
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2007-07-10

Compilation and Generation of Multi-Processor on a Chip Real-Compilation and Generation of Multi-Processor on a Chip Real-

Time Embedded Systems Time Embedded Systems

Randall S. Klingler
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Klingler, Randall S., "Compilation and Generation of Multi-Processor on a Chip Real-Time Embedded
Systems" (2007). Theses and Dissertations. 959.
https://scholarsarchive.byu.edu/etd/959

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/959?utm_source=scholarsarchive.byu.edu%2Fetd%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

COMPILATION AND GENERATION OF MULTI-PROCESSOR

ON A CHIP REAL-TIME EMBEDDED SYSTEMS

by

Randall S. Klingler

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

August 2007

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Randall S. Klingler

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

__________________________ _______________________________________
Date Doran K. Wilde, Chair

__________________________ _______________________________________
Date James K. Archibald

__________________________ _______________________________________
Date Brent E. Nelson

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Randall S.
Klingler in its final form and have found that (1) its format, citations, and bibliographical
style are consistent and acceptable and fulfill university and department style require-
ments; (2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for sub-
mission to the university library.

___________________________ _______________________________________
Date Doran K. Wilde
 Chair, Graduate Committee

Accepted for the Department

 Michael J. Wirthlin
 Graduate Coordinator

Accepted for the College

 Alan R. Parkinson
 Dean, Ira A. Fulton College of Engineering and

Technology

ABSTRACT

COMPILATION AND GENERATION OF MULTI-PROCESSOR

ON A CHIP REAL-TIME EMBEDDED SYSTEMS

Randall S. Klingler

Department of Electrical and Computer Engineering

Master of Science

 Current FPGA technology has advanced to the point that useful embedded

System-on-Programmable-Chips (SoPC)s can now be designed. The Real Time Processor

(RTP) project leverages the advances in FPGA technology with a system architecture that

is customizable to specific real-time applications. The design and implementation of the

framework for architecting such a system from ANSI-C code is presented. The Small

Device C Compiler (SDCC) was retargeted to the RTP architecture and extended to

produce a generator directive file. The RTPGen hardware generator was created to

consume the directive file and produce a highly customized top-level structural VHDL

file that can be synthesized and programmed onto an FPGA such as the Xilinx Spartan-3.

Thus, an application specific multiprocessor real-time embedded system is realized from

ANSI-C code.

ACKNOWLEDGMENTS

 First and foremost, I want to thank my wife Lori for all of her loving support

through graduate school. I thank Doran Wilde for many hours of help in research and the

writing of this thesis. I also thank Spencer Isaacson and Matt Young for many café

meetings to discuss the RTP project.

vii

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

Chapter 1: Introduction ... 1

1.1 – RTP Motivation ... 2

1.2 – RTP Goals.. 2

1.3 – Related Work ... 3

1.4 – Goals for the SDCC-RTP Compiler and the RTPGen Hardware Generator 4

1.5 – Contributions.. 5

1.6 – Outline of Thesis.. 6

Chapter 2: Real-Time System on a Programmable Chip ... 7

2.1 – RTP Architecture Overview .. 7

2.1.1 – RTP System Components ... 8

2.1.2 – The Task-Resource Matrix ... 10

2.1.3 – The Scheduler ... 11

2.1.4 – Context Switching... 11

2.1.5 – The RTP Hardware Assisted RTOS ... 12

2.2 – The RTP Processor and Instruction Set Architecture .. 13

2.3 – Related Work ... 16

2.4 – Additional Considerations ... 17

viii

Chapter 3: Porting the SDCC Compiler... 19

3.1 – Decision to use SDCC ... 20

3.2 – Base SDCC Complier Functionality.. 21

3.3 – Required Changes to Base SDCC Compiler.. 23

3.4 – The SDCC-RTP Compiler: Code Generation.. 27

3.4.1 – Port Options (main.*).. 27

3.4.2 – Register Allocation (ralloc.*).. 28

3.4.3 – Code Generation (gen.*)... 31

3.4.4 – Peephole Rules (peeph.def) .. 38

Chapter 4: The SDCC-RTP Compiler.. 41

4.1 – Built-in Functions .. 41

4.1.1 – Compiler Support for Built-in Functions.. 46

4.2 – Intermediate Symbol Table.. 47

4.3 – Generator Directives .. 48

Chapter 5: The Assembler and Linker ... 51

5.1 – The Assembler ... 51

5.2 – The Linker.. 53

Chapter 6: The RTPGen Hardware Generator... 57

6.1 – Instantiation of Processors ... 59

6.2 – Creation of Tasks, Resources, and Devices ... 60

6.3 – RTP Simptris Example .. 60

Chapter 7: Conclusions and Future Work ... 73

7.1 – Contributions Revisited ... 73

ix

7.2 – Future Work ... 74

7.3 – Final Words.. 75

BIBLIOGRAPHY... 77

Appendix A: Peephole Rules for the SDCC-RTP Compiler....................................... 79

Appendix B: Assembly for RTP Code Generation Example 83

Appendix C: RTP RTOS Assembly Source Code.. 87

Appendix D: RTP Instruction Set Architecture .. 97

xi

LIST OF TABLES

Table 3.1: Register Assignments .. 28

Table 3.2: RTP Recognized iCode Operation Codes.. 32

Table 5.1: Assembler Relocatable File Format... 52

Table 5.2: Assembler Relocatable Patch Instructions... 53

Table 5.3: RTP Segments ... 54

xiii

LIST OF FIGURES

Figure 2.1: RTP System Architecture General Overview .. 8

Figure 3.1: C source code for RTP code generation example .. 34

Figure 3.2: iCode chain for RTP code generation example.. 35

Figure 3.3: Assembly code for RTP code generation example .. 37

Figure 4.1: The global.h Header File Template.. 42

Figure 4.2: Built-in Function Structure Type Definition .. 46

Figure 4.3: Intermediate Symbol Table for Generator Directives 48

Figure 6.1: Dataflow for C-to-FPGA Compilation... 58

Figure 6.2: RTP System Diagram for Simptris Example ... 61

Figure 6.3: RTP Simptris global.h .. 63

Figure 6.4: RTP Simptris proc0.c ... 65

Figure 6.5: RTP Simptris proc1.c ... 67

Figure 6.6: RTP Simptris RTPsys.gen.. 68

Figure 6.7: RTP Simptris VHDL Declarations for Processor 0.. 69

Figure 6.8: RTP Simptris VHDL Instantiation of Processor 0 ... 70

Figure 6.9: RTP Simptris VHDL Instantiation of P0 Task 1 and Scheduler.................... 71

1

Chapter 1: Introduction

 Current trends in system design show migration toward tighter integration. It is

now common for processors, memory, and custom hardware to all be contained on a

single System-on-Chip (SoC) device. Several recent innovations in hardware/software

co-design target these SoCs in an effort to improve embedded system performance and

design [1, 2, 3]. Even more recently, advances in Field Programmable Gate Arrays

(FPGAs), such as the Xilinx Spartan-3 and Virtex II [4] have made it possible to design

powerful and easily customizable System-on-Programmable-Chip (SoPC) devices.

These SoPCs, with their low non-recurring engineering costs and extensive

customizability represent an increasing portion of embedded system designs. An FPGA

has abundant hardware elements but only limited on chip memory space, causing code

software to be relatively more expensive. For an FPGA, specialized hardware

implementations have the triple benefit of being faster, cheaper, and more predictable

than equivalent software implementations.

 With abundant hardware resources, an FPGA is a perfect target for a hardware

assisted real-time embedded system. The Real Time Processor (RTP) project combines

the use of customized hardware and a small software real-time operating system (RTOS)

to take advantage of the strengths inherent in an FPGA. The RTP project has been given

application support through the Small Device C Compiler (SDCC) targeted to the RTP

2

architecture, hereafter referred to as the SDCC-RTP compiler, and the RTPGen hardware

generator. These application supports, coupled with a VHDL component library

comprise the entire C-to-FPGA system.

1.1 – RTP Motivation

 As FPGAs increase in gate count and memory capacity, SoPCs will continue to

increase in popularity. The RTP infrastructure was designed to take advantage of this

continual improvement in technology, as discussed in the following sections. The RTP

project was also created for the purpose of focusing on the strengths of FPGA technology

in embedded designs. Chapter 2 describes the RTP system architecture in detail.

1.2 – RTP Goals

 The RTP project was designed with the objective of accomplishing the following

goals:

• To create the infrastructure to implement customized real-time systems

• To design a flexible and scalable system framework that targets state-of-the-art

FPGA technology and that will grow with FPGA advances

• To provide multiprocessor support

• To utilize a standard C interface for system development

• To support resource sharing in a uniform and reliable manner

• To find the right balance between doing functions in hardware and software

3

1.3 – Related Work

 The Streams-C C-to-FPGA compiler [5] synthesizes stream-oriented circuits for

FPGA based computers from a modified version of the C language. The Streams-C

compiler is also comprised of a small number of libraries and functions added to the C

language. It is primarily targeted to stream-oriented computation on FPGA-based

parallel computers. It synthesizes hardware circuits for a target FPGA board (currently

the Annapolis Microsystems Wildforce board) containing multiple FPGAs, external

memories, and interconnect. The Streams-C compiler allows the programmer to specify

directives to the hardware generator, in the form of pragmas, and uses a pre-processor to

convert predefined functions into pragmas. It is shown in [6] that the Streams-C VHDL

can give a development speedup of 5 to 10 over hand-coded VHDL, at a penalty of area

utilization (up to 4 times), and circuit speed (up to 50%).

 Handel-C [7] is designed for C-to-FPGA compilation, and supports soft core

processors, such as the Xilinx Microblaze, and the Altera NIOS. Handel-C includes a

basic component library, and adds simple constructs to ANSI-C that support direct

generation of hardware. Its primary function is the implementation of algorithms in

hardware, and it is targeted primarily to software engineers. It enables concurrent

hardware and software development within a modified C language environment. Some

of the extensions to ANSI-C include: flexible data widths, parallel processing, and

communication between parallel elements.

 Neither Streams-C nor Handel-C are targeted for real-time embedded

applications, whereas the RTP design is intended primarily for this purpose. It provides

hardware to support an RTOS, and is designed to work in a multiprocessor architecture.

4

 There has also been a fair amount of work done on minimizing code size. Prior

work in this area, in the order in which they are performed, includes:

• Compiler optimizations (many of which are discussed in Chapter 3)

• Peephole rules [12] are used to statically analyze the code generated by the

compiler and replace sub-optimal code patterns with optimal ones

• Code compression which requires additional hardware for decompression at run

time [13]

 The RTP design leverages the SDCC compiler optimizations coupled with a set of

peephole rules for code footprint minimization.

1.4 – Goals for the SDCC-RTP Compiler and the RTPGen Hardware Generator

 The first goal for the SDCC-RTP compiler is to modify the base compiler to allow

for proper function call handling of the RTP specific functions that create tasks,

resources, and devices. This modification allows the compiler to interface conveniently

with the generator by means of a generator directive file. The second goal for the SDCC-

RTP Compiler is to minimize the code size required while maintaining code correctness.

Since on chip memory is a scarce resource on an FPGA, a minimal code size will help to

lessen the effects of memory limitations. A third goal, which is tightly integrated with

the first goals is to have the code well documented for ease of maintenance and future

updates as the RTP architecture continues to evolve.

 The main goal for the RTPGen Hardware Generator is to produce a top level

structural VHDL file that will synthesize a real-time, application specific system to a

Xilinx Spartan-3. This is accomplished by analyzing the compiler-produced generator

5

directive file to determine the equivalency groups of tasks, resources, and devices

specified by the application programmer in ANSI-C code. A minimal set of hardware

components from the RTP VHDL component library are instantiated to create a system

specifically customized to run the application code.

1.5 – Contributions

 The new architecture requires new tools to exploit its technological advances. In

this thesis I will present the following contributions:

1. I helped define the system-level architecture for the RTP project.

2. I wrote the code generator for the SDCC-RTP compiler, which allows the user to

develop applications for the RTP system using ANSI-C code and a set of

predefined RTP specific function calls.

3. I created a set of peephole optimizations for the RTP architecture that reduce code

size while preserving correctness. I also created a separate peephole optimizing

engine to further analyze and compact the code size.

4. I designed a methodology to extend the SDCC-RTP compiler to interface with the

RTPGen hardware generator.

5. I wrote the code for the RTPGen hardware generator, which speeds development

time and eliminates human error by automating system generation using a correct-

by-construction methodology. It produces structural hardware VHDL files that

are highly customized to the application code.

6. I produced a much needed document (Chapter 3) that outlines a step-by-step

method for retargeting the SDCC compiler to new architectures which can be:

6

a. Published on the SDCC web site.

b. Used to help others wanting to retarget SDCC.

c. Used as a reference for courses on code generation.

1.6 – Outline of Thesis

 This thesis will discuss the implementation of a real-time application specific C-

to-FPGA system, written in C. This approach differs from the previously discussed C-to-

FPGA implementations [5, 6, 7] in that the application C code is compiled to assembly,

with the minimal set of hardware required to execute the code being instantiated.

Chapter 2 describes the RTP system-level architecture. Chapter 3 steps through the

process of retargeting (porting) the SDCC compiler to the RTP architecture. Chapter 4

discusses the generator support provided by the SDCC-RTP compiler. Chapter 5

discusses the assembler and linker. The implementation of the RTPGen hardware

generator, along with an example embedded system is found in Chapter 6. Chapter 7

contains the conclusion and future research ideas.

7

Chapter 2: Real-Time System on a Programmable Chip

 The Real Time Processor (RTP) system architecture has features that make it

especially suited for hosting real-time applications. It is based on a flexible and scalable

framework of multithreaded multiprocessors tightly coupled with on-chip resources and a

hardware assisted Real-Time Operating System (RTOS). It uses a light-weight 16-bit

RISC-like processor with instructions to support 32-bit arithmetic. It also uses an

innovative task and resource management component called the Task-Resource Matrix

(TRM). The RTP System is targeted to FPGAs, in particular the Xilinx Spartan 3-

1500™.

2.1 – RTP Architecture Overview

 A multiprocessor embedded system allows multiple high priority tasks to run

concurrently, maximizing the efficiency of real-time applications, and allowing processor

resources to be dedicated to servicing hard real-time deadlines. Tasks are able to

communicate through shared resources for synchronization and message passing. These

shared resources must be statically declared in application code for proper system

generation. Tasks must also be statically declared, and thus cannot be dynamically

created nor destroyed, nor can they dynamically migrate between processors.

8

2.1.1 – RTP System Components

 A block diagram of the system architecture is shown in Figure 2.1. Figure 2.1 is

only representative of one of many configurations possible for the system.

Figure 2.1: RTP System Architecture General Overview

9

Not shown in Figure 2.1 are the block RAMs for code and data memory for each

processor.

 The architecture is composed of the following elements, which are primitives

available in the VHDL component library of the RTPGen hardware generator:

• An array of 1 to n processors, initially limited to 16 maximum. Each processor

has its own local memory for code and data. All tasks on the processor share that

memory.

• Each processor has its own local I/O space of up to 256 ports. A 16-bit I/O bus is

connected to all local peripherals used by that processor, such as serial ports,

queues, network interfaces, etc. All tasks that use the same I/O device must

reside on the same processor.

• Peripherals that can be shared by two or more tasks, whether they reside on a

single processor or on multiple processors, need to be synchronized among the

competing tasks. This is done using system “resources” in this architecture.

These include hardware implementations of semaphores, events, mutexes, timers,

scratchpad memories, interrupt sources, and similar types of circuits that help

manage shared resources of any type. Resources can be locked by a single task if

mutual exclusion is required.

• The “task-resource matrix” is an innovative feature of the architecture that

controls the sharing of resources in a unified way. It contains a “resource node”

for each task that needs access to a resource. The resource node keeps track of

pending requests and grants for a resource. The task-resource matrix provides

information to the scheduler about what tasks are “blocked” waiting for a

10

resource. This new circuit provides important hardware assistance to the RTOS

by keeping track of the tasks that are waiting for specific resources.

• A task module for each task contains information about the task, such as the task

id, the processor id of where it is executing, its priority, and the value of a timeout

counter for the task. This counter allows the task to set a time-limit that it will

wait for a resource. Task priority can be dynamically changed, supporting

operations such as priority inheritance to solve the priority inversion problem.

• A shared global resource bus is used to access system resources and task modules.

• The scheduler finds the highest priority ready-task for each processor each cycle

and passes their task IDs to their respective processors.

 Along with the aforementioned features of the RTP architecture, there are some

restrictions. Processors do not share data or program memory, and the architecture is

restricted to reside on a single FPGA.

2.1.2 – The Task-Resource Matrix

 The Task Resource Matrix (TRM), as seen in Figure 2.1, defines the interaction

between all tasks and resources in the system. The TRM does this by tracking the

allocation of system resources to tasks, synchronization of tasks, and maintaining mutual

exclusion for shared resources. It is physically organized by rows of tasks and columns

of resources. Once all of the tasks and resources have been defined, a resource node is

placed at the intersection of tasks and resources. The RTP RTOS uses the TRM to allow

each resource to be locked for exclusive use of a task when needed.

