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A Data-dependent Distance Measure for Transductive Instance-based
Learning

Jared Lundell and DanVentura

Abstract— We consider learning in a transductive setting
using instance-based learning (k-NN) and present a method
for constructing a data-dependent distance “metric” using both
labeled training data as well as available unlabeled data (that
is to be classified by the model). This new data-driven measure
of distance is empirically studied in the context of various
instance-based models and is shown to reduce error (compared
to traditional models) under certain learning conditions. Gen-
eralizations and improvements are suggested.

I. INTRODUCTION

In many learning scenarios, it is common for data acquisi-
tion to be inexpensive compared to data labeling. In such in-
stances, transductive or semi-supervised learning approaches
are often useful. These involve not only the traditional ma-
chine learning task of model selection but also the question of
how to incorporate unlabeled data into the learning process.
We consider the application of k-NN classifiers to such
situations and address the problem of incorporating unlabeled
data into the lazy learning framework of such memory-based
models. Our approach involves constructing an explicit,
data-driven distance “metric” (in the form of a distance
matrix) that incorporates all available data, both labeled
and unlabeled. Because we are working in a transductive
setting, it makes sense to utilize the additional information
provided by the unlabeled data, something many traditional
techniques cannot (naturally) do. We therefore create a data-
dependent distance matrix using all available data and then
use that distance matrix in classifying the unlabeled portion
of the data. We proceed by initially clustering the data
in a semi-supervised manner, and then use the resulting
pairwise distances to generate an affinity matrix for use as
the distance measure for calculating interpoint distances. We
also investigate the effect of preprocessing the data with
a nonlinear manifold learner, effectively constraining our
clustering to the implicit manifold.

In what follows, we formally describe our approach to
constructing the data-dependent distance matrix and present
empirical results on several real-world data sets that highlight
the characteristic benefits of the technique. Before doing so,
however, we briefly mention related work in two significant
areas: semi-supervised clustering, and manifold learning.

A. Semi-supervised Clustering

Semi-supervised clustering, a form of transductive infer-
ence, is an easier problem than the standard approach of

Jared Lundell and Dan Ventura are with the Department of Com-
puter Science, Brigham Young University, Provo, UT 84602, USA (email:
jared.lundell@gmail.com, ventura@cs.byu.edu)

inductive transfer followed by deductive classification. The
presence of unlabeled data allows for better estimation of
the data’s true distribution which can improve classification
accuracy. Vapnik [12] has proposed a framework to establish
upper bounds on the empirical error of on a set of unlabeled
data, Du, given the empirical error on a set of labeled data,
Dl.

Given the widespread adoption of support vector ma-
chines, also based on Vapnik’s statistical learning theory, it is
not surprising that significant effort has gone into combining
the principles of transductive learning and SVM’s. Broadly,
these approaches attempt to combine the maximum margin
principle of SVM’s with the clustering assumption (points
that lie close together are likely to belong to the same class).

An early example of this work is the transductive SVM
[6]. In this approach the decision boundary is chosen in such
a way to maximize the margin for both labeled and unlabeled
data. In other words, the transductive SVM attempts to draw
a decision boundary in areas of low data density. Related
works that followed include [5] and [10] and more recent
work includes variations such as semi-supervised regression
[14].

Several approaches to combining the principles of semi-
supervised clustering and support vector machines have been
proposed. Xu et. al [13] use the maximum margin principle
to guide clustering, while Chapelle, Weston and Schölkopf
[4] generate an affinity matrix that leverages available unla-
beled data.

We follow the example of Chapelle et. al in our efforts
to directly construct a SVM affinity matrix using clustering
techniques. In contrast, while their method requires the
choice of a “transfer function”, ours requires choosing only
two scalar parameter values; also, while their method is based
on spectral clustering, we use a graph-based clustering more
reminiscent of LLE or Isomap with their strong non-linear
advantages.

Semi-supervised clustering can be seen as a generalization
of the transductive inference problem. Labels or pairwise
constraints can be used to modify the standard clustering
objective function or to learn an appropriate distance metric.
Basu, Bilenko and Moody [2] have proposed several semi-
supervised clustering algorithms including Seeded KMeans,
HMRF-KMeans, and Pairwise Constraints KMeans.

