 
 
 
 
;;rtp_pi_seek(resource_id, time_out_val) 
.globl _re_pi_seek   
_re_pi_seek: nb_lock  R1, R9 ;can we acquire the 
resource 
  push  R1 ;  store res info on stack 
  r_pri  R0 ; read our task state 
  srl  R0, 8 ; move task ids into 
  srl  R0, 8 ; lower byte for comp 
  cmp  R0, R1 ;comparison to check if we got it 
  be  END_PI ;no need to PI if we got it 
  r_pri  R0 ; read our task state 
  load  R1, 0(R14) ; restore res owner state 
  and  R1, 0xF ;  mask out everything but owner pri 
  and  R0, 0xF ; mask out everything but my 
priority 
  cmp  R1, R0 
  bgtu  _re_seek; branch and never return,owner has pri 
  ld  R1, 0(R14); restore R1 (resource owning task) 
  mova  R3, 0xFFF0 
  and  R1, R3 
  or  R1, R0; put our priority in resource own task 
  w_prio  R1 ; bump up pri of res owning task 
  push  R15 ;  we will kill our return address 
  call  _re_seek 
  ld  R15, 0(R14) 
  ld  R1, 2(R14) ; instead of two pops  
  add  R14, 0x04 ; we have now saved an inst 
  w_prio  R1;  write the orig prior field still  
 ;; stored in R1 (from read) back into task R1 (R1 is unmodified)  
END_PI:  return 
 
 
;rtp_resource_seek - blocking lock on resource 
;; res_seek(resource _id,time_out_val) 
.globl _re_seek 
_re_seek: w_tim  R10 ; r10 has time out value 
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  lock  R9 ;blocking lock on resource 
  r_pri  R0 ;check ready flag to see if time out 
  mov  R1, AOK_CODE 
  w_time  0x0 ; clear timeout counter 
  and  R0, READY_FLAG 
  bne  GOTIT ; brach off the and setting the flags 
  rel  R9 ;  must release request if we didnt get 
  mov  R1, ERROR_CODE ;move error code into R9 
GOTIT:  mov  R9, R1  
  jre  0(R15) ;return 
 
 
;; EVENTS 
;rtp_event_clear -clears one or more event flags 
;; event_clr(event_id, mask) 
.globl _clear 
_clear:  w_time  0x00 ; clear timer, no expire needed 
  lock  resourceRMW 
  read  r0, r9 ;  
  and  r0, r10 ; mask events 
  write  R9, R0  ;write them back 
  rel  resourceRMW 
  return 
 
 
;rtp_event_signal - sets one or more events 
;;;event_signal(event_id, mask) 
.globl _signal 
_signal: w_time  0x00 ;  clear timer 
  lock  resourceRMW 
  read  r0, r9 ;  
  or  r0, r10 
  write  R9, R0 ;signals event 
  rel  resourceRMW 
  return 
 
 
;rtp_res_ref general resource reference 
;res_ref(event_id) 
.globl _res_ref 
_res_ref: read  R9, R9 
  jre  0(R15) 
 
 
;MAILBOXES 
 
 
;rtp_mailbox_post-dont block if we cant send 
;;can call from C  
;mail_post(mailboxwriteres, mailbox_addr, message) 
.globl _mail_post 
_mail_post: mov  R12, R9 ;  copy write resource since it will 
die 
  push  R15 
  call  _re_gain  ;check if empty (empty flag in R9) 
  cmp  R9, ERROR_CODE;comparison to check if got mutex 
  be  DONEMAILPOST 
  out  R11, R10 ;write message stored in msg reg R12 
  rel  R12; release full flag 
DONEMAILPOST: pop  R15 
  jre  0(R15) ;return 
 