11

 Each resource node has interface pins that connect to a task, a resource, a

processor, and the TRM. It is through these interfaces that the RTP system facilitates

inter-process communication. The Task Resource Matrix and the pin interfaces of

processors, tasks, resources, and resource nodes is discussed in much more detail in [11].

2.1.3 – The Scheduler

 The real-time scheduler function has been moved entirely from software to

hardware. In conjunction with the TRM, the scheduler determines which tasks are ready

to run and then signals to each processor its highest priority ready-task. To implement

priority scheduling, “ready” signals are produced by the TRM to signify which tasks are

ready to run. The scheduler compares the priority of all ready tasks, giving higher

priority tasks precedence. There is always at least one ready task per processor, the “idle

task”, which is the lowest priority task and never blocks on any resource. In order for the

scheduler to perform optimally, it is necessary to support task priority inheritance by

temporarily raising the priority of a low-priority task holding a resource that is needed by

a high-priority task. Priority inheritance is managed under control of the RTOS.

 Additional details regarding the hardware implementation of the scheduler can be

found in [11].

2.1.4 – Context Switching

 Traditionally, context switching requires disabling interrupts, saving all registers

and other state information for the active task, restoring another task’s state information

and then re-enabling interrupts. This can require hundreds of instructions if done in

12

software. When interrupts are re-enabled, a higher priority interrupt may be pending,

causing yet another context switch.

 The RTP System was designed to accelerate an RTOS with hardware resources.

One specific area that was targeted is the overhead associated with context switching. A

traditional embedded system handles an incoming interrupt via two context switches: the

interrupt service routine (ISR) must save the previous context before calling the interrupt

handler, following which it must restore the context. The RTP method of handling

context switches eliminates the need to save and restore context in an ISR, and nearly

eliminates the time cost associated with a context switch such that ISRs can be

implemented as high priority tasks, blocked on the interrupt signal. This is accomplished

in hardware by giving each task its own register banks (including temporary registers),

set of flags, and its own program counter. The processor sends the task ID of the

instruction through the pipeline along with the instruction. To switch context, the

hardware scheduler has only to provide the processor with the task ID of the highest

priority task that is ready to execute.

2.1.5 – The RTP Hardware Assisted RTOS

 In a typical embedded system, an RTOS receives little or no support from the

hardware. It is required to perform context switches, manage memory, protect shared

resources, pass messages, handle interrupts, and schedule tasks. The vast majority of

these functions are typically done in software by the kernel. The Real Time Processor

Operating System (RTPOS) is a basic micro-kernel that implements all the necessary

functions for managing a real-time system. It provides task structures, blocking and non-

13

blocking communication between tasks via the resource primitives previously described,

events, pre-emptive scheduling, priority inheritance, and system timers.

 RTPOS is based in part on the Atalanta multiprocessor RTOS kernel as found in

[15]. In the RTP system architecture, almost all of the functionality traditionally done in

software is moved to hardware using customized instructions, a hardware scheduler, and

the TRM. The cost associated with this additional hardware is not prohibitive on an

FPGA, where logic elements are abundant. By moving many of the normal kernel

functions to hardware, the size of the RTOS code in the scarce memory space on an

FPGA is drastically reduced.

 With the hardware assistance previously described, RTPOS is able to perform all

of the traditional functions described in [15] while only needing a small amount of

memory, about 315 machine instructions. This small kernel size allows the RTPOS code

to be stored locally for each processor in the system. By comparison, MicroC-OS [16]

compiled for a Xilinx MicroBlaze requires over 2000 instructions, roughly seven times

greater. It would take a similar increase in the number of instructions to implement the

RTPOS purely in software.

 Much greater detail regarding the RTPOS kernel including detailed descriptions

of system calls and comparisons with the Atalanta and MicroC-OS kernels can be found

in [17].

2.2 – The RTP Processor and Instruction Set Architecture

 The RTP processor was initially designed to use a 16-bit instruction width, but

that did not provide adequate encoding space, so an 18-bit instruction width is used. This

14

works nicely with the block RAMs on the Spartan 3-1500 and Virtex II, which are also

18-bits wide. A single processor running a single task requires approximately 420 slices

on a Xilinx Spartan 3-1500. The RTP processor also includes several custom instructions

that allow the RTOS to use small software kernel functions to control the hardware and

manage application software.

 The RTP processor instruction set includes a variety of custom instructions that

directly manipulate the hardware for a specific task or resource to assist the RTPOS

kernel. These instructions require approximately 15% of the 18-bit instruction decode

space of the RTP processor.

 Resource specific control instructions in this new architecture include the

following:

• LOCK r: Attempt to reserve system resource r. If unsuccessful, task is blocked

until the resource becomes available.

• NB-LOCK r: Attempt to reserve system resource r without blocking. Return

information about the task that has locked the requested resource. Using this

information, a task can determine if it successfully locked the resource, or if not,

what other task has locked it.

• REL r: Release system resource r so other tasks may reserve it.

• RST r: Reset system resource r to initial state.

• ENABLE r: Enable system resource r. The meaning of this instruction varies for

each resource.

• DISABLE r: Disable system resource r. The meaning of this instruction varies for

each resource.

15

• SIG1 r: Send signal 1 to system resource r. The meaning of this instruction varies

for each resource.

• SIG2 r: Send signal 2 to system resource r. The meaning of this instruction varies

for each resource.

• READ r: Read the status of system resource r. The meaning of this instruction

varies for each resource.

• WRITE r: Write to the status of system resource r. The meaning of this

instruction varies for each resource.

Task specific control instructions include the following:

• R_PRIO: Read task information about the current task and store it in a register.

This information includes task ID, processor ID, task status flags, and task

priority.

• W_PRIO: Write the task information stored in a register to a specified task. This

is used primarily for priority inheritance.

• R_TIME: Read the current task’s timeout counter.

• W_TIME: Write a value to the timeout counter of the current task.

 There are also 3 predefined functions calls that are handled by the compiler which

facilitate the real-time processing framework (described in detail in Chapter 4). Memory

is accessed via register direct addressing only. The instructions have the format

“OPERATION destination, source” where several instructions do not require the source

and/or destination fields. Most instructions execute in 1 clock cycle. Branching and real-

time support instructions may introduce stalls in the pipeline. The implementation details

16

of the RTP processor can be found in [10]. The RTP instruction set is documented in

Appendix D.

2.3 – Related Work

 Using separate register banks to reduce the penalty for context switching has been

done before. The SPARCLE processor, introduced in [18], used four banks of registers

to store separate contexts. When switching threads, a trap handler would save the old PC

and status register, then change the current window pointer to the register bank for the

new context, and finally restore the new PC and status register. This greatly reduced the

amount of data saved and restored by the trap handler. The RTP architecture provides

completely separate contexts for each task, including the PC and status register. Context

switching is done by the hardware scheduler, not in software as is done by the SPARCLE

processor.

 In the Silicon TRON project [19], hardware was used to shorten system calls and

speed up scheduling. Modules were created for event flags, semaphores, timers, tasks,

the scheduler, and a control circuit that interfaced with the CPU using an interrupt and

status register. This reduced the RTOS kernel code size by half. In [20], the time

required for context-switching in a real-time system was reduced by 50% by adding a

register cache to a MIPS R3000 core in an ASIC. The RTP architecture extends these

ideas by adding additional hardware to nearly eliminate the time cost of context-

switching and reduce further the RTOS kernel code size.

 The RTP architecture uses a sparse task-resource matrix to manage system

resources. The TRM is somewhat similar to the matrix described in [21]. That research

17

described a dense task-resource matrix used for detecting deadlock via reduction of

unused entries. The RTP architecture uses the TRM to drive a hardware scheduler.

2.4 – Additional Considerations

 Four years ago when we first designed the RTP system architecture, we decided

upon a custom processor to allow us the ability to define and implement in hardware a

number of instructions that allowed us to manipulate the hardware directly for a specific

resource or task. However, the RTP system architecture would be equally viable with an

off-the-shelf processor such as the Xilinx MicroBlaze. The MicroBlaze has support for

up to 8 Fast Simplex Link (FSL) connections, each of which can be connected to a

coprocessor. The custom instructions implemented in the RTP processor could be

realized via custom coprocessor units attached to the FSL bus.

 Without the use of the RTP processor, the RTP system architecture still provides a

compelling methodology of handling interrupts by eliminating the need for interrupt

handlers. The hardware scheduler, in conjunction with the TRM, can point the processor

directly to the task that is blocked on the interrupt. Instead of the two full context

switches usually required to process an interrupt, only a single context switch is needed

to switch to the new task.

 Using a processor such as the MicroBlaze would provide additional functionality

not available in the RTP processor, such as hardware dividers, floating point support, and

more.

18

19

Chapter 3: Porting the SDCC Compiler

 The Real Time Processor (RTP) hardware architecture is a vanilla 16-bit

pipelined RISC-like architecture with some additional support for real-time processing.

The architecture includes sixteen 16-bit registers, supporting native 16 and 32-bit

arithmetic and logical operations. It does not have a hardware integer divider, but will

compile division/modulo operations to an optimized sequence of assembly instructions.

There are 3 predefined functions calls that are handled by the compiler which facilitate

the real-time processing framework. Memory is accessed via register direct addressing

only. The instructions have the format “OPERATION destination, source” where several

instructions do not require the source and/or destination fields. Most instructions execute

in 1 clock cycle. Branching and real-time support instructions may introduce stalls in the

pipeline. The RTP instruction set is documented in Appendix D.

Note: The remainder of this chapter is intended as a standalone document suitable for
publication and/or classroom use.

20

 One major cost relating to the development of a new processor is the need to

develop an accompanying C-compiler for that processor. Rather than writing the Real

Time Processor (RTP) compiler from scratch, three retargetable compilers were

considered: GCC, LCC, and SDCC. After considering the strengths and weaknesses of

the three compilers, and the perceived difficulty of retargeting each compiler for the new

architecture, SDCC was chosen as the base compiler. This chapter describes the

modifications necessary to the base SDCC compiler that are required to target a new

architecture. The February 26th, 2004 release of version 2.4 was used as the basis for this

port. The development environment consisted of Visual Studio 6.0 on a computer

running Windows XP, and as a result some of the described changes may not apply to

other development environments or platforms.

3.1 – Decision to use SDCC

 SDCC is an open source, retargetable, optimizing ANSI-C compiler [8] designed

for 8-bit microprocessors. It supports global sub-expression elimination, loop

optimizations (loop invariant, strength reduction of induction variables and loop

reversing), constant folding and propagation, copy propagation, dead code elimination,

jump-tables for switch statements, a programmable register allocation scheme, a

customizable peephole optimizer using a rule-based substitution mechanism, and it

allows inline assembly code to be embedded anywhere in a function. The specifics of the

aforementioned optimizations are covered in detail in the SDCC documentation.

Retargeting is accomplished by writing C code to translate the SDCC object code data

structures to assembly instructions for the target architecture. It also offers the flexibility

21

to provide custom translations for a list of function calls that are specified in the

compiler.

 SDCC was chosen due to its many optimizations, ease of handling the predefined

RTP-specific function calls, and relative ease in developing the register allocation and

code generation schemes. Retargeting SDCC involves writing, or rewriting C code. No

other languages need to be learned, with the peephole rule language as a possible

exception.

3.2 – Base SDCC Complier Functionality

 The SDCC compiler uses seven phases to compile C source code to optimized

assembly. The first 4 phases are architecture independent, while the last 3 phases are

almost wholly dependent on the target architecture. The phases (which are briefly

described in the SDCC documentation [8]) are:

• Parsing. In this phase, the C source is parsed, and the abstract syntax tree (AST)

is generated. Syntax and semantic checking are done in this phase, as well as

some high level optimizations.

• iCode Generation. This phase takes the AST from the first phase, and generates

three-operand intermediate codes (iCodes) for an abstract architecture with

unlimited registers. Each of the registers is designated a unique name

iTempXXX, where XXX represents a numeric value. If desired, a human

readable version of the iCodes can be printed to a file using the --dumpraw

compiler flag.

22

• Code Optimizations. This phase converts iCodes into basic blocks. Basic

blocks are blocks of sequential code which are guaranteed to execute without

jumps or branches. This attribute makes them easy to analyze and optimize. The

basic blocks are put through data and control flow analysis to perform the

following optimizations: local and global common subexpression elimination,

dead code elimination, and loop optimizations. This sequence of optimizations is

repeated each time the loop optimizations result in changes to the basic blocks.

• Live Range Computation. This phase determines when the iTemps are used,

from initial assignment until final use.

• Register Allocation. The register allocation phase is actually two stages [9]:

1) register allocation, where the set of variables that will exist in registers is

determined, and 2) register assignment, where specific registers are chosen for

each variable. Architecture-specific expression folding, or register packing, is

done in this phase which reduces register pressure. This phase uses the live

ranges computed in the previous stage to assign remaining iTemps to physical

registers on the target architecture. Code from similar architectures may be used

as a basis for register allocation of a new architecture.

• Code Generation. This phase maps the iCodes to assembly instructions. Very

little code from similar architectures may be used within this phase. However, the

general methodology of assigning assembler operands to individual iCodes, as

done in previously implemented architectures, is a good starting point for code

generation.

23

• Peephole Optimizations. This phase uses a rule-based matching system to

optimize certain sequences of assembly code. Few rules from existing

architectures will apply to new architectures. Appendix A lists the peephole

optimizations for the RTP architecture.

 The base SDCC compiler lexes and parses the C source file using FLEX, YAK,

and BISON. It then builds the abstract syntax tree (AST) from the output of the parser.

Details regarding lexical analysis and parsing will not be discussed in this document, nor

will details concerning the generation of the AST.

 There are many options in the base SDCC compiler that are architecture specific.

These options modify the handling of the code during code generation, with parameters

such as memory models, data type representation sizes, and the various segments of

memory in the target architecture. They also specify architecture specific command-line

option handling, and pragma processing.

3.3 – Required Changes to Base SDCC Compiler

 The SDCC compiler was originally designed to target 8-bit architectures, and byte

addressable memory schemes. The RTP architecture is a 16-bit architecture, with byte

addressable (and word aligned) memory. Memory and register allocation, and memory

addressing all required several changes to the base SDCC compiler. Wherever possible,

the RTP port avoids making changes to the base SDCC compiler source files, as they are

used by the other supported architectures. The changes that must be made to the base

compiler are always preceded by if (TARGET_IS_RTP) {} to guarantee that other

ports will not be affected. A more rigorous handling of 16-bit architectures would

24

include modifications to the PORT structure with options for memory width and

alignment, and register sizes. This approach was not taken, as the RTP port is not a part

of the official SDCC source tree, and such an approach would require a multitude of

changes that would make it difficult to sync with the latest stable branch of the source

tree.

 The base SDCC compiler assumes an 8-bit architecture, and therefore allocates

memory for data structures and registers on the byte-level. This is problematic when

targeting the RTP’s 16-bit architecture, as register allocation and memory addressing

must be done on the 2-byte word level to avoid memory misalignment exceptions. A

modification to SDCCmem.c is required for the functions allocParm, allocLocal,

and deallocLocal, so that the amount of memory allocated for character variables is

padded when it will cause a non-character data element to have a misaligned memory

address. To further guarantee that non-character data is accessed on word boundaries,

when code is emitted to allocate memory for any data element, an assembler pragma

“.even” is emitted before the allocation.

 For register allocations, each call to getSize() (a helper function that returns

the size of an element in the symbol table) is halved, except in the case of character

variables. With an 8-bit scheme getSize() returns the number of bytes for each data

type, which directly corresponds to the number of 8-bit registers required. A 16-bit

architecture requires the number of 16-bit words for register allocation and memory

addressing, including stack offset pointers.

 Word-aligned memory requires changes to the symbol table function for struct

size computations. The base SDCC compiler allows structs and arrays to be placed at

25

any offset in memory, and allows them to have odd valued sizes. If a member of a struct

is not a character, it requires that it be word aligned for memory access. The symbol

table function compStructSize() computes the size of a struct, and therefore was

modified to take into account word alignment for non-character elements. The size of the

entire struct is also modified to guarantee an even number of bytes.

 In addition to the above mentioned changes, several modifications must be made

to the port.h and SDCCmain.c files. At the very beginning of port.h, all of the supported

target architectures are given a unique ID. A new entry must be added at the end of the

list for the new architecture. After the assignments of unique IDs are several macros

(TARGET_IS_<port>) that are used to test which architecture is being targeted. A

new macro should also be created at the end of this list. The last few lines in port.h

provide each of the supported architectures with an extern PORT <port>_port

declaration for use throughout the base SDCC compiler. An additional declaration

should be provided for the new architecture. The final necessary change is in

SDCCmain.c, beginning at approximately line 275. At this point in the code an array of

all targetable architectures is defined, and the new architecture should be appended to the

end of this list as well.

 If desired, SDCC_vc.h can be modified such that only one architecture is

supported by the compiled binary. This is done by modifying the end of the file to

contain a #define OPT_DISABLE_<port> line for all unsupported ports defined in

port.h.

 Targeting the SDCC compiler to a specific architecture for code generation

requires the creation of the following 6 files:

26

• main.c, main.h – These files define the built-in functions that should be trapped

by the compiler, the default port variables, and the peephole optimization rule

files. Also, keywords that pertain to the architecture can be specified here in

order to be properly handled by the lexer. Some port specific functions are also

defined here if needed, as well as any declarations and definitions that need a

global architectural scope. The main.c source file also contains code to process

pragma statements.