B. Manifold Learning

Manifold learning, typically for the purpose of dimension-
ality reduction and/or discovering the intrinsic dimensionality
of data, is related to clustering as another approach to

28251-4244-0991-8/07/$25.00/©2007 IEEE



computing/discovering distance metrics. Seminal work in
this area is represented by the well-known manifold learners
Isomap [11] and LLE [9], while more recent work includes
extensions of this technique like Spectral Learning [7] and
Relevant Component Analysis [1], as well as alternative
approaches such as Tensor Voting [8].

II. METHODS

Given a set DL of nl labeled data points and a set
DU of nu unlabeled data points, we use a graph-based
semi-supervised clustering algorithm to learn a data-specific
distance metric, represented by a n × n matrix of point-to-
point distances for DL∪DU , where n = nl+nu. This matrix
is then used in calculating interpoint distances for a k-NN
model.

A. Distance Matrix Construction

Our goal is to create the matrix MD = dij , where 1 ≤
i, j ≤ n and dij is the (data-dependent) distance from point i
to point j. We begin by clustering the data. Given data with
m classes and nl labels, we use hierarchical agglomerative
clustering with purity thresholding to cluster the data. The
purity threshold θ allows us to leverage any labels that are
available. The purity ρ of any cluster c is calculated as

ρc =


nkc

nlc

if nlc > 0

1 if nlc = 0

where nkc
is the count of the most common label in c and

nlc is the total number of labeled points in c. Initially, the set
C of clusters contains only clusters ci consisting of a single
point and having a purity of 1. Clusters are then iteratively
agglomerated as follows. For each cluster ci, in C, we find
it’s nearest neighbor, cj (we use complete link clustering
and the Euclidean metric — the distance between any two
clusters is defined as the Euclidean distance between their
two most distant points). If ρ(ci∪cj) ≥ θ, we remove ci and
cj from C and add the cluster (ci∪ cj) to C. This process is
repeated until no further clusters can be combined. Finally,
any clusters that remain without labeled points are combined
with the nearest cluster that has at least one labeled point.
C now contains some number of clusters that can each be
identified with a dominant label lc.

For each cluster c, we compute a virtual center of mass
point γc:

γc =
1
nc

∑
x in c

x

where nc is the total number of points in c (both labeled
and unlabeled) and the summation is vector addition with the
coefficient a scalar applied to each element in the resulting
vector. Now, for clusters c1 and c2 we define the distance
between their centers of mass as

dist(γc1 , γc2) =

{
‖γc1 − γc2‖ if lc1 6= lc2

0 if lc1 = lc2

In other words, if two clusters share a common label, the
distance between their centers of mass is defined to be 0; if
they have different labels, the distance between their centers
of mass is the standard Euclidean distance. Next, a shortest
path graph traversal algorithm (optimized Floyd-Warshall) is
used to propagate the effect of these “wormholes” between
clusters to every pair of data points. In essence, this will
create m meta-clusters as the matrix MD is defined 1

dij = ‖xi − γci‖+ dist(γci , γcj ) + ‖xj − γcj‖ (1)

where xi is the vector representation of point i, ci is the
cluster containing point i, γci is the virtual center of mass
of ci and ‖·‖ is the Euclidean metric. In other words, we
combine all clusters with common labels by decreasing the
distance between the points included in such clusters (via the
“wormholes”).

To improve separability we post-process the matrix MD

to push these meta-clusters apart by increasing the distance
between each pair of points in different meta-clusters. The
distance is increased by κ times the greatest distance between
any two data points sharing the same label (we used κ = 2
in our experiments). That is,

dij =

{
dij + κ max

k
max
i,j∈ck

dij if lci 6= lcj

dij if lci = lcj

The resulting distance matrix represents a feature space
where each point is grouped with similar points, points that
share the same label, and points that are similar to points
that share the same label.

III. EMPIRICAL RESULTS

We performed extensive empirical testing using values of
k = {1, 3, 5, 7, 9} for both traditional and data-dependent
k-NN on nine different data sets measuring error rates
and the effect of cluster purity on performance, using both
unweighted and distance weighted voting. In addition, each
of the k-NN models was applied after preprocessing the
data with a non-linear manifold learning algorithm (we used
Relevant Component Analysis [1]). The data sets (Chess,
German, Heart, Pima, Spect, Voting, WBC1, WBC2 and
WBC3) are taken from the UCI repository [3].

