
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2007-06-19

Performance of MIMO Space-Time Coding Algorithms on a Performance of MIMO Space-Time Coding Algorithms on a

Parallel DSP Test Platform Parallel DSP Test Platform

Beau C. Neal
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Neal, Beau C., "Performance of MIMO Space-Time Coding Algorithms on a Parallel DSP Test Platform"
(2007). Theses and Dissertations. 928.
https://scholarsarchive.byu.edu/etd/928

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/928?utm_source=scholarsarchive.byu.edu%2Fetd%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

PERFORMANCE OF MIMO SPACE-TIME CODING

ALGORITHMS ON A PARALLEL DSP

TEST PLATFORM

by

Beau C. Neal

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

August 2007

Copyright c© 2007 Beau C. Neal

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Beau C. Neal

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date James K. Archibald, Chair

Date Brian D. Jeffs

Date Doran K. Wilde

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Beau C. Neal
in its final form and have found that (1) its format, citations, and bibliographical style
are consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date James K. Archibald
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Chair

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

PERFORMANCE OF MIMO SPACE-TIME CODING

ALGORITHMS ON A PARALLEL DSP

TEST PLATFORM

Beau C. Neal

Department of Electrical and Computer Engineering

Master of Science

Commercial Off The Shelf (COTS) hardware has the advantages of low cost,

modularity, and is easily upgraded. For Multiple-Input Multiple-Output (MIMO)

space-time algorithms to be practical they must have the processing capability to

execute in real-time. This makes COTS ideal for real-time MIMO research where

the processing power increases exponentially with a linear increase in antennas. The

BYU Electrical Engineering wireless lab has designed and built an eight processor

transmitter and a twenty processor receiver to research and develop MIMO wireless

communication.

The Alamouti, 2× 2 and 4× 4 differential space-time MIMO algorithms have

been partially implemented on the receiver using a variety of common parallel pro-

cessing topologies to include: bus, line/ring, star, grid, hypercube, binary tree, and

pyramid. Processor and inter-processor communication benchmarks were measured

and used to quickly explore the performance of the previously mentioned topologies

without expending time and effort on a full implementation of these MIMO algorithms

using each topology. This methodology has the benefit of the creation of software li-

braries that can be used for testing or for complete MIMO algorithm implementation

in the future.

This thesis shows that a simple bus-based topology gives the best results when

combined with the 4×4 differential space-time algorithm. This thesis also shows that

if the number of receiving channels and processors increase at the same rate as the

2 × 2 to the 4 × 4 differential cases, then the ratio of decoding processing time to

inter-processor communication time is reduced. If this trend continues, inter-processor

communication will require more processing time than the actual space-time decoding

algorithm.

Due to the exponential increase in required processing, doubling the processing

requirements obtained from the 4× 4 case is not an adequate solution to implement

real-time 8 × 8 differential decoding. As such, the BYU wireless lab’s test system

does not have enough processors to implement real-time 8 × 8 differential decoding.

The BYU wireless lab should concentrate on a complete 4 × 4 implementation with

increased bandwidth to make full use of the available processing power. The 8 × 8

case should also be explored but without the expectation of real-time communication.

However, with the test system, additional DSP processors can easily be added to allow

for increased processing requirements.

ACKNOWLEDGMENTS

I would like to express my gratitude to all of the people that kept pushing me

to finish this thesis. I would also like to thank those that made this possible through

their hard work, dedication, and love. I thank you all.

Table of Contents

Acknowledgements xiii

List of Tables xxiii

List of Figures xxvii

1 Introduction 1

1.1 Commercial-Off-The-Shelf Hardware 3

1.2 MIMO Space-Time Codes . 4

1.3 BYU Wireless Lab . 5

1.4 Objective . 7

1.5 Overview . 9

2 MIMO Real-Time System 11

2.1 System Level Diagram . 12

2.2 Transmitter . 13

2.2.1 DSP and Host Hardware . 15

2.2.2 RF Transmission . 18

2.3 Receiver . 19

2.3.1 RF Front-End . 20

2.3.2 DSP and Host Hardware . 20

2.4 Summary . 23

xv

3 Parallel Processing 25

3.1 Need For Parallel Processing . 26

3.2 Parallel Processing Taxonomy . 27

3.3 Parallel Processing Topologies and Architectures 28

3.3.1 Bus Parallel Processing . 29

3.3.2 Line and Ring Parallel Processing 30

3.3.3 Mesh Parallel Processing . 32

3.3.4 Star Parallel Processing . 33

3.3.5 Hypercube or n-Cube Parallel Processing 35

3.3.6 Binary Tree Parallel Processing 37

3.3.7 Pyramid Parallel Processing 38

3.3.8 Summary . 39

4 Space-Time Algorithms 41

4.1 Background . 42

4.2 Space-Time Coding Algorithms . 43

4.2.1 Alamouti Space-Time Codes 43

4.2.2 2 x 2 Differential Space-Time Modulation 48

4.2.3 4 x 4 Differential Space-Time Modulation 50

4.3 Summary . 51

5 Space-Time Algorithms and Parallel Processing 53

5.1 Benchmarks . 53

5.2 Assumptions and Methods . 55

5.3 Alamouti Parallel Processing . 56

5.3.1 Bus . 57

5.3.2 Line/Ring . 58

xvi

5.3.3 Grid/Mesh . 59

5.3.4 Star . 59

5.4 2 x 2 Differential Space-Time Parallel Processing 59

5.4.1 Bus . 61

5.4.2 Line/Ring . 62

5.4.3 Grid/Mesh . 63

5.4.4 Star . 63

5.5 4 x 4 Differential Space-Time Parallel Processing 64

5.5.1 Bus . 66

5.5.2 Line/Ring . 67

5.5.3 Grid/Mesh . 68

5.5.4 Star . 69

5.5.5 Hypercube . 70

5.5.6 Binary Tree . 71

5.5.7 Pyramid . 73

5.6 Summary . 74

6 Results 75

6.1 Methodology . 75

6.2 Communications Processors . 78

6.3 Alamouti Real-Time Processing . 79

6.3.1 Bus . 80

6.3.2 Line/Ring . 81

6.3.3 Comparison . 81

6.4 2 x 2 Differential Space-Time Real-Time Processing 82

6.4.1 Bus . 83

xvii

6.4.2 Line/Ring . 84

6.4.3 Star . 85

6.4.4 Comparison . 85

6.5 4 x 4 Differential Space-Time Real-Time Processing 87

6.5.1 Bus . 88

6.5.2 Line/Ring . 89

6.5.3 Grid/Mesh . 89

6.5.4 Star . 89

6.5.5 Hypercube . 91

6.5.6 Binary Tree . 91

6.5.7 Pyramid . 93

6.5.8 Comparison . 93

6.6 Interpretation . 95

7 Conclusion 99

7.1 Discussion and Recommendations . 99

7.2 Future Work . 101

A Benchmarks 103

A.1 Global Memory Benchmarks . 103

A.2 Flash Memory Benchmarks . 105

A.3 Arithmetic Benchmarks . 106

A.4 Memory To Memory Transfers . 108

A.5 IPBIFO Transfers Benchmarks . 111

A.6 RACEway R© . 114

A.7 FIR Filter Benchmarks . 114

A.8 Table of Benchmarks used . 117

xviii

Bibliography 121

xix

xx

List of Tables

4.1 The Encoding and Transmission Sequence - Matrix S 45

4.2 Channel Matrix Components (As Seen by the Receiver) 46

4.3 Definition of the Received Signals . 47

5.1 Inter-Processor Communication Benchmark Comparison 54

5.2 DSP Benchmark Comparison (MB/s) 54

6.1 Communications Processor Tasks & Timing Results 79

6.2 Alamouti Bus Tasks & Timing Results 81

6.3 Alamouti Line/Ring Tasks & Timing Results 81

6.4 Alamouti Real-Time Timing Results Comparison 82

6.5 2× 2 Differential Space-Time Bus Tasks & Timing Results 84

6.6 2× 2 Differential Space-Time Line/Ring Tasks & Timing Results . . 85

6.7 2× 2 Differential Space-Time Star Tasks & Timing Results 86

6.8 2× 2 Differential Real-Time Timing Results Comparison 87

6.9 4× 4 Differential Space-Time Bus Tasks & Timing Results 89

6.10 4× 4 Differential Space-Time Line/Ring Tasks & Timing Results . . 90

6.11 4× 4 Differential Space-Time Grid Tasks & Timing Results 90

6.12 4× 4 Differential Space-Time Star Tasks & Timing Results 91

6.13 4× 4 Differential Space-Time Hypercube Tasks & Timing Results . . 92

6.14 4× 4 Differential Space-Time Binary Tree Tasks & Timing Results . 92

6.15 4× 4 Differential Space-Time Pyramid Tasks & Timing Results . . . 93

xxi

6.16 4× 4 Differential Real-Time Timing Results Comparison 94

6.17 Differential Space-Time Coding Comparison and Rate of Increase . . 96

A.1 Reading from Global Memory (MB/s) 104

A.2 Writing to Global Memory (MB/s) 104

A.3 Writing VME - DSP to Another Board’s Global Memory (MB/s) . . 104

A.4 Reading VME - Another Board’s Global Memory to DSP (MB/s) . . 105

A.5 Reading from Flash Memory (MB/s) 105

A.6 Addition (MB/s) . 106

A.7 Subtraction (MB/s) . 106

A.8 Multiplication (MB/s) . 107

A.9 Division (MB/s) . 107

A.10 Moving Data from IDRAM to IDRAM (MB/s) 108

A.11 Moving Data from SDRAM to SDRAM (MB/s) 108

A.12 Moving Data from IDRAM to SDRAM (MB/s) 109

A.13 Moving Data from SDRAM to IDRAM (MB/s) 109

A.14 Library Function memcpy() - IDRAM to IDRAM (MB/s) 109

A.15 Library Function memcpy() - SDRAM to SDRAM (MB/s) 110

A.16 Library Function memcpy() - IDRAM to SDRAM (MB/s) 110

A.17 Library Function memcpy() - SDRAM to IDRAM (MB/s) 110

A.18 DMA - Writing to IPXX (MB/s) . 111

A.19 DMA - Reading from IPXX (MB/s) 111

A.20 DMA - Writing to IPYY (MB/s) . 112

A.21 DMA - Reading from IPYY (MB/s) 112

A.22 DMA - Writing to an empty FIFO (MB/s) 112

A.23 DMA - Reading from a full FIFO (MB/s) 113

xxii

A.24 DSP - Writing to IPXX (MB/s) . 113

A.25 DSP - Reading from IPXX (MB/s) 113

A.26 RACEway R© (MB/s) . 114

A.27 Fir cplx - NumH=128 (MB/s) . 115

A.28 Fir cplx - NumH=64 (MB/s) . 115

A.29 Fir cplx - NumH=32 (MB/s) . 116

A.30 Fir cplx - NumH=16 (MB/s) . 116

A.31 Fir cplx, NumH=8 (MB/s) . 116

A.32 Master Table for Task Timing Values 118

xxiii

xxiv

List of Figures

1.1 MIMO Wireless Transmission . 2

1.2 Common Parallel Processing Topologies 4

1.3 Wireless Up-Link Scenario . 6

1.4 BYU Real-Time MIMO Transmission System 7

2.1 System Level Diagram . 12

2.2 BYU Real-Time MIMO System . 14

2.3 Transmitter Card Cage . 15

2.4 Embedded PC [17] . 15

2.5 4292 Processor Interconnects Block Diagram [18] 16

2.6 Raceway Bus Interconnect [19] . 17

2.7 Possible Data Flow on Transmitter Computing Hardware 18

2.8 RF Transmission Device . 19

2.9 Receive Block Diagram . 20

2.10 Receiver Card Cage . 21

2.11 Flow of data from RF front-end to embedded PC 22

3.1 Modular COTS System . 26

3.2 Bus Parallel Processing . 29

3.3 Bus Parallel Processing . 31

3.4 Line and Ring Parallel Processing . 31

3.5 Ring Parallel Processing . 32

xxv

3.6 Mesh Parallel Processing . 32

3.7 Mesh (Grid) Parallel Processing . 34

3.8 Star Parallel Processing . 34

3.9 Star Parallel Processing . 35

3.10 Single Board Star Parallel Processing 36

3.11 Hypercube Parallel Processing, q = 3 36

3.12 Hypercube Parallel Processing, q = 3 37

3.13 Binary Tree Parallel Processing . 37

3.14 Binary Tree Parallel Processing . 38

3.15 Pyramid Parallel Processing . 39

3.16 Pyramid Parallel Processing . 40

4.1 ST Antenna Configurations . 41

4.2 2× 2 Alamouti Two Branch Diversity with Two Receivers 44

4.3 The Quaternion Group . 49

4.4 A Differential Receiver . 50

5.1 Proposed Bus Parallel Processing . 58

5.2 Proposed Line/Ring Parallel Processing 59

5.3 Proposed Bus Architecture . 62

5.4 Proposed Line/Ring Architecture . 63

5.5 Proposed Star Parallel Processing . 64

5.6 Proposed Bus Parallel Processing . 67

5.7 Proposed Ring Parallel Processing . 67

5.8 Proposed Grid Parallel Processing . 69

5.9 Proposed Star Parallel Processing . 70

5.10 Proposed Hypercube Parallel Processing 71

xxvi

5.11 Proposed Binary Tree Parallel Processing 72

5.12 Proposed Pyramid Parallel Processing 73

6.1 Algorithm Timing Values Versus Inter-Processor Communication . . . 97

xxvii

xxviii

Chapter 1

Introduction

The explosive growth of the Internet has accustomed users to fast download

and upload speeds at negligible costs. However, cellular wireless internet access is

comparatively still slow. This is not surprising as those cellular systems were designed

for low bandwidth/high user throughput and not high speed data access [1]. As

cellular wireless technology becomes more popular for text messaging, networking,

and low cost telecommunications in developing countries, more bandwidth is always

needed to accommodate users.

The high cost of radio spectrum is another concern for current wireless data

access. In the year 2000, third generation (3G) wireless spectrum (1800 MHz, 1900

MHz, and 2100 MHz) made headlines when Germany auctioned off its 3G spectrum

for a total of 48 billion dollars. The UK auctioned off its spectrum for 33 billion dol-

lars. In the United States, Verizon Wireless offered 1.6 billion dollars for one of three

10 MHz licences available in New York [2]. With this spectrum acquired, billions have

been invested to develop and implement the 3G wireless network. Clearly, maximiz-

ing the capacity of available Radio Frequency (RF) spectrum is both desirable and

necessary for companies to make a profit on purchased spectrum. New transmission

techniques are required to make efficient use of available bandwidth.

Multiple-Input-Multiple-Output (MIMO) transmit techniques, in which sev-

eral antennas are used at both the transmitter and receiver (see Figure 1.1), look to

be the most promising methods of high bandwidth wireless communication. It has

been shown that single-user achievable data rates grow linearly with the number of

uncorrelated transmit and receive antennas with special space-time processing tech-

1

niques [3]. The benefits of MIMO wireless are not limited to an increase in data rate.

Data rate may be traded for reliability and/or distance.

Channel

Wireless

0010011100100111
Modulation

Space−Time Coding Demodulation

Space−Time Decoding

Figure 1.1: MIMO Wireless Transmission

Wireless home networking has recently exploded with the popularization of

IEEE 802.11. One of the latest standards currently making its way through the

IEEE standardization process is 802.11n, which takes advantage of MIMO algorithms

to increase network throughput or distance. Other so called ”pre-n” devices have

already come to market and suddenly MIMO has become a marketing term to sell

the latest and greatest home networking devices. Although the 802.11n standard

makes the use of a 4× 4 MIMO system possible, all consumer devices appear to use

only the 2 × 2 configuration. Additional research is needed into higher order (i.e.,

4× 4, 8× 8, 16× 16, etc.) real-time MIMO systems.

To study MIMO systems with several antennas, a lot of generic computational

power is needed. To support many different MIMO algorithms, a system must be flex-

ible enough to use only a few processors or many different processors to accommodate

the computational demanding MIMO algorithms. Due to the high throughput rate

of MIMO communication, memory will need to be abundant, easily accessible, and

be able to be upgraded. In short, the ideal research system must be capable enough

to support any MIMO algorithm that is being researched.

In today’s fast paced market where companies are competing to come to mar-

ket first, rapid prototyping and development of hardware is a must. Commercial-off-

the-shelf (COTS) hardware helps reduce some of the cost and time associated with

2

developing new hardware and software solutions. COTS systems have the benefit of

being both modular and expandable. This type of modularity gives way to many

different opportunities to use parallel processing to solve MIMO space-time computa-

tional needs and begin experimenting with higher-order real-time MIMO algorithms.

1.1 Commercial-Off-The-Shelf Hardware

Commercial-off-the-shelf hardware is primarily used for testing and develop-

ment of hardware and software algorithms where hardware flexibility is required. The

advantages of COTS hardware lie in its low cost, modularity, and the ease with which

it can be upgraded. COTS systems provide additional flexibility by allowing the use

of parallel processing when additional computational power is needed.

Parallel processing is a key advantage to using COTS DSP systems. This

hardware inherently provides this opportunity by use of modular boards, all connected

by a common backplane, that may be added, removed, or upgraded as needed. The

function of these boards can range from single-processor application-specific devices to

generic multiple-DSP based boards. Combinations of different boards make possible

many different parallel architectures.

Some of the common parallel processing topologies that can be found on DSP

systems are bus, ring, grid, and star as shown in Figure 1.2. Bus-based parallel

processing is realized by backplane communication. Ring-based parallel processing

is commonly found on individual multi-DSP boards. Grid and star-based topologies

may be found on some boards or created by limiting communications paths on and

across DSP boards. For example, board-to-board communication may be required

when combining two multi-DSP boards to create one parallel processing system. Al-

though the board-to-board communication is done over a bus backplane, DSP to DSP

connections across boards can be treated as virtual DSP to DSP connections. Virtual

connections make possible the use of other parallel processing topologies that are not

inherent in the hardware architecture. Virtual connections will be discussed in more

detail in Chapter 3.

3

CPU CPU CPU

CPU CPU CPU

CPU CPU CPU

CPU CPU CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Grid

Bus

StarRing

Figure 1.2: Common Parallel Processing Topologies

MIMO wireless devices with two antennas or greater work well with the con-

figurable nature of DSP parallel processing hardware. These systems provide the

flexibility needed to experiment with and develop real-time MIMO wireless space-

time coding algorithms. Processing power may be added or taken away as needed,

creating an ideal experimental platform.

1.2 MIMO Space-Time Codes

To take advantage of the available spatial capacity, special codes spread over

space and time are used. This spreading of information over space and time is called

spatial multiplexing and is possible only in the MIMO channel. Spatial multiplexing

makes possible a linear increase in data rate with the addition of more antennas.

Signal power and bandwidth need not be increased to realize this increase in data rate,

unlike common wireless communication techniques. A rich scattering environment

is needed and makes MIMO wireless perfect for multi-room buildings and urban

environments.

4

This thesis will discuss two of the more popular space-time coding techniques:

Alamouti and differential space-time coding. Mapping of these techniques onto several

multiprocessor architectures will be studied. Alamouti requires information about

the MIMO channel at the receiver to decode the space-time information. Differential

space-time coding does not require channel information at the transmitter or receiver.

Each of these space-time coding algorithms will be divided into their most

basic functions. The most computationally complex parts of these algorithms will be

discussed in greater detail and matched to parallel processing topologies.