• ralloc.c, ralloc.h – These files are used to describe the layout of the register file,

and the manner in which registers should be allocated for code generation. Also

specified are general purpose and scratch register allocation, and any special

purpose registers that may be required for the architecture. The live ranges for

registers are computed by the base SDCC compiler during creation of iCodes and

basic blocks, and subsequently used within ralloc.c for the register allocation and

assignment. Any port specific register packing is done in ralloc.c.

• gen.c, gen.h – These files are used for the assembly code generation. An in-depth

understanding of the ISA for the target architecture is a pre-requisite. A

familiarity with the target architecture’s memory addressing modes is also a pre-

requisite. An understanding of the data structures that the base SDCC compiler

generates and the way they map to the original source code is extremely helpful.

The gen.h header file contains the definition of assembly operands and operand

types, while gen.c contains the assembly code generation routines.

 The changes required for code generation will be covered in this chapter, while

Chapter 3 discusses the changes required for trapping the predefined RTP function calls.

27

3.4 – The SDCC-RTP Compiler: Code Generation

 Porting of the SDCC compiler is accomplished in the last 3 stages discussed in

Section 3.2. The remainder of this chapter will discuss the details of assigning port

options, implementing a register allocation scheme, generating assembly code, and a

method of generating peephole optimizations to optimize and reduce code size.

3.4.1 – Port Options (main.*)

 The source files main.c and main.h are the files that pertain to port-specific

options. The header file is used to declare any variables that require a global scope for

the architecture specific files. In the RTP port, there are no declarations or definitions

required in main.h.

 The main.c source file is used to declare architecture-specific variables and

functions. The most important aspect of main.c is the declaration of all port specific

options, primarily the variables within the PORT structure. These variables are used

throughout the base SDCC compiler to determine the methods for handling iCode

generation, memory segmentation, and several optimizations. The prototypes of the

built-in functions that will require special handling are defined within a special structure

called builtins, which is discussed in more detail in Chapter 3. Any special

keywords that should be parsed and appropriately handled by the code generator are also

defined in main.c. Finally, several helper functions are defined that are called by the base

compiler to parse command line options, parse #pragmas, and appropriately handle

parameter passing via registers.

28

 The comments contained within the structure definition in port.h are extremely

helpful. Another useful resource for assigning port options is to refer to a previously

targeted architecture’s PORT declaration as an example.

3.4.2 – Register Allocation (ralloc.*)

 The main function for register allocation is _<port>_assignRegisters

(eBBlock **ebbs, int count), which is a function call specified in the

architecture’s PORT structure. This function is called by the base SDCC compiler, and

takes as parameters a pointer to a list of basic blocks, and the number of basic blocks that

require register assignment. Registers must be allocated per given function, so the list of

basic blocks passed in will only contain the basic blocks for the current function.

 A basic block is composed of various elements, most of which aid in control flow

and dataflow analysis. The elements of the basic block that factor into register allocation

are 1) iCode *sch, which is a linked list of the iCodes contained by the block, and 2)

the integers fSeq and lSeq, which are used in conjunction with the seq field of each

iCode to determine the locality of iCodes with respect to basic blocks.

Table 3.1: Register Assignments

Registers Purpose
R0-R3 Scratch registers (caller saved)
R4-R8 General purpose registers (callee saved)
R9 (and R10) Return value registers
R9-R12 Parameter passing registers
R13 Stack pointer
R14 Frame pointer
R15 Return register

29

 The RTP register file is made of 16 16-bit registers, with the registers assigned as

listed in Table 3.1. Note that R10 is only needed as a return register for 4-byte variables.

The register types and register file layout are defined in ralloc.h.

 The sequence outlined below is architecture independent, but the implementation

of the register packing and register allocation functions that are called is highly

architecture specific. Register allocation for the RTP architecture is done by taking each

of the following steps in order:

• Pack the registers for each basic block, using architecture-specific

optimizations to reduce register requirements. Specific optimizations are

discussed following this list.

• Recompute the live ranges for all basic blocks, in the event that register

packing altered the positions (or existence) of some variables. This is done

through a call to a helper function within the base SDCC compiler,

recomputeLiveRanges (ebbs, count).

• Analyze the recomputed live ranges to determine the type and number of

registers required (register allocation).

• Assign physical registers to the variables that require them (register

assignment).

• Create the register mask, and update the corresponding field for each iCode.

The register mask is used to determine all registers that are active during the

use of the specified iCode, and can be used for other optimizations during

code generation.

30

• Call the helper function redoStackOffsets(), which will update the

stack size and stack offsets required by the function, now that registers are

given a definite assignment.

• Get a pointer to the first iCode in the chain for the basic block, by calling

iCodeLabelOptimize (iCodeFromeBBlock (ebbs, count)).

• Call the code generation procedure gen<port>Code (iCode *ic) to

generate code for the current function.

 The code found in the AVR-specific register packing was used as a basis for the

RTP register packing, and is very straightforward. The following paragraphs will discuss

the various register packing scenarios.

 First, true symbols (symbols that do not have the iTemp field set) that are used in

an assignment to an iTemp (i.e. iTempXX = TrueSym OP operand), and are

subsequently used in an assignment such as TrueSym = iTempXX. The latter assignment

can be replaced with the former assignment, which is the definition of iTempXX. This

will free up the registers used in the second assignment operation, and will most likely

shorten the live range of such registers.

 Second, there are several cases where register use is unnecessary, such as the

address of a true symbol, rematerializable data, and addition and subtraction operations

that use a rematerializable operand in conjunction with a literal. In these cases, the

operands in question need not be stored in registers because they can very easily be

determined. Rematerializable data and operands are by definition such data and operands

that are the result of an operation that can be computed at compile time, and therefore

need not be assigned to registers.

31

 Thirdly and lastly, in register packing, there are several cases where the register is

needed for only one use, and possibly can be optimized away. In the case of variable

casting for integral promotion, for instance, if the register use being analyzed is the only

use of the arithmetic operation involved in the cast, then the cast can be replaced by the

result of the arithmetic operation. In the case of return values, redundant moves can be

optimized away.

 After register packing is performed, register allocation and assignment must be

performed. Register allocation involves checking all of the various live ranges for

registers that are in use. For all iTemps that are needed for a given live range, the number

of required registers is computed based on the size of the data stored by the iTemp. The

type of register required is also determined at this stage. If the value will be needed

across function calls, then a general purpose register is preferred to avoid excessive

saving and restoring of registers. Otherwise, a scratch register is adequate.

 Finally, register assignment takes place. All iTemps that require registers are

assigned to physical registers in the architecture. When the number of physical registers

required for a given live range exceeds the number of physical registers available, iTemps

are said to “spill” onto the stack, which results in an increased stack size, and assignment

of stack offsets to iTemps.

3.4.3 – Code Generation (gen.*)

 After registers have been assigned, the next step is to generate code. Code

generation is the mapping of intermediate code instructions to machine-specific assembly

code instructions. Each intermediate code instruction has a specific operation that needs

32

to be performed. In the RTP architecture there are 40 operation codes that are recognized

by the code generation algorithm. These operation codes are listed in Table 3.2. There

are several other operation codes defined in sdccy.h that may be recognized by other

architectures that provide support for them. If the options to transform the various

comparison operations to equivalent forms are enabled in main.c, even fewer operation

codes will be necessary.

Table 3.2: RTP Recognized iCode Operation Codes

Operation Code Notes
! Logical NOT
~ Bitwise complement
UNARYMINUS Unary minus
IPUSH Push onto stack
IPOP Pop from stack
CALL Procedure call
PCALL Procedure call via pointer
FUNCTION Function startup boilerplate
ENDFUNCTION Function cleanup boilerplate
RETURN Return from procedure/function
LABEL Generate label
GOTO Goto label
+, -, *, /, % Add, subtract, multiply, divide, modulo
>, <, LE_OP, GE_OP, NE_OP, EQ_OP Comparisons {>, <, <=, >=, !=, ==}
AND_OP, OR_OP && and ||
^, |, BITWISEAND Bitwise XOR, OR, AND
INLINEASM Generate inline assembly
LEFT_OP, RIGHT_OP Left and right shifting
GET_VALUE_AT_ADDRESS Get pointer value
= Set pointer value or Assign
IFX If X statement
ADDRESS_OF Generate address of variable
JUMPTABLE Create jump table
CAST Variable casting
RECEIVE Parameters being received
SEND Parameters being passed
ARRAYINIT Array initialization

33

 The gen.h header file contains definitions for the various assembly operand types

(literal, register, pointer, etc), and a structure that contains all pertinent information about

the assembly operand, including type, memory segment, size, and value. Each iCode

references up to three operands: result, left, and right. The code generator determines

which operands are valid based on the operation code, and creates one or more assembly

operands for the corresponding iCode operand.

 All ANSI-C compliant source code1 can be broken down into a combination of

the operation codes listed in Table 3.2. In most cases, only a single iCode is needed to

generate code. In the few remaining cases, it may be necessary to look at the next iCode

in the chain for example to determine the branch target after a comparison operation.

 Figures 3.1 through 3.3b illustrate an example of the flow from C code to

assembly code for the RTP processor. Figure 3.1 shows the original C source code that

will be used in this example. There are several iCode operations in this short example:

assignment, increment/decrement, multiplication, comparisons, and a function call. The

variable c is a global variable, so it will not be allocated a register. In the doubleit

function, op is passed in via r9, the first parameter passing register, and since r9 is also

the return value register, no additional register allocation is required. In the main

procedure, a, i, and result are local variables and will be allocated registers. The

variable b is not allocated a register because its value is a constant (rematerializable), and

is replaced inline with the scalar value 2.

1 There are several deviations from ANSI-C compliance. See section 8.2 of the SDCC documentation for
further details.

34

Figure 3.1: C source code for RTP code generation example

 When this code is first parsed by SDCC-RTP, the iCode chains contained in

Figure 3.2 are created (comments added in parentheses), with the exception that LABEL

iCodes for entry into doubleit and main have been omitted. The iCodes in each

 1: char c;
 2:
 3: int doubleit (int op) {
 4: return (op*2);
 5: }
 6:
 7: int main() {
 8:
 9: int a, b, i, result;
10:
11: a = 1;
12: b = 2;
13: c = ‘q’;
14: result = 0;
15:
16: for (i = 0; i < 10; i++)
17: a = a * b;
18:
19: while (c != ‘m’)
20: c--;
21:
22: if (a < 1024)
23: result = 1;
24:
25: switch(c) {
26: case ‘q’ :
27: a = doubleit(a);
28: break;
29: case ‘m’:
30: result = 2;
31: break;
32: default:
33: result = 3;
34: }
35: if (a != 2048)
36: result = 4;
37:
38: Return result;
39:} /* main */

35

Figure 3.2: iCode chain for RTP code generation example

Chain 1:
 1: FUNCTION (doubleit)
 2: RECEIVE (parameter)
 3: LEFT_OP (left shift)
 4: RETURN (return value from doubleit)
 5: ENDFUNCTION

Chain 2:
 1: FUNCTION (main)
 2: ‘=’ (assignment for variable ‘a’)
 3: ‘=’ (assignment for variable ‘c’)
 4: ‘=’ (assignment for variable ‘result’)
 5: ‘=’ (assignment for variable ‘i’)
 6: LABEL 1a (for loop jump target)
 7: ‘*’ (multiply operation)
 8: ‘-’ (decrement variable ‘i’)
 9: IFX (comparison on ‘i’; branch LABEL 1b; jump LABEL 1a)
10: LABEL 1b (for loop completed jump target)
11: LABEL 2a (while loop jump target)
12: NE_OP (comparison of c != ‘m’)
13: IFX (branch LABEL 2b)
14: ‘-’ (decrement variable c)
15: GOTO (jump to LABEL 2a)
16: LABEL 2b ()
17: ‘<’ (comparison of a < 1024)
18: IFX (branch LABEL 3)
19: ‘=’ (assignment for result = 1)
20: LABEL 3 (comparison jump target)
21: EQ_OP (c == ‘q’)
22: IFX (branch LABEL 4a)
23: EQ_OP (c == ‘m’)
24: IFX (branch LABEL 4b)
25: GOTO (jump to LABEL 4c – default switch target)
26: LABEL 4a ()
27: SEND (set up parameters for doubleit)
28: CALL (call doubleit)
29: ‘=’ (assign a = doubleit(a))
30: GOTO (LABEL 4d)
31: LABEL 4b
32: ‘=’ (assign result = 2)
33: GOTO (LABEL 4d)
34: LABEL 4c
35: ‘=’ (assign result = 3)
36: LABEL 4d (switch jump target)
37: NE_OP (compare a < 2048)
38 IFX (branch LABEL 5)
39: ‘=’ (assign result = 4)
40: LABEL 5 (comparison jump target)
41: RETURN (return value of ‘result’)
42: ENDFUNCTION (main)

36

chain are processed sequentially. There are some cases where iCodes are created during

code generation. One example of this can be found in Chain 2 iCode 10, which has been

underlined. In this case, the IFX iCode creates a LABEL iCode to use as a branch target.

Note that this iCode is not inserted into the chain, but is simply created and used

dynamically.

 It should also be noted that in Figure 3.2, the iCodes that are indented 2 spaces are

either created during code generation (line 10), or are processed jointly with the iCodes

that precede them (iCodes 13, 18, 22, 24, and 38). This will result in different sequences

of assembly instructions being generated for the same iCode operation when processed

jointly than when processed individually.

 Figure 3.3 contains portions of the assembly code generated from the iCode

chains in Figure 3.2. First is listed the header and initialization code as well as the

doubleit function. The iCodes that are listed in Chain 1 from Figure 3.2 are included in

assembly comments with the corresponding lines of the doubleit function. Figure 3.3

also contains an excerpt from the main function, and lists the corresponding iCodes from

Chain 2 in Figure 3.2. For a full listing of the generated assembly code, including

peephole rule optimization comments, please see Appendix B.

 It is recommended in porting the SDCC compiler to maintain a separate code

generation procedure for each different iCode operation. This allows for easy debugging

of generated assembly code, and quickest time to release. The tradeoff in this

implementation decision is sub-optimal code, which may be optimized via additional

peephole rules.

37

Figure 3.3: Assembly code for RTP code generation example

 .module example1
 .globl _main
 .globl _doubleit
 .globl _c
 .area DSEG ;(DATA)
_c::
 .even
 .ds 1

 .area GSFINAL ;(CODE)
.globl __sdcc_init_data
__sdcc_init_data:
 ret ;return to caller
 .area CSEG ;(CODE)

_doubleit:
 push r14 ;(1.1)
 mov r14,r13 ;(1.1)
 sll r9,0x1 ;(1.2,1.3,1.4)
_ret_doubleit: ;(1.5)
 pop r14 ;(1.5)
 ret ;(1.5)

; excerpt from _main:
 mov r4, 0x1 ;(2.2)
 mov r0,0x71 ;(2.3)
 mova r1, _c ;(2.3)
 st r0,0(r1) ;(2.3)
 mov r5, 0x0 ;(2.4)
 mov r6, 0xa ;(2.5)
L00016: ;(2.6)
 mov r0,0x2 ;(2.7)
 mul r4,r0 ;(2.7)
 sub r6, 0x1 ;(2.8)
 be L00027 ;(2.9)
 jmp L00016 ;(2.9)
L00027: ;(2.10)
L00003: ;(2.11)
 mova r0, _c ;(2.12)
 ld r1, 0(r0) ;(2.12)
 cmp r1, 0x6d ;(2.12)
 be L00005 ;(2.13)
 mova r2, _c ;(2.14)
 ld r1, 0(r2) ;(2.14)
 sub r1, 0x1 ;(2.14)
 st r1, 0(r2) ;(2.14)
 jump L00003 ;(2.15)
L00005: ;(2.16)
 mova r0,0x400 ;(2.17)
 cmp r4,r0 ;(2.17)
 bge L00007 ;(2.18)
 mov r5, 0x1 ;(2.19)
L00007: ;(2.20)

38

3.4.4 – Peephole Rules (peeph.def)

 Optimal code generation is an NP-complete problem. Devising a code generation

algorithm that always generates the most optimal code is impractical if not impossible. A

simple way to improve sub-optimal code is to pass the generated assembly language

instructions through a peephole optimizer [12]. A peephole optimizer recognizes certain

instruction patterns, and replaces them with optimized instruction patterns. Each of these

replacement patterns is called a peephole rule. This optimization process is given the

name “peephole” because it is limited to analyzing a small portion of the code at any

given time.

 One method for creating a set of peephole rules is to examine the assembly source

code generated for several different source files, and look for patterns of instructions that

occur frequently. There may be instruction sequences that are not only sub-optimal, but

entirely unneeded. A peephole rule should be created for this sequence to eliminate it

entirely. A good rule of thumb in both hardware and software design is to make the

common cases fast, while ensuring that the difficult cases remain correct.

 There are other cases where the compiler emits code that does not take into

account all of the side effects of certain instructions. For example, there may be cases

where the first instruction sets the flags required for a branching operation, but the

compiler produces a compare instruction in addition to the branch. The compiler may be

altered to take this into account, but more likely the lower cost alternative is to use

peephole rules to optimize this code sequence.

