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ADtrees for Sequential Data and N-gram Counting

Rob Van Dam and Dan Ventura

Abstract— We consider the problem of efficiently storing n-
gram counts for large n over very large corpora. In such cases,
the efficient storage of sufficient statistics can have a dramatic
impact on system performance. One popular model for storing
such data derived from tabular data sets with many attributes
is the ADtree. Here, we adapt the ADtree to benefit from the
sequential structure of corpora-type data. We demonstrate the
usefulness of our approach on a portion of the well-known Wall
Street Journal corpus from the Penn Treebank and show that
our approach is exponentially more efficient than the naı̈ve
approach to storing n-grams and is also significantly more
efficient than a traditional prefix tree.

I. INTRODUCTION

Hidden Markov Models (HMMs), otherwise known as
n-gram models, originated as a tool in natural language
processing for problems such as language identification,
spelling correction, part of speech tagging [1], [2], [3], [4],
[5] and have since been appropriated by researchers in many
other fields, particularly information retrieval, bioinformatics,
and data compression [6], [7], [8]. N -grams have become
so ubiquitous due in great part to their flexibility. Not only
can models be built which take into account vastly different
amounts of context (the n in n-gram) but the specific tokens
which are counted (the “gram” in n-gram) can vary from
one problem to the next. Most frequently in the problems
noted above an n-gram model is built using either words or
characters from source text.

Unfortunately, n-gram models can grow very large, par-
ticular for higher order models. Although not all possible
sequences of words or characters actually occur (consider the
6-gram “zvyqxx” in English), n-gram models have the po-
tential to grow exponentially in the number of unique tokens
being counted. For English character HMMs, this means a
model that has an upper bound of 26n. For even the simplest
Japanese word models on the other hand, the model grows
as approximately 2000n. English word-based models tend to
be even larger since a typical document can contain several
thousand unique words (even after eliminating capitalization
differences). The Wall Street Journal section of the Penn
Treebank [9] contains slightly more than 40, 000 words while
the much larger n-gram dataset released by Google contains
more than 13 million unique words [10]. Although increases
in computer memory allow ever increasing n-gram models to
be constructed, models that increase exponentially with bases
in the thousands or millions will always outstrip the pace of
development in the computer memory industry. Additionally,
several studies on smoothing n-gram models have found that
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the best smoothing techniques utilize some (often linear)
combination of smaller n-grams when a larger n-gram has
not been seen or not been seen sufficiently often to provide
reliable statistics [2], [3]. This means that any method for
storing n-grams must store all shorter sequences and their
counts as well.

Here we present a method for applying ADtrees (described
below) to the problem of efficiently storing n-gram counts.
Although ADtrees were designed to store counts derived
from tabular datasets with many attributes, each “gram” in
an n-gram can be viewed as a distinct attribute. Of course,
if a typical training set for an n-gram model is converted
to explicitly store each of these attributes, the dataset would
become n times larger. Since this does not scale well for
large data sets and large n, it is more reasonable to adapt
ADtrees to automatically handle n-gram models so that these
models can benefit from the space savings of ADtrees and
the ADtrees can benefit from the known sequential Markov
assumptions.

II. PREVIOUS WORK

The most naı̈ve method for storing the counts needed for
n-gram models simply enumerates all possible combinations
of the unique tokens. This method will match the previous
exponential expressions within a constant factor because they
store a value for all possible combinations, even those which
do not occur in the given dataset. Obviously this is overly
inefficient although it can be manipulated in a program using
a simple multi-dimensional array thereby simplifying the
programming logic. The next most naı̈ve storage method
simply eliminates those n-grams which were not found in the
dataset. This greatly reduces the amount of storage required
but is still approximately exponential (the growth actually
follows a logistic curve but the inflection point often occurs
at too large an n to be useful).

For character models, a prefix tree, also called a trie, can
be used to store n-gram counts (it is designed to store counts
only for the largest n needed but could be modified easily
to store counts of shorter sequences as well) [3]. Prefix trees
explicitly store all observed n-grams and so in the worst
case, they grow exponentially with n. Common structures
for word models follow the same basic concept of prefix
trees and therefore provide no additional space savings.