1.3 BYU Wireless Lab

The Brigham Young University (BYU) Electrical and Computer Engineering

Department’s wireless lab is working on research and development of MIMO sys-

tems. Most of the previous work has been theoretical research into space-time coding

techniques and practical work into narrow band channel modeling. Prior work at

BYU includes the performance of space-time coding [4] [5] [6], characterization of the

MIMO wireless channel [7] [8] [9], and modeling the MIMO wireless channel [10] [11]

[12].

A departure from this previous work is now possible with the acquisition of

DSP test equipment that will enable a focus on real-time implementation. Brigham

Young University’s Wireless Lab has designed and built an 8− 10 DSP COTS trans-

mitter and a 16− 20 DSP COTS receiver. The transmitter is capable of transmitting

on one to ten channels and receiving on one to eight channels. An RF transmis-

sion device and an RF front end have previously been developed at BYU for channel

measurements [13].

The initial publication of real-time MIMO system research was also accom-

plished by Jon Wallace et al. [14]. This research took advantage of the Wireless Lab’s

two card cages with multiple Digital Signal Processors (DSPs) and transmitting and

receiving capabilities. Real-time video streaming, symbol error rate measurements,

and channel measurements were accomplished.

5

We model our MIMO system using the uplink scenario as shown in Figure

1.3. The uplink scenario can be compared to the wireless communication between a

cell phone and a base station. This assumes that we do not know the channel at the

transmitter, but that we are able to obtain the channel information at the receiver

with training data. With this scenario, the most complex computation is the space-

time decoding on the receiver. For this reason, extra computing power is needed

at the receiver. Differential space-time coding is also discussed in this thesis where

the channel is not known at either the transmitter or receiver. The most complex

computational need still resides at the receiver in this algorithm, matching the uplink

scenario and receiver hardware configuration.

Transmitter

Receiver

Figure 1.3: Wireless Up-Link Scenario

Figure 1.4 shows a diagram of BYU’s MIMO test transmission system. The

RF front end is shown as well as our GPS frequency reference receiver that enables

true wireless capability without the need for carrier phase recovery. Each channel

on the transmitter has access to a dedicated DSP for all communications-related

computations as well as any space-time coding. Each channel on the receiver has

access to a dedicated DSP as well as shared access to two additional DSPs. A possible

configuration could include one DSP for communications-related processing and one

6

for space-time decoding. When one processor is not enough, an extra board with four

processors is available for additional computations.

COTS System

GPS Receiver

Microwave Signal Generator

RF Transmission Device

Embedded PC and DSP Boards

Figure 1.4: BYU Real-Time MIMO Transmission System

1.4 Objective

Early published research into the real-time implementation of high order MIMO

systems was limited to Bell Lab’s V-BLAST laboratory prototype [15]. Foschini also

mentions parallel processing as a method of implementing a D-BLAST receiver [16].

However, it appears that a D-BLAST receiver has not been implemented by Bell

Labs. No research was found that addresses parallel processing architecture impacts

to MIMO algorithm implementation.

Recently, additional MIMO test beds are beginning to appear. The results

appear to be limited to implementing and testing the draft IEEE 802.11n standard

with the 4 × 4 case as the maximum number of antennas possible. These give little

detail into the implementation and parallel processing requirements. Clearly, more

information about the real-time performance of higher order MIMO space-time coding

algorithms on parallel processing systems is needed to help close the gap between the

digital signal processing and parallel processing communities. Higher order antenna

7

configurations (greater than the 4 × 4 case) is where unique MIMO research can

easily be found. This thesis lays the foundation for the implementation of higher

order systems.

When deciding how to implement MIMO algorithms on parallel processing

systems, a review of simple common parallel processing topologies is needed in order

to understand how to architect the system. More advanced topologies will also be

considered to evaluate their applicability for our test system and possibly give insight

into higher order MIMO systems for future work. This thesis lays the basis for a

parallel processing MIMO test system.

The methodology used is to carefully measure and record the processor and

inter-processor communication benchmarks. These benchmarks include inter-processor

communication tasks like memory block transfers between processors, as well as

arithmetic operations benchmarked on the processors. Starting with a solid base

of benchmarks allows us to make educated decisions of how and when processors

should communicate and how algorithms can be optimized to the available hardware.

The Alamouti, 2 × 2 and 4 × 4 differential space-time decoding algorithms will be

discussed, analyzed, and benchmarked on our system as well.

Piecing together each MIMO algorithm plus its associated inter-processor com-

munication using benchmarks has the benefit of being able to quickly create and judge

topologies without expending wasted time and effort of poor implementation. This

methodology also has the added benefit of software libraries being created along the

way that can be used for testing or for actual MIMO algorithm implementation. The

drawbacks include the extra time and effort that is expended at the beginning of the

project setting the system up for future use. Ideally, all of the preliminary character-

ization of the system will pay large dividends later on in research. However, if they

don’t, time is wasted that could be used implementing “gut feeling” ideas that may

work adequately for their intended purpose.

8

1.5 Overview

This thesis is divided into two parts: the first part (Chapters 2, 3, and 4) deals

with the background information needed to understand and develop real-time MIMO

communication. Chapter 2 goes into greater detail on the real-time platform that the

BYU wireless lab has designed and built. The functionality of individual processing

boards in the test system will be discussed. The RF transmission, RF front-end,

GPS receiver, and signal generators will also be presented to give the reader a better

understanding of how the entire system works together and the parallel processing

capabilities inherent in the modular design and the many possibilities that they offer.

Chapter 3 deals with multiple processor architectures and topologies. The

advantages and disadvantages of each topology including inter-processor communica-

tion will be discussed. An example of each topology as it could apply to the BYU

system will be illustrated to help the reader understand the parallel processing possi-

bilities with our test system. Chapter 4 examines space-time encoding and decoding

algorithms in depth. Alamouti and differential space-time codes will be discussed.

Each of these space-time coding algorithms will be broken down into their most basic

functions and analyzed so that they may be implemented on our test system.

The second part (Chapters 5, 6, and 7) gives insight into the real-time per-

formance aspects of the BYU system. Chapter 5 will combine the knowledge from

Chapters 2, 3, and 4 to make a decision as to how each space-time algorithm will

be implemented following the specific multi-processor topologies discussed in Chap-

ter 3. Chapter 6 discusses and analyzes the results achieved from piecing together

the inter-processor communication benchmarks and an actual decoding algorithm im-

plementation on the test platform. This thesis concludes with Chapter 7, including

recommendations and future work. Appendix A documents the real-time benchmarks

obtained.

9

10

Chapter 2

MIMO Real-Time System

The BYU wireless lab has assembled two card cage chassis capable of multi-

channel transmission and reception. One of the card cages has been designated the

transmitter and the other the receiver. These systems are available for research into

real-time MIMO wireless techniques and narrow/wide-band channel modeling.

The real-time platform has been developed to fulfill the following requirements:

1. Variable bandwidth. The system must be able to run in narrow-band and wide-

band modes.

2. Variable sampling frequency. The system must be able to change the sample

clock on the transmitter and receiver to facilitate variable symbol rate trans-

mission and reception.

3. Variable modulation techniques. The system must be able to transmit using

different modulation techniques such as BPSK, QPSK, as well as 16QAM and

64QAM. User programmable modulation schemes must be possible.

4. Variable number of channels. The number of transmit and receive antennas

must be changeable. Single channel transmission and reception as well as up to

16 x 16 channel transmission and reception.

5. Variable space-time coding techniques. Researchers must be able to experiment

with different space-time coding techniques. These could include Alamouti,

differential space-time coding, and even V-BLAST.

6. Real-time or post-processing. Researchers must be able to capture wide-band

unprocessed data and store it for post processing. Researchers must also be able

11

to capture and process narrow-band data in real-time. Wide-band real-time

processing must also be possible in a data-block processing mode (i.e., capture

data block, stop capture, process, start capture again) when the bandwidth

exceeds the processing power of the DSPs.

7. Modularity. The system needs to be able to adapt to the user’s needs. It must

be able to be updated in the future as faster processors become available and

new hardware is introduced.

8. True wireless capability. The system must have true wireless capabilities. This

means that the system must be able to operate in either 10 MHz frequency

reference tethered mode (cable connection between the transmitter and receiver)

or 10 MHz true wireless, non-tethered mode. The 10 MHz reference signal will

help take care of system timing issues.

The following sections describe the hardware and software that is used to meet

these goals.

2.1 System Level Diagram

DSP Card
Cage

DSP Card
Cage

R
F

T
ransm

itter

R
F

R
eceiver

Channel

Figure 2.1: System Level Diagram

Figure 2.1 shows a system level diagram of the MIMO system. Data is trans-

mitted on up to 10 channels using the DSP transmitter. There is one DSP processor

responsible for each channel on the transmitter. This DSP is programmed to modulate

Root-Raised Cosine (RRC) symbols to QPSK over a 12 MHz Intermediate Frequency

12

(IF). The 12 MHz IF ensures adequate spacing for 16 MHz wide-band signals, 8 MHz

above 12 MHz and 8MHz below. The signal is then mixed up to a 2.4 GHz carrier

frequency and transmitted using dipole antennas.

At the receive end, the signal is captured using up to 8 dipole antennas. Only 8

antennas are possible on the receive end due to the limited number of digital receiver

modules. The signal is then mixed down from 2.4 GHz to 12 MHz and demodulated

back into I and Q at baseband. The captured data may then be used for real-time

decisions or transferred to the host computer for post processing.

In order to simplify research and development, carrier frequency offset will be

ignored. For this assumption to be valid we need to ensure that all of the system’s

clocks have the same frequency reference. A cable is connected to the in and out of

each signal generator’s 10 MHz frequency reference. One of the signal generators is

assigned the status as master and its 10 MHz frequency reference is passed along to

all of the other signal generators. This mode of operation will be considered tethered.

For non-tethered wireless communication, two GPS frequency reference receivers are

used to send a common 10 MHz sync signal to each system. The problem is also

sufficiently mitigated when the transmitter and receiver are in close proximity.

The transmitter and receiver are each connected to embedded PCs with 80

gigabyte-byte hard drives and CD burners to record data. The embedded PCs also

have 1 GHz of processing power for any pre- or post-processing. It is possible to

transfer data between the PC and the DSPs at up to 17 MB/s, thus allowing quick

pre- and post-processing communication.

Figure 2.2 shows all of the components of the real-time MIMO wireless system.

Notice that it is still possible to transmit in narrow band using a data pattern genera-

tor that was purchased and used for narrow band channel modeling [13]. Transmission

on up to 16 channels is possible when using the data pattern generator.

2.2 Transmitter

One of the card cages is designated the transmitter and is capable of transmis-

sion on up to 10 different channels using 12 DSP processors. Each channel consists

13

����
�
�
�
�

�
�
�
�

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�
�
�

�
�
�
�
�

�� ������

������ ������

digital up−converters
80 Mhz dual channel

(4) Pentek 6229

VME embedded PC

MicrowaveMicrowave Amplifiers

BPFBPF

GPS

Reference

Frequency

Generator

Signal

Generator

Pattern

Data

Switch

Generator

Function

RF

DSP main boards
Quad TMS320C6202 250 Mhz

(2) Pentek 4292

BPFBPF

VME embedded PC

Microwave

Reference

Frequency

GPS

Generator

Signal

(4) Pentek 4292
quad TMS3200C6203 300 Mhz

DSP main boards

(1) Pentek 4291

DSP floating point main board

Digital Receivers

(4) Pentek 6216
65 Mhz dual channel

LNA’s

Generator

Function

RF

quad TMS32006701 166Mhz

Transmitter Receiver

Figure 2.2: BYU Real-Time MIMO System

of one Texas Instrument (TI) 6202 250 MHz DSP processor which feeds data (in I

and Q format) into a digital up-converter to modulate a baseband signal onto an IF

carrier and then through a digital to analog converter (DAC).

This generic approach allows us to send any type of modulated signal at vari-

able symbol rates. This system is available from Pentek Inc. by purchasing and

installing three 4292 multi-DSP main boards with two 6229 daughter boards on each

4292. Figure 2.3 shows a picture of the transmitter card cage with attached DSP

boards.

14

Floppy Drive

CD Burner

Covered Hard DriveDSP Boards

Embedded PC

Figure 2.3: Transmitter Card Cage

2.2.1 DSP and Host Hardware

Embedded PC

Figure 2.4: Embedded PC [17]

The transmitter is controlled by an embedded PC, as shown in Figure 2.4,

with a Pentium III 1 GHz processor. Input controllers include a keyboard, computer

mouse, USB port, floppy drive, CDROM drive, hard disk, and ethernet port. Output

15

controllers include a monitor, USB port, serial port, ethernet, writable CDROM drive,

and a hard drive. The embedded PC is attached to a VME bus card cage. The VME

bus allows fast communication with other cards in the card cage.

DSP boards

Pentek 4292 DSP boards are used for DSP processing. These boards each

come with four 250 or 300 MHz processors connected as shown in Figure 2.5.

Figure 2.5: 4292 Processor Interconnects Block Diagram [18]

Data is passed from the embedded PC, through the VME bus, and into the 32

MB of global memory on each board. Data may then be transferred to each DSP’s

local memory. The local memory consists of 256 KB of fast on-chip memory and 16

MB of local off-chip memory.

For DSP board-to-board communication two methods exist. The first is to

use the VME bus. However, there also exists a Raceway bus that can connect up

to 4 DSP boards together. Board-to-board communication of up to 128 MB/s for

writes and 29 MB/s for reads is possible when using the Raceway bus [18]. Unlike

16

the VME backplane bus, the Raceway bus can handle up to two different routings

(when 4 boards are used) at one time allowing for full duplex communication. Figure

2.6 shows the Raceway bus and its routing capabilities. Slot letters E and F are not

used in our current configuration. They are reserved for the connection to additional

raceway modules.

Figure 2.6: Raceway Bus Interconnect [19]

Software Architecture and Partitioning Schemes

For each channel on the transmitter, data generally flows as shown in Figure

2.7. The embedded PC will perform any pre-processing on the data to be transmitted

and then transfer the data into the 4292’s global memory on each board. Each

processor will then transfer the appropriate data from the global memory to its local

memory as space permits. Each processor will then convert the data to symbols

and separate the symbols into I and Q data according to the designated modulation

technique. Throughout this thesis, QPSK modulation is assumed. The 6229 will

then take care of transferring the digital data onto an IF frequency and converting

17

the digital data into an analog signal that will later be up-converted to the carrier

frequency and sent over the wireless channel.

PC 4292

CPU

Memory

4292’s
To additional

To additional DSP’s

Memory

Global

Memory

DSP
6229

Digital

Upconverter

Embedded

To RF transmission
device

High

Disk

Speed

Figure 2.7: Possible Data Flow on Transmitter Computing Hardware

Digital Up-Converter

The Pentek model 6229 contains two identical, independent channels of inter-

polation and frequency translation suitable for linking a DSP to a radio transmitter.

The 6229 can translate I and Q digital signals to IF frequencies as high as 80 MHz. At

the heart of the 6229 is an Analog Devices 200 MHz Quadrature Digital Up-converter

that makes all of this possible. A 12-bit 200 MHz D/A is used to output an analog

IF signal. Multiple channel synchronization is possible with the use of a sync cable

[20].

2.2.2 RF Transmission

Two custom RF chassis were built as part of an earlier research project into

narrow band MIMO channel modeling [13]. The main components of the RF chassis

include a broadband backplane that distributes the local oscillator (LO) and supplies

power to the NT transmit mixer cards [21]. The transmit mixer boards are capable of

handling a 1-3 GHz LO used as the carrier frequency. We are using a LO of 2.43 GHz.

18

Backplane
Broadband

Power
Supply

Carrier Frequency Input To Antennas

Mixer Boards

Input from DSP’s

(LO)

Figure 2.8: RF Transmission Device

Amplifiers may be added to the transmit card for additional transmitting power when

needed. Figure 2.8 highlights the important parts of the RF transmitter.

2.3 Receiver

After a signal is received and mixed down to the IF frequency, each channel

on the receiver converts the analog input signal into a digital signal for processing

with the digital down converter (DDC). The DDC converts the IF frequency signal

to baseband I and Q data. This data may then be processed with multiple TI 6203

300 MHz DSP processors. Some of this processing will include match filtering and

symbol timing detection to recover the data sent. Figure 2.9 illustrates the receiver’s

primary role of digital down-conversion to I and Q data, symbol timing detection,

and hard decision making. Figure 2.9 also shows an eye diagram and a constellation

plot, two communication tools for displaying and debugging received data.

This receive system is available from Pentek Inc. by installing four 4292 multi-

DSP main boards with one 6216 daughter board per main board. This configuration

leaves an extra processor available to each channel for computation. The receiver

has an additional main board, a Pentek 4291, with four floating point TI DSP’s for

complicated computations where a fixed point processor is not adequate.

19

cos (IF)

sin (IF)

Detection
Timing
Symbol

Making
Decision

A/D

MF

MF

I

Q

&

Figure 2.9: Receive Block Diagram

To communicate across DSP boards, the VME system bus or the high speed

Raceway bus may be used. There is also a Pentek 6226 Front Panel Data Port (FPDP)

that is available for hardware configurable DSP-to-DSP communication across main

boards on the receiver. The FPDP has been configured to allow communication

from the extra processors that are available on channels 5, 6, 7, and 8 to two of the

processors on the 4291 DSP board. This allows additional fast communication from

two of the 4292s to the 4291.

2.3.1 RF Front-End

The RF front-end is identical to the RF transmitter except that it functions

in reverse (See Figure 2.8). Once again, we use a LO of 2.43 GHz.

2.3.2 DSP and Host Hardware

Figure 2.10 shows a picture of the receiver card cage with its embedded PC

and 5 DSP boards.

Digital Down-Converter

The Pentek model 6216 is a complete 2-channel software radio system including

tuning, filtering and demodulation [22]. The 6216 can down-convert up to a 25

20

CD Burner

Floppy Drive

Covered Hard DriveFPDP

Embedded PC 4291

4292s

Figure 2.10: Receiver Card Cage

MHz wide-band signal, low pass filter, amplify if needed, and output digital I and Q

baseband data. Multiple channel synchronization is possible with the used of a sync

cable.

At the heart of the 6216 is a TI (formerly Graychip) GC1012A all digital

tuner which can downconvert and band limit signals. The input signal can be down-

converted to zero frequency, low pass filtered, and then output at a reduced sample

rate [22].

Software Architecture and Partitioning Schemes

For each channel on the receiver, the general flow of data is shown in Figure

2.11. Data comes from the RF front-end into the 6216. The 6216 down-converts

the incoming IF signal into baseband I and Q data. This data is then available to

processors A and B on each 4292. These processors are first responsible for match

filtering and symbol timing recovery. The data are then moved off the 4292 main

board, moved to the extra processor on the board assigned to that channel, or pro-

cessed on the same DSP. When data is moved off board, it first goes to the board’s

global memory and then either to the embedded PC for post processing or to the

4291 for fixed point calculations.