 The built in peephole optimizer for the SDCC compiler is used at compile time,

and therefore cannot comprehend optimizations that span two separate iCode chains.

39

This particular shortcoming makes itself manifest in global declaration code, especially if

multiple global variables are being initialized to the same value. Because of this

limitation, a separate Perl-based peephole optimization program was designed to further

reduce the code footprint. Perl was chosen due to its excellent ability to parse and

manage text.

 A certain subset of peephole rules can be applied to all architectures. The current

set of peephole rules for the RTP architecture are listed in Appendix A.

40

41

Chapter 4: The SDCC-RTP Compiler

 One particular advantage of SoPCs is the ability to customize the system

architecture for each different application. As real-time embedded applications are

compiled for the RTP architecture, information about the specific resource needs of each

task in the application is collected and stored so that the system generator can instantiate

application-specific custom hardware. The SDCC-RTP compiler targets the RTP

instruction-set architecture, which contains special instructions that facilitate the efficient

use of the custom hardware. The number of processors, the number of tasks, the devices,

and the required system resources must all be determined statically at compile-time

because only the minimal hardware necessary will be instantiated by the system

generator. The dynamic creation or deletion of tasks cannot be supported as it is in

software-based architectures.

4.1 – Built-in Functions

 The built-in functions are used to statically declare the hardware resources,

devices, and tasks of the system at compile time. The definitions associated with any

hardware element must be declared in a global.h header file. The template for the

global.h header file defines the different resource and device types available for the RTP

architecture. As new devices or resources are implemented, additional items can be

42

added to the global header file definitions. The global header file is also used to specify

all device and resource descriptor numbers as they are unique in the global scope. The

device I/O space of each processor is private, but actual device numbers must remain

globally unique. This is done by treating the device numbers as (processor number, I/O

address) pairs. The global IDs are not limited to 0..255 like I/O addresses are. Figure 4.1

shows the template for the global.h header file. This global header file is included by the

source files for all processors in the system, allowing them to reference global devices

and resources.

Figure 4.1: The global.h Header File Template

#ifndef __GLOBAL_H__
#define __GLOBAL_H__

enum resource_type {
 ZRESOURCE, MUTEX, DIS_EVENT, CON_EVENT,
 SEMAPHORE, TIMER, INTERRUPT, READER, WRITER };

enum device_type {
 ZDEVICE, FIFO_READER, FIFO_WRITER, TRANSMITTER, RECEIVER,
 SCRATCHMEM, FP_ADD, FP_MUL };

#pragma NUMPROCS_4

/* Resources */
/* Mutexes */
#define MUTEX1 1
#define MUTEX2 2

/* Devices */
/* FIFOS */
#define FIFO1_QU1 1
#define FIFO2_QU2 2

#endif

43

 The specification of resource and device numbers (also called device descriptors

in some operating systems) is done via #define RES_NAME <NUM> statements. The

preprocessor replaces all #defines with their definition, which means the compiler will

see these values as if they were literals, and not variables. Literals are passed directly

through the compiler’s AST, and are much easier for the compiler to use to build its

intermediate task-resource symbol table than integer variables. Were the device and

resource numbers to be specified as variables, it would be virtually impossible to share

global descriptor numbers between different source files, as each processor has its own

data memory.

 All processors must have their code contained within a separate source file, and

must specify their processor number with a #pragma PROC<num> line. The separate

source files are required because each processor has its own code memory. An advantage

of using separate source files is that the main procedure becomes the idle task for the

given processor. The PROC<num> pragma is parsed by the compiler and sets a global

RTP processor variable. This pragma also creates an assembly directive of the form

.proc_num PROC_NUM that allows the assembler/linker to produce a memory size

generator directive. After parsing this pragma, the RTPsys.gen generator directive file is

either created if it does not exist, or loaded into the intermediate symbol table if it does

exist. To avoid unnecessary recompilation of unchanged processors, only the values for

the current processor are updated in the directive file. In global.h, the total number of

processors must be specified by the #pragma NUMPROCS_<num> line.

44

 If a built-in function is called without a #pragma PROC<num> line, the

compiler will terminate with a fatal error, and will print an error message to the

application engineer.

 The application engineer declares hardware resources, devices, and tasks through

the use of the following function calls in the application code:

1) int OpenResource (int TYPE, int glob_rd_num, int task_id);

All tasks that use any hardware resource must declare such use by means of this function

call. This function specifies that a resource of type TYPE must be generated for the

system. The global resource descriptor number and the id number of the task that will

use the resource are also passed in as parameters. Resources are not restricted to a single

processor, nor to a single task within a single processor. The only error checking that is

done by the compiler is to verify that the TYPE specified is consistent across all

processors and corresponds to an existing hardware resource component available within

the RTP VHDL library. There are no limitations to the number of processors or tasks

that can use a given resource as long as they call this function before use.

2) int OpenDevice (int TYPE, int dev_num, int task_id, int

base_addr, int size, int glob_rd_num, int off_chip_pin_num);

All tasks that share the same I/O devices must be assigned to the same processor. There

are exceptions to this rule in the case of hardware FIFOs and scratchpad memory. In the

RTP VHDL library, a hardware FIFO is composed of both a reader device and a writer

device. These FIFO readers and writers can reside on the I/O buses of the same or

45

different processors. The OpenDevice function specifies that a device of type TYPE

must be generated for the system. The global device descriptor number, the task id

number, and the base I/O address are also passed in as parameters. An optional size

parameter is also passed in for devices that can vary in size, which currently only pertains

to FIFO and scratchpad memory devices. The final two parameters are also optional for

devices that will utilize a resource or an off-chip pin. The compiler checks to see that the

device does not already exist on another processor, and if it does, prints an error message

to the user. On a given processor there is no limitation to the number of tasks that can

share a device as long as they call this function before use. Only one task can use a

specific device at a given time, therefore if a device is shared between tasks a mutex

resource should be used to ensure exclusive access to the device.

3) int CreateTask ((void *) t_main, int t_priority, int

stack_size, (void *) arg1, (void *) arg2);

This function takes five parameters: a function pointer to the task’s main routine, the

initial task priority id (which is also the task id), the required stack size, and two pointer-

sized arguments for the task’s main routine. When the compiler parses this function call,

each parameter is passed along to a function call in the RTOS, _createtask, which

initializes the task table, and starts the task. The task table contains the stack size, task

main routine start location, and two arguments for each task on the processor. The

application engineer is the best judge for which tasks require the highest priority, and

which tasks should be run concurrently. This is why the priority must be specified with

46

task creation. The compiler will catch an attempt to assign the same priority to two tasks

on the same processor, and will print a corresponding error message.

4.1.1 – Compiler Support for Built-in Functions

 The base SDCC compiler provides support to define a list of functions with their

prototypes that will be given special support in the compiler. The original intent of this

support was to bridge functions implemented in hardware to application code; however,

the SDCC-RTP compiler uses this list of predefined functions as the means by which to

trap the three special functions listed above and use their parameters to create the

intermediate symbol table described in the following section.

 The built-in functions are declared using the structure type definition listed in

Figure 4.2. The final entry must be given as {NULL, NULL, 0, {NULL}} to specify

the end of the array. As mentioned in Figure 4.2, the comments listed before the helper

function typefromStr describes the manner in which return and parameter types

should be specified within the structure.

Figure 4.2: Built-in Function Structure Type Definition

 When the code generation algorithm sees a SEND iCode operation code, it checks

to see if the iCode’s builtinSEND field is masked. If so, the code generation

typedef struct builtins {
 char *name; /* name of built-in function */
 char *rtype; /* return type given as string */
 int nParms; /* number of parameters (max 8) */
 char *parm_types[MAX_BUILTIN_ARGS]; /*param type as string*/
} builtins; /* see typefromStr for more details */

47

algorithm will call a special routine that handles the built-in functions, called

genBuiltIn. In the general case, this routine should do the following:

• Call getBuiltinParms, which will populate an array of operands that

contains the parameters passed into the built-in function.

• Compare the built-in function name against the list of built-in functions to

determine which to generate code for.

• Handle the built-in function in the appropriate manner.

 In the case of the SDCC-RTP compiler, the final step builds the intermediate

symbol table entry for the current function, and provides a return value to the callee. In

the case of the CreateTask built-in function, the RTOS function create_task is

also called in order to initialize the task’s startup table, which contains stack size,

arguments, and initial PC address. The assembly code for the RTOS is included in

Appendix C.

4.2 – Intermediate Symbol Table

 A small intermediate symbol table (IST) of generator directives is created and

modified using the globally shared definitions in global.h and calls to the above three

functions so that the proper generator directive file can be created (updated) upon

successful compilation. The intermediate symbol table is contained in a single global file

RTP_ist.dat. This file is stored in binary format as human readability is not required. As

mentioned earlier, this symbol table only modifies entries for the currently specified

processor. The format of the IST is found in Figure 4.3.

48

Figure 4.3: Intermediate Symbol Table for Generator Directives

4.3 – Generator Directives

 The three built-in function calls create entries in the IST, which in turn produce

specific generator directives that signal to the RTPGen hardware generator the nature and

grouping of the tasks, devices, and system resources. The RTP architecture uses a system

specific customized task-resource matrix (see Fig. 2.1) for allocating system resources to

tasks, keeping track of task state, and maintaining mutual exclusion for shared resources.

 The compiler generated directive file is created upon successful compilation of

each processor. The file is created directly from the IST, and is done in ASCII format.

This lends itself to human readability so that the application engineer can review the final

directive file. The format of the ASCII directive file is as follows, with each directive

line terminated by a newline character:

struct _RTP_TaskInfo {
 int proc_id;
 int task_id;
 int task_priority;
 int stk_size;
 struct _RTP_TaskInfo *nextTask;
};

struct _RTP_directives {
 int res_or_dev; /* 0 = res, 1 = dev */
 int type;
 int res_dev_num;
 int task_id;
 int proc_id;
 int size; /* if needed, for device */
 int res_id; /* if needed, for device */
 int off_chip_pin_num; /* if needed, for device */
 struct _RTP_directives *nextDir;
};

49

P_<NUM_PROCS>

M_<PROC_ID> :CODE_SIZE :CODE_FNAME :DATA_SIZE :DATA_FNAME

T_<ID> :Proc_ID :TASK_PRIORITY

R_<glob_RD_num> :TYPE :PROC_ID :TASK_ID

D_<glob_DD_num> :TYPE :PROC_ID :TASK_ID :BASE_ADDR :SIZE

:RES_ID :PIN_NUM

 The P_ directive specifies to the generator the number of processors in the system.

The M_ directive is created by the assembler/linker to provide the code and data memory

sizes and filenames required for the given processor. The T_ directive specifies to the

generator the task modules that need to be created for the given processor at the specified

priority level. The R_ directive specifies a task-resource node in the task-resource matrix

for the given processor and task. The D_ directive specifies a device that is accessed by

the given processor and task, with its base address and optional size parameter specified.

The resource id and pin number parameters are also optional for devices. The P_, R_ and

D_ directives describe to the generator each hardware unit that must be instantiated in the

top level VHDL file.

50

51

Chapter 5: The Assembler and Linker

 After the C source files have been compiled to assembly language instructions,

the assembler and the linker take the assembly files created by the compiler and generate

machine code and data memory images that are downloaded onto an FPGA. This chapter

will first discuss the implementation details of the assembler followed by the

implementation details of the linker.

5.1 – The Assembler

 The purpose of the assembler is to translate the assembly instructions created by

the compiler into machine code instructions. The as-rtp assembler is based on the

ASXXXX assembler, a freeware retargettable assembler included in the SDCC source

tree. The ASXXXX assembler consists of two main parts: 1) the “generic” part that

remains unchanged between architectures, and 2) the architecture specific code that

specifies the manner in which the byte-codes should be emitted.

 The generic part of the ASXXXX assembler parses and lexicographically

analyzes the assembly source code, and builds the symbol table. In order to properly

interface with the architecture-specific labels and keywords that should be recognized, a

mnemonic structure must be created that lists all of the recognized mnemonics, and the

corresponding bit-patterns that should be generated for each mnemonic. These

52

mnemonics are categorized by syntactic groupings, i.e., arithmetic, control, or branch

operations.

 The architecture specific code must do the following:

• Receive the mnemonic from the generic part to lookup the syntactic group.

• Reads the correct number of operands based on syntactic group.

• Determine the operands for the op-code, using a helper function to retrieve

operand types.

• Determine the actual op-code (byte-code) based on operand types, i.e.,

register-register or register-literal.

• Emit byte-code, or relative code if relativeness cannot yet be determined.

 The assembler creates a .rel file, which is the relocatable code file that the linker

will process. The format of the .rel file can be seen in Table 5.1. The Assembler begins

Table 5.1: Assembler Relocatable File Format

Line Type Format
Meaning

Example(s)

XH (1st line) %c%c
Hex format, MSB first

XH

H (2nd line) H %d areas, %d global symbols
Summary

H 5 areas, 4 global symbols

M (3rd line) M <module name>
Module name

M example

A A <seg> size %d flags %d
Area (segment) information

A CSEG size 6E flags 0

S S <symbol> [Ref|Def|Abs]%d
Global Symbol in current segment

S _main Def0008

T T aa <addr> <inst> <inst> <inst>
True code emitted

T 03 0000 1500E 0400E (code)
T 03 0000 F3 3A 77 22 (data)

R R aa <addr> <how> <symbol>
Relocatable patch instructions

R 03 0001 AREA_MOVA SSEG
R 03 0007 JUMP _ex1_code

53

the .rel file with 3 lines that describe the contents of the remainder of the file to the linker.

All global symbol definitions pertain to the most recent segment specified on an A line.

T lines contain either code or data emissions, within relative code or data space of the

specified segment. If the relativity of the code is not yet known, then an R line is emitted

to signal to the linker that the code must be patched at link-time. Table 5.2 lists the six

Relocatable patch instructions.

Table 5.2: Assembler Relocatable Patch Instructions

Patch Instruction Resolution
DATA Patches a 16-bit address reference in a data segment
MOVA Patches 2 16-bit addresses in a “MOVA Rx, Symbol” instruction
MOVL Patches lower 16-bit address in a “MOVA Rx, Symbol” instruction
MOVH Patches upper 16 bit address in a “MOVA Rx, Symbol” instruction
JUMP Patches a 12-bit absolute address in a jump or call instruction
BRCH Patches a 10-bit PC-relative address in a branch instruction

 The code for a given source file may refer to symbols (either code or data) that

exist in a separate source file or segment. The assembler emits code on a per-segment,

per-source-file basis, which is why the relativity of the code may be unknown at time of

assembly.

5.2 – The Linker

 The purpose of the linker is to take the relative code emitted by the assembler and

to patch up each relocatable address with an actual address. The final output of the linker

is executable machine code and data memory images for each processor required by the

54

system. In comparison to the amount of code required by the assembler, the linker is

very simplistic.

 The linker utilizes a module/segment approach to link the assembled code. Each

.rel source file is considered a module, and within each module there are different

segments for code and data. See table 5.3 lists the valid segments that have been

predefined in both the assembler and the linker.

Table 5.3: RTP Segments

Segment Description Type
CSEG Code Segment Code
GSINIT Global and Static Initialization Segment Code
GSFINAL Global and Static Final Segment Code
DSEG Data Segment Data
SSEG Stack Segment Data

 For each module, the linker starts to build pieces of each defined segment as they

are encountered. If the linker finds multiple pieces of the same segment in different

locations within the same module, the assembled code or data is appended to the current

contents of that segment. Within each segment will be the three line types described in

the previous section as R, S, and T. True code and global symbols are placed in the

memory images as they are, and data structures are created for the relocatable code.

When all modules have been read in, the linker uses the specific patch instructions to

iterate through all of the relocatable code, and assign to each an actual memory location,

as all true code and global symbols now have specific memory addresses.

55

 After all of the relocatable code has been relocated, what is left is a true image of

code and data memory. The linker then outputs a single CODE segment, which is

created with ordering of the sub-segments as follows:

1. GSINIT code, if present

2. GSFINAL code, if present

3. CSEG code, if present

 The DATA segment is created such that the DSEG and SSEG are together in the

same file. The total length of the DSEG and the total length of the SSEG are added

together and rounded to the nearest 1K bytes, as the DATA on the FPGA must fit into an

even number of block RAMs. The DSEG is placed at the bottom of this allocated DATA

segment, and the SSEG is placed at the top of the DATA segment, to allow the stack to

grow downward. If the RTP platform were enhanced to support malloc or similar

memory allocation mechanisms, then an additional HSEG (Heap segment) would need to

be defined, and would be placed in the DATA segment just above the DSEG to allow the

heap to grow upward.

 The Linker can take command line arguments to specify the file format of the

output code and data files as either Intel .hex format, which can be used in an RTP

simulator, or as Xilinx .coe and .xcp format, which are used as input files for the RTPGen

Hardware Generator.