 
;rtp_mailbox_send -block until it can send 
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;;can call from C  
;;; mail_send(mailboxwriteres,time_out_val, mail_box_addr, message) 
.globl _mail_send 
_mail_send: mov  R3, R15 ; return address will get killed 
  mov  R2, R9 ;  writre resource will get killed 
  call  _re_seek 
  cmp  R9, ERROR_CODE 
  be  DONEMAILSEND 
  out  R12, R11 ; write message stored in msg reg(R11) 
  rel  R2 ; release mailboxwriteres 
DONEMAILSEND: move  R15, R3 ; restores return address 
  jre  0(R15) ;return 
 
 
;rtp_mailbox_gain - dont block, return error code if empty 
;; can call from C 
;;; mail_gain(mailboxreadres, memory_address) 
.globl mail_gain 
_mail_gain: mov  R12, R15 
  mov  R11, R9 ; read resource will get stomped on 
  call  _re_gain 
  mov  R15, R12 ;  restore return address 
  cmp  R9, ERROR_CODE ;comparison to check if full 
  be  DONEMAILGAIN 
  read  R3, R11 ;  read resource to get mailbox address 
  in  R2, R3 ;read message into msg reg(R10) 
  st  R2, 0(R10) ; store msg in R2 to memory  
  rel  R11 ; release read resource 
DONEMAILGAIN: jre  0(R15) ;return 
 
;rtp_mailbox_seek block on an empty mailbox 
;; can call from C 
;;; mail_seek(mailboxreadres,timeout_val, memory_address) 
.globl _mail_seek 
_mail_seek: mov  R12, R15 
  mov  R3, R9 ;  save location of read resource 
  call  _re_seek 
  mov  R15, R12 ; restore return address 
  cmp  R9, ERROR_CODE ;see if we acquired the mutex 
  be  DONEMAILSEEK 
  read  R12, R3 ; read read resource to get address 
  in  R2, R12 
  st  R2, 0(R11) 
  rel  R3 ;  release read resource 
DONEMAILSEEK: jre  0(R15) ;; return 
 
 
;rtp_mailbox_reference - retrieves a message, doesnt remove it 
;; can call from C 
;;; mail_ref(mailboxfull,time_out_val, memory_address) 
.globl _mail_ref 
_mail_ref: mov  R12, R15 
  mov  R3, R9 
  call  _re_seek 
  mov  R15, R12 
  cmp  R9, ERROR_CODE; did we get it?? 
  be  DONEMAILREF ; end if we didnt 
  read  R12, R3 
  in  R2,R12 
  st  R2, 0(R11) 
  rel  R3 ;; its still full 
DONEMAILREF: jre  0(R15) ;return 
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;; QUEUES 
 
 
;rtp_queue_write-write to the queue until message is done 
;;; qu_write(queue_write_res, timeout_val, message_address, message_len) 
;;; R1 has the queue_address, R2 num bytes written, R3 has block or 
nonblock 
.globl _qu_write 
_qu_write: ld  R0, 0(R11) 
  out  R0, R1 ;write message stored in R0 to queue 
  add  R2, 2 ; increment num bytes written 
  sub  R12, 1 ;see if message is finished 
  be  WRDONE  ; branch to done if R11 is 0 
  push  R9 
  push  R15 
  cmp  R3, BLOCK 
  be  BLOCKINGW 
  call  _re_gain 
  jmp  REUNITEW 
BLOCKINGW: call  _re_seek; relock a resource we already have 
      ;; this will block if queue is full 
REUNITEW: pop  R15 
  cmp  R9, ERROR_CODE; was resource acquired? 
  be  WRDONE 
  pop  R9 
  add  R11, 0x2 ;;move to next address in mem 
  jump  _qu_write ; write again 
WRDONE:  jre  0(R15) 
 