21

6216
Digital

Memory

DSP

Memory

DSP

4292

Global

Memory

4291

Memory Memory

MemoryMemory

DSP DSP

DSP DSP

Global
Memory

RF Front−end
From

(Antennas)

From other

PC

CPU

Memory

Embedded

Downconverter

their DSPs
boards and

High

Disk

Speed

Figure 2.11: Flow of data from RF front-end to embedded PC

DSP Boards

The receiver card cage is equipped with three newer Pentek 4292 and one

older 4292 main boards. The newer boards use 300 MHz TI processors. These boards

have more on-chip memory, 512 KB, but less local memory, 8 MB. Additionally, the

receiver has a Pentek 4291 fixed point DSP board that contains 4 TI 6701 167 MHz

floating point processors. These processors are connected together in a similar fashion

as the 4292, shown in Figure 2.5.

The 4291 has 2 MB of global memory and each DSP’s local memory consists

of 256 KB of fast on-chip memory and 16 MB of local off-chip memory. There also

exists a fast 256 KB SBSRAM that can be used for data storage.

For DSP board-to-board communication three methods exist. The first is to

use the VME bus, the second is the Raceway bus, and the third is by using the Pentek

6226 FPDP. The FPDP enables multi-processor communication from the third and

fourth 4292s to the 4291 as previously explained. The Raceway bus can handle

only 4 boards at a time, so the FPDP is used for additional fast board-to-board

communication.

22

Embedded PC

The receiver is controlled by an embedded PC exactly like the one described in

Figure 2.4 and in the transmitter section. The main difference between the embedded

PC in the receiver and the PC in the transmitter is that the receiver’s PC is primarily

used for data acquisition. Both PCs have the same software and hardware installation.

However, the receiver’s PC uses Matlab for post processing and the hard drive and

CD-burner for data storage.

2.4 Summary

The hardware and capabilities of the BYU wireless lab’s parallel processing test

system has been examined. There are many options available on how to implement

a MIMO space-time algorithm on our system. Some of these include the number of

processors needed for each algorithm, the functions each processor will perform in the

algorithm, and how each processor interacts with the other processors implementing

the same algorithm. The next step is to understand common parallel processing

topologies that are possible on our system.

23

24

Chapter 3

Parallel Processing

Rapid prototyping and development of hardware and software is extremely

important as competing companies wrestle for a share in the marketplace. The use of

commercial-off-the-shelf (COTS) hardware and software is commonplace due to the

resulting reduction of costs in time and money associated with software and hardware

development. The price of COTS systems are decreasing while their modularity and

the ease with which they can be upgraded are increasing. The ease of upgrading

COTS hardware results from the ability to switch out obsolete boards with newer,

state-of-the-art hardware, without replacing the whole system. The alternative to

COTS systems, application-specific devices, may take too long to develop and test

before any real software development can begin.

With a COTS approach, the same development environment may be used

multiple times over multiple projects without wasting time and money on a new de-

velopmental platform for each project. Alternatively, each application-specific device

could require new hardware, new firmware, and a new software development plat-

form. With each COTS software component, less code needs to be designed and

implemented by the developers [23]. Software reuse may be simplified over multiple

projects when using the same development environment.

COTS systems can diminish the need to develop unique hardware and software

components while at the same time ensuring fast and efficient acquisition of compa-

rably priced component implementation. COTS hardware typically comes packaged

with firmware, component drivers, and other software routines for basic board func-

tionality, shortening the development time-line. Systems and components that al-

ready exist with similar capabilities may be used [24]. Thus, lower costs, access to

25

state-of-the-art technology, and readily available components/sub-systems are three

of the more compelling reasons to use COTS [25].

COTS hardware provides another advantage by allowing the use of parallel

processing when the computational power of a single processor is not sufficient. As

illustrated in Figure 3.1, parallel processing is easily provided through the use of

modular boards, all connected by a common backplane, that may be added, taken

away, or upgraded as needed. Combinations of different boards may be used to create

many different parallel systems.

Figure 3.1: Modular COTS System

3.1 Need For Parallel Processing

Computational demand is continuing at a steady pace. Current programming

practices continue to emphasize delivery time and not efficient coding. This is un-

likely to change in the future as processing power never seems adequate for advanced

modern applications and functionality. As silicon technology slowly approaches its

26

limits, parallel processing is one of the few options for meeting high computational re-

quirements [26]. This is becoming even more evident with the prevalence of multi-core

processors in commercial systems.

MIMO space-time coding algorithms increase in complexity and computational

requirements as the number of antennas is increased. The additional information ob-

tained from the increase in antennas may be too much for just one processor to handle

in real-time. Parallel processing is the answer for real-time MIMO communications

with multiple transmit and receive antennas.

Due to the dynamic nature of MIMO wireless technology, parallel processing

appears to naturally lend itself to real-time processing. Antennas may easily be added

or removed in a flexible parallel processing environment. Processing power may also

be added or taken away as needed, creating an ideal experimental platform. Parallel

processing COTS systems are an ideal choice for low cost research and development

of real-time MIMO wireless technology.

3.2 Parallel Processing Taxonomy

A wide variety of parallel architectures can be found. One of the most popular

classification schemes of parallel systems was introduced by Flynn [27]. Flynn groups

computing into three different types:

• SISD (Single-Instruction Stream/Single-Data Stream)

This architecture is commonly referred to as a Von Neuman computer. A single

CPU functions as a SISD system.

• SIMD (Single-Instruction Stream/Multiple-Data Stream)

In a SIMD system, one processor generally controls all of the nodes, feeding

each node with the same instruction and executing the program synchronously

[26].

27

• MIMD (Multiple-Instruction Stream/Multiple-Data Stream)

In MIMD systems, each processor acts separately, executing different instruc-

tions. There exist two main sub-categories of MIMD systems:

– Shared Memory Systems

In shared memory systems, processors share the same globally available

memory. Processors communicate with each other through this memory

and synchronization is required to insure no conflicts between the process-

ing elements exist.

– Distributed Memory Systems

In distributed memory systems each processor has locally available mem-

ory and thus avoids global memory contentions. Processors must then

be connected to be able to communicate with each other, although the

connections need not be direct.

MIMD interconnection networks are commonly based on buses or direct con-

nections between processors. In bus-connected systems, all processors, parallel

memories, and any other devices are usually connected to the same bus. In

directly connected systems, the interconnection networks could consist of cross-

bars, partially connected grids, or multistage networks [26].

MIMD systems are the most common parallel architecture in use today. This

thesis concentrates on MIMD parallel processing topologies.

3.3 Parallel Processing Topologies and Architectures

An interconnection network refers to the mechanism of connecting processors

and memory together in a parallel processing architecture. The ideal interconnection

network connects all processors to each other, ensuring rapid communication between

processors. However, as the number of processors grows large, this interconnection

network grows expensive [28].

28

Parallel processing topologies and interconnection networks found on common

parallel processing systems, and more importantly realizable on our system, are bus,

ring, grid, and star. Combinations of these topologies are also found or can easily

be created on our hardware and include hypercube, binary tree, and pyramid. Our

system has both shared and distributed memory systems, so both will be used.

Desirable characteristics of these parallel processing topologies include extensi-

bility, efficient routing, and reliability. Extensibility is the ability to add or take away

processing elements from the topology with little change to the software algorithms.

Efficient routing in this context will mean the ability of the processing elements to

communicate without extensive overhead. The reliability of the topology will be de-

termined by the ability of the topology to function without the use of one or more of

its processors and/or boards [29].

3.3.1 Bus Parallel Processing

CPU CPU CPU

Figure 3.2: Bus Parallel Processing

Figure 3.2 shows a simple bus-based parallel system. The advantages of buses

are that routing and extensibility are trivial [29]. Bus based parallel processing can

be extended by simply adding additional processors to the bus. Existing software

will only have to be updated with the new number of processors on the bus. Fault

tolerance is also good as defective processors on the bus may be ignored. This is true

as long as these defective processors do not tie up the bus and cause complete system

failure.

A disadvantage with multiprocessing busses is the clock latency problem. The

majority of the time, processors access their local cache or off-chip memory in a bus

29

based system and only use the bus occasionally. Thus, processors are optimized to

communicate based on memory clocks rather than bus clocks. This inevitably leads

to asynchronous access with the bus clock. Thus, for a processor to access the bus, its

interface must synchronize the bus and the memory. This causes a delay in waiting

for the first valid bus clock edge. On average, this delay will be half a bus clock cycle

[30].

Another disadvantage of bus-based parallel processing is the worst case access

time. Only one processor can have access to the bus at a time and bus arbitration

delays are inevitably added. Thus, worst case bus access times grows with the number

of processors that are added to the bus.

Shared memory systems cause even more delays as all processors have to com-

pete for the bus to access global memory. Distributed memory systems do not have

this problem; however, depending on the application, there is still a need for frequent

bus accesses to get data from other processors’ memories. A combination of shared

and distributed memory systems can help alleviate some of these problems without

much additional cost. Bus-based parallel processing may be relatively slow, but the

systems can be very reliable and relatively simple to implement.

Bus-based parallel processing is inherent from backplane communication in

parallel processing systems. Bus-based parallel processing systems are attractive for

several reasons. Low cost, a standard interconnect that allows multiple vendor board

designs, and the ease of additional computing power by adding more boards are

among the most important reasons [30]. Figure 3.3 highlights a bus-based parallel

processing topology (board-to-board communication) found in the BYU wireless lab’s

test platform.

3.3.2 Line and Ring Parallel Processing

Figure 3.4 shows a line and ring parallel processing topology. Compared to a

bus-based parallel architecture, more communication is possible in a ring architecture

because adjacent processors can communicate with each other with no wait time.

Multiple simultaneous transactions involving different processors are thus possible,

30

Figure 3.3: Bus Parallel Processing

unlike bus-based systems. Point-to-point processor connections make higher data

rates possible and alleviate the need for bus arbitration and worse case bus delays.

Rings may be unidirectional or bidirectional. In a unidirectional ring topology,

data is passed in only one direction. In a bidirectional ring topology, data may be

passed in either or both directions [28].

CPU

CPU

CPU

CPU

CPU

CPU

CPU CPU CPU

Figure 3.4: Line and Ring Parallel Processing

In the ring architecture there is a reduction in communication delays compared

to lines. There are two paths to any other processor, clockwise and counter-clockwise,

thus fault tolerance is good. Routing remains simple and extensibility is still good.

The line and ring topology are simple, but data must typically pass through multiple

processors in order to reach the destination. On average, this creates long communi-

cation delays.

31

The line and ring based topologies are inherent using the multi-DSP boards

available for many parallel processing systems, including those found in the BYU

wireless lab. Figure 3.5 illustrates a four DSP ring topology found within one Pentek

4292 board.

DSP DSP

DSPDSP

Figure 3.5: Ring Parallel Processing

3.3.3 Mesh Parallel Processing

CPU CPU CPU

CPU CPU CPU

CPU CPU CPU

Figure 3.6: Mesh Parallel Processing

Figure 3.6 shows a mesh topology. Processors in a mesh topology are arranged

in 2-dimensional matrix configuration. Each processor is generally connected to four

of its neighbors, although boundary processors may not be. Some 2-dimensional mesh

32

topologies allow for wrap-around connections between boundary processors, usually

within the same row or column [28].

Delays are added when passing data diagonally. However, an advantage of

this topology is that multiple paths of communication are available. Fault-tolerance

is therefore good as there are multiple paths in which processors can communicate.

Mesh topologies are more highly connected than bus, line, or ring. Inter-

processor communication delays may be reduced due to the proximity of at least

two and possibly three or four processors. Extensibility is a more complex issue as

software may have to be modified depending on the number of processors and where

those processors are added.

The mesh based topology is inherent in the BYU wireless lab’s system from the

interconnection of bus and ring parallel processing networks. Figure 3.7 highlights a

mesh parallel processing topology found in the BYU wireless lab’s test system. Note

that the dotted lines in Figure 3.7 are the virtual connections previously mentioned in

Chapter 1. A virtual connection is the term used to explain the flexible connections

afforded by the DSP equipment in the BYU lab. Virtual connections are simply the

communications paths created when communicating over a fixed parallel processing

topology to emulate a different parallel processing topology. Virtual connections allow

the interconnection of multiple processors in multiple configurations. For example,

in Figure 3.7, a 2× 6 mesh is created using three DSP boards. Although the board-

to-board communication is actually done over a common bus architecture backplane

(VME or Raceway bus), a virtual connection is made from DSP to DSP to emulate

a mesh connection. A three dimensional 2 × 2 × 2 grid could also easily be created

as shown later in Figure 3.12.

3.3.4 Star Parallel Processing

Figure 3.8 shows a star topology. An advantage of the star topology is that

it is easily extensible. The star topology is characterized by a central processor that

divides data and computation up into smaller segments for its child processors to

compute. When all computations are complete, the central processor collects the

33

DSP DSP

DSPDSP

DSP DSP

DSPDSP

DSP DSP

DSPDSP

Figure 3.7: Mesh (Grid) Parallel Processing

data from its child processors and performs any final calculations to recompile the

data. When routing data, each processor experiences the same delay from the central

processor. No child processor has any distinct advantage over another.

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Figure 3.8: Star Parallel Processing

For some algorithms, this can be a very efficient topology as the central pro-

cessor can start the computation, divide the task to all other processors, and then

recompile all of the information when all processing is done. As long as the central

processor is not damaged, reliability is good as the computational load may be dis-

tributed among the remaining functional processors. However, if the central processor

malfunctions, a system based on a star topology is completely inoperable.

Star parallel processing may be created from the interconnection of multiple

DSP boards in a parallel processing system. In our system, the central processor may

34

be a DSP processor or the embedded PC’s CPU. Figure 3.9 shows a star topology

using the embedded PC computer’s CPU as the central processor. The dotted lines

represent the virtual connections. Data may be passed over the VME bus and onto

the DSP boards global memory using one bus transfer. If the data is partitioned

for all of the DSP processors, each corresponding data block is then transferred from

the board’s global memory to each DSP processor. Although this is truly a series of

bus-based transfers, they can be modeled using virtual connections.

Figure 3.10 highlights a star topology realizable using one DSP board within

the BYU wireless lab real-time system. The virtual connection is created by passing

data through the global memory to the diagonal DSP. This allows the central pro-

cessor in the figure to communicate with all three DSPs on its board at the same

time. The virtual connection will be slower than the IPBIFO direct connections, but

simultaneous transfers are possible.

DSP DSP

DSPDSP

Embedded
PC

CPU

Figure 3.9: Star Parallel Processing

3.3.5 Hypercube or n-Cube Parallel Processing

Figure 3.11 shows a hypercube topology. A hypercube is formed by N pro-

cessors where N is a power of 2. For N = 2q, where q ≥ 0 then a q-dimensional

35

DSP DSP

DSPDSP

Figure 3.10: Single Board Star Parallel Processing

hypercube is formed. Each processor is connected to q neighboring processors, com-

monly referred to as each processor having a degree of q. The network of N processors

is formally called a binary n-cubed network [28].

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Figure 3.11: Hypercube Parallel Processing, q = 3

Reliability is excellent as there is always another path to other processors if

one processor fails. As q increases, so does the reliability of the network. The main

disadvantage with the hypercube topology is the increased complexity in routing and

software algorithms.

Figure 3.12 highlights a hypercube topology possible in the BYU Wireless lab’s

system. The hypercube topology on our system makes use of virtual connections to

connect DSPs together over the system bus, preferably the RACEway bus.

36

DSP DSP

DSPDSP

DSP DSP

DSPDSP

Figure 3.12: Hypercube Parallel Processing, q = 3

3.3.6 Binary Tree Parallel Processing

Figure 3.13 shows a binary tree topology. A binary tree interconnection net-

work is formed when N processors are available and N = 2d − 1 vertices are formed,

where d is the number of levels in the tree. The levels are numbered from 0 to d− 1

where 0 is the root processor. Figure 3.13 shows a binary tree with d = 3 connected

processors.

CPU

CPU CPU

CPUCPU CPUCPU

Figure 3.13: Binary Tree Parallel Processing

Every processor in the tree can communicate with its two children (except

for leaf node processors) and every processor except for the root can communicate

with its parent. Processors are assigned degrees according to the number of adjacent

37

processors they are connected to. Each interior processor has a degree 3 (two children

and one parent), each terminal processor has degree 1 (parent), and the root processor

has degree 2 (two children) [28].

Figure 3.14 highlights a binary tree topology possible in the BYU Wireless

Lab’s system. Multiple bus-based data transfers are required to satisfy all of the

virtual connections used in this example. The virtual connections are highlighted

using dashed lines and actually travel over the bus shown in the figure.

DSP DSP

DSPDSP

DSP

DSP

CPU

PC

Embedded

Figure 3.14: Binary Tree Parallel Processing

3.3.7 Pyramid Parallel Processing

Figure 3.15 shows a pyramid topology. A two-dimensional pyramid contains

N = (4d+1 − 1)/3 processors in d + 1 levels (level numbers increase starting at the

base of the pyramid from bottom to top) with these properties:

• There are 4d−2 processors at level d.

• There are 4d−1 processors at level d− 1.

• There are 4d processors at level d− 2.

In general, any processor at level x:

• Is connected to up to four neighboring processors at the same level if x < d,

38

CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Figure 3.15: Pyramid Parallel Processing

• Is connected to four children at level x− 1 if x ≥ 1, and it

• Is connected to one parent at level x + 1 if x ≤ d− 1.

It can be seen in Figure 3.15 that a pyramid has a base made up of a two-

dimensional mesh containing d2 processors. An advantage of the pyramid intercon-

nection network compared to a two-dimensional mesh network is that messages may

travel up and down the tree and across the mesh rather than only across the mesh,

resulting in fewer link traversals [28].

Figure 3.16 highlights a pyramid parallel processing topology that is possible

in the BYU wireless lab’s system. Notice the extensive use of virtual connections

in our system to realize a pyramid topology. The dashed lines in the figure are all

virtual connections that actually travel over the illustrated bus.

3.3.8 Summary

Topologies are key distinguishing features in parallel systems since they affect

communication algorithms and computational efficiency. We have seen that a wide

39

DSP DSP

DSPDSP

DSP DSP

DSPDSP

DSP DSP

DSPDSP

DSP DSP

DSPDSP

DSP DSP

DSPDSP

CPU

PC

Embedded

Figure 3.16: Pyramid Parallel Processing

array of different topologies can be accomplished with the test equipment available

in the BYU’s wireless lab using the inherent bus topology of the VME backplane or

Raceway module (board-to-board communication), line/ring topology between DSPs

using bidirectional inter-processor connections (called IPBIFOs), and star topology by

writing/reading from global memory. This wide selection of inter-processor connec-

tions affords flexibility in designing the software to support real-time computational

needs.

The next step is to understand the space-time coding algorithms so that they

can be implemented and benchmarked on our test system.

40

Chapter 4

Space-Time Algorithms

As illustrated in Figure 4.1, there are four main antenna configurations for

space-time (ST) communications systems. SISO (Single-Input-Single-Output) has

a single transmit and a single receive antenna. This is the most familiar wireless

communication system. MISO (Multiple-Input-Single-Output) has multiple transmit

antennas but only a single receive antenna. SIMA (Single-Input-Multiple-Output)

employs one transmit antenna with multiple receive antennas. MIMO (Multiple-

Input-Multiple-Output) has multiple transmit and multiple receive antennas. This

thesis focuses on MIMO algorithms.

SISO

SIMO

MISO

MIMO

Rx

Rx

Tx

Tx

Tx

Tx

Rx

Rx

Figure 4.1: ST Antenna Configurations

41

Spatial multiplexing, the spreading of information over space and time and

possible only in MIMO channels, may achieve a linear increase in data rate (or capac-

ity) with additional antennas. The signal’s power and bandwidth do not need to be

increased to achieve this higher data rate, but special ST codes need to be employed

to take advantage of spatial multiplexing. Common algorithms that accomplish these

tasks are discussed in this chapter.