56

57

Chapter 6: The RTPGen Hardware Generator

 Once compilation from C to RTP assembly instructions has been done, the system

generator will have the necessary directives to begin architecting the system. Figure 6.1

shows the complete dataflow for C-to-FPGA compilation. The RTPGen Hardware

Generator takes as inputs the assembly files and the generator directive file produced by

the SDCC-RTP compiler, and ultimately outputs several VHDL and EDIF files. This

process will be described in more detail throughout this section.

 The ability to customize the system architecture for each different real-time

application is exploited by having the compiler statically analyze the application code to

determine:

• how many processors are required,

• the number of tasks,

• the static assignment of each task to a specific processor,

• the default task priority within each processor,

• what resources are needed by each task (what nodes are needed in the task-resource

matrix),

• the amount of code and memory for each processor, and

• what I/O devices are used by each processor.

58

Figure 6.1: Dataflow for C-to-FPGA Compilation

 Once the compiler (and in the case of code and memory size, the assembler) has

extracted these parameters, the RTPGen hardware generator can proceed with

architecting the system. After parsing the generator file, the RTPGen hardware generator

passes all of the assembly files to the assembler and linker to produce one set of files per

processor, which includes code and data memory files. The RTPGen hardware generator

59

takes the output of the linker and runs the .coe and .xcp files through the Xilinx coregen

to generate the memory image files for each processor.

 A complete basic set of the resource and device modules, as well as the RTP

processor, has been compiled as a library of VHDL and EDIF entities. The top level

VHDL file created by the RTPGen hardware generator calls the elements in the library

and the elements created by the Xilinx coregen program to assemble the entire

architecture. These entities are instantiated and integrated together in order to be

synthesized specifically for the given application.

6.1 – Instantiation of Processors

 The RTPGen hardware generator takes as its main input the RTPsys.gen generator

directive file. This file is described in detail in Section 4.3. As the generator directive

file is parsed, each device and/or processor is instantiated in memory. The assembly

source files for each processor must be contained in a file named proc<proc_num>.asm.

The data and instruction memory images for each processor, once assembled and linked,

will be contained in files named proc<proc_num>.[data|code].<extension>. The M_

directive in RTPsys.gen will specify these filenames. When the M_ directive is parsed,

the processor interface and declaration are instantiated, as well as the corresponding data

and memory block rams and interfaces.

 The RTP processor contains ports to interface with: data memory, instruction

memory, the scheduler, I/O devices, resources, tasks, the Task Resource Matrix, and

specific nodes in the Task Resource Matrix. The hardware implementation of the RTP

processor, resources, devices, and the Task Resource Matrix is the subject of [10].

60

6.2 – Creation of Tasks, Resources, and Devices

 When the RTPGen hardware generator processes a T_ directive, a task interface

and declaration are instantiated, allocating the task to a specific processor, and assigning

the task the specified priority. All of the tasks assigned to the same processor share the

same code and data memory. A hardware scheduler determines which tasks will execute

on which processor at a given time. Each task contains signals to interface with: a

specific processor, the scheduler, and a resource node.

 The R_ and D_ directives specify resources and devices that need to be

instantiated. Resource modules are instantiated in a manner described in the following

section that allows them to be shared between the tasks on all processors that need them.

Resource modules interface with processors and resource nodes. Device modules are

used for I/O, and are instantiated along the processor I/O bus of the specified processor

only. They are not shared between processors. Devices interface with processors and

off-chip inputs/outputs.

6.3 – RTP Simptris Example

 To better illustrate the RTP C-to-FPGA system, this section will walk through an

example embedded design. The basis of this example will be the BYU ECEn 425

Simptris Lab. Simptris is a tetris-like game, but with only two types of pieces: corner

pieces and straight pieces. It uses an interrupt scheme to signal when new pieces arrive,

pieces touch the bottom of the screen, lines are cleared, etc. For the purpose of this

example what would have been an interrupt in Simptris will be signaled via semaphores.

61

P0

P1

S
ch

ed
ul

er

P0
T1

P0
T2

P1
T2

P1
T5

P0
T3

P0
T4

P1
T3

P0
T5

P1
T1

P1
T4

Q2 New
Piece

Recvd
Cmd

Line
Clear

Game
OverQ3 TickTouch

Down

X

X

XX

R

R

X

Mutex
1

Mutex
2

X

R X

XX

Sem
1

X

X

X

X

Q1

W

W

X

X X X

W

Q4 Mutex
3

X

X

X

W

R X

Sent
Cmd

X

X

Q1

Q4

Q3Q2
Local I/O Bus

Local I/O Bus

Global Resource
Bus

Task-Resource Matrix

I/O Devices

Figure 6.2: RTP System Diagram for Simptris Example

One processor (P0) will generate all of the interrupts (i.e. act as the game engine), while a

second processor (P1) will service all of the interrupts (i.e. play the game).

 For this example, the RTP system diagram can be seen in Figure 6.2. Code and

data block RAMs are not shown. Hardware FIFOs are used to pass messages between

62

the two processors, and between two of the tasks on the second processor. Several mutex

resources are used by both processors to protect shared memory locations. The boxes

labeled “X” signify nodes in the TRM. For the sake of space in the diagram, the

FIFO_READER and FIFO_WRITER resources have been combined into one entry in the

figure, with the corresponding resource nodes being marked “R” or “W” to distinguish

between the two. P0T0 and P1T0 are the idle tasks for each processor and are therefore

not shown in the system diagram.

 Resources labeled “Q1”, “Q2”, “Q3”, and “Q4” are all queue resources,

connected to hardware FIFOs for message passing. The resources labeled “Game Over”,

“New Piece”, “Touch Down”, “Recvd Cmd”, “Sent Cmd”, “Line Clear” and “Tick” are

interrupts, implemented in this example as semaphores. “Mutex 1, “Mutex 2”, and

“Mutex 3” are mutex resources used to protect shared memory, and “Sem 1” is a

semaphore resource used in processor 0 as a means of stepping the game engine. A more

detailed description of what each resources is used for is included in the description of

each task below.

 The global system header file, as seen in Figure 6.3 contains defines for all of the

resource and device types and IDs. Each FIFO device has a single device ID, however

both a FIFO_READER and FIFO_WRITER device type must be created for each FIFO

in order to both read from and write to the queue.

63

Figure 6.3: RTP Simptris global.h

enum resource_type {
 ZRESOURCE, MUTEX, DIS_EVENT, CON_EVENT,
 SEMAPHORE, TIMER, INTERRUPT, READER, WRITER };

enum device_type {
 ZDEVICE, FIFO_READER, FIFO_WRITER, TRANSMITTER, RECEIVER,
 SCRATCHMEM, FP_ADD, FP_MUL };

#pragma NUMPROCS_2

/* Resources */
/* Mutexes */
#define MUTEX1 1
#define MUTEX2 2
#define MUTEX3 3

/* Semaphores */
#define SEM1 5
#define SEM2 6

/* Readers / Writers */
#define QU1_R 7
#define QU1_W 8
#define QU2_R 9
#define QU2_W 10
#define QU3_R 11
#define QU3_W 12
#define QU4_R 14
#define QU4_W 15

/* Interrupts */
#define INT_GameOver 35
#define INT_NewPiece 36
#define INT_TouchDown 37
#define INT_RecvdCmd 38
#define INT_LineCleared 39
#define INT_Tick 40
#define INT_SentCmd 41

/* Devices */
/* FIFOS */
#define FIFO_QU1 1
#define FIFO_QU2 2
#define FIFO_QU3 3
#define FIFO_QU4 4

64

 The ten tasks shown in Figure 6.2 along with a brief description of what each task

does and the other tasks with which it communicates are:

• P0T1: Core task. This task is responsible for generating the “Game Over”, “New

Piece”, “Touch Down” and “Line Clear” interrupts. It communicates directly

with P0T2 via “Sem 1” to know when the game should process the playing field,

with P0T4 via “Mutex 2” for processing slide and rotate commands and with

P0T5 via “Mutex 1” for adding new pieces to the playing field. Before signaling

“Touch Down”, the information regarding the piece that has touched down is

placed in Q3.

• P0T2: Game Tick Task. This task communicates with P0T1 via “Sem 1” that the

game should process any pending commands, and move each piece on the playing

field downward.

• P0T3: Tick task. This task is used to generate the “Tick” interrupt, which is used

by P1 to keep track of statistics.

• P0T4: Command task. This task blocks on the “Sent Cmd” interrupt. Once this

interrupt has been signaled this task reads the command from Q1, which is

populated by P1. “Mutex 1” is used to protect the memory where the pending

commands are stored until they can be processed by P0T1. The “Recvd Cmd”

interrupt is then generated after a small delay.

• P0T5: Piece task. This task generates new pieces for the playing field. As the

number of lines cleared increases, the delay between new pieces decreases. This

task communicates with P0T1 after each new piece is created. It then places the

piece information in Q2 to later be consumed by P1.

65

Figure 6.4: RTP Simptris proc0.c

/* Create Resources and Nodes */
/*P0 T1 */
_OpenResource(MUTEX, MUTEX1, 1);
_OpenResource(MUTEX, MUTEX2, 1);
_OpenResource(SEMAPHORE, Sem_GameTick, 1);
_OpenResource(WRITER, QU3_W, 1);
_OpenResource(SEMAPHORE, INT_NewPiece, 1);
_OpenResource(SEMAPHORE, INT_TouchDown, 1);
_OpenResource(SEMAPHORE, INT_LineCleared, 1);
_OpenResource(SEMAPHORE, INT_GameOver, 1);
/*P0 T2 */
_OpenResource(SEMAPHORE, SEM1, 2);
/*P0 T3 */
_OpenResource(SEMAPHORE, INT_Tick, 3);
/*P0 T4 */
_OpenResource(SEMAPHORE, SEM2, 4);
_OpenResource(SEMAPHORE, INT_RecvdCmd, 4);
_OpenResource(READER, QU1_R, 4);
_OpenResource(MUTEX, MUTEX2, 4);
/*P0 T5 */
_OpenResource(MUTEX, MUTEX1, 5);
_OpenResource(WRITER, QU2_W, 5);

/* Create Devices */
_OpenDevice(FIFO_READER, FIFO_QU1, 4, 0, 8, QU1_R, NULL);
_OpenDevice(FIFO_WRITER, FIFO_QU2, 5, 8, 8, QU2_W, NULL);
_OpenDevice(FIFO_WRITER, FIFO_QU3, 1, 16, 32, QU3_W, NULL);

/* Create Tasks */
task_error = _CreateTask((void *) Core_task, 1, 60, 0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) GameTick_task, 2, 30, 0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) Tick_task, 3, 30, 0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) Command_task, 4, 30, 0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) Piece_task, 5, 30, 0, 0);
if (task_error) return task_error;

66

• P1T1: GameOver task. This task blocks on the “Game Over” interrupt. As this is

the highest priority task on P1, the other tasks on P1 will be blocked until the

system is reset once this interrupt is received.

• P1T2: NewPiece task. This task blocks on the “New Piece” interrupt. Upon

receiving this interrupt the piece information is retrieved from Q2, and the

commands to be performed on the piece are communicated to P1T4 via Q4.

“Mutex 3” is used to protect the shared memory region in P1 for tracking which

pieces are still in play.

• P1T3: TouchDown task. This task blocks on the “Touch Down” interrupt. Once

received, it retrieves the information regarding which piece is out of play from

Q3, and then blocks on “Mutex 3” to update P1’s piece tracking variables.

• P1T4: Command task. This task blocks on the “Recvd Cmd” interrupt. When

signaled, it blocks on Q4 until a new command is ready to be sent to P0. To

determine if the piece is still in play, “Mutex 3” is used to ensure that the most

current piece information is available. If the piece is not in play, the task blocks

again on Q4 until a new command is ready. Once a command is received for a

piece in play, the command is placed in Q1 and the “Sent Cmd” interrupt is used

to signal P0 that a new command is ready.

• P1T5: Stats task. This task keeps track of game statistics, such as the number of

lines cleared and the number of game ticks signaled. It uses non-blocking

resource acquisition to allow it to process both “Line Clear” and “Tick”

interrupts.

67

Figure 6.5: RTP Simptris proc1.c

/* Create Resources and Nodes */
/*P1 T1 */
_OpenResource(SEMAPHORE, INT_GameOver, 1);
/*P1 T2 */
_OpenResource(MUTEX, MUTEX3, 2);
_OpenResource(SEMAPHORE, INT_NewPiece, 2);
_OpenResource(READER, QU2_R, 2);
_OpenResource(WRITER, QU4_W, 2);
/*P1 T3 */
_OpenResource(MUTEX, MUTDX3, 3);
_OpenResource(READER, QU3_R, 3);
_OpenResource(SEMAPHORE, INT_TouchDown, 3);
/*P1 T4 */
_OpenResource(MUTEX, MUTEX3, 4);
_OpenResource(SEMAPHORE, SEM2, 4);
_OpenResource(SEMAPHORE, INT_RecvdCmd, 4);
_OpenResource(READER, QU4_R, 4);
_OpenResource(WRITER, QU1_W, 4);
/*P1 T5 */
_OpenResource(SEMAPHORE, INT_Tick, 5);
_OpenResource(SEMAPHORE, INT_LineCleared, 5);

/* Create Devices */
_OpenDevice(FIFO_WRITER, FIFO_QU1, 4, 0, 8, QU1_W, NULL);
_OpenDevice(FIFO_READER, FIFO_QU2, 2, 8, 8, QU2_R, NULL);
_OpenDevice(FIFO_READER, FIFO_QU3, 3, 16, 32, QU3_R, NULL);
_OpenDevice(FIFO_WRITER, FIFO_QU4, 4, 58, 8, QU4_R, NULL);
_OpenDevice(FIFO_READER, FIFO_QU4, 2, 58, 8, QU4_W, NULL);

/* Create Tasks */
task_error = _CreateTask((void *) GameOver_task, 1, 12, 0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) NewPiece_task, 2, 12, 0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) TouchDown_task, 3, 12,0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) Command_task, 4, 12, 0, 0);
if (task_error) return task_error;

task_error = _CreateTask((void *) Stats_task, 5, 0, 0, 0);
if (task_error) return task_error;

68

Figure 6.6: RTP Simptris RTPsys.gen

P_2
M_0 :4096 :proc0.code.hex :2048 :proc0.data.hex
T_1 :0 :1
T_2 :0 :2
T_3 :0 :3
T_4 :0 :4
T_5 :0 :5
R_1 :1 :0 :1
R_2 :1 :0 :1
R_5 :4 :0 :1
R_12 :8 :0 :1
R_36 :4 :0 :1
R_37 :4 :0 :1
R_39 :4 :0 :1
R_35 :4 :0 :1
R_5 :4 :0 :2
R_40 :4 :0 :3
R_6 :4 :0 :4
R_38 :4 :0 :4
R_7 :7 :0 :4
R_2 :1 :0 :4
R_1 :1 :0 :5
R_10 :8 :0 :5
D_1 :1 :0 :4 :0 :8 :7 :0
D_2 :2 :0 :5 :8 :8 :10 :0
D_3 :2 :0 :1 :16 :32 :12 :0
M_1 :4096 :proc1.code.hex :2048 :proc1.data.hex
T_1 :1 :1
T_2 :1 :2
T_3 :1 :3
T_4 :1 :4
T_5 :1 :5
R_35 :4 :1 :1
R_3 :1 :1 :2
R_36 :4 :1 :2
R_9 :7 :1 :2
R_15 :8 :1 :2
R_3 :1 :1 :3
R_11 :7 :1 :3
R_37 :4 :1 :3
R_3 :1 :1 :4
R_6 :4 :1 :4
R_38 :4 :1 :4
R_14 :7 :1 :4
R_8 :8 :1 :4
R_40 :4 :1 :5
R_39 :4 :1 :5
D_1 :2 :1 :4 :0 :8 :8 :0
D_2 :1 :1 :2 :8 :8 :9 :0
D_3 :1 :1 :3 :16 :32 :11 :0
D_4 :2 :1 :4 :58 :8 :14 :0
D 4 :1 :1 :2 :58 :8 :15 :0

69

 After compiling and assembling the code for both processors, the RTPsys.gen file

contains the lines listed in Figure 6.6. With this input file, the RTPGen hardware

generator can create the top-level VHDL file for the system. A portion of the VHDL file

created by the system generator can be seen in Figures 6.7, 6.8, and 6.9.