For each data set and for each model, we measured
classification error on the unlabeled portion of the data. We
varied the amount of unlabeled data, and, in addition, for
the data-dependent models, the cluster purity was varied
as well. We varied the cluster purity θ over the values
{0.80, 0.85, 0.90.0.95, 1.00} and the amount of unlabeled
data as a percentage of the total data available in 10%

1Actually, the distances calculated by the shortest path algorithm cannot
be so simply characterized. Eq. 1 is representative of the effects the
“wormholes” can have on the final distance matrix; however, there are
actually 5 different scenarios that can represent the shortest path between
two points (for the 2-class case). Eq. 1 gives one of the five cases, but
in practice we compute all five cases for each pair of points and take the
minimum, with the result being the same as running a regular Djikstra’s
algorithm, just (much) faster.
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Fig. 1. Classification error using 10-fold cross validation on the SPECT
data set for varying amounts of unlabeled data. Data points on the curves
represent the lowest error value for any value of θ for the data-dependent k-
NN. Note that the data-dependent k-NN results in lower error rates across
the transductive range and that data-dependent k-NN is more consistent
(flatter curves) across the range. Distance weighting is somewhat detrimental
for both the traditional and data-dependent cases.

increments from 10% to 90%. All results were obtained using
10-fold cross validation, resulting in 16, 200 experiments for
each of the five data-dependent models and 3, 240 experi-
ments for each of the five traditional models, for a grand
total of 97, 200 experimental runs.

A. Transductive Range

We consider the performance of the various models across
a range of transductive scenarios. To do this, we treat varying
amounts of our data as unlabeled and use only the remaining
labeled data as the memory for our nearest neighbor classi-
fiers. For the data-dependent models, the unlabeled data is
made use of during the learning of the distance matrix Md as
discussed in Section II (i.e. only the data locations are used
to help populate the distance matrix, without regard for the
data labels). For the traditional models, since the distance
metric is fixed (Euclidean) the unlabeled data is not used
transductively.

The results are mixed and expose some interesting behav-
iors in this learning setting. Tables I and II in the Appendix
present a representative sample of performance evaluation
data, though due to the number of experiments run, these
are still a small sub-sample of the complete set of results.
Given enough data and using single nearest neighbor, the
data-dependent approach reduces error rates on all nine data
sets when compared to the Euclidean metric (see the first two
rows of Table I). As the number of neighbors is increased,
results become mixed, indicating that perhaps the distance
matrix should be coupled to the model in the sense of tuning
the distance matrix to the choice of k.

Figure 1 shows transduction curves for both tradi-
tional and data-dependent k-NN (with and without distance

Fig. 2. Classification error using 10-fold cross validation on the German
data set for varying amounts of unlabeled data. Data points on the curves
represent the lowest error value for any value of θ for the data-dependent
k-NN. Note that the data-dependent distance results in higher error rates
across the transductive range and that traditional k-NN is more consistent
(flatter curves) across the range. Distance weighting is somewhat detrimental
in the data-dependent case, but has less of an effect in the traditional case.

weighted voting) for the SPECT data set. Points on the
curves are average classification errors for 5-NN, computed
using 10-fold cross validation, and, in the data-dependent
case represent the lowest average for any value of the
clustering threshold θ. Notice that for this data set, the
data-dependent k-NN results in lower error rates across the
transductive range and that data-dependent k-NN is more
consistent (flatter curves) across the range.

In contrast, the curves in Figure 2 reveal that for the
German data set, the opposite is true — the data-dependent
distance results in higher error rates across the transductive
range and traditional k-NN is more consistent (flatter curves)
across the range.

Figure 3, which gives curves for the WBC2 data set,
highlights a situation in which the data-dependent model
performs better than the traditional one at the low end of
the curve (that is, when the percentage of unlabeled data
is relatively low). However, at the high end of the curve,
the situation is reversed. In fact, across all data sets we
observed a trend of negative correlation between percentage
of unlabeled data and efficacy of the data-dependent models
— as the percentage of unlabeled data increases, the merit of
the data-dependent model decreases relative to the traditional
approach.

