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Clustering Streaming Music via the Temporal
Similarity of Timbre

Jacob Merrell, Dan Ventura, and Bryan Morse

Computer Science Department, Brigham Young University, Provo UT 84602, USA
jmerrell@byu.edu, ventura@cs.byu.edu, morse@cs.byu.edu

Abstract. We consider the problem of measuring the similarity of stream-
ing music content and present a method for modeling, on the fly, the
temporal progression of a song’s timbre. Using a minimum distance clas-
sification scheme, we give an approach to classifying streaming music
sources and present performance results for auto-associative song identi-
fication and for content-based clustering of streaming music. We discuss
possible extensions to the approach and possible uses for such a system.

1 Introduction

Because of the growing size of digital music libraries, music recommendation and
management systems are becoming increasingly important. For example, a user
with thousands of MP3-encoded files may not wish to tackle the daunting task of
hand rating each of their songs. Aside from the fact that the rating process could
take days or weeks to complete, over time user preferences change, making old
ratings inaccurate. A content-based music recommendation system could solve
these problems. Either by automatically rating songs based on similarity to user-
rated songs, or by rating songs dynamically based on recent user listening habits,
such a system could employ the user’s actions to implicitly categorize the music.
Such a system also ameliorates the challenging task of searching a large music
collection for a certain type of music. By basing selection on content similarity,
the computer may find matches in less obvious categories.

In this paper we present two approaches to computing a timbre-based similar-
ity metric for song content and an approach to using the metric to classify songs
in terms of what the learner has already listened to. We focus particularly on the
problem of processing streaming sources, where the system has access only to a
group of channels as they stream by, and thus we do not rely on preprocessing a
library of music, nor do we require the maintenance of or access to such a library.
We consider this to be a more general problem than the classification of static
files in that its solution naturally admits application to more stationary sources,
offering the possibility of music recommendation or automatic classification.

2 Previous Research

Content-based similarity measures have been used with music recordings for
such purposes as identifying individual songs [1]; identifying singers [2], clas-



sifying songs by their genre [3], mood [4], or other perceptual categories [5];
finding similar songs [6], automatically expanding playlists [7], and many others.
Some approaches use time-domain descriptors while others use purely frequency-
domain descriptors. Features are often based on a song’s timbre, beat, pitch dis-
tribution, or combinations of these. Surveys of popular approaches can be found
in [8] and [9].

Among the most popular approaches is to use Mel Frequency Cepstrum Co-
efficients (MFCCs) to determine “timbre similarity”. These are then often aggre-
gated through clustering or mixture modeling [10], though this loses temporal
information. Some approaches try to retain this temporal information using Hid-
den Markov Models [11,12]. (See [13] for a survey of various approaches as well
as an empirical evaluation of optimal parameter tuning and performance limits.)

Our approach uses an MFCC-based timbre-description approach similar to
that described in [13], but we modify the classification approach to suit our goals
of a streaming learner.

3 The Algorithm

The “traditional” music classification algorithm takes an input signal, transforms
it into some frequency space, extracts from the transformed signal some set of
features, models the distribution of those features, and then uses that model to
classify, recommend, etc. Here, we follow the same basic approach.

3.1 Input Signal

Because our goal is to develop a system that will learn from a streaming input
source, we did not pre-process a large library of music before beginning classi-
fication. Of course, the system must do a little “listening” before it can classify
anything, but unlike many other approaches we only train on a handful of songs
before we begin testing. For our experiments, we capture and process the sound
from the sound card of the computer as it plays. To simulate a streaming source,
the music is played through Apple’s iTunes. This signal is sampled at 44100 hz,
k samples are buffered and the buffered sequence is then processed (see Section
3.2). For our experiments we let k = 2048 (50 msec).

3.2 Feature Construction

As is common, we employ Mel Frequency Cepstrum Coeffiecients in order to
measure the timbre of the signal. Using only the low-order coefficients gives us
some measure of the frequency relationships we are interested in a manner that
is invariant to the specific frequency being played.

The ceptrum coefficients are calculated by taking the Fourier Transform of
the complex log of the Fourier Transform of the signal. We augment this by using
the non-linear Mel frequency scale to better model human perception. Similar to
[13] we use the first 24 coefficients (they use the first 20) to form a 24-dimensional
feature, x.



Fig. 1. Example prototype sequences from Simon and Garfunkel’s Bridge Over Trou-
bled Water (upper left), Enya’s Once You Had Gold (upper middle), Bridge Over
Troubled Water and Once You Had Gold superposed (upper right) and Once You Had
Gold superposed with Mariah Carey’s Fantasy (below). The first two plots each show
two different prototypes for the same song generated from different initial conditions.