Figure 6.7: RTP Simptris VHDL Declarations for Processor 0

-- processor interface Processor 0

-- scheduler interface
signal p0_tid : std_logic_vector(3 downto 0)
-- instruction memory interface
signal p0_iaddr : std_logic_vector(11 downto 0);
signal p0_iout : std_logic_vector(17 downto 0);
signal p0_ien : std_logic;
-- data memory interface
signal p0_daddr : std_logic_vector(14 downto 0);
signal p0_din : std_logic_vector(15 downto 0);
signal p0_dout : std_logic_vector(15 downto 0);
signal p0_we : std_logic_vector(1 downto 0);
-- i/o device interface
signal p0_xid : std_logic_vector(7 downto 0);
signal p0_xrd : std_logic;
signal p0_xwr : std_logic;
signal p0_xin : std_logic_vector(15 downto 0);
signal p0_xout : std_logic_vector(15 downto 0);
-- resource-matrix interface
signal p0_rid : std_logic_vector(7 downto 0);
signal p0_req : std_logic;
signal p0_gnt : std_logic;
signal p0_min : std_logic_vector(15 downto 0);
signal p0_mout : std_logic_vector(15 downto 0);
-- resource commands
signal p0_enable : std_logic;
signal p0_disable : std_logic;
signal p0_sig1 : std_logic;
signal p0_sig2 : std_logic;
signal p0_read : std_logic;
signal p0_write : std_logic;
signal p0_release : std_logic;
signal p0_reset : std_logic;
signal p0_lock : std_logic;
signal p0_nb_lock : std_logic;
-- task commands
signal p0_ptid : std_logic_vector(7 downto 0);
signal p0_rd_time : std_logic;
signal p0_wr_time : std_logic;
signal p0_rd_prio : std_logic;
signal p0_wr_prio : std_logic;

-- task interface : Task 1

signal p0t1_mout : std_logic_vector(15 downto 0);
signal p0t1_priority : std_logic_vector(3 downto 0);
signal p0t1_ready : std_logic;
signal p0t1_sel : std_logic;
signal p0t1_readyin : std_logic;
signal p0t1_grantin : std_logic;

70

 Figure 6.7 shows the signal declarations for processor 0 and one of its tasks.

Figure 6.8 shows the instantiation of processor 0. Finally, Figure 6.9 shows the

instantiation of processor 0 task 1, and the scheduler for processor 0.

Figure 6.8: RTP Simptris VHDL Instantiation of Processor 0

-- processor 0 (5 tasks)

-- processor
P0 : processor_sch
generic map (
 NTASKS => X"5",
 PROC_ID => X"0"
)
port map (
 -- globals
 clk => clk,
 reset => rst,
 -- data memory
 DataMemInput => p0_dout,
 DataMemOut => p0_din,
 DataMemAddressOut => p0_daddr,
 DataMemWE => p0_we,
 -- inst memory
 PCimem => p0_iaddr,
 ImemOutIR => p0_iout,
 InstMemEnable => p0_ien,
 -- device interface
 IOinput => p0_xin,
 IODataOut => p0_xout,
 IOAddressOUT => p0_xid,
 EnableIOOut => p0_xrd,
 IOwe => p0_xwr,
 -- scheduler interface
 SchedulerTaskIn => p0_tid,
 -- task interface
 TaskIdAddress => p0_ptid,
 TRM_read_priority => p0_rd_prio,
 TRM_read_time => p0_rd_time,
 TRM_write_priority => p0_wr_prio,
 TRM_write_time => p0_wr_time,
 --resource interface
 TRM_request => p0_req,
 ResourceGranted => p0_gnt,
 ResourceAddressOut => p0_rid,
 TRMDataOut => p0_mout,
 TaskResourceMatrixInput => p0_min,
 TRM_disable => p0_disable,
 TRM_enable => p0_enable,
 TRM_lock => p0_lock,
 TRM_nb_lock => p0_nb_lock,
 TRM_release => p0_release,
 TRM_read => p0_read,
 TRM_write => p0_write,
 TRM_reset => p0_reset,
 TRM_sig1 => p0_sig1,
 TRM_sig2 => p0_sig2
);

71

Figure 6.9: RTP Simptris VHDL Instantiation of P0 Task 1 and Scheduler

 In summary, the system generator uses the source files global.h, proc0.c and

proc1.c to produce the top-level structural VHDL file for a custom architecture. This

-- task 1

P0t1 : task
generic map (
 PROC => X"0",
 TASK => X"1"
)
port map (
 -- globals
 clk => clk,
 msec_tic => msec_tic,
 rst => rst,
 PPPP => p0_ptid(7 downto 4),
 TTTT => p0_ptid(3 downto 0),
 data_in => p0_mout(15 downto 0),
 data_out => p0t1_mout(15 downto 0),
 -- commands from processor
 read_time => p0_rd_time,
 write_time => p0_wr_time,
 read_prio => p0_rd_prio,
 write_prio => p0_wr_prio,
 nb_lock => p0_nb_lock,
 -- interface to task scheduler
 priority => p0t1_priority,
 ready_out => p0t1_ready,
 -- interface to task-resource nodes
 ready_in => p0t1_readyin,
 sel_task => p0t1_sel,
 grant_in => p0t1_grantin
);

-- scheduler for processor 0

P0_sc : scheduler
generic map (
 PROC_ID => X"0",
 NUM_TASKS => X"5"
)
port map (
 Priority1 => p0t1_priority,
 Ready1 => p0t1_ready,
 Priority2 => p0t2_priority,
 Ready2 => p0t2_ready,
 Priority3 => p0t3_priority,
 Ready3 => p0t3_ready,
 Priority4 => p0t4_priority,
 Ready4 => p0t4_ready,
 Priority5 => p0t5_priority,
 Ready5 => p0t5_ready,
 Priority6 => gnd4,
 Ready6 => gnd,
<through Task15>
 -- ReadyTask ID
 ReadyTaskID => p0_tid
);

72

custom architecture contains exactly the hardware necessary to execute the system

provided in this example.

73

Chapter 7: Conclusions and Future Work

 The SDCC-RTP C to FPGA design flow enables rapid development of System-

on-Programmable-Chip designs. It is a self-contained set of development tools that

allows the design engineer to provide C source code and a global.h file that specify the

required number of processors, tasks, and resources, and then utilizes this information to

build the top-level structural VHDL file. Targeting FPGAs allows the designer to

quickly and cost-efficiently develop a multi-processor real-time embedded SoPC.

7.1 – Contributions Revisited

 The introduction of this thesis detailed six contributions that were made. These

contributions were defining the RTP system-level architecture, porting of the SDCC

compiler to the RTP architecture, creation of a set of peephole optimizations for the RTP

architecture to reduce code size, extending the SDCC compiler to interface with the

RTPGen hardware generator, development of the RTPGen hardware generator, and a

document that can be used for porting the SDCC compiler to new architectures.

 The RTP system architecture is described in Chapter 2. The details of developing

the SDCC-RTP code generator are contained in Chapters 3 and 4. The details of the RTP

assembler are found in Chapter 5. Code generation and assembly are necessary to allow

the RTP processor to execute code.

74

 The set of peephole optimization rules for the RTP architecture can be found in

Appendix A. These rules help to minimize the required code size for the generated

assembly instructions from the compiler. A discussion of peephole optimization rules is

found in Section 3.4.4.

 The RTPGen hardware generator can take the code generated by the SDCC-RTP

compiler coupled with the directive file and create an optimized SoPC design. This

process is described in Chapter 6, including an example real-time system to better

illustrate the RTP system architecture.

 A helpful document that can be used to help others port the SDCC compiler to

new architectures is found in Chapter 3, which is also intended to be published as a self-

contained document. Chapter 3 can also be used as an additional reference for a course

on compilers and code generation.

7.2 – Future Work

 Compiling code optimally is an NP-complete problem. There are many factors

that play into optimal code generation, such as optimal register allocation and

assignment, or optimal code sequencing based on future operations (compiler look-ahead

depth). Any of these areas could be explored in greater detail.

 One optimization that would significantly reduce code size would be to initialize

the global data upon assembly declaration. This would eliminate the need to use code

space to perform the initializations.

75

 Another area that can potentially result in a significant reduction of code size is

code compression with hardware support for decompression [13,14]. This methodology

would require both hardware and compiler support.

7.3 – Final Words

 The primary motivation of this thesis is the belief that FPGA advances in size and

speed continue to make compelling arguments for development of customized

application-specific processing elements. I believe I have provided the initial framework

for developers to design such a system, and have the sincere hope that others will

continue to improve upon my work.

76

77

BIBLIOGRAPHY

[1] V. Mooney and D. Blough, “A Hardware-Software Real-Time Operating System
Framework for SoCs,” IEEE Design & Test of Computers, pp. 44-51, Nov-Dec
2002.

[2] V. Mooney, “Hardware/Software Partitioning of Operating Systems [SoC

Applications],” Proc. of the Design, Automation and Test in Europe Conference
and Exhibition, pp. 338-339, 2003.

[3] M. Boden, J. Schneider, K. Feske, and S. Rulke, “Enhanced Reusability for SoC-

based HW/SW Co-design,” Proc. of the Euromicro Symposium on Digital System
Design, pp 94-99, Sep. 4-6, 2002.

[4] Xilinx, http://www.xilinx.com

[5] M.B. Gokhale, J.M. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented

FPGA computing in the Streams-C high level language,” IEEE International
Symposium on FPGAs for Custom Computing Machines, 2000.

[6] J. Frigo, M. Gokhale, D. Lavenier, “Evaluation of the Streams-C C-to-FPGA

Compiler: An Applications Perspective,” Proceedings of the Ninth ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA), pp. 134-
140, Monterey, CA, February 2001.

[7] Celoxica, http://www.celoxica.com

[8] S. Dutta, “SDCC Compiler User Guide”, http://sdcc.sourceforge.net

[9] A. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools,

pp. 541-542, Addison-Wesley, 1986.

[10] S. Isaacson, “Unpublished”, M.S. Thesis, BYU.

[11] S. Isaacson, D. Wilde, “The Task-Resource Matrix: Control for a Distributed

Reconfigurable Multi-Processor Hardware RTOS”, ERSA ’04, July 2004.

78

[12] W.M. McKeeman, “Peephole Optimization”, Communications of the ACM, v.8
n.7, pp. 443-444, July 1965

[13] K.D. Cooper, N. McIntosh, “Enhanced Code Compression for embedded RISC

processors”, Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation, pp.139-149, May 1999

[14] A. Wolfe and A. Chanin, “Executing Compressed Programs on an Embedded

RISC Architecture”, Proceedings the 25th Annual International Symposium on
Microarchitecture, MICRO'25, pp. 81-91, December 1992

[15] D. Sun, D. Blough and V. Mooney, “Atalanta: A New Multiprocessor RTOS

Kernel for System-on-a-Chip Applications.”, Technical Report GIT-CC-02-19,
http://www.cc.gatech.edu/content/view/1041/, 2002.

[16] J. Labrosse, MicroC/OS: Real-Time Kernel II: The Real-Time Kernel, R&D

Books, Lawrence, KS, October 1998.

[17] M. Young, “Unpublished”, M.S. Thesis, BYU.

[18] A. Agarwal, J. Kubiatowicz, D. Kranz, B. Lim, D. Yeung, G. D’Souza, and M.

Parkin, “Sparcle: An Evolutionary Processor Design for Large-Scale
Multiprocessors,” IEEE Micro, Vol. 13 Issue 3, pp. 48-61, June 1993

[19] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imai, “Hardware

Implementation of a Real-time Operating System,” Proceedings of TRON’95,
IEEE, pp. 34-42, 1995.

[20] J. Ito, T. Nakano, Y. Takeuchi, and M. Imai, “Effectiveness of a High Speed

Context Switching Method Using Register Bank,” IEICE Trans. Fundamentals,
Vol. E81-A, No.12, pp. 2661-2667, Dec. 1998.

[21] P.H. Shiu, Y. Tan, and V.J. Mooney III, “A Novel Parallel Deadlock Detection

Algorithm and Architecture,” Proc. Int’l Symp. Hardware/Software Codesign,
ACM Press, New York, 2001, pp. 30-36

79

Appendix A: Peephole Rules for the SDCC-RTP Compiler

replace restart {
 pop %1
 push %1
} by {
 ; Peephole 1 removed pop %1 push %1
}

replace restart {
 pop %1
 mov %2,%3
 push %1
} by {
 ; Peephole 2 removed pop %1 push %1
 mov %2,%3
}

replace restart {
 add %2, %1
 mov %1, %2
} by {
 ; Peephole 3 removed mov %1, %2
 add %1, %2
}

replace restart {
 sub %1,%2
 cmp %1,0
 be %3
} by {
 sub %1,%2
 ; Peephole 4 removed cmp %1, 0
 be %3
}

replace restart {
 push %1
 pop %1
} by {
 ; Peephole 5 removed push %1 pop %1
}

replace restart {
 mov r1, %1

80

 mov %2, r1
} by {
 ; Peephole 6 removed redundant mov r1, %1
 mov %2, %1
}

replace restart {
 mov r0, %1
 mov %2, r0
} by {
 ; Peephole 7 removed redundant mov r0, %1
 mov %2, %1
}

replace restart {
 mov r0, %1
 add %2, r0
} by {
 ; Peephole 8a removed mov r0, %1 (add)
 add %2, %1
}

replace restart {
 mov r0, %1
 addc %2, r0
} by {
 ; Peephole 8b removed mov r0, %1 (addc)
 addc %2, %1
}

replace restart {
 mov r0,%1
 sub %2,r0
} by {
 ; Peephole 9a removed mov r0 %1 (sub)
 sub %2, %1
}

replace restart {
 mov r0,%1
 subc %2,r0
} by {
 ; Peephole 9b removed mov r0 %1 (subc)
 subc %2, %1
}

replace restart {
 mov r0,%1
 cmp %2,r0
} by {
 ; Peephole 10a removed mov r0 %1 (cmp)
 cmp %2, %1
}

replace restart {
 mov r0,%1
 cmpc %2,r0

81

} by {
 ; Peephole 10b removed mov r0 %1 (cmpc)
 cmpc %2, %1
}

replace restart {
 mov r0,%1
 and %2,r0
} by {
 ; Peephole 11a removed mov r0 %1 (and)
 and %2, %1
}

replace restart {
 mov r0,%1
 andc %2,r0
} by {
 ; Peephole 11b removed mov r0 %1 (andc)
 andc %2, %1
}

replace restart {
 mov r0,%1
 or %2,r0
} by {
 ; Peephole 12a removed mov r0 %1 (or)
 or %2, %1
}

replace restart {
 mov r0,%1
 orc %2,r0
} by {
 ; Peephole 12b removed mov r0 %1 (orc)
 orc %2, %1
}

replace restart {
 mov r0,%1
 xor %2,r0
} by {
 ; Peephole 13a removed mov r0 %1 (xor)
 xor %2, %1
}

replace restart {
 mov r0,%1
 xorc %2,r0
} by {
 ; Peephole 13b removed mov r0 %1 (xorc)
 xorc %2, %1
}

replace restart {
 mov r0,%1
 cmp %2,r0
} by {

82

 ; Peephole 14a removed mov r0 %1
 cmp %2, %1
}

replace restart {
 mov r0,%1
 cmpc %2,r0
} by {
 ; Peephole 14b removed mov r0 %1
 cmpc %2, %1
}

replace restart {
 ld r0, %1(%2)
 mov %3,r0
} by {
 ; Peephole 15 removed mov %2, r0
 ld %3, %1(%2)
}

83

Appendix B: Assembly for RTP Code Generation Example

;--
; File Created by SDCC : FreeWare ANSI-C Compiler
; Version Real Time Processor 1.0Beta Mon Jan 30 22:07:11 2006

;--
 .module example1

;--
; Public variables in this module
;--
 .globl _main
 .globl _doubleit
 .globl _c
;--
; ram data
;--
 .area DSEG ;(DATA)
_c::
 .ds 1
;--
; overlayable items in ram
;--
 .area OSEG ;((UNUSED in RTP) OVR,DATA)
;--
; external initialized ram data
;--
;--
; global & static initialisations
;--
 .area GSFINAL ;(CODE)
.globl __sdcc_init_data
__sdcc_init_data:
 ret ;return to caller
;--
; code
;--
 .area CSEG ;(CODE)
;--
;Allocation info for local variables in function 'doubleit'
;--
;op Allocated to registers r9
;--
; example1.c 3
; ---

84

; function doubleit
; ---
_doubleit:
 push r14
 mov r14,r13
; example1.c 4
 sll r9,0x1
_ret_doubleit:
 pop r14
 ret
;--
;Allocation info for local variables in function 'main'
;--
;a Allocated to registers r4
;b Allocated to registers
;i Allocated to registers
;result Allocated to registers r5
;--
; example1.c 7
; ---
; function main
; ---
_main:
 push r4
 push r5
 push r6
 push r14
 mov r14,r13
 push r15
; example1.c 11
; Peephole 7 removed redundant mov r0, 0x1
 mov r4, 0x1
; example1.c 13
 mov r0,0x71
 mova r1, _c
 st r0,0(r1)
; example1.c 14
; Peephole 7 removed redundant mov r0, 0x0
 mov r5, 0x0
; example1.c 16
; Peephole 7 removed redundant mov r0, 0xa
 mov r6, 0xa
L00016:
; example1.c 17
 mov r0,0x2
 mul r4,r0
; example1.c 16
; Peephole 9a removed mov r0 0x1 (sub)
 sub r6, 0x1
; Peephole 4 removed cmp r6, 0
 be L00027
 jmp L00016
L00027:
; example1.c 19
L00003:
 mova r0, _c
 ld r1, 0(r0)