 
;rtp_queue_read-read from the queue until message is done 
;;; qu_read(queue_read_res,timeout_val,mem_store_address, message_len) 
;;; R1 has the queue_address, R2 num bytes written, R3 has block or 
nonblock 
.globl _qu_read 
_QU_READ: in  R0, R1 ;read message into reg 
  st  R0, 0(R11) ; store msg in R0 to memory 
  add  R2, 1 
  sub  R12, 1;see if message is finished  
  be  RDDONE  ; branch to done if R6 is 0 
  push  R9 
  push  R15 
  cmp  R3, BLOCK 
  be  BLOCKINGR 
  call  _re_gain 
  jmp  REUNITER 
BLOCKINGR: call  _re_seek; relock a resource we already have 
      ;; this will block if queue is empty 
REUNITER: pop  R15 
  cmp  R9, ERROR_CODE; was resource acquired? 
  be  RDDONE 
  pop  R9 
  add  R11, 0x2; increment memory location 
  jump  _qu_read ; read again 
RDDONE:  jre  0(R15);; return 
 
 
;rtp_queue_post- non-blocking send message to queue 
;;; qu_post(queue_write_res, message_address, message_len) 
.globl _qu_post 
_qu_post: push  R15 ;  return address gonna get whacked 
  mov  R2, R9 ; queue_write resource will die 
  call  _re_gain ;can we write to the queue? 
  cmp  R9, ERROR_CODE ;did we get mutex?? 
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  mov  R9, 0x0 ; wont affect flags, 0 bytes were 
writ 
  be  DONEQUPOST ;branch to done if didnt get lock 
  mov  R9, R2 ; move write_res back into param reg 
  and  R2, 0x0 ;  clear R2 to store bytes written 
  mov  R3, NONBLOCK ; this is a nonblocking call 
  read  R1, R9 ; read queue_address into R1 
  call  _qu_write; time to write 
  rel  R9 ; release write flag 
  mov  R9, R2 ;  move num bytes written to return reg 
DONEQUPOST: pop   R15;  restore the return address 
  jre  0(R15) ;; return 
 
 
;rtp_queue_send -block until it can send 
;; qu_send(queue_write_res, timeout_val, message_address,message_len) 
.globl _qu_send 
_qu_send: push  R15 ;  return address gonna get whacked 
  mov  R2, R9 ; queue_write resource will die 
  call  _re_seek     ;can we write to the queue? 
  cmp  R9, ERROR_CODE ;did we get mutex?? 
  mov  R9, 0x0 ; wont affect flags, 0 bytes were 
writ 
  be  DONEQUSEND ;branch to done if didnt get lock 
  mov  R9, R2 ; move write_res back to R9 
  and  R2, 0x0 ; zero out R2 to store bytes written 
  mov  R3, BLOCK 
  read  R1, R9 ; read queue_address into R1 
  call  _qu_write; time to write 
  rel  R9 
  mov  R9, R2 ; mov num bytes written to return reg 
DONEQUSEND: pop  R15 ;  restore return addr 
  jre  0(R15) ;; return 
 
 
 
;rtp_queue_gain-non-blocking read 
;;; qu_gain(queue_read_res, NULL,message_address,message_len) 
.globl _qu_gain 
_qu_gain: push  R15 
  mov  R2, R9 
  call  _re_gain    ;can we read from the queue? 
  cmp  R9, ERROR_CODE ;did we get mutex?? 
  mov  R9, 0x0 ; wont affect flags, 0 bytes were 
read 
  be  DONEQUGAIN ;branch to done if didnt get lock 
  mov  R9, R2 ;  restore read_resource 
  and  R2, 0x0 ;  R2 will store bytes read 
  mov  R3, NONBLOCK 
  read  R1, R9 ; read queue_address into R1 
  call  _qu_read; time to read 
  rel  R9 
DONEQUGAIN: pop  R15 
  jre  0(R15);; return  
 
 
;rtp_queue_seek -block until read 
;; qu_seek(queue_read_res,timeout_val,mem_store_address,message_len) 
.globl _qu_seek 
_qu_seek: push  R15 
  mov  R2, R9   
  call  _re_seek    ;can we read from the queue? 
  cmp  R9, ERROR_CODE ;did we get mutex?? 
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  mov  R9, 0x0 ; wont affect flags, 0 bytes were 
read 
  be  DONEQUSEEK ;branch to done if didnt get lock 
  mov  R9, R2 ;  restore read_resource 
  and  R2, 0x00 ;  R2 will store bytes read 
  mov  R3, BLOCK 
  read  R1, R9 ; read queue_address into R1 
  call  _qu_read; time to read 
  rel  R9 
DONEQUSEEK: pop  R15 
  jre  0(R15);; return 
 