4.1 Background

There exist two main concepts in ST communications that are essential to

understand the benefits of ST algorithms: array gain and diversity gain. Array gain

is defined as the average increase in SNR at the receiver that arises from the coherent

combining effect of multiple antennas at the receiver or transmitter or both [31].

For example, consider a single message signal transmitted in a SIMO communication

system. At the receiver, neglecting multipath effects, the same signal will arrive

at each of the multiple receive antennas, although with different amplitudes and

phase. Combining these signals at the receiver correctly (with proper phase and gain

adjustments to insure coherent addition) will result in one signal with increased SNR

proportional to the number of receive antennas.

Diversity gain is used in wireless communications to combat the fading of

wireless channels. Fading is defined as a significant signal power drop in the channel

[31] and is usually caused by destructive interference of multipath signals. Again using

the SIMO example, one receive antenna may fade in and out over time. During this

fading, no information may be passed to the receiver. However, the signal at another

receive antenna may not have any significant fading, or may fade at times other

than that of the first antenna. Correctly combining the signals at the receiver will

compensate for the different fading patterns of each transmit antenna, thus allowing

reliable transmission [31].

42

4.2 Space-Time Coding Algorithms

It is beyond the scope of this paper to describe all of the known space-time

coding algorithms. However, two of the most popular and well known algorithms will

be introduced and examined. These include the Alamouti [32] and differential [33]

space-time schemes.

Alamouti coding is well known due to the Alamouti algorithm’s incorporation

into the latest CDMA standard, W-CDMA [34]. The benefits of diversity gain are

also well known in the wireless networking world and it is used extensively. Diversity

gain is a very important part of the IEEE 802.11n standard that incorporates MIMO

space-time algorithms. In fact, MIMO has become so popular that any device that

has multiple physical antennas and uses some method of diversity gain self brands

themselves as “MIMO” or “pre-n” wireless networking devices. Although the Alam-

outi algorithm may not be used for these devices, this simple space-time block code

is worth implementing for insight into real-time space-time block codes.

For the Alamouti scheme, the transmitter is modeled as having no knowledge

of the channel, while the receiver is assumed to be able to detect and model the

channel by interpreting training data from the transmitter. Differential space-time

coding is very useful when channel information is not known at the transmitter or

receiver. As far as this author knows, no research into real-time differential space-time

coding has been reported in the literature.

4.2.1 Alamouti Space-Time Codes

The Alamouti space-time algorithm is a simple transmit diversity scheme

which improves the quality of the received signal by transmitting across two or more

transmit antennas. The Alamouti algorithm can be seen as a maximal-ratio receiver-

combining (MRRC) algorithm [32] with two transmit and two receive antennas. As

the channel is rendered orthogonal by the transmitter, an otherwise complex maxi-

mum likelihood detection problem is decoupled into a simple scalar detection problem

at the receiver. Orthogonality is the key to Alamouti space-time code and greatly

43

simplifies the receiver decoding. For two transmit antennas, full 2MR order diversity,

where MR is the number of receive antennas, is achieved.

The Alamouti scheme can improve the error performance, data rate, or capac-

ity of wireless communication systems. This is achieved by decreased sensitivity to

fading, by allowing higher modulation schemes due to increased resistance to noise,

and increased system performance in a multi-cell system.

Space-time codes for Alamouti-type schemes can also be created using orthog-

onal codes for greater than two transmitters [31]. Although less processor intensive

to decode than most space-time algorithms, real-time implementations of Alamouti

require parallel processing on our test system due to the multi-antenna requirements.

A 2× 2 scheme will be discussed that is easily extensible to the 2×MR case.

s0

−s1
*

TX0

s0
*

1s

TX1

RX0
RX1

channel
estimation

s~1 s~ 2
h0 h1 h2 h3

h0
h1 h2 h3

h00 h11

h01

h10

Symbol Stream

η η

maximum likelihood detector

combiner

Figure 4.2: 2× 2 Alamouti Two Branch Diversity with Two Receivers

44

Basic Operation

For a given symbol period, where the number of transmit antennas and the

number of receive antennas equals two, MT = MR = 2, two distinct signals are

transmitted simultaneously on separate transmit antennas. Figure 4.2 shows the

baseband representation of the Alamouti scheme with MT = MR = 2.

The symbols s0 and s1 are transmitted from antenna 0 and antenna 1 respec-

tively at time t. During the next symbol period, t + T where T denotes the symbol

period, signal −s∗1 is transmitted from antenna 0 and signal s∗0 is transmitted from

antenna 1, where ’*’ indicates the complex conjugate operation.

In matrix form

S =

s0 −s∗1

s1 s∗0

 (4.1)

where the row indices correspond to the transmit channel and the column indices

correspond to the symbol timing slot, as shown in Table 4.1.

Table 4.1: The Encoding and Transmission Sequence - Matrix S

TX antenna 0 TX antenna 1

time t s0 s1

time t + T −s∗1 s∗0

The channel as seen by the receiver is represented as a transfer matrix,

H =

h00 h10

h01 h11

 (4.2)

assuming narrow band, where hij represents the complex (contains both amplitude

and phase) gain component from transmitter j to receiver i, as seen in Figure 4.2

and shown in Table 4.2. Channel information is obtained by the use of training data

45

sent out at the beginning of each transmit block. The assumption is made that the

channel matrix is known, or has been estimated in a prior processing stage.

Table 4.2: Channel Matrix Components (As Seen by the Receiver)

RX antenna 0 RX antenna 1

TX antenna 0 h00 h10

TX antenna 1 h01 h11

The receive matrix R is formed by the equation

R = HS + η (4.3)

and broken out into familiar form in Table 4.3. Matrix η represents independent and

identically distributed (iid) white gaussian noise due to receiver thermal noise and

other interference in the channel.

By exploiting the special structure of S and considering only one channel at

the receiver, an effective channel transfer matrix H, over t and t + T combined, we

see that Equation 4.3 becomes

~r = H~s + ~ή, (4.4)

or

r00

r∗01

 =

 h00 h10

−h∗10 h∗00

s0

s1

 +

η0

η∗2

 . (4.5)

46

Table 4.3: Definition of the Received Signals

RX antenna 0 RX antenna 1

time t r00 r10

time t + T r01 r11

The received signals may then be combined to give signal estimates, s̃0 and

s̃1:

s̃0

s̃1

 =

h∗00 h01 h∗10 h11

h∗01 −h00 h∗11 −h10

r00

r∗01

r10

r∗11

. (4.6)

The transmitted signals may be compared to the received signals by substi-

tuting Equation 4.5 into 4.6 to yield

s̃0 = (|h00|2 + |h01|2 + |h10|2 + |h11|2)s0 + ζ0 (4.7)

and

s̃1 = (|h00|2 + |h01|2 + |h10|2 + |h11|2)s1 + ζ1, (4.8)

where ζ refers to noise and

ζ0 = h∗00η0 + h01η
∗
1 + h210∗η2 + h11η

∗
3 (4.9)

and

ζ1 = −h00η
∗
1 + h∗01η0 − h10η

∗
3 + h∗11η2. (4.10)

The signal estimates s̃0 and s̃1 are then sent to a maximum likelihood decoder for

hard decisions on the symbol.

As seen in Equations 4.6 through 4.10, the space-time decoding process is par-

ticularly simple due to the orthogonality of H imposed by the structure of S. Unlike

47

other methods (e.g., BLAST) no matrix inversion or singular value decomposition is

required.

4.2.2 2 x 2 Differential Space-Time Modulation

Differential space-time coding [33] in MIMO wireless communications does not

require channel knowledge at the transmitter or receiver. This may be useful, if not

necessary, in certain situations when channel estimation is too costly or complex for

the hardware. This can be true in dynamic environments where the channel changes

so rapidly that channel estimation cannot track changes without excessive estimation

error or requires too many training symbols for effective signalling.

Differential space-time coding is a methodology for the design of differential

transmit diversity schemes based on groups of unitary matrices. This general ap-

proach may be used with any number of antennas or signal constellations if a con-

tinuous range of symbol constellations is permitted. For finite symbol alphabets,

unitary coding matrices may be known only for a fixed number of channels. Because

the real-time digital radio will initially use the QPSK signal constellation, only a 2×2

full rate MIMO scheme is possible.

Basic Operation of the 2 x 2 Differential Space-Time Code

For a system with MT = MR = 2 antennas, let G = {G1,...,GM} be a group of

2× 2 unitary matrices, so that

GHG = GGH = I for all G ∈ G.

where the hermitian operator, depicted by a superscript H , specifies the matrix com-

plex conjugate transpose. The matrices of G are then mapped to the set of possible

messages for simplicity. To transmit the message G ∈ G, the 2× 2 code matrix

C = DG

is sent where D is a fixed 2x2 matrix that satisfies DDH = 2I, called the initial

matrix. For the QPSK case

48

G =

±

1 0

0 1

 ,±

j 0

0 −j

 ,±

0 −1

1 0

 ,±

0 j

j 0

 , D =

1 −1

1 1

 (4.11)

is a group code that takes values in from the QPSK signal constellation, namely

C = {1, j,−1,−j}. Hughes calls this code the quaternion code after the algebraic

quaternion group [33]. The structure of the code is illustrated in Figure 4.3, where

Θ =

j 0

0 −j

 , R =

0 −1

1 0

 . (4.12)

To start transmission, an initial matrix, C0 = D, is sent which conveys no

information. After this initial matrix, messages are differentially encoded. To send

Gk ∈ G in block k, Ck is sent as follows:

Ck = Ck−1Gk, k = 1, ..., K.

The group structure guarantees that Ck ∈ DG whenever Ck−1 ∈ DG.

0 1

0

1 0 −j 0
0 j

0−1
1

0
j

j
0

0 −j
−j 0

0 1
−10

j 0
0 −j

−1
0

0
−1

R

Θ

Figure 4.3: The Quaternion Group

49

The received signals are then decoded as discussed in [33]. The differential

receiver estimates for Gk are formed using only the two most recently received blocks

(Yk and Yk−1), where

Yk =
√

ρtHCk + Nk, k = 0, 1, ..., K.

The optimal detector for Gk given Yk and Yk−1 is

G̃k = arg max
G∈G

Re {Tr{GY H
k Yk−1}}, (4.13)

where Re{} and Tr{} refer to the real part of the trace of GY H
k Yk−1. This is illustrated

in Figure 4.4.

.

.

2

8

Y H

ReTr{G

ReTr{G ()}

ReTr{G ()}

.

.

.

Y
k

Yk
H

k−1 Maximum

Value

()}
1

()

z−1

G
~

Figure 4.4: A Differential Receiver

4.2.3 4 x 4 Differential Space-Time Modulation

Differential space-time modulation is extensible to any MT×MR configuration

where a suitable group code can be found. For the 2×2 case, the QPSK constellation

allows the 2× 2 unitary group code mentioned in the previous section. However, for

the 4 × 4 case, QPSK will not work. Another constellation is needed to fulfill the

requirements for a 4× 4 unitary group code. It has been proven that 16QAM fulfills

this requirement [35]. Although 16QAM is not possible on the current real-time

platform, the 4× 4 differential space-time decoding algorithm can be implemented to

measure timing and performance.

50

Basic Operation of the 4 x 4 Differential Space-Time Code

For 4 × 4 differential space-time modulation the previous discussion must be

augmented with a general method to find unitary group codes for different numbers

of transmit and receive antennas, as discussed in [35]. For a 4 × 4 antenna system

using 16QAM, a unitary group code of length L = 16 is needed. The lth signal in the

constellation has the form

Gl =
1√
2

ej(2π/L)u1l 0 0 0

0 ej(2π/L)u2l 0 0

0 0 ej(2π/L)u3l 0

0 0 0 ej(2π/L)u4l

. (4.14)

For l = 0, ..., L− 1 and u1 = 1, u2 = 3, u3 = 5, u4 = 7, where um is derived in

[35]. 16 unitary matrices are formed that are sent out in an order determined by the

transmit data. In the τ th block of data, antenna m transmits at time t = τM + m

a symbol that is differentially phased shifted by (2π/L)uml relative to its previous

transmission.

The differential space-time decoder is the same as illustrated in Figure 4.4

with the exception that there are now 16 G matrices that must be used to find the

maximum value Gk ∈ G. The difference between the 2 × 2 and the 4 × 4 differential

space-time decoder is the dimensions of the matrices Y and G and the number of G

matrices that are needed to find the maximum of G ∈ G.

4.3 Summary

The Alamouti, 2 × 2 and 4 × 4 differential space-time decoding algorithms

have been examined in sufficient detail to allow them to be implemented in soft-

ware. Each decoding algorithm will be implemented using multiple processors. The

inter-processor communication for each decoding algorithm will be realized using the

parallel processing topologies already discussed.

51

52

Chapter 5

Space-Time Algorithms and Parallel Processing

There are many different ways to partition computational loads and exploit the

parallelism that exists in computer applications. Much research has been conducted

to determine those hardware and software organizations that best fit general purpose

parallel processing. Other significant efforts have concentrated on speeding up the

solutions of specific problems on special purpose computing systems [30]. This chapter

discusses how to implement the common parallel processing topologies discussed in

Chapter 3 with the space-time decoding algorithms explored in Chapter 4.

5.1 Benchmarks

Processor computation and inter-processor communication benchmarks have

been run on the test system. These benchmarks provide the information needed to

determine the performance of each parallel processing topology. A full guide to the

benchmarks can be found in Appendix A.

Table 5.1 summarizes the benchmarks run for each different method of processor-

to-processor communication. The maximum throughput possible is shown. These

numbers are the result of using the maximum block size available for data transfers

and are lower depending on the overhead associated with computing smaller blocks of

data. The second table, Table 5.2, shows the throughput at which common algebraic

functions perform on the DSPs. Notice the throughput difference when these calcu-

lations are run from and stored on on-chip IDRAM memory versus off-chip SDRAM

memory. When the data is stored in the large, but slower off-chip local SDRAM

memory, there is less throughput. Performance for 16K word and 256 word cases are

shown to highlight the overhead associated with preparing and using the processor

53

Table 5.1: Inter-Processor Communication Benchmark Comparison

DSP to DSP Maximum

Communication Method Performance (MB/s)

IPBIFO Write 285

IPBIFO Read 285

VME bus Write 17

VME bus Read 35

Raceway bus Write 128

Raceway bus Read 29

Global Memory Write 101

Global Memory Read 49

and memory for these different block sizes. It is always advantageous to compute

and/or transfer the largest block size possible so as to minimize overhead. All of

these benchmarks were taken on a 300 MHz TI DSP processor.

Table 5.2: DSP Benchmark Comparison (MB/s)

256 Words 16K Words

DSP Process IDRAM SDRAM IDRAM SDRAM

Addition 33.4 8.7 33.5 8.7

Subtraction 33.4 8.7 33.5 8.7

Multiplication 29.9 8.5 30.0 8.5

Division 19.6 7.4 19.7 7.4

54

5.2 Assumptions and Methods

The space-time encoding algorithms on the transmitter will not be discussed

because pre-processing on the host PC can effectively eliminate the need for real-time

encoding. Space-Time symbol blocks can simply be pre-loaded in memory for trans-

mitter read-out. Because of the ongoing research in the lab concerning MIMO symbol

timing, the real-time aspects of a complete MIMO system will not be discussed. How-

ever, real-time analysis of space-time decoding algorithms on the receiver has been

performed. Channel detection will also not be discussed as it is assumed that channel

information is available as needed.

Because of the assumption that symbol timing issues and other communica-

tions related processing (i.e., matched filtering) have already taken place, a certain

amount of processing power will be reserved. For simplicity, it is assumed that one

processor will be given the responsibility of all communications-related processing for

each channel on the receiver. This assumption is based on the benchmarks from the

complex FIR filter needed for the matched filtering of a QPSK signal. In matched

filtering there exists a tradeoff between accuracy and speed, which can be adjusted

according to need and application. The higher the “tap” value H, the better the

resolution, but the more processor intensive the matched filtering. The lower the H

value, the less reliable the results (more noise) but the faster the processing. One

processor set aside primarily for matched filtering and any other additional functions,

per antenna, is a safe and simple assumption that leaves computational room for

channel synchronization, experimentation, and future processing requirements.

The following equation will be used to determine the number of cycles each

data word takes to compute:

1.2× 109

α
(

MB
s

) = β

(
clock cycles

word

)
(5.1)

where α is the benchmark in megabytes per second and β is the resultant number of

processor clocks cycles per word data processed. This will be used to determine the

55

processing required for each space-time algorithm when using benchmarks. Equation

5.1 is true only for 300 MHz processors.

For the narrow band case, a symbol rate in the 10’s of kilo symbols per second

will be considered sufficient. The symbol rate directly affects the number of processors

needed for each space-time decoding as well as the processing power needed for the

communications processors, especially for matched filtering.

5.3 Alamouti Parallel Processing

The Alamouti space-time decoder processing can be characterized by expand-

ing Equation 4.6 to yield

s̃0 = h∗00r00 + h01r
∗
01 + h∗10r10 + h11r

∗
11 (5.2)

and

s̃1 = h∗01r00 − h00r
∗
01 + h∗11r10 − h10r

∗
11. (5.3)

It is assumed that H is available from a channel estimation phase. From Equations

5.2 and 5.3 it can be seen that no cross-channel multiplies need to be performed

on data that is received on different transmitter nodes. For example, one receiver

can perform the h∗00r00 and the h01r
∗
01 operations from Equation 5.2. At the same

time the other receiver can perform the h∗10r10 and the h11r
∗
11 operations from the

same equation. If necessary, the only inter-processor communication needed is the

combining of the individual parts of Equations 5.2 and 5.3 by addition.

To determine the number of processors that are needed for the Alamouti de-

code, the number of multiplies and adds in the algorithm are needed. Using Equations

5.2 and 5.3, it can be determined that 16 multiplies and 6 additions are required for

each data word processed. (Recall that each word contains both real and imaginary

data that must be multiplied and added separately. Moreover, 2 words of data per

symbol will be used when determining the number of symbols per second the processor

can handle.)

56

The total number of processor cycles required for the Alamouti decoding can

be estimated by the following equation:

α

(
cycles

word

)
= 16

(
multiplies

word

)
40

(
cycles

multiply

)
16K

(
words

buffer

)
+

6

(
additions

word

)
36

(
cycles

addition

)
16K

(
words

buffer

)

(5.4)

where α is the total number of processor cycles required for each 16K buffer full of

data from the communications processor - about 14 million processor cycles per 16K

buffer of data. About 300 million processor cycles are available every second from

the processor, so

β =
300× 106

14× 106
16K (5.5)

where β equals almost 343K symbols per second. This is more than enough symbols

per second for the narrow band case and thus only one processor is required for

Alamouti decoding.

Only the bus, line/ring, grid, and star topologies will be discussed. The hyper-

cube, binary tree, and pyramid topologies are not required due to the low processing

requirements of the Alamouti algorithm.