85

; Peephole 15 removed mov r1, r0
; Peephole 10a removed mov r0 0x6d (cmp)
 cmp r1, 0x6d
 be L00005
; example1.c 20
 mova r2, _c
 ld r1, 0(r2)
; Peephole 9a removed mov r0 0x1 (sub)
 sub r1, 0x1
 st r1, 0(r2)
 jump L00003
L00005:
; example1.c 22
 mova r0,0x400
 cmp r4,r0
 bge L00007
; example1.c 23
; Peephole 7 removed redundant mov r0, 0x1
 mov r5, 0x1
L00007:
; example1.c 25
 mova r0, _c
 ld r1, 0(r0)
; Peephole 15 removed mov r1, r0
; Peephole 10a removed mov r0 0x6d (cmp)
 cmp r1, 0x6d
 be L00008
 mova r0, _c
 ld r1, 0(r0)
; Peephole 15 removed mov r1, r0
; Peephole 10a removed mov r0 0x71 (cmp)
 cmp r1, 0x71
 be L00009
 jump L00010
; example1.c 27
L00008:
 push r14
 push r0
 push r1
 push r2
 push r3
 mov r9,r4
 call _doubleit
 mov r6,r9
 pop r3
 pop r2
 pop r1
 pop r0
 pop r14
 mov r4,r6
; example1.c 28
 jump L00011
; example1.c 30
L00009:
; Peephole 7 removed redundant mov r0, 0x2
 mov r5, 0x2
; example1.c 31

86

 jump L00011
; example1.c 33
L00010:
; Peephole 7 removed redundant mov r0, 0x3
 mov r5, 0x3
; example1.c 34
L00011:
; example1.c 35
 mova r0,0x800
 cmp r4,r0
 be L00013
; example1.c 36
; Peephole 7 removed redundant mov r0, 0x4
 mov r5, 0x4
L00013:
; example1.c 38
 mov r9,r5
_ret_main:
 pop r15
 pop r14
 pop r6
 pop r5
 pop r4
 ret
 .area CSEG ;(CODE)

87

Appendix C: RTP RTOS Assembly Source Code

 .title Real-Time Processor Operating System
 .subtitle composed by Matt Young, the Programmator
 .module rtos
 ;; NOTE - moved timeout value to r10 in re seek from r12, adjust
not done yet
 ; compiled with command: "as-rtp -xlos rtos.asm"

 ; resource constants
 suspend = 1
 scheduler = 0
 resourceRMW = 2
 BLOCK = 3
 NONBLOCK = 4

 ; return codes
 ERROR_CODE = 1
 AOK_CODE = 0

 ;; TASK FLAGS
 READY_FLAG = 0x10

 .area GSINIT

 .org 0

 and R3, 0 ; clear unused registers
 and R4, 0
 and R5, 0
 and R6, 0
 and R7, 0
 and R8, 0
 and R11, 0
 and R12, 0

 .globl __sdcc_init_data

 ;; the very first thing to do is call __sdcc_init_data if we are
task 0

 r_prio R0 ; PPPP TTTT FFFF XXXX XXXX=Priority FFFF =
Flags PPPP = processor TTTT = Task
 srl R0, 12
 and R0, 0xF ; R0 contains TTTT
 cmp R0, 0
 bne _nott0
 mova R15, _nott0
 mova R0, __sdcc_init_data
 jre 0(R0)

88

_nott0: r_prio R0 ; PPPP TTTT FFFF XXXX XXXX=Priority FFFF =
Flags PPPP = processor TTTT = Task
 mov R1, R0
 srl R1, 12
 and R1, 0xF ; PPPP
 mova R2, my_proc_id
 st R1, 0(R2) ; store PPPP in my_proc_id

 ; store PPPP in proc_id
 srl R0, 8
 and R0, 0xF ; TTTT in R0
 sll R0, 3 ; 8 * TTTT(8 = sizeof task table element
 mova R1, tasktable
 add R0, R1 ; &tasktable[TTTT] in DSEG

 ld R1, 2(R0) ; R1 = current stack size
 mova R2, current_stack ; pointer to current top of stack
 ld R14, 0(R2) ; init R14 = SP
 rsub R1, R14 ; R1 <- R14 - R1 = new top of stack
 st R1, 0(R2) ; save new top of stack

 ld R9, 4(R0) ; arg1
 ld R10, 6(R0) ; arg2
 mov R13, R14 ; init FP
 ld R1, 0(r0) ; task procedure address

 mova R15, _gsi1 ; but since call R doesnt exist, simulate it
 jre 0(R1) ; using 3 instructions: mova(2) and jre(1)

_gsi1: call _task_sus ; call RTOS

forever:jump forever

 ; end of GSINIT segment

 .area CSEG

 ;; regarding queues and mailboxes
 ;; 0 offset address of queue or mailbox with empty and full flags
 ;; 1 offset on gives us the message
 ;; so, will the empty and full flags go directly into the task
resource mat
 ;; in other words, do we even need OS to check empty and full
flags?
 ;; all right, more here
 ;; when i am writing to a queue, i have already obtained the write
mutex
 ;; however, when the queue become full, i attempt to lock on that
 ;; same mutex to block until the queue is non full
 ;; Does this even work? Is the write mutex lost when the queue
fills?

 ;; and are queues LIFOs, FIFOs? what? ie when they fill where do i
write
 ;; to once it isnt full anymore?

 ; external address

 ;; for nb_lock, r_pri, w_pri
 ;; task id (8 bits), status bits (4 bits), priority (4 bits)

89

 ;; R0-R3 scratch registers
 ;; R4-R8 preserved
 ;; R9-R12 parameter registers/return values
 ;; R13 frame pointer
 ;; R14 stack pointer
 ;; R15 return address

;; TASKS

; rtp_task_sleep
;;; task_slp (sleep_time)
.globl _task_slp
_task_slp: w_time R9 ;puts us to sleep for R9 seconds
 r_prio R1; read task priority
 and R1,0xEF; reset ready flag
 w_prio R1; suspend until timeout expires
 or R1, READY_FLAG; set ready flag
 w_prio R1; task is now ready again
 rel suspend ; clear request of suspend
 jre R15 ;return

; rtp_task_suspend - suspends forever
;;task_sus()
.globl _task_sus
_task_sus: mov R0, 0x0000
 w_time R0 ;write a 0 to timeout count, no
expire
 r_prio R1
 and R1, 0xEF; clear out the ready bit
 w_prio R1; set the task to non-ready, tasks
suspends
 ;; ok, this code segment only reached if another task unsuspends
us
 jre 0(R15) ; only get here if suspend resource
 ;; is reset by another task

;rtp_task_reference - one instruction , probably doesnt need own
function
;; task_ref()
.globl _task_ref
_task_ref: r_prio R9 ;reads task reference info into R1
 jre R15

.globl _lock
;rtp_lock - disables preemption for processor - are we gonna do this
_lock: ds ;; disable scheduler
 ret
;;may not need this

;; This function could better be built into the scheduler.
;; A flag in the scheduler could disable scheduling.
;; Maybe the scheduler itself could be addressed as a resource?
;; disable scheduler ; allow the running task to run until it blocks
;; When the running task blocks, this flag clears itself
;; anything requesting the TRM will automatically re-enable the
scheduler

.globl _unlock
;rtp_unlock - reenables preemption
_unlock: es ;; enable scheduler
 ret

90

;;may not need this

;; RESOURCES
.globl _re_sig
;rtp_resource_signal - releases a resource
;;res_sig(resource_id)
_re_sig: rel R9 ;releases resource passed in in R9
 jre 0(R15) ;return

;rtp_resource_gain- non-blocking lock on resource, event, etc
;; using R9 to pass back a parameter here
;;res_gain(resource_id)
.globl _re_gain
_re_gain: nb_lock R1, R9 ;can we acquire the resource
 r_pri R0 ; read our task state
 srl R1, 8 ; move task ids to lower
 srl R0, 8 ; byte to enable compare
 cmp R1, R0 ;comparison to check if we got it
 mov R9, AOK_CODE
 be GOT ;return to post routine if we got lock
 mov R9, ERROR_CODE ;move error code into R1
GOT: jre 0(R15) ;return

;;rtp_pi_seek(resource_id, time_out_val)
.globl _re_pi_seek
_re_pi_seek: nb_lock R1, R9 ;can we acquire the
resource
 push R1 ; store res info on stack
 r_pri R0 ; read our task state
 srl R0, 8 ; move task ids into
 srl R0, 8 ; lower byte for comp
 cmp R0, R1 ;comparison to check if we got it
 be END_PI ;no need to PI if we got it
 r_pri R0 ; read our task state
 load R1, 0(R14) ; restore res owner state
 and R1, 0xF ; mask out everything but owner pri
 and R0, 0xF ; mask out everything but my
priority
 cmp R1, R0
 bgtu _re_seek; branch and never return,owner has pri
 ld R1, 0(R14); restore R1 (resource owning task)
 mova R3, 0xFFF0
 and R1, R3
 or R1, R0; put our priority in resource own task
 w_prio R1 ; bump up pri of res owning task
 push R15 ; we will kill our return address
 call _re_seek
 ld R15, 0(R14)
 ld R1, 2(R14) ; instead of two pops
 add R14, 0x04 ; we have now saved an inst
 w_prio R1; write the orig prior field still
 ;; stored in R1 (from read) back into task R1 (R1 is unmodified)
END_PI: return

;rtp_resource_seek - blocking lock on resource
;; res_seek(resource _id,time_out_val)
.globl _re_seek
_re_seek: w_tim R10 ; r10 has time out value

91

 lock R9 ;blocking lock on resource
 r_pri R0 ;check ready flag to see if time out
 mov R1, AOK_CODE
 w_time 0x0 ; clear timeout counter
 and R0, READY_FLAG
 bne GOTIT ; brach off the and setting the flags
 rel R9 ; must release request if we didnt get
 mov R1, ERROR_CODE ;move error code into R9
GOTIT: mov R9, R1
 jre 0(R15) ;return

;; EVENTS
;rtp_event_clear -clears one or more event flags
;; event_clr(event_id, mask)
.globl _clear
_clear: w_time 0x00 ; clear timer, no expire needed
 lock resourceRMW
 read r0, r9 ;
 and r0, r10 ; mask events
 write R9, R0 ;write them back
 rel resourceRMW
 return

;rtp_event_signal - sets one or more events
;;;event_signal(event_id, mask)
.globl _signal
_signal: w_time 0x00 ; clear timer
 lock resourceRMW
 read r0, r9 ;
 or r0, r10
 write R9, R0 ;signals event
 rel resourceRMW
 return

;rtp_res_ref general resource reference
;res_ref(event_id)
.globl _res_ref
_res_ref: read R9, R9
 jre 0(R15)

;MAILBOXES

;rtp_mailbox_post-dont block if we cant send
;;can call from C
;mail_post(mailboxwriteres, mailbox_addr, message)
.globl _mail_post
_mail_post: mov R12, R9 ; copy write resource since it will
die
 push R15
 call _re_gain ;check if empty (empty flag in R9)
 cmp R9, ERROR_CODE;comparison to check if got mutex
 be DONEMAILPOST
 out R11, R10 ;write message stored in msg reg R12
 rel R12; release full flag
DONEMAILPOST: pop R15
 jre 0(R15) ;return

;rtp_mailbox_send -block until it can send

92

;;can call from C
;;; mail_send(mailboxwriteres,time_out_val, mail_box_addr, message)
.globl _mail_send
_mail_send: mov R3, R15 ; return address will get killed
 mov R2, R9 ; writre resource will get killed
 call _re_seek
 cmp R9, ERROR_CODE
 be DONEMAILSEND
 out R12, R11 ; write message stored in msg reg(R11)
 rel R2 ; release mailboxwriteres
DONEMAILSEND: move R15, R3 ; restores return address
 jre 0(R15) ;return

;rtp_mailbox_gain - dont block, return error code if empty
;; can call from C
;;; mail_gain(mailboxreadres, memory_address)
.globl mail_gain
_mail_gain: mov R12, R15
 mov R11, R9 ; read resource will get stomped on
 call _re_gain
 mov R15, R12 ; restore return address
 cmp R9, ERROR_CODE ;comparison to check if full
 be DONEMAILGAIN
 read R3, R11 ; read resource to get mailbox address
 in R2, R3 ;read message into msg reg(R10)
 st R2, 0(R10) ; store msg in R2 to memory
 rel R11 ; release read resource
DONEMAILGAIN: jre 0(R15) ;return

;rtp_mailbox_seek block on an empty mailbox
;; can call from C
;;; mail_seek(mailboxreadres,timeout_val, memory_address)
.globl _mail_seek
_mail_seek: mov R12, R15
 mov R3, R9 ; save location of read resource
 call _re_seek
 mov R15, R12 ; restore return address
 cmp R9, ERROR_CODE ;see if we acquired the mutex
 be DONEMAILSEEK
 read R12, R3 ; read read resource to get address
 in R2, R12
 st R2, 0(R11)
 rel R3 ; release read resource
DONEMAILSEEK: jre 0(R15) ;; return

;rtp_mailbox_reference - retrieves a message, doesnt remove it
;; can call from C
;;; mail_ref(mailboxfull,time_out_val, memory_address)
.globl _mail_ref
_mail_ref: mov R12, R15
 mov R3, R9
 call _re_seek
 mov R15, R12
 cmp R9, ERROR_CODE; did we get it??
 be DONEMAILREF ; end if we didnt
 read R12, R3
 in R2,R12
 st R2, 0(R11)
 rel R3 ;; its still full
DONEMAILREF: jre 0(R15) ;return

93

;; QUEUES

;rtp_queue_write-write to the queue until message is done
;;; qu_write(queue_write_res, timeout_val, message_address, message_len)
;;; R1 has the queue_address, R2 num bytes written, R3 has block or
nonblock
.globl _qu_write
_qu_write: ld R0, 0(R11)
 out R0, R1 ;write message stored in R0 to queue
 add R2, 2 ; increment num bytes written
 sub R12, 1 ;see if message is finished
 be WRDONE ; branch to done if R11 is 0
 push R9
 push R15
 cmp R3, BLOCK
 be BLOCKINGW
 call _re_gain
 jmp REUNITEW
BLOCKINGW: call _re_seek; relock a resource we already have
 ;; this will block if queue is full
REUNITEW: pop R15
 cmp R9, ERROR_CODE; was resource acquired?
 be WRDONE
 pop R9
 add R11, 0x2 ;;move to next address in mem
 jump _qu_write ; write again
WRDONE: jre 0(R15)

;rtp_queue_read-read from the queue until message is done
;;; qu_read(queue_read_res,timeout_val,mem_store_address, message_len)
;;; R1 has the queue_address, R2 num bytes written, R3 has block or
nonblock
.globl _qu_read
_QU_READ: in R0, R1 ;read message into reg
 st R0, 0(R11) ; store msg in R0 to memory
 add R2, 1
 sub R12, 1;see if message is finished
 be RDDONE ; branch to done if R6 is 0
 push R9
 push R15
 cmp R3, BLOCK
 be BLOCKINGR
 call _re_gain
 jmp REUNITER
BLOCKINGR: call _re_seek; relock a resource we already have
 ;; this will block if queue is empty
REUNITER: pop R15
 cmp R9, ERROR_CODE; was resource acquired?
 be RDDONE
 pop R9
 add R11, 0x2; increment memory location
 jump _qu_read ; read again
RDDONE: jre 0(R15);; return

;rtp_queue_post- non-blocking send message to queue
;;; qu_post(queue_write_res, message_address, message_len)
.globl _qu_post
_qu_post: push R15 ; return address gonna get whacked
 mov R2, R9 ; queue_write resource will die
 call _re_gain ;can we write to the queue?
 cmp R9, ERROR_CODE ;did we get mutex??

94

 mov R9, 0x0 ; wont affect flags, 0 bytes were
writ
 be DONEQUPOST ;branch to done if didnt get lock
 mov R9, R2 ; move write_res back into param reg
 and R2, 0x0 ; clear R2 to store bytes written
 mov R3, NONBLOCK ; this is a nonblocking call
 read R1, R9 ; read queue_address into R1
 call _qu_write; time to write
 rel R9 ; release write flag
 mov R9, R2 ; move num bytes written to return reg
DONEQUPOST: pop R15; restore the return address
 jre 0(R15) ;; return

;rtp_queue_send -block until it can send
;; qu_send(queue_write_res, timeout_val, message_address,message_len)
.globl _qu_send
_qu_send: push R15 ; return address gonna get whacked
 mov R2, R9 ; queue_write resource will die
 call _re_seek ;can we write to the queue?
 cmp R9, ERROR_CODE ;did we get mutex??
 mov R9, 0x0 ; wont affect flags, 0 bytes were
writ
 be DONEQUSEND ;branch to done if didnt get lock
 mov R9, R2 ; move write_res back to R9
 and R2, 0x0 ; zero out R2 to store bytes written
 mov R3, BLOCK
 read R1, R9 ; read queue_address into R1
 call _qu_write; time to write
 rel R9
 mov R9, R2 ; mov num bytes written to return reg
DONEQUSEND: pop R15 ; restore return addr
 jre 0(R15) ;; return

;rtp_queue_gain-non-blocking read
;;; qu_gain(queue_read_res, NULL,message_address,message_len)
.globl _qu_gain
_qu_gain: push R15
 mov R2, R9
 call _re_gain ;can we read from the queue?
 cmp R9, ERROR_CODE ;did we get mutex??
 mov R9, 0x0 ; wont affect flags, 0 bytes were
read
 be DONEQUGAIN ;branch to done if didnt get lock
 mov R9, R2 ; restore read_resource
 and R2, 0x0 ; R2 will store bytes read
 mov R3, NONBLOCK
 read R1, R9 ; read queue_address into R1
 call _qu_read; time to read
 rel R9
DONEQUGAIN: pop R15
 jre 0(R15);; return

;rtp_queue_seek -block until read
;; qu_seek(queue_read_res,timeout_val,mem_store_address,message_len)
.globl _qu_seek
_qu_seek: push R15
 mov R2, R9
 call _re_seek ;can we read from the queue?
 cmp R9, ERROR_CODE ;did we get mutex??