3.3 Prototype Sequence Discovery

Each song is represented by a prototype sequence constructed in the following
way. Input features are collected in a windowed buffer of size n (here, we let
n = 120 [about 6 seconds]). When the buffer is full, the features are averaged to
compute a prototype p. The buffer window is then advanced one feature and the
process is repeated. Fig. 1 shows examples of prototype sequences (visualized in
2 arbitrary dimensions) for several songs, each with unique temporal structure.

3.4 Song Classification

We can now define a song timbre similarity metric:

P
1
T(s,8%) = 5 > llpi =i
=1



Algorithm 1 Classifying a Song via Prototype Sequence Similarity

Require: input signal buffer s, set of prototype feature sequences {pj}
1:t=1
2: while s buffer not empty do

3:  compute feature x
4: fori=1ton—1do
5 Di = Pit+1
6: Pn ==z
T p=+ >
8:  wote[t] = argmin, ||pf — D]
9 t—t+1
10: return wvote
where || - || is the Lo-norm, p§ is the ith prototype in sequence fragment S°¢, P

is the number of prototypes in the sequence fragments. Given a set of prototype
sequence fragments {S'}, a new song can be classified at a particular point in
time ¢, according to the similarity of a fragment S to those in the set:

vote(S) = argmin T'(.S, S¢)

Algorithm 1 gives pseudocode for this classification process. Line 3 obtains
a new feature as described in Section 3.2, lines 4-6 slide and fill the prototype
buffer, line 7 computes a new prototype, and line 8 compares the new prototype
with the appropriate prototypes for any stored sequence fragments. Lines 1 and 9
iterate over the length of the sequence, and line 10 returns the sequence of
votes for the entire song. Note that for the algorithm, the length of the song
fragments compared is a single prototype point (that is P = 1). Also, note that
the algorithm requires a set of prototype sequences for comparison. These might
be stored in a library or accumulated in parallel from other streaming sources
(for example, if the system is monitoring multiple radio stations simultaneously),
but in any event, we assume that these prototype sequences are computed in a
manner similar to lines 2-7 of Algorithm 1.

4 Results

We created a ten-song playlist in iTunes consisting of the songs listed in Table 1.
Scottish Jig is a fast-paced bagpipe song. I Get Around is a typical Beach Boys
song with a fast tempo and upbeat sound. Once You Had Gold is a mellow Enya
song. I Want to Get Away is the closest thing in this playlist to hard rock and
roll. Michaelangelo Sky is a standard country song with a quick beat and a bright
sound. Redeemer of Israel is a choral piece with orchestral accompaniment. Fan-
tasy is a standard Pop song with synthesized sounds and a strong beat. Time
to Say Goodbye is a duet with an orchestral accompaniment. North Star is an
calm acoustic guitar piece. Bridge Over Troubled Waters is primarily a piano
piece with male vocals that evolves into a full instrumental accompaniment.



Table 1. Song Playlist for Training Set

Number Song Name Artist

1 Scottish Jig Bagpipes

2 I Get Around Beach Boys

3 Once You Had Gold Enya

4 I Want to Get Away Lenny Kravits

5 Michaelangelo Sky Deanna Carter

6 Redeemer of Israel Mormon Tabernacle Choir
7 Fantasy Mariah Carey

8 Time to Say Goodbye Sarah Brightman and Andrea Bocelli
9 North Star Greg Simpson

10 Bridge Over Troubled Water (live) Simon and Garfunkel

We started the playlist and let the system “listen” to all ten songs as it
went through the steps of the algorithm: inputting the signal, calculating and
buffering the features, averaging them together to form a prototype point, and
storing the sequence of prototype points. After letting the learner listen to all
ten songs, we had ten prototype sequences of what had been listened to.

4.1 Auto-association Performance

Without associating a label with each prototype or song it is difficult to quantify
the system’s performance. [3], [5], and [13] all use genre as the labels for songs
and prototypes, but genre is not a very precise measure and does not necessarily
give a good measure of similarity. [4] uses different moods as the labels for each
song and prototype, but again the label is somewhat subjective. Admittedly
there may not be a precise measure of similarity between songs beyond the
general consensus of a song’s genre, mood, or user-defined label. And of course,
for clustering imposing an additional label was not necessary. We hope to infer
labels from user listening habits, such as “like” or “don’t like”. However, to first
study the system behavior and as a sanity check, we tested its ability to auto-
associate songs it has already stored as prototype sequences. In other words, can
the system recognize music it has already heard? To make the test non-trivial
and to simulate the idea of processing a novel music stream from a real-world
source, we record the sound from the sound card instead of analyzing the data
directly from the MP3-encoded song file. This has the effect of introducing small
alignment inconsistencies as well as noise to the generated prototype sequence
(which is why the two prototypes for Bridge Over Troubled Water and Once
You Had Gold in Fig. 1 exhibit significant differences).