 
;; system timer functions 
;; rtp_get_time- will return value of universal timer in r10 
;;; get_time(timer_address) 
.globl _get_time 
_get_time: in  R10, R9 
  return 
 
;;; rt_set_time  - will set the value of the universal timer with value 
in R9 
;;; set_time(timer,_address,new_timer_value) 
.globl _set_time 
_set_time: out  R10, R9 
  return 
 
 
.globl _create_task 
 ; create_task(function, proc_id, task_id, task_priority, 
stacksize, arg1, arg2) 
 ;             R9        R10      R11      R12           -2(R14)  -
4(R14) -6(R14) 
_create_task: 
 mova R1, my_proc_id 
 ld R0, 0(R1) 
 cmp R0, R10  ; PPPP = my_proc_id? 
 be _ct1  ; yes good, no bad 
 mov R9, 1  ; error code 
 ret   ; return error 
_ct1: mova R0, tasktable ; &tasktable[0] 
 mov R1, R11  ; task_id 
 sll R1, 3  ; 8 * task_id 
 add R0, R1  ; &tasktable[task_id] 
 ld R1, 0(R0) ; tasktable[task_id].function 
 cmp R1, 0  ; = 0? 
 be _ct2  ; yes good, no bad 
 mov R9, 2  ; if task already inited: error code 
 ret   ; return error 
_ct2: st R9, 0(R0) ; setup tasktable[task_id] 
 ld R1, 0(R14) ; stacksize 
 st R1, 2(R0) ; tasktable[task_id].stacksize = stacksize 
 ld R1, 2(R14) ; arg1 
 st R1, 4(R0) ; tasktable[task_id].arg1 = arg1 
 ld R1, 4(R14) ; arg2 
 st R1, 6(R0) ; tasktable[task_id].arg2 = arg2 
 
 mov R1, R10  ; PPPP 
 and R1, 0xF  ; PPPP 
 sll R1, 4  ; PPPP 0000 
 and R11, 0xF ; TTTT 
 or R1, R11  ; PPPP TTTT 
 sll R1, 8  ; PPPP TTTT 0000 0000 
 or R1, 0x10 ; PPPP TTTT 0001 0000 (set task ready flag) 
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 and R12, 0xF ; XXXX 
 or R1, R12  ; PPPP TTTT FFFF XXXX 
 w_prio R1    ; set priority and ready (unblocks task) 
 return 
 
 
 .area DSEG 
 .even 
my_proc_id: .dw -1  ; get inited by GSINIT 
current_stack: .dw stacktop 
.globl _main   
tasktable: .dw _main ; task 0 - branch address 
  .dw 60  ; task 0 - stack size 
  .dw 0  ; task 0 - arg1 (argc) to main() 
  .dw 0  ; task 0 - arg2 (argv) to main() 
  .blkw 15*4 ; reserve room for the other 15 tasktable 
entries (4 words each) 
 ; 66 bytes total of data memory used by _gsinit() and 
create_task() 
 
 .area SSEG  ; placed at top of memory 
stacktop:   ; first non-existant memory location 
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Appendix D: RTP Instruction Set Architecture 