To illustrates this trend, we counted the number of data
sets for which the data-dependent model had the lowest
error and subtracted that number from the number of data
sets for which the traditional model had the lowest error.
The bars in Figure 4 show this differential, with bars below
the midline indicating an advantage for the data-dependent
approach and bars above the midline indicating an advantage
for the traditional approach. The graph shows differentials for
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Fig. 3. Classification error using 10-fold cross validation on the WBC2
data set for varying amounts of unlabeled data. Data points on the curves
represent the lowest error value for any value of θ for the data-dependent
k-NN. Note that the data-dependent k-NN results in lower error rates at
the lower end (less unlabeled data) of the transductive range but become
detrimental to performance at the upper end of the range. Distance weighting
does not have a significant effect for either the traditional or the data-
dependent case.

several different models at the extremes of the transduction
curve (10% and 90%). Notice the significant upward trend
across all models between these two extremes.

This effect is, in fact, not surprising because we are
working with a limited amount of data and our clustering
for the distance matrix Md depends upon a densely sampled
manifold in order to build a representative distance matrix.

B. RCA Preprocessing

We now consider the effect of performing manifold learn-
ing using RCA as a preprocessing step. As examples, Figures
5 and 6 show transduction curves for the Chess and Voting
data sets. Both traditional and data-dependent models were
used with and without RCA. For Chess, RCA provides a
reduction in error rate for both models, helping the data-
dependent approach more than it does the traditional one. For
Voting, both approaches benefit significantly from the RCA
preprocessing. Figure 7 shows the result of averaging curves
over all nine data sets. Interestingly, in the average case,
traditional k-NN derives benefit from the RCA preprocessing
while data-dependent k-NN does not. The average data-
dependent distance matrix appears to be implicitly incor-
porating the useful properties associated with (nonlinear)
manifold learning techniques.

IV. DISCUSSION

We present a method for constructing a data-dependent
distance matrix and consider its efficacy in the context of
instance based learning. The approach works well for 1-NN,
significantly outperforming the standard Euclidean model.
Results for models using more neighbors are mixed, likely
due to the fact that the distance matrix is uncoupled from the

Fig. 4. Winning differential for several different models, calculated over
the nine data sets by counting the number of times t that traditional k-NN
has better accuracy and the number of times d that data-dependent k-NN
has better accuracy, and computing t−a. Bars with smaller value favor data-
dependent k-NN. Note the upward skew when comparing 10% unlabeled
data with 90% unlabeled data

learning model (that is, it does not know the value k). We
also consider the use of a nonlinear manifold learner as a
preprocessing step and show that on average, the traditional
models benefit from this while the data-dependent models
do not, suggesting that the distance matrix is (on average)
implicitly learning the latent manifold.

In addition to incorporating the value of k into the dis-
tance matrix construction, the approach can benefit from the
automatic selection of appropriate values for the parameters
κ and θ (we empirically chose κ = 2 and performed a simple
grid search over several values of θ).

Fig. 5. The effect of RCA preprocessing on the Chess data set. In this case,
RCA helps the data-dependent approach more than it does the traditional
one.
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Fig. 6. The effect of RCA preprocessing on the Voting data set. In this
case, RCA helps both the traditional and data-dependent approaches.

Here we have considered transductive learning (that is, in
addition to our labeled training data, we know a priori which
data we want to classify). In the more general inductive case
(where we don’t know our test data in advance), the distance
matrix we construct in Section II will likely will not contain
entries for future test data. Then, how should one find nearest
neighbors in the inductive scenario? One approach would be
to find the m closest (via Euclidean distance) points that are
in the matrix and compute some linear combination of their
outputs. A reasonable argument can be made for doing this
— we expect that as the space is warped during the distance
matrix construction process that local Euclidean distances
are roughly preserved. It is interesting to note that most, if
not all, manifold learning algorithms make this same locality
assumption. In effect, the subset of the data that are labeled
are driving a global change in the meaning of distance, while
at the same time dragging their close (in the Euclidean sense)
unlabeled neighbors along for the ride.