Although n-gram models are strongly tied to sequential
datasets, an efficient data structure has been developed
for tabular datasets that could potentially provide signif-
icant space savings for storing counts of n-grams. The
All-Dimensions tree (ADtree) was originally introduced by
Moore and Lee [11] as a generalization of the kd-tree and
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provides substantially improved space requirements for stor-
ing all conjunctive counting queries over symbolic datasets.
Further refinements to the structure ([12], [13]) have made
ADtrees widely applicable to a large number of problems
that require efficient access to counts of combinations of
features.

A. Description of the ADtree

ADtrees are similar to kd-trees and decision trees because
they recursively subdivide the dataset. However, ADtrees
split the tree along every dimension and every value so that
the result is a tree which implicitly or explicitly stores a
count for every event or combination of feature/value pairs.
The full ADtree contains two types of nodes which alternate
along every path in the tree. ADnodes store the count of
one conjunctive query. The children of ADnodes are known
as Vary nodes. Vary nodes do not store counts but instead
group ADnodes according to a single attribute. The Vary
node child of an ADnode for attribute ai has one child for
each value vj . These grandchildren ADnodes specialize the
grandparent’s query Q by storing the counts of Q∧ai = vj .

For example, Fig. 1 shows several levels of part of an
example ADtree. The top ADnode stores the count of how
many times a particular attribute value occurs; for example
the word “rib” occurs 97 times (in conjunction with what-
ever occurs above it in the tree). The Vary nodes that are
its children correspond to attributes for the ADnode; for
example these might include such things as “word to my
left”, “word to my right”, “my part-of-speech”, etc. The Vary
nodes’ children are again ADnodes, one for each possible
attribute value. So, the Vary node labeled “Left” would have
an ADnode child for each word that occurs to the left of the
word “rib”, each storing the number of times that it occurs
just before “rib”. For example, there might be a node for
“tasty” with a count of 32 because the phrase “tasty rib”
occurs 32 times, and so forth.

ADtrees make use of several specific space saving tech-
niques that facilitate their improved space savings while
minimizing the time penalties when performing queries to
retrieve counts from the tree. First, any node which would
contain a count of zero is not included (and so any feature
combination whose path does not exist is assumed to occur
zero times).

Second, when the count along any path is refined below
some predetermined threshold, the tree is no longer subdi-
vided and instead the indices into the dataset corresponding
to the remaining query matches are stored as a list. These
lists of indices are referred to as leaf-lists, and they represent
a time/space trade-off — the additional query time to follow
the indices in the list and count the data is traded to save
maintenance overhead and an often significant number of
leaf nodes with small counts. For example, in Fig. 1, if our
leaf-list threshold was 30, then the ADnode labeled “saucy”
would not have children but would instead contain a list of
indices into the original data to all locations that contained
the pattern “... saucy rib ...”; the same would be true for the
“to” node, with pointers into the data for occurrences of the

Fig. 1. Several levels of part of an example ADtree. ADnodes store counts
of conjunctive queries. Vary nodes represent a particular attribute, grouping
ADnodes accordingly. Three measures are taken to save space: ADnodes
that correspond to counts of zero are not included in the tree; near the
bottom, lists of indices into the original data (leaf-lists) are maintained to
avoid creating many leaves with small counts; and for each Vary node, the
child corresponding to the most common value (MCV) count is not stored
explicitly.

pattern “... rib to ...”. The additional query time incurred to
process a leaf-list is rather insignificant — a conservative
estimate is on the order of 10ms per query (for a threshold
of 100) and 100ms per query (for a threshold of 1000).
On the other hand, as we shall demonstrate in Sec. IV, the
space savings are nontrivial.

Third, the most common value (MCV) in each dimen-
sion is not included because it can be recovered from the
difference between the more general count stored higher
in the tree and the sum of the other values of the current
feature/dimension. Since the ADnode grandchildren of an
ADnode for query Q represent all non-zero specializations
of Q, the count of Q is equal to the sum of their counts.
Therefore, the count of one of these ADnodes can be
recovered by subtracting the sum of its siblings from the
count of the grandparent using Eq. 1

count(Q∧ ai = vk) = count(Q)−
∑
j 6=k

count(Q∧ ai = vj)

(1)
If k is chosen such that vk is the Most Common Value

(MCV) or the largest among its siblings, then its removal
provides the largest expected space-savings without sacrific-
ing the ability to recover any counts. For a tree built for M
binary attributes, the worst case size of the tree is reduced
from 3M to 2M upon removal of the MCV ADnodes. This
technique assumes that the trade-off of increasing average
query time is reasonable in comparison to the expected space
savings.