5.3.1 Bus

Figure 5.1 illustrates the proposed method of decoding for the Alamouti scheme

using a bus topology. Wireless data is first processed by each of the communications

processors (labeled by their functions: matched filtering, timing, interpolation, etc.)

and then sent over the bus to the third processor responsible for Alamouti space-time

decoding. Because of the architecture, only one processor can transfer data over the

bus at a time. Notice that it makes no difference which processor the antennas are

connected to because the bus topology allows for the same communication time be-

tween each processor. Bus transfers will be timed by writing and reading from global

memory over the VME bus.

57

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

00r

01r

r10

r11 00r

01r
r10
r11

h 00

h 01

h 10

h 11

s 0
~

=

s 1=
~

VME Bus

Figure 5.1: Proposed Bus Parallel Processing

5.3.2 Line/Ring

As discussed above, only one processor is needed for Alamouti decoding. Fig-

ure 5.2 illustrates the proposed connection of the processors with their respective

processes. A full ring architecture is not necessary because only three processors are

needed and all three do not need to communicate with each other. Processor commu-

nication only needs to go one way from both communications processors (labeled the

same as in the bus section) to the processor performing the Alamouti decoding. A

line architecture will suffice. This topology will provide a speedup over the bus topol-

ogy as processor-to-processor communication over the IPBIFOs is much quicker than

over the global bus (i.e., through global memory). However, a delay will be added

due to the board’s DSP-to-DSP interconnections. For one of the communications

processors, there does not exist a straight path to the assigned Alamouti decoding

processor. Two options are available, one communications processor can write to

global memory and the decoding processor can retrieve it from global memory, or

the data may be passed through the other communication processor to the Alamouti

decoding processor.

58

s 0
~

=

s 1=
~

Match Filter,

Interpolation,
Timing,

etc. 01r
00r

Match Filter,

Interpolation,
Timing,

etc.

r10

r11

h 00

h 01

h 10

h 11

00r

01r
r10
r11

IPBIFO IPBIFO

IPBIFO

Figure 5.2: Proposed Line/Ring Parallel Processing

5.3.3 Grid/Mesh

In a four processor system, the grid topology is the same as a 4 processor ring

topology. Because only 3 processors are needed, the grid topology does not make

sense. For this reason the grid topology will not be discussed any farther.

5.3.4 Star

A three processor star topology is essentially the same as the line/ring topol-

ogy previously discussed. For this reason the star topology will not be discussed

further and the results obtained in real-time experiments of the ring topology will be

considered sufficient.

5.4 2 x 2 Differential Space-Time Parallel Processing

The 2× 2 differential space-time algorithm can be characterized by Equation

4.13:

G̃k = arg max
G∈G

Re{Tr{GY H
k Yk−1}} (5.6)

(repeated here as Equation 5.6 for convenience), and as shown in Figure 4.4 from the

previous chapter.

To better understand this equation we need to discuss the dimensions of each

matrix and understand where each variable of the equation comes from. Yk is a 2× 2

matrix that contains the signal information obtained from both receive antennas at

59

times t and t+T , similar to the Alamouti receive matrix as shown in Table 4.3. Yk−1

is simply the time delayed version of Yk.

Matrix G is one of the 2× 2 matrices of the quaternion group as discussed in

Chapter 4 and shown in Equation 4.11. Because we need to find only the trace of

GY ∗
k Yk−1, we do not need to multiply out all of the values of G. Only the diagonal

elements are needed, thus reducing computation.

Because there are 8 members of the quaternion group, there will need to

be 8 different calculations of Tr{GY ∗
k Yk−1}. To find the maximum value of the

Tr{GY ∗
k Yk−1} equation, a TI optimized assembly routine is used that returns the

maximum value of an input vector. Certain restrictions apply to the code that must

be taken into consideration when using this assembly code routine. TI has made

available two optimized assembly routines that return either the maximum value of

a vector (if the vector length is multiple of 4 and greater than or equal to 16) or a

pointer to the element that is found to be the maximum value of a vector (if the

vector length is a multiple of 3 and greater than or equal to 9).

Like the Alamouti decoder, this decoder is expanded to see where information

is coming from, how many multiplies and adds/subtracts are required, and to visualize

the flow of data:

r02 r12

r03 r13

H
r00 r10

r01 r11

 =

r∗02r00 + r∗03r01 r∗02r10 + r∗03r11

r∗12r00 + r∗13r01 r∗12r10 + r∗13r11

 . (5.7)

In Equation 5.7, rij is the received signal from antenna i, where i = 0, 1, at time

instance j, where j = 0, 1 apply to Yk−1 and j = 2, 3 apply to Yk.

As seen in Equation 5.7 the diagonal elements of Y H
k Yk−1 come from the same

antenna, whereas the off-diagonal elements involve cross-processor multiplies and ad-

ditions. The G matrices need not be discussed in greater detail as they are known

before hand and can be made available on any processor that requires them. As seen

in Equation 5.7, eight multiplications and three additions are required per individual

G matrix. For each, 64 multiplications and 24 additions are needed for each symbol

decision.

60

Once again, as these calculations do not take into account the real and imag-

inary parts of the symbol, the total number of multiplications equals 256 multipli-

cations plus 128 additions and the total number of additions equals 48. The total

number of processor cycles required for the 2×2 differential decoding can be estimated

by the following equation:

α

(
cycles

word

)
= 256

(
multiplies

word

)
40

(
cycles

multiply

)
16K

(
words

buffer

)
+

128

(
additions

word

)
36

(
cycles

addition

)
16K

(
words

buffer

)
+

48

(
additions

word

)
36

(
cycles

addition

)
16K

(
words

buffer

)

(5.8)

where α is the total number of processor cycles required for each 16K buffer full of

data from the communications processor, approximately 265 million processor cycles

per 16K buffer of data. About 300 million processor cycles are available every second

from the processor, so

β =
300× 106

265× 106
16K (5.9)

where β equals approximately 18K symbols per second. This could be considered

enough symbols per second for the narrow band case. However, this does not take

into account the process of finding the maximum value of the Re Tr{GY ∗
k Yk−1}, the

overhead of running tasks, and transferring data between memory locations. Two

processors will be used for 2 × 2 differential decoding to ensure the computational

power required.

Only the bus, line/ring, grid, and star topologies will be discussed. Like the

Alamouti decoder, the hypercube, binary tree, and pyramid topologies are too com-

plex for decoding the 2× 2 case and the additional processors are not needed.

5.4.1 Bus

Figure 5.3 illustrates the proposed method of implementing the differential

space-time algorithm using a bus topology. Wireless data is first processed by the

61

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

r13

r12

r11

r10

r03

r02

01r

r00

max[G]

Gk
~

G
G
G

1

2

3

Yk Yk−1

r10r00

r1101r
r12r02

r03 r13 G7
G8

G4
G5
G6

Tr

VME Bus

Tr

Figure 5.3: Proposed Bus Architecture

two communications processors and then sent over the bus to the remaining two

processors responsible for differential decoding. The decoding has been partitioned

into two parts in an effort to share the processing power between the two available

decoding processors.

The first decoding processor will solve for each Y ∗
k Yk−1 by combining the data

received from both communications processors and then Tr{GY ∗
k Yk−1} where k =

1, 2, 3. This processor will then transfer all solved data over to the other decoding

processor which will find the remaining five Tr{GY ∗
k Yk−1} where k = 4, ..., 8. This

processor will also be responsible for finding the maximum value of the g vector

formed by solving the Tr{GY ∗
k Yk−1} equation. Once again, notice that it makes no

difference which processor acts as the communications processor as the bus topology

allows for the same communication time between all processors.

5.4.2 Line/Ring

Figure 5.4 illustrates the proposed method of implementing the differential

algorithm using a ring architecture. When using a ring topology, there are two options

as to where the antenna may be placed in the ring. The first is placing the antennas

on every other processor as shown in Figure 5.4. The second option would be to have

the antennas connected to adjacent processors. The designs are very similar, but the

method chosen, as illustrated in Figure 5.4, requires only one instance of having to

62

Match Filter,

Interpolation,
Timing,

etc.

r03 r02 01r r00

Match Filter,

Interpolation,
Timing,

etc.

r13 r12 r11 r10
r03 r02 01r r00

G
G
G

1

2

3

Gk
~

max[G]

G5
G4

G8

Yk Yk−1
IPBIFO IPBIFO IPBIFO

IPBIFO

Tr

Tr

G6

G7

Figure 5.4: Proposed Line/Ring Architecture

pass data through a processor without that processor acting upon the data. The

partitioning of the algorithm is the same as in the bus case.

5.4.3 Grid/Mesh

As the discussed in the Alamouti section, the grid topology is the same as

a 4 processor ring topology. For this reason the grid topology will not be further

discussed and the results obtained in the real-time experiments of the ring topology

will be considered equal to what the results of the grid topology would have been.

5.4.4 Star

Figure 5.5 illustrates the proposed method of implementing the differential

algorithm using a star architecture. The two communications processors are placed

as child processors. The partitioning of the algorithm is the same as in the other 2×2

cases. Their is one virtual IPBIFO connection as illustrated and explained in Figure

5.5. The central processor was chosen to compute the first half of the differential

algorithm so that there is no additional communication overhead by having to pass

data back and forth from the central processor to the other child decoding processor.

The central processor does not end up with the final results in this case.

63

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

r13 r12 r11 r10r03 r02 01r r00

G
G
G

1

2

3

Yk Yk−1

r10r00

r1101r
r12r02

r03 r13

G4

G5

G6

G7
G8

Gk
~

max[G]

IPBIFO

IPBIFO

Virtual IPBIFO Connection
(Must pass through one DSP)

Tr
Tr

Figure 5.5: Proposed Star Parallel Processing

5.5 4 x 4 Differential Space-Time Parallel Processing

The 4×4 differential space-time algorithm can also be characterized by Equa-

tion 4.13, as shown in Figure 4.4. However, the dimensions of the matrices change

from 2 × 2 to 4 × 4. Yk is now a 4 × 4 matrix that contains the signal information

obtained from 4 receive antennas at times t, t + T , t + 2T , and t + 3T . Yk−1 is still

the time delayed version of Yk.

Matrix G is now one of the sixteen 4 × 4 matrices of the unitary group code

discussed in Chapter 4. We still only need to find the trace of GY ∗
k Yk−1, so we do not

need to multiply out all of the values of G. Like the 2 × 2 differential case, the G

matrices need not be analyzed in greater detail as they are known before-hand and

can be made readily available on any processor that requires them. The TI optimized

assembly routine will again be used that returns the maximum value of an input

vector. The assembly routine’s restrictions can be ignored for the 16x1 vector case as

it will return the maximum value.

64

This decoder can be multiplied out to visualize where information is coming

from, and the calculations that need to take place:

r04 r14 r24 r34

r05 r15 r25 r35

r06 r16 r26 r36

r07 r17 r27 r37

H

r00 r10 r20 r30

r01 r11 r21 r31

r02 r12 r22 r32

r03 r13 r23 r33

=

rA rB rC rD

rE rF rG rH

rI rJ rK rL

rM rN rO rP

(5.10)

where

rA = r∗04r00 + r∗05r01 + r∗06r02 + r∗07r03, (5.11)

rF = r∗14r10 + r∗15r11 + r∗16r12 + r∗17r13, (5.12)

rK = r∗24r20 + r∗25r21 + r∗26r22 + r∗27r23, (5.13)

and

rP = r∗34r30 + r∗35r31 + r∗36r32 + r∗37r33. (5.14)

In Equation 5.10, rij is the received signal from antenna i, where i = 0, 1, 2, 3, at time

instance j, where j = 0, 1, 2, 3 apply to Yk−1 and j = 4, 5, 6, 7 apply to Yk.

Just like the 2× 2 differential case, and as seen in Equations 5.11, 5.12, 5.13,

and 5.14, the diagonal elements of Y H
k Yk−1 come from the same antenna, whereas

the off-diagonal elements involve cross-processor multiplications and additions. Also

notice that only cross-processor multiplications and additions are needed for the off-

diagonal elements across 2 processors, not across all 4. This can be taken advantage

of when using parallel processing.

As deduced from Equations 5.11, 5.12, 5.13, and 5.14, for each symbol or I

and Q value, 384 multiplications and 48 additions are needed. Once again, these

calculations do not take into account the real and imaginary parts of the symbol, so

the total number of operations equals 1536 multiplications plus 768 additions and the

total number of additions equals 96. The total number of processor cycles required

65

for the 4× 4 differential decoding can be determined by the following equation:

α

(
cycles

word

)
= 1, 536

(
multiplies

word

)
40

(
cycles

multiply

)
16K

(
words

buffer

)
+

768

(
additions

word

)
36

(
cycles

addition

)
16K

(
words

buffer

)
+

96

(
additions

word

)
36

(
cycles

addition

)
16K

(
words

buffer

)

(5.15)

where α is the total number of processor cycles required for each 16K buffer full of

data from the communications processor, almost 1.5 billion processor cycles per 16K

buffer of data. About 300 million processor cycles are available every second from

the processor, so

β =
300× 106

1.5× 109
16K (5.16)

where β equals approximately 0.2K symbols per second. Thus a single processor

can decode 0.2 x 16K ≈ 3400 symbols per second. This is obviously not sufficient

bandwidth for even narrow band communications, so 6 decoding processors will be

used to decode almost 20K symbols per second leaving a little room for overhead and

the maximum value function.

5.5.1 Bus

Figure 5.6 illustrates the proposed method of implementing the differential

algorithm using a bus architecture. Like the 2×2 differential case, data is processed by

the four communications processors and then sent over the VME bus to the remaining

processors responsible for differential decoding. The decoding has been partitioned

among all of the remaining processors with the goal of using similar amounts of

processing power on each processor.

There are 6 processors available for decoding. One processor will calculate

the diagonals, rA, rF , rK , and rP . Four processors will split up the 16 GY ∗
k Yk−1

calculations. The remaining processor will be responsible for the maximum value

calculation and would be available for additional computations. The maximum value

66

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

r30

r31

r37

..

.

r20

r21

r27

..

.

r10

r11

r17

..

.

r00

r07

r01

..

.rA
rF

rK
rP

r10

r11

r17

..

.

r00

r07

r01

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

G5
G6
G7
G8

G1
G2
G3
G4

G9
G10
G11
G12

G13
G14
G15
G16

max[G 1−16]TrTr Tr Tr

VME Bus

VME Bus

Figure 5.6: Proposed Bus Parallel Processing

function will not require the complete processing power of one DSP and can be

used for additional tasks, for example, communicating with the host computer, post

processing, or formatting of data.

5.5.2 Line/Ring

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

r17 . .. r11 r10 r27 . .. r21 r20 r37 . .. r31 r30

Match Filter,

Interpolation,
Timing,

etc.

. .. r01 r00r07

r10

r11

r17

..

.

r00

r07

r01

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

rA
rF

rK
rP

G1
G2
G3
G4

G5
G6
G7
G8

G9
G10
G11
G12

G13
G14
G15
G16

max[G 1−16]Tr Tr Tr Tr

IPBIFO

IPBIFO

IPBIFO

Virtual

IPBIFO

IPBIFO

Virtual

RACEway

RACEway

IPBIFO

Virtual

RACEway

Virtual

RACEway

Figure 5.7: Proposed Ring Parallel Processing

67

Figure 5.7 illustrates the proposed method of implementing the differential

algorithm using a line/ring architecture. The partitioning of the algorithm is the same

as in the bus case with the only difference being the inter-processor communication

paths taken. Because of the inherent pipelining nature of the ring topology, once

data has been collected from the communications processors, data may be pipelined

through until all computations are finished.

The antennas are placed on one side of the line/ring topology so that the

only inter-processor communication overhead comes when trying to communicate the

received data to the decoding processors. Data are then easily pipelined through

all of the computational processors. A ring architecture isn’t really needed as a

unidirectional line topology would suffice for this method of decoding.

The placement of the communications processor and decoding processors in the

line/ring was determined by matching the hardware paths available in the real-time

system as closely as possible to minimize virtual connections. The virtual connec-

tions in Figure 5.7 are illustrated as dashed lines and have the actual communication

path shown. The four rightmost processors are all connected by IPBIFO connections

and are thus all on one board. The second and third processors on each row are

also contained on one board. The two leftmost processors would therefore be on a

third board. Any IPBIFO connection guarantees that the processors connected must

share the same board. The virtual connections between boards are labeled virtual

RACEway and thus use the RACEway bus for board-to-board communication.

5.5.3 Grid/Mesh

Figure 5.8 illustrates the proposed method of implementing the differential

algorithm using the grid architecture. The decoding of the data is partitioned the

same as in the previous 4 × 4 topologies. There are numerous ways to move data

around using a 2×5 grid topology, however only the method shown in Figure 5.8 will

be analyzed. This was determined by trying to match the hardware paths actually

available in the real-time system and thus minimize any virtual connections. It can

be seen in the figure that the leftmost four processors all connect to each other using

68

Match Filter,

Interpolation,
Timing,

etc.

r10

r11

r17

..

.

r10

r11

r17

..

.

r00

r07

r01

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

rA
rF

rK
rP

G 13

 14G
G 15
G 16

Trmax [G 1−16]

Match Filter,

Interpolation,
Timing,

etc.

r30

r31

r37

..

.

Match Filter,

Interpolation,
Timing,

etc.

r20

r21

r27

..

.

Match Filter,

Interpolation,
Timing,

etc.

r00

r07

r01

..

.

G 1
G 2
G 3
G 4

Tr

G 5
G 6
G 7
G 8

Tr

G 9
G 10
G 11
G 12

Tr

IPBIFO
IPBIFO

IPBIFO

IPBIFO

IPBIFO IPBIFO IPBIFO

Virutal

RACEway

Virutal

RACEway

Virutal

RACEway

RACEway

Virutal

IPBIFO

IPBIFO

Virutal RACEway

Virutal RACEway

Figure 5.8: Proposed Grid Parallel Processing

IPBIFOs. These processors are on one board. The same holds true for the four

rightmost processors. The middle two processors must then be on another board.

The virtual connections between boards are labeled virtual RACEway and also use

the RACEway bus for board-to-board communication.

5.5.4 Star

Figure 5.9 illustrates the proposed method of implementing the differential

algorithm using a star architecture. The data is again partitioned the same as in the

previous 4× 4 topologies. The central processor is responsible for collecting the data

from the communications processors and dividing it among the remaining processors

for decoding. The central processor must also coordinate all of the data passing that

must take place for the overall decoding algorithm.

Since the star topology has one central processor that all other processors

communicate with, almost all of the processor-to-processor communication must be

modeled using virtual RACEway connections. There is one processor that is able

to communicate with the central processor using an IPBIFO connection and is on

the same board. There are three DSP boards used in this topology; however, due to

69

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

r10

r11

r17

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

r00

r07

r01

..

.

r10

r11

r17

..

.

r00

r07

r01

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

rA
rF

rK
rP

max[G 1−16]

G 1
G 2
G 3
G 4

G 6
G 7
G 8

G 5

G 9
G 10
G 11
G 12

G 13
G 14
G 15
G 16

Tr

Tr

Tr

Tr

Virtual
RACEway

Virtual
RACEway

Virtual
RACEway Virtual

RACEway

IPBIFO

Virtual Virtual

Virtual

RACEway

RACEway
RACEway

RACEway

Virtual

Figure 5.9: Proposed Star Parallel Processing

topology constraints, processors that are right next to each other will not be able to

communicate directly.