Finally, it will be interesting to ask whether the data-
dependent k-NN model can be compressed while preserving
performance. This could be done using any of the traditional
methods for compressing memory based models, though
these may need to be modified to take into account the
affect that eliminating data has on the distance matrix. As an
alternative compression, one can consider using the virtual
cluster centers γc as means for a radial basis function net-
work (setting the widths of the basis functions by considering
cluster variance). The distance metric may also prove useful
as the kernel of an SVM.
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TABLE I
PERFORMANCE COMPARISON FOR k = {1, 5, 9} FOR TRADITIONAL k-NN AND DATA-DEPENDENT k-NN (LABELS CONTAINING ‘DD’), WITH AND

WITHOUT DISTANCE WEIGHTING (LABELS ARE PREFACED WITH A ‘W’). RESULTS REPORTED ARE THE LOWEST AVERAGE ERROR (10-FOLD CROSS

VALIDATION) FOR ANY VALUE OF θ USING 10% UNLABELED DATA. BOLD ENTRIES INDICATE THE LOWER ERROR RATE BETWEEN THE TRADITIONAL

AND THE DATA-DEPENDENT APPROACH FOR EACH CASE.

CHESS GERMAN HEART PIMA SPECT VOTE WBC1 WBC2 WBC3

1-NN 9.78% 33.90% 26.67% 32.21% 24.07% 6.36% 4.86% 28.00% 7.54%
1-ddNN 8.94% 30.60% 24.44% 30.00% 20.37% 4.09% 3.14% 19.00% 4.21%

5-NN 3.94% 28.90% 17.04% 27.53% 18.89% 3.86% 5.86% 18.50% 4.39%
5-ddNN 9.78% 27.60% 22.96% 28.57% 20.00% 5.00% 3.86% 13.50% 4.39%

w5-NN 3.16% 30.10% 18.89% 29.22% 20.00% 6.36% 6.43% 19.50% 4.74%
w5-ddNN 9.91% 31.50% 22.59% 28.83% 15.74% 4.77% 4.86% 21.00% 5.00%

9-NN 4.56% 25.80% 15.56% 27.27% 19.63% 3.86% 7.57% 17.00% 4.21%
9-ddNN 9.53% 30.90% 19.63% 28.83% 20.37% 4.77% 5.14% 18.50% 5.61%

w9-NN 3.88% 28.60% 18.52% 28.96% 19.63% 6.36% 6.86% 21.00% 6.14%
w9-ddNN 10.41% 31.40% 22.59% 28.83% 15.56% 4.77% 5.71% 21.00% 5.09%

TABLE II
PERFORMANCE COMPARISON FOR k = {1, 5, 9} FOR TRADITIONAL k-NN AND DATA-DEPENDENT k-NN (LABELS CONTAINING ‘DD’), WITH AND

WITHOUT DISTANCE WEIGHTING (LABELS ARE PREFACED WITH A ‘W’). RESULTS REPORTED ARE THE LOWEST AVERAGE ERROR (10-FOLD CROSS

VALIDATION) FOR ANY VALUE OF θ USING 90% UNLABELED DATA. BOLD ENTRIES INDICATE THE LOWER ERROR RATE BETWEEN THE TRADITIONAL

AND THE DATA-DEPENDENT APPROACH FOR EACH CASE.

CHESS GERMAN HEART PIMA SPECT VOTE WBC1 WBC2 WBC3

1-NN 18.03% 34.06% 26.42% 32.74% 28.38% 8.04% 7.90% 31.63% 7.01%
1-ddNN 21.28% 34.51% 27.33% 32.53% 23.71% 7.55% 6.07% 29.61% 8.28%

5-NN 15.69% 29.60% 21.73% 30.19% 23.83% 7.42% 9.76% 25.34% 6.82%
5-ddNN 22.19% 32.88% 25.14% 29.39% 20.42% 8.44% 6.92% 27.02% 8.26%

w5-NN 15.69% 29.77% 19.44% 30.64% 28.10% 8.55% 10.13% 24.78% 6.81%
w5-ddNN 21.94% 34.10% 23.79% 31.84% 22.83% 9.36% 7.81% 28.76% 7.73%

9-NN 15.88% 28.20% 21.85% 28.86% 22.75% 7.93% 12.05% 24.61% 7.23%
9-ddNN 22.02% 32.71% 26.01% 31.59% 21.38% 9.62% 5.98% 27.58% 8.42%

w9-NN 15.36% 29.19% 18.97% 30.75% 27.27% 9.36% 12.45% 24.16% 7.36%
w9-ddNN 21.82% 33.88% 23.70% 32.00% 22.58% 9.31% 7.81% 28.43% 8.07%
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