Mnemonic Operands Description Operation FLAGS 

Arithmetic And Logic Instructions 
add R, L Reg, L add [C | R] <= [Reg] + L(sign extended) Updated 

add R1, R2 Reg, Reg add [C | R1] <= [R1] + [R2] Updated 

addc R, L Reg, L add with carry [C | R] <= [Reg] + L + C Updated 

addc R1, R2 Reg, Reg add with carry [C | R1] <= [R1] + [R2] + C Updated 

sub R, L Reg, L subtract [C | R] <= [Reg] - L Updated 

sub R1, R2 Reg, Reg subtract [C | R1] <= [R1] - [R2] Updated 

subc R, L Reg, L subtract with carry [C | R] <= [Reg] - L(sign extended) - C Updated 

subc R1, R2 Reg, Reg subtract with carry [C | R1] <= [R1] - [R2] - C Updated 

rsub R. L Reg, L reverse subtract [C | R1] <= -[R1] + L Updated 

rsub R1, R2 Reg, Reg reverse subtract [C | R1] <= -[R1] + [R2] Updated 

rsubc R, L Reg, L reverse subtract with carry [C | R1] <= -[R1] + L Updated 

rsubc R1, R2 Reg, Reg reverse subtract with carry [C | R1] <= -[R1] + [R2] Updated 

mul R, L Reg, L Multiply word [T,R] <= [Reg]*L, signed Updated 

mul R1, R2 Reg, Reg Multiply word [T,R1] <= [R1]*[R2], signed Updated 

mulb R, L Reg, L Multiply low-byte [Reg](15..0)   <= [Reg](7..0)*L, signed Updated 

mulb R1, R2 Reg, Reg Multiply low-byte [R1] <= [R1](7..0)*[R2](7..0), signed Updated 

mulu R, L Reg, L Multiply unsigned word [T,R] <= [Reg]*L, unsigned Updated 

mulu R1, R2 Reg, Reg Multiply unsigned word [T,R1] <= [R1]*[R2], unsigned Updated 

mulub R, L Reg, L Multiply unsigned low-byte [Reg](15..0)   <= [Reg](7..0)*L, unsigned Updated 

mulub R1, R2 Reg, Reg Multiply unsigned low-byte [R1]  <= [R1](7..0)*[R2](7..0), unsigned Updated 

and R, L Reg, L And literal [Reg] <= [Reg] AND (0,L) Updated 

and R1, R2 Reg, Reg And literal [R1] <= [R1] AND [R2] Updated 

andc R, L Reg, L And with carry [Reg](7..0) <= [Reg](7..0) AND L Updated 

andc R1, R2 Reg, Reg And with carry [R1](7..0) <= [R1](7..0) AND [R2](7..0) Updated 

or R, L Reg, L Or [Reg] <= [Reg] OR (0,L) Updated 

or R1, R2 Reg, Reg or [R1] <= [R1] OR [R2] Updated 

orc R, L Reg, L Or with carry [Reg](7..0) <= [Reg](7..0) OR L Updated 

orc R1, R2 Reg, Reg Or with carry [R1](7..0) <= [R1](7..0) OR [R2](7..0) Updated 

xor R, L Reg, L xor [Reg] <= [Reg] XOR (0,L) Updated 

xor R1, R2 Reg, Reg xor [R1] <= [R1] XOR [R2] Updated 

xorc R, L Reg, L xor with carry [Reg](7..0) <= [Reg](7..0) XOR L Updated 

xorc R1, R2 Reg, Reg xor with carry [R](7..0) <= [R](7..0) XOR [R2](7..0) Updated 

Branch Instructions 
call L call [R15] <= PC, PC <= L (relocatable) Unchanged 

jump L jump PC <= L (relocatable) Unchanged 
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jre L(R) Reg, L Jump register PC <= L + [Reg] Unchanged 

jre R2(R1) Reg, Reg jump register PC <= [R1] + [R2] Unchanged 

ret  Subroutine return PC <= [R15] Unchanged 

cmp R, L Reg, L compare with carry  FLAG <= [Reg] -  L(zero extended) Updated 

cmp R1, R2 Reg, Reg compare with carry  FLAG <= [R1] -  [R2] Updated 

cmpc R, L Reg, L compare with carry  FLAG <= [Reg](7..0) -  L Updated 

cmpc R1, R2 Reg, Reg compare with carry  FLAG <= [R1](7..0) -  [R2](7..0) Updated 