A dynamic version of ADtrees demonstrated in [12]
follows the same basic structure but constructs the tree in a
lazy, “as-needed” fashion. Since it is built lazily, at any given
point only a portion of the tree will have been expanded.
The dynamic tree also contains some additional support
nodes used to temporarily cache information needed for later
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expansion. Fully expanded portions of the tree no longer
require these extra support nodes.

The experiments reported in Sec. IV use a static version of
the tree, but the modifications presented in the next section
could just as easily be applied to a dynamic tree (such as
in situations involving extremely large datasets where the
static tree won’t fit in memory). This could be particularly
beneficial if the tree could be stored to disk between uses,
allowing subsequent uses to skip initialization time (as with
a static tree) but without any restrictions on how large of a
n can be queried.

III. APPLYING ADTREES TO n-GRAMS

Because ADtrees are fairly general in their applicability,
it is not unreasonable to assume that at least some of their
space saving techniques can be applied to storing n-gram
counts in a more efficient manner. The primary obstacle is
determining how to adapt a typical n-gram data set to work
with an ADtree. ADtrees expect tabular data with multiple
dimensions and values in each dimension while the data
sets used for n-gram problems are generally simply text
which are treated under the Markov Model as a sequence
of grams (be it words or characters). The solution that will
be presented here will conceptually approach the sequential
data as being potentially M -dimensional where M is the
number of words or characters.

Let the M dimensions be named word0, word1, word2, etc
(or char0, char1, etc). Then the first row in this new tabular
version of the data has each word (character) of the dataset in
its respective column. The second row does the same except
with all the words (characters) shifted to the left one column.
Similarly for the third column and so on. Technically row k
will have its last k columns empty but this will not present
a problem. Obviously this expansion of the original dataset
into tabular form would be extremely inefficient, taking a
dataset of M words and creating one of M(M +1)/2 words.
However, there is no need to actually construct this dataset.
Rather it serves as a conceptual motivation for applying the
ADtree to the problem of storing n-gram counts.

Assuming the existence of such a dataset, constructing
the corresponding ADtree is straightforward. However, the
same construction can be accomplished virtually by using
the numbered subscripts on the features as a type of relative
index into the data. Instead of iterating through the rows in
a table, the tree constructor can iterate through words and at
each word iterate through its successors to determine the n-
gram rooted at that word. In this manner, all prefixes of the
n-gram or lower order n-gram sequences can be obtained
for free in the process of obtaining the desired n-gram.
Additionally, queries into the tree are simplified to be a list
of the desired words or characters instead of list of feature
value pairs because the pseudo-“features” can be inferred
from the order in the list (that is, the first element of the list
is word0, the second is word1, etc).

In addition to the benefits derived from the ADtrees,
this new n-gram storage method can benefit from the as-
sumptions implicit in the Markov model. An n-gram model

is concerned only with consecutive sequences of words
(characters) and all other combinations are inconsequential.
In terms of the new pseudo-tabular dataset, there is no
need to store counts for the query (word5:the, word17:up,
word238:useless) since that is not an n-gram. ADtrees how-
ever are designed to split along every possible dimension
and that includes many paths that are not needed for this
application.

Unfortunately, it is not straightforward to immediately
remove all these extraneous paths. As was noted, the most
common value for each dimension at each level in the tree
is removed since that count can be recovered indirectly from
other counts stored in the tree. The problem is that counts for
MCVs along the paths that are valid n-grams require counts
from paths that are not valid n-grams. A concrete example
will illustrate this problem. The most common trigram in the
Wall Street Journal (WSJ) corpus of the Penn Treebank is the
phrase “the company ’s” where “’s” is treated as a separate
term. Given a standard ADtree built on the WSJ corpus, the
word “the” would be the MCV and therefore not stored. The
needed count can be recovered from the formula

f(the company ’s) =

f(* company ’s)−

 ∑
x6=“the”

f(x company ’s)

 (2)

where “*” represents any word. But now consider the case
where “’s” is the MCV given any word followed by the word
“company” then Eq. 2 reduces to

f(the company ’s) =

f(* * ’s)−

 ∑
x6=“company”

f(* x ’s)


−

 ∑
x6=“the”

f(x company ’s)

 (3)

which is easily handled by the ADtree. However, the first
query and all the queries inside the first summation are not
strictly n-gram queries. Instead they correspond to queries
using the features (word1, word2) and (word2) which do not
fit the definition used to construct the pseudo-tabular dataset.
Additionally, with the exception of some border cases, these
queries are redundant to the bigram and unigram queries by
simply renormalizing the subscripts to start at 0.