5.5.5 Hypercube

Figure 5.10 illustrates the proposed method of implementing the differential

algorithm using a hypercube architecture. Hypercube topologies only work with a

number of processors equal to a power of 2. For this reason, only 8 processors will

be used for the hypercube topology in our system. If more processors are needed,

then the hypercube topology requires 16 processors. Although we do have enough

processors on our system to simulate a 16 processor decoder, there would be too many

wasted clock cycles for the narrow band case.

The communications processors are placed on one side of the hypercube. The

data is then passed over to the other side of the topology where a four processor ring

is formed to compute the decoding algorithm. Since only 4 processors are available to

70

Match Filter,

Interpolation,
Timing,

etc.

r10

r11

r17

..

.

Match Filter,

Interpolation,
Timing,

etc.

r00

r07

r01

..

.

Match Filter,

Interpolation,
Timing,

etc.

r20

r21

r27

..

.

Match Filter,

Interpolation,
Timing,

etc.

r30

r31

r37

..

.

max[G 1−16]

G 13
G 14
G 15
G 16

rA
rF

rK
rP

r10

r11

r17

..

.

r00

r07

r01

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

G 9
G 10
G 11
G 12

G 8

G 7

Tr

G 5
G 6

G 4

G 2

G 1

G 3

Tr

Tr

IPBIFO

IPBIFO

IPBIFO

IPBIFO

IPBIFO

IPBIFO

IPBIFOIPBIFO

Virtual
RACEway

Virtual
RACEway

Virtual
RACEway Virtual

RACEway

Figure 5.10: Proposed Hypercube Parallel Processing

compute the decoding algorithm (compared to six for the previously mentioned 4× 4

topologies), the partitioning of the decoding process must be changed. One processor

will still compute all of the diagonal elements but now the remaining three processors

will compute the remainder of the decoding algorithm.

Only two boards are needed as the topology requires only eight processors.

As constrained by hardware, there are two communications processor per board and

two algorithm decoding processors per board. The boards are connected via virtual

RACEway connections. This topology and its processor placement can be imagined

by placing the two boards on top of one another and connecting each processor to

the processor above or below it.

5.5.6 Binary Tree

Figure 5.11 illustrates the proposed method of implementing the differential

algorithm using a binary tree architecture. Similar to the hypercube, this topology

requires less than the number of processors needed to maintain the desired throughput

discussed in the introduction of Section 5.5. A binary tree topology requires that the

71

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

Match Filter,

Interpolation,
Timing,

etc.

r10

r11

r17

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

r00

r07

r01

..

.

r00

r01

..

.
r07

r10

r11

r17

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

rA

rF

rK

rP

G2

G8

..

.
G1

G9

G10..
.

G16

max [G 1−16]

rA
rF

rK
rP

r10

r11

r17

..

.

r00

r07

r01

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

IPBIFO IPBIFO

IPBIFO
Virtual

RACEway

Virtual
IPBIFO

Virtual
IPBIFO

Tr

Figure 5.11: Proposed Binary Tree Parallel Processing

number of processors must be a power of 2 minus one. Unless 15 processors are used

with wasted clock cycles, 7 processors (instead of 10) must now do the job of the

communication and decoding tasks.

Since there are four communications processors, they fit nicely at the top of

the tree as shown in Figure 5.11. Data is passed down the tree and does not all come

together to be processed until it reaches the root of the tree. Minimal processing is

able to be done on the intermediate layer of the tree and the root processor is required

to do almost the majority of the processing. Even if 15 processors were used, all of

the data would still have to be passed down the tree before it could be processed.

With 15 processors, data could be passed up the other half branch of the tree, but

with additional inter-processor communication overhead and wasted processor cycles.

Again, only two boards are needed to accommodate 7 processors. One half

of the tree plus the root processor is contained on one board and the other top

half of the tree is on the other board. Virtual IPBIFO transfers (inter-processor

communication through another processor or through global memory transfers) take

care of processors that are not directly connected. One virtual RACEway connection

72

is used to communicate between boards, between the right top half of the processors

in Figure 5.11 and the root processor contained on the other board.

5.5.7 Pyramid

rA rF

rK
rP

Match Filter,

Interpolation,
Timing,

etc.

r20

r21

r27

..

.

Match Filter,

Interpolation,
Timing,

etc.

r30

r31

r37

..

.

Match Filter,

Interpolation,
Timing,

etc.

r10

r11

r17

..

.

Match Filter,

Interpolation,
Timing,

etc.

r00

r07

r01

..

.

G1

G2

G8

..

.
G9

G10..
.

G16

max [G 1−16]

rA
rF

rK
rP

r10

r11

r17

..

.

r00

r07

r01

..

.

r20

r21

r27

..

.

r30

r31

r37

..

.

IPBIFO

IPBIFO

IPBIFO

Virtual
RACEway

Virtual
RACEway

Virtual
IPBIFO

Virtual
RACEway

Virtual
RACEway

Tr

Figure 5.12: Proposed Pyramid Parallel Processing

Figure 5.12 illustrates the proposed method of implementing the differential

algorithm using a pyramid architecture. A problem with the pyramid topology, sim-

ilar to the binary tree and hypercube, is that only 5 processors may be used for the

decoding algorithm unless 21 processors are available. Twenty one processors are not

available on our system, so 5 must be used.

Data is simply passed from the communications processors, aggregated, and

then processed on the top of the pyramid. Three of the processors come from one

board and the other two come from the other board. Virtual RACEway connections

73

are used to communicate across boards and virtual IPBIFO connections are used to

communicate onboard when two processors are not directly connected.

Like the binary tree topology, a single processor is left to finish the decoding

process. The hypercube doesn’t appear to be beneficial to us as the links between

processors at the base of the pyramid are not used and the topology simply mimics

a five processor star topology with a very powerful primary/central processor that is

not physically available.

5.6 Summary

The Alamouti, 2 × 2 and 4 × 4 differential space-time decoding algorithms

have been mapped out using common parallel processing topologies. The final step

is to implement the decoding algorithms on the real-time system and benchmark

their performance. Combining the decoding algorithm benchmarks with the inter-

processor communication benchmarks will give the total processor cycles required for

each decoding algorithm using each parallel processing topology.

74

Chapter 6

Results

Each space-time decoding algorithm has been implemented on DSP processors.

As discussed in Chapter 4, the 4×4 differential space-time decoding algorithm would

not work at this point (because we are using QPSK) on the real-time equipment.

However, using benchmarks and programming the algorithm on the DSPs will allow

us to determine the performance of the different parallel processing topologies and

the decoding algorithm in general. This chapter describes the implementation details

of each algorithm and the results obtained from real-time benchmarks.

6.1 Methodology

Each space-time decoding algorithm was broken down into small specific roles

as discussed and illustrated in Chapters 4 and 5. These roles directly relate to the

software tasks running on the real-time operating system (RTOS). These tasks were

timed and using the timer mechanism found on the DSP processors. The DSP timing

mechanism is restricted on a per software function basis, therefore all timing mea-

surements were performed per RTOS software function (functions are refereed to as

tasks by the TI DSP RTOS and we will as well for the remainder of this paper).

A software library was created during system benchmark testing that contains

the RTOS tasks to transfer data from processor to processor. The MIMO decoding

algorithm timing results supplement the benchmark testing results. The results of the

different functional and RTOS tasks are accumulated per processor and then across

all processors involved in the MIMO decoding algorithm. This methodology has the

benefit of producing results that can be extrapolated to larger systems.

75

As previously discussed, symbol timing, training data, and other issues have

not been completely solved to allow for true MIMO transmission and reception. This

means that the data being processed during the decoding algorithms is not actual

data being sent from a transmitter and processed, but random data to take its place.

Because these tests are concerned with the real-time aspects of the chosen space-time

algorithms, and not the actual transmission and reception using these algorithms,

these tests fulfil their purpose.

The transfer of data from processor to processor is always assumed to use

the maximum block size. This minimizes the impact of data transfer overhead and

maximizes throughput. For example, data can be passed from processor to processor

via the inter-processor BIFIFO (IPBIFO). Data can be transferred in 4 byte (or one

word) increments. Benchmark testing has shown that throughput is optimized by

transferring the full IPBIFO (32 kilobytes) at a time. The maximum block size for

IPBIFO transfers is thus 32 kilobytes.

On-chip RAM will always be the preferred location for computations. How-

ever, since its size is very limited, data must be buffered to and from the DSP pro-

cessor. Local SDRAM will always be preferred for the buffering of data as it is very

large and second in speed only to the on-chip RAM. Global memory will be the last

place used for storing results, but it must be used frequently for all board-to-board

communication. All of the final results will be placed in global memory to simulate

the real life scenario where the results must be passed onto a host processor board

for interpretation.

Texas Instruments has optimized assembly code for a variety of common DSP

functions. Use will be made of this optimized code for the FFT used in matched

filtering and finding the maximum value in a vector for the 4×4 differential decoding.

The number of clock cycles may be converted to human readable form by the

equation:

t =
N

(
4

300MHz

) (6.1)

76

where t equals the time in seconds and N equals the measured number of timing ticks.

Notice that there are 4 processor cycles for every timing tick. All of the results will

be presented in timing ticks and can easily be converted to processor clock cycles by

multiplying by four. The timing ticker wraps around at 0xFFFFFFFF, so care was

taken to ensure that the timer is not run too long. This is not a problem for these

tests, but would be a concern for longer benchmarks.

On each processor, the tasks are divided into essentially two groups: one group

of tasks that concern themselves with the actual space-time decoding algorithm and

another group of tasks that take care of memory transfers, memory management, and

inter-processor communication. The passing of information always makes use of the

DMA co-processor to minimize CPU processing.

The implementation of each decoding algorithm makes use of the same tasks

and is independent of the topology. The timing differences can only be attributed

to the topologies and their method of interconnections between the processors and

boards. The exceptions are for the hypercube, binary tree, and pyramid 4 × 4 dif-

ferential space-time cases where a different number of processors are used due to

topology constraints. These topologies conveniently replace inter-processor commu-

nication with a larger processor and are not directly comparable to the bus, line/ring,

star, and grid 4× 4 differential topologies. Even so, they are able to give insight into

the benefits and performance gain that additional hardware (for example, if a spe-

cialized FPGA board was acquired for the BYU real-time system) could bring to the

system.

A comparison of all of the topologies for each decoding algorithm is found at

the end of the discussion of results. All of the results are normalized to the fastest

topology (least number of total timing ticks). The topology with the least amount of

total timing ticks is divided by itself to normalize to one. The other topologies are

also divided by the same value. These results should enable the reader to quickly and

accurately compare topologies without the use of a calculator. As mentioned, the

exceptions are the hypercube, binary tree, and pyramid 4× 4 differential space-time

cases. These are normalized to the fastest bus, line/ring, star, or grid topology and

77

are less than one when the total timing ticks are less than best bus, line/ring, star, or

grid topology. This is due to the forced reduction in the number of DSP processors

used in those topologies. In some cases, it is not fair to directly compare the cycle

counts due to reduced inter-processor communication due to a smaller number of

processors. The normalization timing value is rounded to the hundreds or thousands

place to enable discussion and comparison, not precision.

6.2 Communications Processors

The communications processors are responsible for setting up and initiating

the real-time capture from the 6216, the RF frontend boards. These initialization

steps are contained in a task called “main” and are not timed. Each processor also

has a task named “taskHeartbeatLED” that is used as the idle task and for debugging

purposes, and is also not timed.

The tasks that were timed and are the critical processor intensive tasks are

the following.

• taskWriteDataVME - Responsible for the transfer of the output of the matched

filter data to the space-time decoding processors. This task transfers data from

the local SDRAM to the DSP board’s global buffer, which is accessible from

the VME bus for retrieval by the host computer for analysis. This task is used

for the bus topology and any board-to-board transfers. The results from this

task are derived from the inter-processor communication benchmarks found in

Appendix A.

• taskWriteDataIPBIFO - Also responsible for the transfer of the output of the

matched filter data to the space-time decoding processors. This task transfers

data using a DMA memory transfer from the DSP’s SDRAM to the IPBIFOs.

This task is used for any processor-to-processor communication on the same

board. The result is also derived from the benchmarks performed and can be

found in Appendix A.

78

• taskComplexFFT - Responsible for the matched filter output by computing the

complex FFT. This must be run twice to fill up the 16K IPBIFO. The number

of taps used for the matched filtering process is 64. The number of filter taps

was chosen as a compromise between accuracy and speed. The number of taps

needed for actual MIMO transmission may differ. The result is also derived

from the benchmarks performed and can be found in Appendix A.

Table 6.1 shows the number of processor timing ticks for each task on the communi-

cations processors. In Table 6.1 the ∗ refers to the fact that one or the other of the

tasks will execute, but not both. This is due to the processor only communicating

and passing the data via one communication path at a time depending on whether

bus or IPBIFO transfers are required.

Table 6.1: Communications Processor Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskWriteDataVME 47,621 1* 47,621

taskWriteDataIPBIFO 20,211 1* 20,211

taskComplexFFT 537,508 2 1,075,016

6.3 Alamouti Real-Time Processing

The Alamouti algorithm has been implemented on one DSP processor as dis-

cussed in Section 5.3. The space-time decoding algorithm is the same for each case

implemented with the exception of the inter-processor communication. Each proces-

sor has a task called “main” that is responsible for processor initialization and that is

not timed. Each processor also has a task named “taskHeartbeatLED” that is used

as the idle task and for debugging purposes and not timed.

79

The critical processor-intensive tasks that we timed are the following:

• taskGetDataVME - Responsible for the retrieval of the output of the matched

filter data from the communications processors. This task transfers data from

the VME bus to the DSP board’s global buffer and then to the DSP’s SDRAM.

This task is used for the bus topology. The result is derived from the benchmarks

performed and can be found in Appendix A.

• taskGetDataIPBIFO - Responsible for the retrieval of the output of the matched

filter data from the communications processors. This task transfers data using

a DMA memory transfer from the IPBIFOs to the DSP’s SDRAM. This task is

used for the line/ring topology. The result is also derived from the benchmarks

performed and can be found in Appendix A.

• taskAlaDecode - Responsible for the Alamouti decoding algorithm as discussed

in Section 5.3. This task was implemented on one processor and its results are

recorded here.

• taskWriteDataGBL - Responsible for the transfer of data to the DSP board’s

global memory where it can then be retrieved via the VME bus by the host

computer for post processing. The result is also derived from the benchmarks

performed and can be found in Appendix A.

6.3.1 Bus

Alamouti bus processing is simulated as follows: A buffer full of data is col-

lected from the matched filtering process, the DSP board’s global memory is filled and

an interrupt is sent to the decoding processor to let it know that the data is available

for processing. A software semaphore is used for the “ping-pong” buffer that controls

the data input and output from the Alamouti decoding process. When the decoding

process is finished, the results are sent to the DSP board’s global memory. By plac-

ing the results in global memory, it is then available to the host computer for post

processing if desired. See Figure 5.1. Table 6.2 shows the number of processor timing

ticks for each task using DSP-to-DSP communication via the VME bus.

80

Table 6.2: Alamouti Bus Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataVME 231,508 2 463,016

taskWriteDataGBL 47,621 2 95,242

taskAlaDecode 983,860 1 983,860

Grand Total 1,542,118

6.3.2 Line/Ring

Data is simulated and processed as explained in Section 5.3.2 (see Figure 5.2)

and using the same methodology as described in Section 6.3.1. Table 6.3 shows

the number of processor timing ticks for each task using inter-processor BIFIFO

communications.

Table 6.3: Alamouti Line/Ring Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 2 40,422

taskWriteDataGBL 47,621 1 47,621

taskAlaDecode 983,860 1 983,860

Grand Total 1,071,903

6.3.3 Comparison

Table 6.4 shows the total number of processor cycles simulated for each topol-

ogy for the Alamouti decoding algorithm on our real-time system. A clear difference

can be seen between the bus and line/ring topologies. One third of the total pro-

cessor cycles are used for bus data transfers compared with about ten percent for

the line/ring topology (see Tables 6.2 and 6.3). The line/ring topology is the clear

81

winner with a 44 percent speed up due to quick IPBIFO interconnects between DSP

processors.

The Alamouti algorithm implementation has proven to be very simple to im-

plement using only two processors. Since only one board is needed to compute this

MIMO algorithm, IPBIFO inter-processor communication should always be used. Fu-

ture work could be dedicated to higher order Alamouti systems; however, the cost

versus benefit is questionable. A more diverse system with additional receive and/or

transmit antennas may not require much additional processing power, but its benefits

are limited to diversity gain and not a fundamental increase in channel capacity or

throughput.

Table 6.4: Alamouti Real-Time Timing Results Comparison

Topology Total Timing Ticks Normalized Timing

Bus 1,542,118 1.44

Line/Ring 1,071,903 1.00

6.4 2 x 2 Differential Space-Time Real-Time Processing

The 2×2 differential space-time algorithm decoding has been implemented on

two DSP processors as discussed in Section 5.4. The space-time decoding algorithm

is the same for each case implemented with the exception of inter-processor communi-

cation. Each processor also has a task called “main” that is responsible for processor

initialization and is not timed and a task named “taskHeartbeatLED” that is used

as the idle task and for debugging purposes and is also not timed.

The critical processor-intensive tasks that are timed are the following:

• taskGetDataVME - Responsible for the retrieval of the output of the matched

filter data from the communications processors. This task transfers data from

the VME bus to the DSP board’s global buffer and then to the DSP’s SDRAM.

82

The result is derived from the benchmarks performed and can be found in

Appendix A.

• taskGetDataIPBIFO - Responsible for the retrieval of the output of the matched

filter data from the communications processors. This task transfers data using

a DMA memory transfer from the IPBIFO’s to the DSP’s SDRAM. The result

is also derived from the benchmarks performed and can be found in Appendix

A.

• taskDiffDecode - Responsible for the 2 × 2 differential space-time decoding al-

gorithm as discussed in Section 5.4. The differential decoding task (taskD-

iffDecode) is split into two processors as discussed in Section 5.4.1. There will

be two different subtasks created for this task, one that encompasses finding

all of the YkYk−1 and the first three resultant G product matrices (referred

to as “taskDiffDecodeA”) and the other that processes the last 5 resultant G

product matrices and finds the maximum value of the results (referred to as

“taskDiffDecodeB”). This task was implemented on the wireless system and

each subtask’s results are recorded here.

• taskWriteDataGBL - Responsible for the writing of data to the DSP board’s

global memory where it can then be retrieved through the VME bus by the host

computer for post processing. The result is also derived from the benchmarks

performed and can be found in Appendix A.

6.4.1 Bus

The 2 × 2 differential bus processing is simulated as follows: when a buffer

full of data is collected from the matched filtering process, the DSP board’s global

memory is filled and an interrupt is sent to the decoding processors to let them know

that the data is now available for processing. Data in global memory is partitioned

so that all data is available to all processors for both read/write access. Software

semaphores are used for the “ping-pong” buffers that control the data input and out-

put from the 2×2 differential decoding process to ensure that data is not overwritten.

83

The differential decoding algorithm is split across two processors and divided into two

different software task. The processor in-charge of software task taskDiffDecodeA be-

gins computing the YkYk−1 and passes the results to the processor in-charge of the

other software task, taskDiffDecodeB. The processor in-charge of taskDiffDecodeA

also computes the first three results of GYkYk−1 and passes them to the second pro-

cessor which computes the last five GYkYk−1 and finds the maximum of all eight

results. When finished processing, data is sent to another memory location in the

DSP board’s global memory, making it available to the host computer board for post

processing. See Figure 5.3. Table 6.5 shows the number of processor timing ticks for

each task using VME bus DSP-to-DSP communications.