be  branch if equal if Z=1 then PC <= PC+L Unchanged 

beu  branch if equal, unsigned if ZU=1 then PC <= PC+L Unchanged 

bge  branch if greater or equal if N=0 then PC <= PC+L Unchanged 

bgeu  
branch if greater or equal, 
unsigned (NU=0=always) PC <= PC+L ; jump relative Unchanged 

bgt  branch if greater if C=0 then PC <= PC+L Unchanged 

bgtu  branch if greater, unsigned if CU=0 then PC <= PC+L Unchanged 

ble  branch if lesser or equal if C=1 then PC <= PC+L Unchanged 

bleu  
branch if lesser or equal, 
unsigned if CU=1 then PC <= PC+L Unchanged 

blt  branch if lesser if N=1 then PC <= PC+L Unchanged 

bltu  branch if lesser, unsigned (NU=1=never); never jump; nop Unchanged 

bne  branch if not equal if Z=0 then PC <= PC+L Unchanged 

bneu  
branch if not equal, 
unsigned if ZU=0 then PC <= PC+L Unchanged 

bnv  branch if not overflow if V=0 then PC <= PC+L Unchanged 

bnvu  
branch if not overflow, 
unsigned if VU=0 then PC <= PC+L Unchanged 

bv  branch if overflow if V=1 then PC <= PC+L Unchanged 

bvu  
branch if overflow, 
unsigned if VU=1 then PC <= PC+L Unchanged 

Data Transfer Instructions 
mov R, L Reg, L Move [Reg] <= L, sign extended Unchanged 

mov R1, R2 Reg, Reg Move [R1] <= [R2], sign extended Unchanged 

mova R, L Reg, L 16 bit mov R <= L (16 bit), pseudo op Unchanged 

movh R, L Reg, L Move hi-byte [Reg](15..8) <= L, [Reg](7..0) unaffected Unchanged 

movh R1, R2 Reg, Reg Move hi-byte [R1](15..8) <= [R2], [R1](7..0) unaffected Unchanged 

movu R, L Reg, L Move unsigned [Reg] <= L, zero extended Unchanged 

movu R1, R2 Reg, Reg Move unsigned [R1] <= [R2], zero extended Unchanged 

movuh R, L Reg, L Move unsigned hi-byte [Reg](15..8) <= L, [Reg](7..0) <= 0 Unchanged 

movuh R1, R2 Reg, Reg Move unsigned hi-byte [R1](15..8) <= [R2], [R1](7..0) <= 0 Unchanged 

ld R1, L(R2) Reg, Reg, L load [R1] <= Data(L + [R2])(15..0) Unchanged 

ldb R1, L(R2) Reg, Reg, L load byte [R1] <= Data(L + [R2])(7..0) Unchanged 

st R1, L(R2) Reg, Reg, L store Data(L + [R1])(15..0) <= [R2] Unchanged 

stb R1, L(R2) Reg, Reg, L store byte Data(L + [R1])(7..0) <= [R2] Unchanged 

in R, L Reg, L In port addr <= L, [Reg] <=in Unchanged 

in R1, R2 Reg, Reg In port addr <= [R2], [R1] <=in Unchanged 

out R, L Reg, L Out port addr <= L, out <= [Reg] Unchanged 

out R1, R2 Reg, Reg Out port addr <= [R2], out <= [R1] Unchanged 

push R Reg push on stack [SP] <= [Reg] Unchanged 

pop R Reg pop off stack [Reg] <= [SP] Unchanged 

xch R, T Reg, L Exchange [T,Reg] <= [Reg,T] Unchanged 

Bit Instructions 
clrc  clear carry or r0,0 C,UC <-- 0 
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clrt  clear transfer sll r0,0 T <-- 0 

rol R, L Reg, L Rotate left 
[T,Reg] <= ( [0,Reg] << L ) | ( [0,Reg] << (16-
L) ) >> 16 Updated 