Then, given a set of ten prototype sequences for the songs in the play list, we
have the system “listen” again (that is, recompute a prototype sequence from the
sound card output) to each song in the play list. For each song, we evaluate the
distance metric for each of the stored prototypes at each point, with the minimum
distance stored prototype receiving a vote at that point (line 8 of Algorithm 1).



Table 2. Auto-association Accuracy Using Prototype Sequences

Number Song Name Accuracy
1 Scottish Jig 98.4%
2 I Get Around 72.4%
3 Once You Had Gold 13.1%
4 I Want to Get Away 57.1%
5 Michaelangelo Sky 41.2%
6 Redeemer of Israel 63.9%
7 Fantasy 39.8%
8 Time to Say Goodbye 58.2%
9 North Star 50.8%
10 Bridge Over Troubled Water (live)| 60.1%

Table 2 reports voting accuracies that reflect the percentage of prototype points
in the new song sequence that were closest to the stored sequence for that song.

Results varied for each song. For some songs, the accuracy was very good,
indicating that the song’s prototype was unique enough (with respect to the other
stored prototypes) that alignment and noise issues did not really affect the auto-
association. For other songs, results were less impressive; given initial conditions,
these songs were more easily confused with other songs’ stored prototypes. These
results appear to indicate that for songs with significant temporal progression
of timbre, considering this temporal information is both important and feasible
even given non-ideal conditions. On the other hand, for songs with somewhat
more static timbre, the temporal sequence can be misleading, as initial conditions
such as noise or sequence alignment dictate more arbitrary results.

4.2 Computing Meta-Prototypes

For comparison, we now consider a compression of stored prototype sequences
that eliminates temporal information (and since Algorithm 1 presents signif-
icant memory requirements this compression also relieves significant memory
and processing requirements). We continue to represent the streaming source as
a sequence of prototype points. For simplicity, we represent a song with a single
meta-prototype point (or alternatively with a prototype sequence of length 1),
essentially just averaging all prototypes in the sequence. The metaprototypes for
the ten songs in the training set are given in Fig. 2, superimposed on the set of
all prototype points for Bridge Over Troubled Waters.

Algorithm 2 is a modified version of Algorithm 1 that compares each proto-
type point in the song to a single meta-prototype point for each learned song.
The results of classifying the training set using this simpler scheme are shown in
Table 3. Again, results varied. For a given song, the vote was often split between
two or three meta-prototypes, but this seems reasonable because the music itself
is not constant throughout the whole song; at times the songs truly do sound
more like one song and then more like another. Let’s examine a few of the songs
and see if we can understand what happened. (Recall the brief description of each



Fig. 2. Meta-prototypes for the ten songs plotted with prototypes from Bridge Over
Troubled Water

song given in Section 4.) Note that, although the meta-prototypes themselves
contain no temporal information, since the source is still treated in a sequential
manner, the system still exhibits interesting temporal classification behavior.

Let’s examine Enya’s Once You Had Gold (song number 3). Plotted in Fig-
ure 3 is the classification (which meta-prototype point was voted closest at each
time t) as the song played. The z-axis is time as the song plays, and the y-axis is
the index of the song that was closest to the testing example. Notice that there
are no votes for the Scottish Jig, Lenny Kravits, Deanna Carter or Mariah Carey
(numbers 1, 4, 5, and 7 respectively). The songs that got most of the votes were
mellow songs, which makes sense. Although the prototype points did not always
fall closest to the Enya meta-prototype, they did fall close to songs that shared
characteristics with the Enya song.

Next consider Lenny Kravit’s I Want to Get Away (song number 4), with
votes plotted in Figure 4. Notice that most of the votes are distributed between

Algorithm 2 Classifying a Song via Meta-Prototype Similarity

Require: input signal buffer s, set of meta-prototype features {p°}
1:t=1
2: while s buffer not empty do
3:  compute feature x
4: fori=1ton—1do
5 Pi = Pi+1
6: Pn =1
T =g b
8:  wote[t] = argmin,, ||p° — p|
9 t—t+1
0:

10: return wvote




Table 3. Auto-association Accuracy Using Meta-Prototypes

Number Song Name Accuracy
1 Scottish Jig 90.7%
2 I Get Around 100%
3 Once You Had Gold 39.7%
4 I Want to Get Away 60.1%
5 Michaelangelo Sky 36.8%
6 Redeemer of Israel 27.9%
7 Fantasy 89.4%
8 Time to Say Goodbye 13.8%
9 North Star 20.8%
10 Bridge Over Troubled Water (live)| 28.4%

Lenny Kravits and Mariah Carey, the two songs that are more like Rock and
Roll. This furthers our confidence in the similarity measure.