Perhaps somewhat counter-intuitively, in the case of stor-
ing n-gram counts that we consider here, the space reduction
technique of implicitly storing MCV counts is actually more
detrimental than if the node had been stored explicitly and
the assumptions of the Markov model more aggressively
exploited. Note in particular the first summation in Eq. 3
sums over all possible values for x with no restraint on the
first word of the trigram, thereby permitting most if not all
of the 40000+ words. The result is that the exclusion of one
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Fig. 2. Distribution of the number of unique n-grams stored for increasing
values of n under the character n-gram model for the ADtree and the
prefix tree. The ADtree stores fewer long n-grams because they often occur
infrequently enough to be handled by leaf-lists.

node (and its subtree) in order to save space actually creates
a demand for an additional 40000+ nodes and their subtrees.
This is not a desirable trade-off and so the experiments with
ADtrees will only make use of the other two space saving
techniques (not storing zeros and terminating the leaves early
as leaf-lists).

IV. EMPIRICAL RESULTS

In order to test the space usage of this new modification
and application of ADtrees, two different datasets were
created from the Wall Street Journal corpus. The first takes
a single document (document 03) from the corpus of 24
documents and uses it to build a character model. The second
uses the first 22 documents (typically used for training
models in natural language problems [1]) in order create a
word model. Both documents were preprocessed to eliminate
all capitalization. This is not a required preprocessing step,
but it helps simplify the more naı̈ve models.

The document used for the character model had 54 unique
characters (including space). In order to give a reasonable

Fig. 3. Memory requirements for increasing values of n under the character
n-gram model for the ADtree with several leaf-list thresholds (30, 100
and 1000) and for the prefix tree. For comparison, the naı̈ve baseline is
also included. As n increases, the ADtree exhibits better than an order of
magnitude improvement over the prefix tree. (Note the logarithmic scale on
the y-axis.)

Fig. 4. Distribution of the number of unique n-grams stored for increasing
values of n under the word n-gram model for the ADtree with several leaf-
list thresholds and for the prefix tree. Note that the prefix tree runs out of
memory for n > 4. Like the character-based version, the ADtree stores
fewer long n-grams because they often occur infrequently enough to be
handled by leaf-lists.

comparison, both a prefix tree and a modified ADtree were
created based on the same character n-grams. The prefix
tree explicitly stores every n-gram from the dataset. The
ADtree is essentially the prefix tree with leaf-lists (and a
little extra overhead). Fig. 2 shows the distributions of the
number of counts stored for increasing values of n for each
data structure. Notice that the ADtree stores fewer long n-
grams than does the prefix tree. This is because longer n-
grams often occur infrequently enough to be handled by leaf-
lists (and thus are never stored as counts in the ADtree).
Fig. 3 shows the amount of memory required to store the
prefix and ADtrees. In order to demonstrate the significant
effect of the leaf-list threshold value, several different ADtree
models were built using threshold values of 30, 100 and
1000. Although the naı̈ve structure that includes non-existent
n-grams was not actually created it is relatively easy to
calculate its approximate memory usage and that is added
as a baseline to the figures showing memory usage.

The text used for the word model had 42, 136 unique
words (including counting all punctuation as words). The
word n-gram distribution and memory usage are shown in
Figs. 4 and 5 and are similar to the character model except
that the scale is substantially different. To construct the
“prefix” tree for the word model, the concept of the prefix
was extended to include words instead of simple characters.
The only change is the additional memory needed to store
the longer strings. The graphs for the prefix tree stop after
4-grams because they were too big to fit into main memory.