Table 6.5: 2× 2 Differential Space-Time Bus Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataVME 231,508 5 1,157,540

taskDiffDecodeA 4,018,715 1 4,018,715

taskDiffDecodeB 4,952,453 1 4,952,453

taskWriteDataGBL 47,621 2 95,242

Grand Total 10,223,950

6.4.2 Line/Ring

The 2 × 2 differential line/ring processing is simulated as follows: when a

buffer full of data is collected from the matched filtering process, both of the DSP’s

IPBIFOs are filled with the same information and interrupts are sent to the decoding

processors to let them know that the data is available for processing. The data

is received by both decoding processors and is partitioned in the processor’s local

SDRAM for storage. Data is processed using the same methodology as described in

Section 6.4.1 and when finished, the resultant data is sent to a memory location in

84

the DSP board’s global memory making it available to the host computer board for

post processing. See Figure 5.4. Table 6.6 shows the number of processor timing ticks

for each task using IPBIFO DSP-to-DSP processor communications.

Table 6.6: 2× 2 Differential Space-Time Line/Ring Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 6 121,266

taskWriteDataIPBIFO 20,211 4 80,844

taskDiffDecodeA 4,018,715 1 4,018,715

taskDiffDecodeB 4,952,453 1 4,952,453

taskWriteDataGBL 47,621 1 47,621

Grand Total 9,220,899

6.4.3 Star

The 2×2 start topology results are the same as the 2×2 ring case. This is due

to the virtual IPBIFO connection (as discussed in Section 5.4.4) essentially making

the star topology a ring topology with our equipment. See Figure 5.5. Table 6.7

shows the number of processor timing ticks for each task using IPBIFO DSP-to-DSP

processor communications, including the one virtual IPBIFO connection.

6.4.4 Comparison

Table 6.8 shows the total number of processor cycles simulated for each topol-

ogy for the 2× 2 differential space-time decoding algorithm on our real-time system

along with the normalized timing value. A difference can be seen between the bus

and line/ring topologies, but not as pronounced as the Alamouti algorithm. About

one tenth of the total processor cycles are used for bus data transfers compared with

about three percent for the line/ring and star topology (see Tables 6.5, 6.6, and 6.7).

85

Table 6.7: 2× 2 Differential Space-Time Star Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 6 121,266

taskWriteDataIPBIFO 20,211 4 80,844

taskDiffDecodeA 4,018,715 1 4,018,715

taskDiffDecodeB 4,952,453 1 4,952,453

taskWriteDataGBL 47,621 1 47,621

Grand Total 9,220,899

The line/ring and star topologies are the winners with an eleven percent speed

up due once again to quick IPBIFO interconnects between DSP processors. As dis-

cussed in Chapter 5, the line/ring and start topology are essentially the same on our

real-time system and thus the timing results are also the same. The narrower dif-

ference between bus-based communications and IPBIFO communications can easily

be attributed to the virtual connections that were used. These virtual connections

essentially constitute a hybrid bus/IPBIFO-based communication and contribute to

the slow down.

However, not all difference in the results can be attributed to the virtual con-

nections. The lowered percentage difference between the total timing ticks for the

fastest and slowest Alamouti topology and the fastest and slowest 2 × 2 differen-

tial space-time algorithm is attributed to the decreasing role that the inter-processor

communication plays within a processor intensive algorithm. As the need for more

processing increases (in a system with limited processing power and a limited number

of processors), the role that inter-processor communication plays is reduced. In this

case, the bottleneck appears to be processing power and not inter-processor commu-

nication.

86

Table 6.8: 2× 2 Differential Real-Time Timing Results Comparison

Topology Total Timing Ticks Normalized Timing

Bus 10,223,950 1.11

Line/Ring 9,220,899 1.00

Star 9,220,899 1.00

6.5 4 x 4 Differential Space-Time Real-Time Processing

The 4 × 4 differential space-time algorithm decoding has been implemented

using six DSP processors as discussed in Section 5.5. The space-time decoding algo-

rithm is the same for each case implemented with the exception of the inter-processor

communication. Each processor has a task called “main” that is responsible for pro-

cessor initialization and that is not timed. Each processor also has a task named

“taskHeartbeatLED” that is used as the idle task and for debugging purposes and

not timed.

The critical processor intensive tasks that are timed are the following:

• taskGetDataRACE - Responsible for the retrieval of any board-to-board data,

excluding the host computer. This task transfers data from the VME bus using

the RACEway board-to-board module, then to the DSP board’s global buffer,

and finally to the DSP’s SDRAM. The result is derived from the benchmarks

performed and can be found in Appendix A.

• taskGetDataIPBIFO - Responsible for the transfer of data using a DMA memory

transfer from the IPBIFO’s to the DSP’s SDRAM. This task will be used for

all DSP-to-DSP memory transfers (excluding the bus case). The result is also

derived from the benchmarks performed and can be found in Appendix A.

• taskDiffDecode - Responsible for the 4 × 4 differential space-time decoding al-

gorithm as discussed in Section 5.5. This task is different depending on the

processor it runs on due to the partitioning of the function onto multiple DSPs.

One processor is responsible for computing the YkYk−1, four for finding four

87

instances of GYkYk−1, and the fifth DSP processor is responsible for finding the

maximum value of each 16 length vector and for posting the results to global

memory. Extra processing is reserved for the fifth DSP to allow any additional

processing as discussed in Chapter 5.

• taskWriteDataGBL - Responsible for the writing of data to the DSP board’s

global memory where it can then be retrieved through the VME bus by the host

computer for post processing. The result is also derived from the benchmarks

performed and can be found in Appendix A.

There will be three different subtasks created for the differential decoding task

(taskDiffDecode): one that encompasses finding all of the YkYk−1 diagonal elements

(referred to as “taskDiffDecodeA”), one that computes four resultant G product ma-

trices (referred to as “taskDiffDecodeB”), and one that finds the maximum value of

the results (referred to as “taskDiffDecodeC”). This task was implemented on the

wireless system and each subtask’s results are benchmarked here.

6.5.1 Bus

The 4×4 differential bus processing is simulated as follows: data is transferred

through global memory to simulate RACEway bus transfers. When a buffer full of

data is collected from the matched filtering process, the DSP board’s global memory

is filled and interrupts are sent to the decoding processors to let them know that the

data are available for processing. Multiple boards are used, so data are transferred

to the board’s global memory that hosts the processor that runs “taskDiffDecodeA.”

The output of “taskDiffDecodeA” is transferred to the global memory of the other two

boards and “taskDiffDecodeB” starts running on the four available processors. Their

results are transferred to the last remaining processor to compute “taskDiffDecodeC .”

When finished processing, data are sent to another memory location in the DSP

board’s global memory making it available to the host computer board for post pro-

cessing. See Figure 5.6. Table 6.9 shows the number of processor timing ticks for

each task using RACEway bus DSP-to-DSP communications.

88

Table 6.9: 4× 4 Differential Space-Time Bus Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataRACE 165,517 12 1,986,204

taskWriteDataRACE 37,500 5 187,500

taskDiffDecodeA 3,080,106 1 3,080,106

taskDiffDecodeB 5,859,096 4 23,436,384

taskDiffDecodeC 8 1 8

taskWriteDataGBL 47,621 1 47,621

Grand Total 28,737,823

6.5.2 Line/Ring

The 4×4 differential line/ring processing is simulated using the same method-

ology found in the 4× 4 bus case but using the connections illustrated in Figure 5.7

and discussed in Section 5.5.2. Table 6.10 shows the number of processor timing ticks

for each task using IPBIFO transfers, and virtual connections comprised of RACEway

bus DSP-to-DSP communication.

6.5.3 Grid/Mesh

The 4×4 differential grid/mesh processing is simulated using the same method-

ology found in the 4× 4 bus case but using the connections illustrated in Figure 5.8

and discussed in Section 5.5.3. Table 6.11 shows the number of processor timing ticks

for each task.

6.5.4 Star

The 4×4 differential star processing is simulated using the same methodology

found in the 4 × 4 bus case but using the connections illustrated in Figure 5.9 and

discussed in Section 5.5.4. Table 6.12 shows the number of processor timing ticks for

each task.

89

Table 6.10: 4× 4 Differential Space-Time Line/Ring Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 12 242,532

taskWriteDataIPBIFO 20,211 10 202,110

taskGetDataRACE 165,517 8 1,324,136

taskWriteDataRACE 37,500 12 450,000

taskDiffDecodeA 3,080,106 1 3,080,106

taskDiffDecodeB 5,859,096 4 23,436,384

taskDiffDecodeC 8 1 8

taskWriteDataGBL 47,621 1 47,621

Grand Total 30,582,897

Table 6.11: 4× 4 Differential Space-Time Grid Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 10 202,110

taskWriteDataIPBIFO 20,211 6 121,266

taskGetDataRACE 165,517 10 1,655,170

taskWriteDataRACE 37,500 10 375,000

taskDiffDecodeA 3,080,106 1 3,080,106

taskDiffDecodeB 5,859,096 4 23,436,384

taskDiffDecodeC 8 1 8

taskWriteDataGBL 47,621 1 47,621

Grand Total 28,917,665

90

Table 6.12: 4× 4 Differential Space-Time Star Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 1 20,211

taskWriteDataIPBIFO 20,211 1 20,211

taskGetDataRACE 165,517 12 1,986,204

taskWriteDataRACE 37,500 12 450,000

taskDiffDecodeA 3,080,106 1 3,080,106

taskDiffDecodeB 5,859,096 4 23,436,384

taskDiffDecodeC 8 1 8

taskWriteDataGBL 47,621 1 47,621

Grand Total 29,040,745

6.5.5 Hypercube

The 4×4 differential hypercube processing is simulated using the same method-

ology found in the 4× 4 bus case but using the connections illustrated in Figure 5.10

and discussed in Section 5.5.5. Table 6.13 shows the number of processor timing ticks

for each task. The ∗ makes reference to the fact that there are only four processors

performing these tasks instead of six. Due to the reduced number of processors a

lower bit rate is expected.

6.5.6 Binary Tree

The 4 × 4 differential binary tree processing is simulated using the same

methodology found in the 4 × 4 bus case but using the connections illustrated in

Figure 5.11 and discussed in Section 5.5.6. Table 6.14 shows the number of processor

timing ticks for each task. The ∗ again makes reference to the fact that there are

fewer processors (in this case 3 instead of 6) performing these tasks. A lower bit rate

is also expected.

91

Table 6.13: 4× 4 Differential Space-Time Hypercube Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 9 181,899

taskWriteDataIPBIFO 20,211 6 121,266

taskGetDataRACE 165,517 4 662,068

taskWriteDataRACE 37,500 4 150,000

taskDiffDecodeA 3,080,106 1* 3,080,106

taskDiffDecodeB 5,859,096 4* 23,436,384

taskDiffDecodeC 8 1* 8

taskWriteDataGBL 47,621 1 47,621

Grand Total 27,679,352

Table 6.14: 4× 4 Differential Space-Time Binary Tree Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 7 141,477

taskWriteDataIPBIFO 20,211 3 60,633

taskGetDataRACE 165,517 1 165,517

taskWriteDataRACE 37,500 1 37,500

taskDiffDecodeA 3,080,106 1* 3,080,106

taskDiffDecodeB 5,859,096 4* 23,436,384

taskDiffDecodeC 8 1* 8

taskWriteDataGBL 47,621 1 47,621

Grand Total 26,969,246

92

6.5.7 Pyramid

The 4×4 differential pyramid processing is simulated using the same method-

ology found in the 4× 4 bus case but using the connections illustrated in Figure 5.12

and discussed in Section 5.5.7. Table 6.15 shows the number of processor timing ticks

for each task. The ∗ again makes reference to the fact that there are fewer processors

(in this case 1 instead of 6) performing these tasks. A lower bit rate is also expected.

Table 6.15: 4× 4 Differential Space-Time Pyramid Tasks & Timing Results

Task Name Number of Ticks Number of Times Used Total

taskGetDataIPBIFO 20,211 3 60,633

taskWriteDataIPBIFO 20,211 1 20,211

taskGetDataRACE 165,517 2 331,034

taskWriteDataRACE 37,500 2 75,000

taskDiffDecodeA 3,080,106 1* 3,080,106

taskDiffDecodeB 5,859,096 4* 23,436,384

taskDiffDecodeC 8 1* 8

taskWriteDataGBL 47,621 1 47,621

Grand Total 27,050,997

6.5.8 Comparison

Table 6.16 shows the total number of processor cycles for each topology for

the 4 × 4 differential space-time decoding algorithm on our real-time system along

with the normalized timing values. The normalized timing values are shown to the

thousandths place to differentiate between the topologies. Only a small difference can

be seen between the bus, line/ring, star, and grid topologies. Due to the high number

of processor cycles required to decode the 4× 4 differential algorithm, the processor-

to-processor communication did not play a significant role in the total timing values.

93

The topology with the highest number of total timing ticks (line/ring) saw an inter-

processor communication timing value versus total decoding algorithm timing value

ratio of ten percent (See Table 6.10).

Table 6.16: 4× 4 Differential Real-Time Timing Results Comparison

Topology Total Timing Ticks Normalized Timing

Bus 28,737,823 1.000

Line/Ring 30,582,897 1.060

Grid 28,917,665 1.006

Star 29,040,745 1.010

Hypercube* 27,679,352 0.963

Binary Tree* 26,969,246 0.938

Pyramid* 27,050,997 0.941

The ∗’s contained in Table 6.16 indicate topologies that are not directly com-

parable with the bus, line/ring, star, and grid topologies. This is due to the reduced

number of processors for these space-time algorithms and the reduction in intercon-

nection delays between the DSPs. As discussed in Section 6.1, these results help show

the cost versus benefit of obtaining higher performance processors to replace multiple

lesser performing processors. The bus, line/ring, star, and grid were normalized to

one around the best performer, the bus topology. The remainder of the topologies

were also normalized around the bus topology for comparison.

A surprising result is that the bus topology is the most efficient of the four com-

mon topologies. This is attributed to the virtual connections. The inter-processor

communication overhead associated with “fitting” the other topologies within our

real-time system using virtual topology connections outweighed the benefits of a sim-

ple bus-based topology. The virtual connections, as illustrated in Section 5.5 for the

4 × 4 topologies, also make use of RACEway bus-based communications to commu-

94

nicate from board to board. Even though there are fewer bus transfers using virtual

connections on the line/ring, grid, and star topologies compared to the bus topology,

there are significantly more IPBIFO transfers. In the end, the additional IPBIFO

transfers didn’t out-weigh the slower RACEway bus-based data transfers due to the

number of times they had to used to move data to the appropriate location for pro-

cessing.

The Binary Tree algorithm was the best performer out of the non-conforming

parallel processing topologies. This is primarily due to the fact that all communication

is done via the IPBIFOs except for one RACEway transfer. Since board-to-board

communication is the costliest, the topology requiring the least such communication

won. These results may be misleading considering that we are taking into account the

decoding of only one block of data. For example, the way the binary tree topology

was proposed, the inter-processor communication would have to go up and down the

tree. This would complicate and slow down any pipelining of data.

As previously discussed in Section 6.1, the advanced topologies are not directly

realizable on our system. However, Table 6.16 does show over a six percent increase

in performance between the bus topology and the binary tree topology. A cost versus

benefit analysis would have to be performed to determine if a six percent increase

would justify the purchase of an additional board. The board would have to replace

the processing power of four DSP processors and be able to transfer data of the

RACEway bus to be comparable to this discussion.

6.6 Interpretation

These results suggest that for higher order MIMO space-time decoding algo-

rithms, the multi-processor topology may be less important than the skill of the pro-

grammer efficiently implementing the decoding algorithm. Even with reduced inter-

processor communication, the hypercube, binary tree, and pyramid do not cause a

significant speed up in processing capability and show only marginal gains. It appears

that the majority of development time should be spent optimizing the space-time de-

coding implementation. The logical first steps would be to ensure that optimized

95

assembly libraries and functions are used whenever possible. More time should be

spent optimizing DSP code, most likely assembly code, than optimizing data trans-

fers.

However, when the total number of processor timing ticks is compared to the

percentage of total timing ticks, then it appears that a larger percentage of processor

cycles are used for inter-processor communication. If the rate at which the processor

timing ticks increases is constant and linear (from the 2 × 2 to the 4× 4 differential

space-time decoding algorithms), the rate at which additional processors are added

is constant and linear (taken from the 2 × 2 to the 4 × 4 case again), and the rate

at which inter-processor communication increases is constant and linear (again, from

the 2 × 2 to the 4 × 4 case), then additional insight can be gained for higher order

MIMO systems.

Table 6.17 shows the rate of increase in the number of processors needed to

compute the space-time algorithm, the amount of processing, and the inter-processor

communication overhead that was required to go from a 2 × 2 differential system to

a 4 × 4 differential system. Figure 6.1 shows what would happen if the amount of

processing and inter-processor communication continued at the same rate as what was

observed in Table 6.17. Notice that around a 16× 16 differential space-time decoder,

the amount of processing required to compute the algorithm would be the same as the

amount of processing required to transfer data back and forth between 70 processors

(assuming the same rate of increase of processors)! This would clearly contradict the

idea that most work should be spent optimizing the decoding algorithm and not the

inter-processor communication.

Table 6.17: Differential Space-Time Coding Comparison and Rate of Increase

Space-Time Code Number DSPs Algorithm Timing Inter-Processor Timing

2× 2 Differential 2 8,971,168 249,731

4× 4 Differential 6 26,516,498 2,221,325

Rate of Increase 3× ≈ 3× ≈ 10×

96

���������������������������������������	������	������	������	�����
� �� ��
� ���� � ���� �� � ������ �� �������� ! � "#

$ %&' ()* +,-),).& /0 %1234.*2 (5 6('7723' (8',,1.)70*)'.
Figure 6.1: Algorithm Timing Values Versus Inter-Processor Communication

To implement an 8× 8 differential space-time decoding algorithm on our sys-

tem, the primary task should be to optimize the differential decoding algorithm and

spend less time on the inter-processor communication. To implement a 16×16 differ-

ential space-time decoding algorithm, the work of optimizing the decoding algorithm

should already be accomplished and most of the time should then be spent to improve

the inter-processor communication. This appears to be the logical development path.

97

98

Chapter 7

Conclusion

There is scarce literature on the real-time implementation of MIMO systems

and almost none for higher order antennas systems (greater than the 4 × 4 antenna

case). We have examined the real-time parallel processing system that the BYU wire-

less lab has built and have laid a foundation for higher order antenna MIMO research.

Common parallel processing topologies have been discussed in Chapter 3. The Alam-

outi, the 2× 2 and the 4× 4 differential space-time algorithms have been discussed in

detail and their decoding algorithms have been implemented and benchmarked. All

inter-processor communication methods have also been benchmarked. These bench-

marks, in the form of the processor’s own timing capability, have been used to piece

together decoding algorithm plus parallel processing topology results. These results

are used to discuss each topology’s performance for each MIMO decoding algorithm

presented.

7.1 Discussion and Recommendations

For all of the calculations performed, each space-time decoding algorithm was

calculated for only one block of data through the parallel processing topology. Thus,

these results only account for one pass of data through the system. These condi-

tions allow for the best case scenario where processors are communicating without

interruptions from other processors. Bus based communications, including board to

board communications, are especially vulnerable to considerable slow down due to

processors waiting for the bus to be free. For this reason, for the 4 × 4 differential

decoding algorithm, the bus based topology may not be the top performer when total

throughput is considered.