Now examine Simon and Garfunkel’s Bridge Over Troubled Water (Fig. 5).
Notice that there is not a clear winner, but that there seems to be clusters of
votes as the song moves through time. Revisiting Fig. 1, it is obvious that this
song has high variance in feature space (the figure shows just two of the twenty-
four dimensions, but compared to the other songs it displayed the most variance
of any of the ten songs on the playlist). For comparison, Figure 2 shows how
the prototype points from Bridge Over Troubled Water relate to all the meta-
prototypes—it is clear that the meta-prototype for Bridge Over Troubled Water
isn’t very representative of the song.

4.3 Performance on a Test Set of Novel Songs

Although we could not compute an accuracy measure in the same way, we wanted
to test the same learner on songs it had not heard before. The results here seem

Enya
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Fig. 3. Votes made during classification of Enya’s Once You Had Gold



Lenny Kravits
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Fig. 4. Votes made during classification of Lenny Kravits’s I Want to Get Away
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Fig. 5. Votes made during classification of Simon and Garfunkel’s Bridge Over Troubled
Water

good, but our measure is only a subjective one. We tested the learner over 30
different songs, with Figs. 6-9 showing representative voting results. With each
figure we give a brief evaluation of the general classification.

5 Discussion and Future Work

We have presented an approach to measuring the similarity of streaming music
content. Specifically, we give an algorithm for creating prototype sequences to
model the temporal progression of a song’s timbre, and show how a minimum
distance classification scheme can make use of these prototypes to auto-associate
a song with itself in non-ideal streaming conditions as well as to suggest inter-
esting (and often intuitive) similarities between different (streaming) songs.
We suggest that this approach can be useful in several ways. For example,
given a song that the user listens to, one might be able to predict which songs the



user would listen to in the immediate future. Such a system would be ideal for
portable music players or for a system that concurrently scans multiple channels,
where after only a few example songs, the system has “learned” the user’s mood.
In a more static setting, given some sample ratings of songs, the system could
rate an entire music library. Of course, the more examples, the better the learner
would do at rating the library, especially if the collection is diverse.

An obvious avenue for future work is to explore a generalization of the two
algorithms that incorporates a dynamic n that can vary both within and across
songs. If such a dynamic prototype size can be automatically discovered, the
result should be an eclectic combination of the benefits exhibited here: compact

Bittersweet Symphony, The Verve
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Fig. 6. The Verve’s Bittersweet Symphony. This song is a mix between Rock and Pop,
and as might be expected it’s classified as a mix between the Rock song (number 4)
and the Pop song (number 7).

Amazing Grace, David Tolk
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Fig. 7. David Tolk’s Amazing Grace. It was classified as closest to Bridge Over Troubled
Waters. Interestingly this version of Amazing Grace is mostly piano and Bridge Over
Troubled Waters is the only other song that has a major piano component. Results like
these were very encouraging.



When It's Over, Sugar Ray
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Fig. 8. Sugar Ray’s When It’s Over. This Pop song was classified as closest to the Pop
song we had in the training set.

Rainy Days and Mondays, The Carpenters
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Fig. 9. The Carpenter’s Rainy Days and Mondays. Interestingly it was classified as
closest to the Beach Boys. This classification did not seem as logical as some of the
others.

representation of global music content for each “natural” segment of a song. An
intermediate step in this direction would be automating the choice of whether or
not a song prototype sequence should be collapsed, based on its auto-association
accuracy. Also, this automatic prototype clustering may benefit from the use of
some form of (dimension specific) variance-based normalization and/or a more
sophisticated compressed representation of song (meta-)prototypes, such as a
mixture of Gaussians, though some of these techniques do not lend themselves
naturally to the scenario of streaming sources we consider because they require
processing a song in its entirety. It will also be interesting to relax the temporal
alignment of songs, thus allowing the system to discover, for example, that the
beginning of song A is similar to the ending of song B.



Also, at this point, our similarity metric is very simplistic—it is basically a
temporal 1-NN voting scheme in the 24-dimensional space defined by the Mel
cepstrum. One could substitute a more complex path similarity measure (such
as Hausdorff), either again employing a periodic voting scheme (one could also
experiment with more complex voting schemes), or accumulating a similarity
score for each stored path over time and constantly updating the rank order of
the prototypes. One could also consider higher-order path information, such as
directional derivatives, as additional features. Other interesting features, from
content-based information like rhythm to meta-data such as consumer purchase
patterns, might also be incorporated.
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