95

 mov R9, 0x0 ; wont affect flags, 0 bytes were
read
 be DONEQUSEEK ;branch to done if didnt get lock
 mov R9, R2 ; restore read_resource
 and R2, 0x00 ; R2 will store bytes read
 mov R3, BLOCK
 read R1, R9 ; read queue_address into R1
 call _qu_read; time to read
 rel R9
DONEQUSEEK: pop R15
 jre 0(R15);; return

;; system timer functions
;; rtp_get_time- will return value of universal timer in r10
;;; get_time(timer_address)
.globl _get_time
_get_time: in R10, R9
 return

;;; rt_set_time - will set the value of the universal timer with value
in R9
;;; set_time(timer,_address,new_timer_value)
.globl _set_time
_set_time: out R10, R9
 return

.globl _create_task
 ; create_task(function, proc_id, task_id, task_priority,
stacksize, arg1, arg2)
 ; R9 R10 R11 R12 -2(R14) -
4(R14) -6(R14)
_create_task:
 mova R1, my_proc_id
 ld R0, 0(R1)
 cmp R0, R10 ; PPPP = my_proc_id?
 be _ct1 ; yes good, no bad
 mov R9, 1 ; error code
 ret ; return error
_ct1: mova R0, tasktable ; &tasktable[0]
 mov R1, R11 ; task_id
 sll R1, 3 ; 8 * task_id
 add R0, R1 ; &tasktable[task_id]
 ld R1, 0(R0) ; tasktable[task_id].function
 cmp R1, 0 ; = 0?
 be _ct2 ; yes good, no bad
 mov R9, 2 ; if task already inited: error code
 ret ; return error
_ct2: st R9, 0(R0) ; setup tasktable[task_id]
 ld R1, 0(R14) ; stacksize
 st R1, 2(R0) ; tasktable[task_id].stacksize = stacksize
 ld R1, 2(R14) ; arg1
 st R1, 4(R0) ; tasktable[task_id].arg1 = arg1
 ld R1, 4(R14) ; arg2
 st R1, 6(R0) ; tasktable[task_id].arg2 = arg2

 mov R1, R10 ; PPPP
 and R1, 0xF ; PPPP
 sll R1, 4 ; PPPP 0000
 and R11, 0xF ; TTTT
 or R1, R11 ; PPPP TTTT
 sll R1, 8 ; PPPP TTTT 0000 0000
 or R1, 0x10 ; PPPP TTTT 0001 0000 (set task ready flag)

96

 and R12, 0xF ; XXXX
 or R1, R12 ; PPPP TTTT FFFF XXXX
 w_prio R1 ; set priority and ready (unblocks task)
 return

 .area DSEG
 .even
my_proc_id: .dw -1 ; get inited by GSINIT
current_stack: .dw stacktop
.globl _main
tasktable: .dw _main ; task 0 - branch address
 .dw 60 ; task 0 - stack size
 .dw 0 ; task 0 - arg1 (argc) to main()
 .dw 0 ; task 0 - arg2 (argv) to main()
 .blkw 15*4 ; reserve room for the other 15 tasktable
entries (4 words each)
 ; 66 bytes total of data memory used by _gsinit() and
create_task()

 .area SSEG ; placed at top of memory
stacktop: ; first non-existant memory location

97

Appendix D: RTP Instruction Set Architecture

Mnemonic Operands Description Operation FLAGS

Arithmetic And Logic Instructions
add R, L Reg, L add [C | R] <= [Reg] + L(sign extended) Updated

add R1, R2 Reg, Reg add [C | R1] <= [R1] + [R2] Updated

addc R, L Reg, L add with carry [C | R] <= [Reg] + L + C Updated

addc R1, R2 Reg, Reg add with carry [C | R1] <= [R1] + [R2] + C Updated

sub R, L Reg, L subtract [C | R] <= [Reg] - L Updated

sub R1, R2 Reg, Reg subtract [C | R1] <= [R1] - [R2] Updated

subc R, L Reg, L subtract with carry [C | R] <= [Reg] - L(sign extended) - C Updated

subc R1, R2 Reg, Reg subtract with carry [C | R1] <= [R1] - [R2] - C Updated

rsub R. L Reg, L reverse subtract [C | R1] <= -[R1] + L Updated

rsub R1, R2 Reg, Reg reverse subtract [C | R1] <= -[R1] + [R2] Updated

rsubc R, L Reg, L reverse subtract with carry [C | R1] <= -[R1] + L Updated

rsubc R1, R2 Reg, Reg reverse subtract with carry [C | R1] <= -[R1] + [R2] Updated

mul R, L Reg, L Multiply word [T,R] <= [Reg]*L, signed Updated

mul R1, R2 Reg, Reg Multiply word [T,R1] <= [R1]*[R2], signed Updated

mulb R, L Reg, L Multiply low-byte [Reg](15..0) <= [Reg](7..0)*L, signed Updated

mulb R1, R2 Reg, Reg Multiply low-byte [R1] <= [R1](7..0)*[R2](7..0), signed Updated

mulu R, L Reg, L Multiply unsigned word [T,R] <= [Reg]*L, unsigned Updated

mulu R1, R2 Reg, Reg Multiply unsigned word [T,R1] <= [R1]*[R2], unsigned Updated

mulub R, L Reg, L Multiply unsigned low-byte [Reg](15..0) <= [Reg](7..0)*L, unsigned Updated

mulub R1, R2 Reg, Reg Multiply unsigned low-byte [R1] <= [R1](7..0)*[R2](7..0), unsigned Updated

and R, L Reg, L And literal [Reg] <= [Reg] AND (0,L) Updated

and R1, R2 Reg, Reg And literal [R1] <= [R1] AND [R2] Updated

andc R, L Reg, L And with carry [Reg](7..0) <= [Reg](7..0) AND L Updated

andc R1, R2 Reg, Reg And with carry [R1](7..0) <= [R1](7..0) AND [R2](7..0) Updated

or R, L Reg, L Or [Reg] <= [Reg] OR (0,L) Updated

or R1, R2 Reg, Reg or [R1] <= [R1] OR [R2] Updated

orc R, L Reg, L Or with carry [Reg](7..0) <= [Reg](7..0) OR L Updated

orc R1, R2 Reg, Reg Or with carry [R1](7..0) <= [R1](7..0) OR [R2](7..0) Updated

xor R, L Reg, L xor [Reg] <= [Reg] XOR (0,L) Updated

xor R1, R2 Reg, Reg xor [R1] <= [R1] XOR [R2] Updated

xorc R, L Reg, L xor with carry [Reg](7..0) <= [Reg](7..0) XOR L Updated

xorc R1, R2 Reg, Reg xor with carry [R](7..0) <= [R](7..0) XOR [R2](7..0) Updated

Branch Instructions
call L call [R15] <= PC, PC <= L (relocatable) Unchanged

jump L jump PC <= L (relocatable) Unchanged

98

jre L(R) Reg, L Jump register PC <= L + [Reg] Unchanged

jre R2(R1) Reg, Reg jump register PC <= [R1] + [R2] Unchanged

ret Subroutine return PC <= [R15] Unchanged

cmp R, L Reg, L compare with carry FLAG <= [Reg] - L(zero extended) Updated

cmp R1, R2 Reg, Reg compare with carry FLAG <= [R1] - [R2] Updated

cmpc R, L Reg, L compare with carry FLAG <= [Reg](7..0) - L Updated

cmpc R1, R2 Reg, Reg compare with carry FLAG <= [R1](7..0) - [R2](7..0) Updated

be branch if equal if Z=1 then PC <= PC+L Unchanged

beu branch if equal, unsigned if ZU=1 then PC <= PC+L Unchanged

bge branch if greater or equal if N=0 then PC <= PC+L Unchanged

bgeu
branch if greater or equal,
unsigned (NU=0=always) PC <= PC+L ; jump relative Unchanged

bgt branch if greater if C=0 then PC <= PC+L Unchanged

bgtu branch if greater, unsigned if CU=0 then PC <= PC+L Unchanged

ble branch if lesser or equal if C=1 then PC <= PC+L Unchanged

bleu
branch if lesser or equal,
unsigned if CU=1 then PC <= PC+L Unchanged

blt branch if lesser if N=1 then PC <= PC+L Unchanged

bltu branch if lesser, unsigned (NU=1=never); never jump; nop Unchanged

bne branch if not equal if Z=0 then PC <= PC+L Unchanged

bneu
branch if not equal,
unsigned if ZU=0 then PC <= PC+L Unchanged

bnv branch if not overflow if V=0 then PC <= PC+L Unchanged

bnvu
branch if not overflow,
unsigned if VU=0 then PC <= PC+L Unchanged

bv branch if overflow if V=1 then PC <= PC+L Unchanged

bvu
branch if overflow,
unsigned if VU=1 then PC <= PC+L Unchanged

Data Transfer Instructions
mov R, L Reg, L Move [Reg] <= L, sign extended Unchanged

mov R1, R2 Reg, Reg Move [R1] <= [R2], sign extended Unchanged

mova R, L Reg, L 16 bit mov R <= L (16 bit), pseudo op Unchanged

movh R, L Reg, L Move hi-byte [Reg](15..8) <= L, [Reg](7..0) unaffected Unchanged

movh R1, R2 Reg, Reg Move hi-byte [R1](15..8) <= [R2], [R1](7..0) unaffected Unchanged

movu R, L Reg, L Move unsigned [Reg] <= L, zero extended Unchanged

movu R1, R2 Reg, Reg Move unsigned [R1] <= [R2], zero extended Unchanged

movuh R, L Reg, L Move unsigned hi-byte [Reg](15..8) <= L, [Reg](7..0) <= 0 Unchanged

movuh R1, R2 Reg, Reg Move unsigned hi-byte [R1](15..8) <= [R2], [R1](7..0) <= 0 Unchanged

ld R1, L(R2) Reg, Reg, L load [R1] <= Data(L + [R2])(15..0) Unchanged

ldb R1, L(R2) Reg, Reg, L load byte [R1] <= Data(L + [R2])(7..0) Unchanged

st R1, L(R2) Reg, Reg, L store Data(L + [R1])(15..0) <= [R2] Unchanged

stb R1, L(R2) Reg, Reg, L store byte Data(L + [R1])(7..0) <= [R2] Unchanged

in R, L Reg, L In port addr <= L, [Reg] <=in Unchanged

in R1, R2 Reg, Reg In port addr <= [R2], [R1] <=in Unchanged

out R, L Reg, L Out port addr <= L, out <= [Reg] Unchanged

out R1, R2 Reg, Reg Out port addr <= [R2], out <= [R1] Unchanged

push R Reg push on stack [SP] <= [Reg] Unchanged

pop R Reg pop off stack [Reg] <= [SP] Unchanged

xch R, T Reg, L Exchange [T,Reg] <= [Reg,T] Unchanged

Bit Instructions
clrc clear carry or r0,0 C,UC <-- 0

99

clrt clear transfer sll r0,0 T <-- 0

rol R, L Reg, L Rotate left
[T,Reg] <= ([0,Reg] << L) | ([0,Reg] << (16-
L)) >> 16 Updated

rol R1, R2 Reg, Reg Rotate left
[T,R1] <= ([0,R1] << R2) | ([0,R1] << (16-R2)
) >> 16 Updated

ror R, L Reg, L Rotate Right
[Reg,T] <= ([0,Reg] << (16-L)) | ([0,Reg] <<
L) >> 16 Updated

ror R1, R2 Reg, Reg Rotate right
[R1,T] <= ([0,R1] << (16-R2)) | ([0,R1] << R2
) >> 16 Updated

slc R, L Reg, L Shift left with carry [T,Reg] <= ([0,Reg] << L) | [0,T] Updated

slc R1, R2 Reg, Reg Shift Left with carry [T,R1] <= ([0,R1] << R2) | [0,T] Updated

sll R, L Reg, L Shift left logical [T,Reg] <= [0,Reg] << L Updated

sll R1, R2 Reg, Reg Shift Left Logical [T,R1] <= [0,R1] << R2 Updated

sra R, L Reg, L Shift right arithmetic [Reg,T] <= [SE,Reg] << (16-L) Updated

sra R1, R2 Reg, Reg Shift Right Arithmetic [R1,T] <= [SE,R1] << (16-R2) Updated

src R,L Reg, L Shift right with carry [Reg,T] <= ([0,Reg] << (16-L)) | [T,0] Updated

src R1,R2 Reg, Reg Shift Right with carry [R1,T] <= ([0,R1] << (16-R2)) | [T,0] Updated

srl R, L Reg, L Shift right logical [Reg,T] <= [0,Reg] << (16-L) Updated

srl R1, R2 Reg, Reg Shift Right Logical [R1,T] <= [0,R1] << (16-R2) Updated

Control and Special Purpose Functions
nop No Operation Unchanged

disable Reg or L Disable Resource
disable resource {[Reg], L} (disable interrupt
{[Reg], L}) Unchanged

enable Reg or L Enable Resource
enable resource {[Reg], L} (enable interrupt
{[Reg],L}) Unchanged

ds Disable Scheduling (this processor only) Unchanged

es Enable Scheduling (this processor only) Unchanged

lock Reg or L Lock Resource
task[this].resource[{[Reg],L}].req <= 1, block
until req==0 or timeout=1 Unchanged

nb_lock R, L Reg, L Non-Blocking Lock
attempt to lock L, [Reg] <- info on task that
owns resource L Unchanged

nb_lock R1,
R2 Reg, Reg non-blocking lock

attempt to lock [R2], [R1] <- info on owner of
resource [R2] Unchanged

r_prio Reg Read Priority [Reg] <= this.task.priority Unchanged

r_time Reg Read Timeout [Reg] <= this.task.timeout Unchanged

w_prio Reg or L Write Priority task{[Reg], this}.priority <= {[Reg], L} Unchanged

w_time Reg or L Write Timeout this.task.timeout <= {[Reg], L} Unchanged

read R, L Reg, L Read resource status [Reg] <= status of resource L Unchanged

read R1, R2 Reg, Reg Read resource status [R1] <= status of resource [R2] Unchanged

write R, L Reg, L Write resource Status status of resource L <= [Reg] Unchanged

write R1, R2 Reg, Reg Write resource Status status of resource [R2] <= [R1] Unchanged

rel Reg or L Release Resource task[this].resource[{[Reg], L}].gnt <= req <=0 Unchanged

rst Reg or L Reset Resources task[*].resource[{[Reg], L}].req <= gnt <= 0 Unchanged

sig1 Reg or L Send Signal 1
send sig 1 to resource {[Reg], L} (set int.
{[Reg], L}) Unchanged

sig2 Reg or L Send Signal 2
send sig 2 to resource {[Reg], L} (reset int.
{[Reg], L}) Unchanged

	Compilation and Generation of Multi-Processor on a Chip Real-Time Embedded Systems
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 – RTP Motivation
	1.2 – RTP Goals
	1.3 – Related Work
	1.4 – Goals for the SDCC-RTP Compiler and the RTPGen Hardware Generator
	1.5 – Contributions
	1.6 – Outline of Thesis

	Chapter 2: Real-Time System on a Programmable Chip
	2.1 – RTP Architecture Overview
	2.1.1 – RTP System Components
	2.1.2 – The Task-Resource Matrix
	2.1.3 – The Scheduler
	2.1.4 – Context Switching
	2.1.5 – The RTP Hardware Assisted RTOS

	2.2 – The RTP Processor and Instruction Set Architecture
	2.3 – Related Work
	2.4 – Additional Considerations

	Chapter 3: Porting the SDCC Compiler
	3.1 – Decision to use SDCC
	3.2 – Base SDCC Complier Functionality
	3.3 – Required Changes to Base SDCC Compiler
	3.4 – The SDCC-RTP Compiler: Code Generation
	3.4.1 – Port Options (main.*)
	3.4.2 – Register Allocation (ralloc.*)
	3.4.3 – Code Generation (gen.*)
	3.4.4 – Peephole Rules (peeph.def)

	Chapter 4: The SDCC-RTP Compiler
	4.1 – Built-in Functions
	4.1.1 – Compiler Support for Built-in Functions

	4.2 – Intermediate Symbol Table
	4.3 – Generator Directives

	Chapter 5: The Assembler and Linker
	5.1 – The Assembler
	5.2 – The Linker

	Chapter 6: The RTPGen Hardware Generator
	6.1 – Instantiation of Processors
	6.2 – Creation of Tasks, Resources, and Devices
	6.3 – RTP Simptris Example

	Chapter 7: Conclusions and Future Work
	7.1 – Contributions Revisited
	7.2 – Future Work
	7.3 – Final Words

	Bibliography
	Appendix A: Peephole Rules for the SDCC-RTP Compiler
	Appendix B: Assembly for RTP Code Generation Example
	Appendix C: RTP RTOS Assembly Source Code
	Appendix D: RTP Instruction Set Architecture