As was noted previously, the prefix tree has an exponential
upper bound, but the logarithmic scale in the graphs shows
that the average case is more likely asymptotic (in contrast
to the clearly exponential growth of the naı̈ve line). Both
the prefix tree and the ADtree appear to follow a logistic
curve that has a finite asymptote. The ADtree simply has
a much smaller asymptote than the prefix tree, due mainly
to the leaf-lists. With a prefix tree, all non-zero counts are
stored explicitly, often resulting in very leafy trees, with each
leaf representing a very small count; employing leaf lists in
the ADtree allows the tree size to be pruned back in return
for a modest increase in average time to query a count. By
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Fig. 5. Memory requirements for increasing values of n under the word
n-gram model for the ADtree with several leaf-list thresholds (30, 100
and 1000) and the prefix tree. For comparison, the naı̈ve baseline is also
included. As n increases, the ADtree again exhibits better than an order of
magnitude improvement over the prefix tree (the prefix tree exceeds main
memory for n > 4). (Note the logarithmic scale on the y-axis.)

adjusting the threshold used for the leaf list, it is possible to
scale the memory asymptote as desired. The direct tradeoff is
that a larger threshold results generally in larger lists which
must be iterated over in order to get the final requested count.
Fortunately, the iteration operation is linear in the size of the
list (whereas a query not using a leaf list is linear in n)
and so as long as the leaf list size is within 1-2 orders of
magnitude of the desired n, the time penalty should not be
very noticeable.

For example, with a leaf-list threshold of 30, the character
model using the ADtree has an upper limit on memory size of
13.8 MB and the word model using an ADtree has an upper
limit of 138.88 MB, both of which are very reasonable given
current computer memory limits (Figs. 3 and 5).

V. DISCUSSION

It has been demonstrated that ADtrees can be adapted to
the storing of n-gram counts in sequential data such as that in
large natural language corpora. This adaptation of the ADtree
provides a significant improvement in memory usage that can
be utilized in a large number of applications where n-grams
have previously been used. However, this improvement does
not come without a caveat that could potentially limit its
usage in some cases. Specifically, the fact that the leaf-
lists store indices into the dataset means that the n-grams
can not be separated from the original data (as in the case
of the Google n-gram data) and that the cost of accessing
the dataset through these indices must be considered. If the
dataset is of a size such that it can be contained in memory
along with the ADtree, then this is not a problem. However,
if the dataset must be accessed from disk or remotely over
a network, then the extra time required to access the dataset
in these cases may be prohibitive.

An alternative approach to the storage/retrieval of n-gram
counts involves trading time for space by storing a specially

crafted lookup table from which n-grams can be more easily
calculated [14]. This technique requires O(l log l) time to
create the table (this is a character-based model and l is the
number of characters in the corpus), about 6l bytes to store
it, and O(nl) time to calculate the n-gram counts. Reported
results include calculating n-grams for n ≤ 255 on a 4
MB file of Japanese with 4000 unique characters in about
one hour, on a 8 MB file in about 2 hours, and on a 59
MB file in about 24 hours. For comparison, our technique
handles a 6 MB file of 1 million words (42,000 unique) in
a few seconds and requires 138 MB of storage (because the
majority of the counts are precomputed and stored explicitly).
This comparison should not be taken too literally, but it does
demonstrate, again, that our technique performs favorably to
the state-of-the-art.

It is interesting to note that the primary difference between
the prefix tree and modified ADtree is the leaf-list concept.
Although our approach was motivated by the space savings
exhibited by ADtrees, the main reason for our improvement
over traditional prefix trees is the leaf-list. This suggests that
a simple modification could be made to existing implemen-
tations of prefix trees so that they make use of leaf-lists and
thereby enjoy a similar reduction in memory requirements.
Additionally, generalizing the prefix tree to do word-based
n-grams shows that prefix trees can be more widely applied
than to just character prefixes as they usually are.

As mentioned in Sec. II, some work has been done to im-
prove the memory profile of ADtrees, particularly where the
full ADtree may not be able to fit in memory. This includes
dynamic (lazy) generation as well as pruning less recently
used nodes. Both of these adaptations could be utilized to
extend the work presented here to much larger datasets. For
instance, if the original Google dataset or a comparably sized
one became available, the resulting modified ADtree could
easily be too large for main memory at fairly small n given
that it has over 13 million unique words — several orders
of magnitude larger than the data set considered here.

In addition, the idea of an ADtree for storing n-grams
may be applied to fields such as bio-informatics, where gene
sequence matching and related problems may benefit from an
efficient storage mechanism for sequences (n-grams) and ”n-
grams” of sequences. Indeed, one can imagine generalizing
the approach to other non-Markovian ”n-gram” models (i.e.
the modified ADtree approach could be used to store counts
of more general co-occurance statistics).
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