rol R1, R2 Reg, Reg Rotate left 
[T,R1] <= ( [0,R1] << R2 ) | ( [0,R1] << (16-R2) 
) >> 16 Updated 

ror R, L Reg, L Rotate Right 
[Reg,T] <= ( [0,Reg] << (16-L) ) | ( [0,Reg] << 
L ) >> 16 Updated 

ror R1, R2 Reg, Reg Rotate right 
[R1,T] <= ( [0,R1] << (16-R2) ) | ( [0,R1] << R2 
) >> 16 Updated 

slc R, L Reg, L Shift left with carry [T,Reg] <= ( [0,Reg] << L ) | [0,T] Updated 

slc R1, R2 Reg, Reg Shift Left with carry [T,R1] <= ( [0,R1] << R2 ) | [0,T] Updated 

sll R, L Reg, L Shift left logical [T,Reg] <= [0,Reg] << L Updated 

sll R1, R2 Reg, Reg Shift Left Logical [T,R1] <= [0,R1] << R2 Updated 

sra R, L Reg, L Shift right arithmetic [Reg,T] <= [SE,Reg] << (16-L) Updated 

sra R1, R2 Reg, Reg Shift Right Arithmetic [R1,T] <= [SE,R1] << (16-R2) Updated 

src R,L Reg, L Shift right with carry [Reg,T] <= ( [0,Reg] << (16-L) ) | [T,0] Updated 

src R1,R2 Reg, Reg Shift Right with carry [R1,T] <= ( [0,R1] << (16-R2) ) | [T,0] Updated 

srl R, L Reg, L Shift right logical [Reg,T] <= [0,Reg] << (16-L) Updated 

srl R1, R2 Reg, Reg Shift Right Logical [R1,T] <= [0,R1] << (16-R2) Updated 

Control and Special Purpose Functions 
nop  No Operation  Unchanged 

disable Reg or L Disable Resource 
disable resource {[Reg], L} (disable interrupt 
{[Reg], L}) Unchanged 

enable Reg or L Enable Resource 
enable resource {[Reg], L} (enable interrupt 
{[Reg],L}) Unchanged 

ds  Disable Scheduling (this processor only) Unchanged 

es  Enable Scheduling (this processor only) Unchanged 

lock Reg or L Lock Resource 
task[this].resource[{[Reg],L}].req <= 1, block 
until req==0 or timeout=1 Unchanged 

nb_lock R, L Reg, L Non-Blocking Lock 
attempt to lock L, [Reg] <- info on task that 
owns resource L Unchanged 

nb_lock R1, 
R2 Reg, Reg non-blocking lock 

attempt to lock [R2], [R1] <- info on owner of 
resource [R2] Unchanged 

r_prio Reg Read Priority [Reg] <= this.task.priority Unchanged 

r_time Reg Read Timeout [Reg] <= this.task.timeout Unchanged 

w_prio Reg or L Write Priority task{[Reg], this}.priority <= {[Reg], L} Unchanged 

w_time Reg or L Write Timeout this.task.timeout   <= {[Reg], L} Unchanged 

read R, L Reg, L Read resource status [Reg] <= status of resource L Unchanged 

read R1, R2 Reg, Reg Read resource status [R1] <= status of resource [R2] Unchanged 

write R, L Reg, L Write resource Status status of resource L <= [Reg] Unchanged 

write R1, R2 Reg, Reg Write resource Status status of resource [R2] <= [R1] Unchanged 

rel Reg or L Release Resource task[this].resource[{[Reg], L}].gnt <= req <=0 Unchanged 

rst Reg or L Reset Resources task[*].resource[{[Reg], L}].req <= gnt <= 0 Unchanged 

sig1 Reg or L Send Signal 1 
send sig 1 to resource {[Reg], L} (set int. 
{[Reg], L}) Unchanged 

sig2 Reg or L Send Signal 2 
send sig 2 to resource {[Reg], L} (reset int. 
{[Reg], L}) Unchanged 
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