99

For the simple narrow band 2×2 Alamouti algorithm, the line/ring topology is

clearly the best bet. All data is received and processed on one DSP board. When data

needs to be transferred to diagonal processors (where a direct IPBIFO connection is

not available) there are two paths available – transfer data through another DSP

processor or transfer data through the global memory. Transferring data through

another processor is faster; however, it ties up another processor’s CPU cycles and

a DMA coprocessor. Transferring data through global memory is slower, but does

not require the help of another DSP processor. However, only one DSP processor is

able to access global memory at a time and may not be available when needed. In

our system, when implementing the Alamouti algorithm, there is plenty of processing

power to choose either method.

For the 2 × 2 differential decoding algorithm, the line/ring or star topology

should be used. Because there is not a dedicated central processor available on our

DSP boards, the line/ring topology makes more sense than the star. The line/ring

topology takes advantage of the inherent ring architecture of the DSP boards when

using IPBIFOs for data transfers. When multiple passes of data are required, the

ring architecture would be able to maintain a constant throughput by continually

passing data to the next DSP for processing. The only slow down may be when the

final processor needs to pass data off board through the global memory. However,

this may be accomplished using a separate DMA coprocessor and should not interfere

with IPBIFO transfers.

The 4 × 4 differential decoding algorithm is able to stress the system more

and is thus more interesting. Although a bus-based topology is simple and effective

according to the results from Chapter 6, as discussed, there are throughput concerns

when multiple blocks of data are received. The grid topology also looks promising

since it was only a step behind the bus topology. With much of the processor in-

terconnection through IPBIFOs, it should also hold up better to multiple passes of

data.

The recommended topology for the space-time decoding algorithms discussed

and implemented on our system is the one that takes advantage of IPBIFO commu-

100

nication whenever possible on each processor board and uses the RACEway intercon-

nect for board-to-board communication. However, care must be taken when trading

topology complexity for faster inter-processor communication, a lesson that is learned

from the 4× 4 differential bus topology results.

Due to an exponential increase in required processing power, see Figure 6.1,

simply doubling the processing requirements obtained from the 4 × 4 case is not an

adequate solution to implement real-time 8 × 8 differential decoding (eight commu-

nications processors are needed leaving just 12 available for the decoding algorithm).

The BYU wireless lab should concentrate on implementing the 4×4 case and increas-

ing the bandwidth. There is plenty of additional processing power to accommodate

a wider band signal. However, a burst mode of transmitting data where the time be-

tween data bursts is greater than the time needed to decode at the receiver is possible.

Although not technically real-time, this method of transmission could accommodate

the 8× 8 case.

7.2 Future Work

As mentioned, most of the future work should be concentrated on optimizing

the Alamouti, 2 × 2 and 4 × 4 space-time coding and decoding algorithms. Much

care should be taken to use TI’s assembly routines whenever applicable. Optimized

assembly libraries should be included with the custom libraries already created and

should contain the common algorithms and functions that are used throughout the

differential space-time encoding and decoding process. With a solid basis of opti-

mized space-time functions, along with inter-processor functions that have already

been created, faster prototyping and programming would be possible to accelerate

the research in real-time MIMO processing. Other modulation techniques must be

implemented on the system to allow for real-time differential space-time encoding and

decoding.

Future work should include researching hybrid parallel processing topologies

that could fit well within our real-time system. A FPGA board could be purchased to

allow greater flexibility and an increase in specialized processing power. Pentek has

101

many options for incorporating a FPGA into our existing system [36]. The drawback

would be an increased learning curve due to the new architecture and programming

language. Pentek also offers an eight processor VME board [37]. This board could

open up new possibilities and allow even greater flexibility in researching real-time

MIMO systems. The architecture would be familiar and the development environment

would be the same.

Another possible effort would be to create a digital signal processing frame-

work using the test system. Every system task could be standardized to be able to

accept input from any other task and give output to any other task. Inter-processor

communication would be the same. A graphical interface would need to be created

that could allow quick parallel digital signal processing design (similar to Matlab’s vi-

sual design product Simulink). Tasks and processors could be logically tied together

to allow the creation of specialized functions. Matlab could possibly even be the

front-end to the system. This would allow students to piece together wireless systems

capable of transmitting and receiving actual data, experiment with DSP ideas and

concepts, and not get bogged down in computer programming.

Thus far we have concentrated on a fairly narrow band. As the software ma-

tures and bugs are ironed out, wide band tests would be appropriate. Tests could in-

clude determining the maximum real-time bandwidth afforded by the hardware, wide

band simulations in a “burst” mode that take advantage of extensive post processing,

and exploring different space-time coding and decoding algorithms with different par-

allel topologies. First priority should be given to a completed trasmit/receive solution

using Alamouti and differential space-time codes.

As 802.11n becomes the wireless local area network standard, MIMO space-

time algorithms will become commonplace. Research into ultra-high bandwidth ap-

plications that use a high order of antennas, in the 10’s to 100’s range, would be

an exciting way to further this research. Parallel processing would be essential for

research as well as the proper use of topologies, both classical and hybrid.

102

Appendix A

Benchmarks

Benchmarks were obtained by using the TI DSP processor timers available on

each DSP. For each process, algorithm, or function, a timer was used to count the

number of clock cycles the DSP processor used to finish the process, algorithm, or

function. Multiple cycles of the process, algorithm, or function were performed and

the results were obtained by averaging the total number of cycles from each result.

Calculations were performed on blocks of data that would probably be computed on

the system, for example, the largest block of data that we bench-marked against was

16K words, or one BIFO full. By running the benchmarks with different sizes of data

blocks, insight was gained into the overhead of each function.

For each of the benchmark tables contained in this paper, the table is formatted

with the following conventions: The DSP process (for example, addition) is compared

with the memory location (either IDRAM or SDRAM), the buffer size used (usually

ranging from 256 words to 16K words), and processor speed (250 MHz or 300 MHz).

Unless otherwise noted, a processor speed of 300 MHz is assumed. Unless otherwise

noted, all benchmarks will be in megabytes per second (MB/s) to show the throughput

capacity of each benchmark.

A.1 Global Memory Benchmarks

Data transfers from a single board’s global memory to DSP memory were

performed. Data transfers from one board’s global memory to another board’s global

memory (via the VME bus) and then to a DSP were also performed.

103

Table A.1: Reading from Global Memory (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 48.31 48.06 48.56 47.95

8K words 44.85 44.52 44.61 44.59

1K words 21.37 20.92 21.71 21.40

256 words 7.66 7.66 7.90 7.80

Table A.2: Writing to Global Memory (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 98.08 51.38 100.79 60.30

8K words 83.26 46.78 85.78 53.98

1K words 26.97 21.77 28.46 23.77

256 words 8.23 7.65 8.61 8.14

Table A.3: Writing VME - DSP to Another Board’s Global Memory (MB/s)

250 MHz Board

Buffer Size IDRAM SDRAM

16K words 17.33 15.06

8K words 16.03 14.17

1K words 7.85 7.46

256 words 2.82 2.82

104

Table A.4: Reading VME - Another Board’s Global Memory to DSP (MB/s)

250 MHz Board

Buffer Size IDRAM SDRAM

16K words 34.56 34.52

8K words 26.11 26.43

1K words 6.01 6.37

256 words 0.92 1.78

The following was learned from these benchmarks:

• Data transfers are most effective when the largest block of data possible is

transferred, to reduce the overhead of setting up the data transfer.

• In most cases, there is not a large difference between transferring data between

global memory and a DSP’s SDRAM and a DSP’s IDRAM. However, it is still

beneficial to transfer to/from IDRAM if possible.

A.2 Flash Memory Benchmarks

Data transfers from a single board’s FLASH memory to DSP memory were

performed.

Table A.5: Reading from Flash Memory (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 2.51 1.96 2.98 2.32

8K words 2.51 1.96 2.98 2.32

1K words 2.51 1.96 2.98 2.32

256 words 2.50 1.96 2.98 2.32

105

As expected, the FLASH memory transfers were very slow. However, FLASH

memory transfers are permanent and non-volatile and serves its purpose well.

A.3 Arithmetic Benchmarks

Arithmetic operations: addition, subtraction, multiplication, and division were

performed in data blocks using DSP’s local memory.

Table A.6: Addition (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 27.91 7.39 33.52 8.66

8K words 27.91 7.39 33.52 8.66

1K words 27.88 7.39 33.48 8.66

256 words 27.79 7.37 33.38 8.65

Table A.7: Subtraction (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 27.91 7.37 33.52 8.65

8K words 27.91 7.37 33.52 8.65

1K words 27.88 7.37 33.48 8.65

256 words 27.79 7.37 33.38 8.65

106

Table A.8: Multiplication (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 25.65 7.09 29.99 8.51

8K words 25.64 7.09 29.99 8.51

1K words 25.62 7.08 29.96 8.51

256 words 25.55 7.08 29.88 8.50

Table A.9: Division (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 16.65 4.60 19.65 7.40

8K words 16.65 4.60 19.65 7.40

1K words 16.64 4.60 19.64 7.40

256 words 16.60 4.60 19.60 7.40

It can be deduced that:

• Calculations performed from IDRAM are significantly faster than those same

calculations performed from SDRAM. IDRAM should always be used for these

arithmetic functions.

• Division is significantly slower than the other operations and should be avoided

whenever possible.

107

A.4 Memory To Memory Transfers

Benchmarks were performed to determine processor performance when us-

ing IDRAM or SDRAM. Other benchmarks were performed to verify whether DMA

memory transfers were more beneficial than processor-managed memory transfers and

whether it is faster to communicate and move large chunks of data from processor to

processor compared to small segments of data.

Table A.10: Moving Data from IDRAM to IDRAM (MB/s)

250 MHz Board 300 MHz Board

Buffer Size DMA Co-Proc DSP DMA Co-Proc DSP

16K words 193.83 30.61 232.64 36.76

8K words 190.37 30.61 228.40 36.76

1K words 153.36 30.57 183.59 36.72

256 words 92.77 30.46 110.79 36.58

Table A.11: Moving Data from SDRAM to SDRAM (MB/s)

250 MHz Board 300 MHz Board

Buffer Size DMA Co-Proc DSP DMA Co-Proc DSP

16K words 59.61 8.94 71.54 10.55

8K words 59.31 8.94 71.17 10.55

1K words 55.33 8.94 66.36 10.54

256 words 44.92 8.93 53.71 10.53

108

Table A.12: Moving Data from IDRAM to SDRAM (MB/s)

250 MHz Board 300 MHz Board

Buffer Size DMA Co-Proc DSP DMA Co-Proc DSP

16K words 415.04 23.96 498.01 28.77

8K words 400.58 23.96 480.75 28.77

1K words 265.62 23.94 318.35 28.75

256 words 124.99 23.95 148.43 28.77

Table A.13: Moving Data from SDRAM to IDRAM (MB/s)

250 MHz Board 300 MHz Board

Buffer Size DMA Co-Proc DSP DMA Co-Proc DSP

16K words 413.05 23.96 495.53 28.77

8K words 399.03 23.96 477.89 28.77

1K words 263.75 23.94 316.00 28.75

256 words 124.02 23.96 147.48 28.77

Table A.14: Library Function memcpy() - IDRAM to IDRAM (MB/s)

Buffer Size 250 MHz Board 300 MHz Board

16K words 473.59 568.65

8K words 472.43 567.36

1K words 458.02 550.06

256 words 414.63 497.96

109

Table A.15: Library Function memcpy() - SDRAM to SDRAM (MB/s)

Buffer Size 250 MHz Board 300 MHz Board

16K words 12.53 15.04

8K words 12.52 15.03

1K words 12.52 15.03

256 words 12.62 15.14

Table A.16: Library Function memcpy() - IDRAM to SDRAM (MB/s)

Buffer Size 250 MHz Board 300 MHz Board

16K words 50.05 53.33

8K words 49.99 53.27

1K words 49.79 53.11

256 words 49.32 52.80

Table A.17: Library Function memcpy() - SDRAM to IDRAM (MB/s)

Buffer Size 250 MHz Board 300 MHz Board

16K words 111.65 134.08

8K words 111.61 134.02

1K words 111.03 133.31

256 words 109.92 132.11

It was verified that:

110

• Using the DSP to manage and transfer memory is slow and eats away precious

processor cycles. This should be avoided.

• Depending on where you want memory to be transferred or moved from, the

DMA co-processor should be used in almost all cases. However, the memcpy()

function may be useful and should be analyzed carefully to determine the ideal

memory transfer technique. These benchmarks may be useful as a guide.

A.5 IPBIFO Transfers Benchmarks

Benchmarks were taken to determine the speed at which data could be trans-

ferred using the IPBIFOs under different circumstances.

Table A.18: DMA - Writing to IPXX (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 237.50 224.95 285.15 266.73

8K words 236.84 224.04 284.22 265.62

1K words 226.56 213.80 271.48 254.77

256 words 196.92 186.52 236.30 223.63

Table A.19: DMA - Reading from IPXX (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 237.50 227.45 285.15 269.34

8K words 236.84 226.56 284.17 268.74

1K words 226.56 216.79 271.48 256.81

256 words 196.87 188.60 235.54 223.63

111

Table A.20: DMA - Writing to IPYY (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 237.50 224.95 285.15 266.73

8K words 236.91 224.04 284.22 265.62

1K words 226.56 213.80 271.48 254.77

256 words 197.26 186.52 236.32 223.63

Table A.21: DMA - Reading from IPYY (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 237.50 227.45 285.15 269.34

8K words 236.84 226.56 284.17 268.74

1K words 226.56 216.79 271.48 256.80

256 words 196.87 188.60 235.54 223.63

Table A.22: DMA - Writing to an empty FIFO (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 237.50 224.95 285.15 266.73

8K words 236.91 224.04 284.22 265.62

1K words 226.56 213.80 271.48 254.77

256 words 197.26 186.52 236.32 223.63

112

Table A.23: DMA - Reading from a full FIFO (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 237.50 227.45 285.15 269.34

8K words 236.84 226.56 284.17 268.74

1K words 226.56 216.79 271.48 256.80

256 words 196.87 188.60 235.53 223.63

Table A.24: DSP - Writing to IPXX (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 24.04 8.94 28.88 10.55

8K words 24.04 8.94 28.87 10.55

1K words 24.02 8.94 28.85 10.54

256 words 23.95 8.93 28.77 10.53

Table A.25: DSP - Reading from IPXX (MB/s)

250 MHz Board 300 MHz Board

Buffer Size IDRAM SDRAM IDRAM SDRAM

16K words 19.88 9.25 23.88 11.00

8K words 19.88 9.25 23.88 11.00

1K words 19.87 9.24 23.86 11.00

256 words 19.81 9.24 23.79 10.98

113

From the data, we determine that:

• Reading from or writing to the IPBIFO took the same amount of time.

• Transferring one BIFO fully maximizes throughput. However, transferring even

small blocks of data at a time does not decrease throughput substantially.

• Using the DSP to transfer data to and from the IPBIFO is a very poor choice

and should not be used when DMA is available.

A.6 RACEway R©

The Race++ functionality of the RACEway backplane never worked. The

older and slower Raceway standard had to be used.

Table A.26: RACEway R© (MB/s)

Reads Writes

29.00 128.00

The large difference between Raceway reads and writes can be explained after

examining their functionality. A Raceway write starts only after the completion

of the data transfer from global memory. The Raceway reads include the latency

from transferring data from the other board’s global memory through the Raceway

interconnect.

A.7 FIR Filter Benchmarks

There exists a fundamental trade off when computing FIR filters: speed versus

accuracy. The higher the number of filter taps, the slower the FIR filter but the more

accurate the result. Conversely, the lower the number of filter taps, the faster the

filter but the less accurate. Many benchmarks were taken to document the differences

between the buffer size, the number of filter taps (numH), and the speed of the FIR

114

filter. Since the real and imaginary components of the received signal were needed

for our tests, the TI optimized assembly function, Fir cplx was used.

Table A.27: Fir cplx - NumH=128 (MB/s)

250 MHz Board

Buffer Size IDRAM SDRAM

8K words 3.72 0.34

1K words 3.70 0.34

256 words 3.70 0.34

128 words 3.70 0.34

Table A.28: Fir cplx - NumH=64 (MB/s)

250 MHz Board

Buffer Size IDRAM SDRAM

8K words 7.44 0.66

1K words 7.41 0.66

256 words 7.40 0.66

128 words 7.39 0.67

115

Table A.29: Fir cplx - NumH=32 (MB/s)

250 MHz Board

Buffer Size IDRAM SDRAM

8K words 14.86 1.28

1K words 14.81 1.28

256 words 14.78 1.27

128 words 14.74 1.33

Table A.30: Fir cplx - NumH=16 (MB/s)

250 MHz Board

Buffer Size IDRAM SDRAM

8K words 29.66 2.35

1K words 29.61 2.35

256 words 29.48 2.34

128 words 29.31 2.59

Table A.31: Fir cplx, NumH=8 (MB/s)

250 MHz Board

Buffer Size IDRAM SDRAM

8K words 59.30 4.06

1K words 59.14 4.04

256 words 58.62 4.03

128 words 57.62 4.95

116

It can be seen that:

• The buffer size was not a determining factor in the speed of the FIR filter

process. In fact, it appears that a smaller buffer size may be advantageous in

some circumstances.

• A careful study between performance and accuracy must be made to determine

the optimum FIR filter settings.

A.8 Table of Benchmarks used

Table A.32 shows an overview of all of the tasks that were timed and presented

throughout this paper and extensively used throughout Chapter 6. To compute the

number of timing ticks from the benchmark values (recorded in MB/s), the following

formula was used:

4× 300MHz

Benchmark in MB/s
× 16K ÷ 4 =

Total number of timing

ticks per 16K buffer
(A.1)

where processor cycles are converted from bytes to words, multiplied by the maximum

buffer size and then divided by four to obtain the timing ticks (where there is 1 timing

tick for each 4 processor cycles).

Multiple tests were run for each benchmark with varying results. To deter-

mined the benchmark value used throughout this thesis, an average or median was

taken of the available data. For all of the benchmarks recorded in this appendix, the

average was used to determine the final benchmark value. However, for the space-time

decoding algorithm benchmarks the median value was chosen due to the significant

difference between results. The ”Comments” column of Table A.32 shows the method

determining the final benchmark value.

117

Table A.32: Master Table for Task Timing Values

Task Name Timing Ticks Origin of Data Comment

taskGetDataIPBIFO 20,211 Benchmarks Average

taskWriteDataIPBIFO 20,211 Benchmarks Average

taskReadDataGBL 98,845 Benchmarks Average

taskWriteDataGBL 47,621 Benchmarks Average

taskGetDataRACE 165,517 Benchmarks Average

taskWriteDataRACE 37,500 Benchmarks Average

ComplexFFT(numH=64) 537,508 Benchmarks Average

taskAlaDecode 983,860 Code Timing Median

taskDiffDecodeA(2x2) 4,018,715 Code Timing Median

taskDiffDecodeB(2x2) 4,952,453 Code Timing Median

taskDiffDecodeA(4x4) 3,080,106 Code Timing Median

taskDiffDecodeB(4x4) 5,859,096 Code Timing Median

taskDiffDecodeC(4x4) 8 TI assembly specs TMS320C62x

DSP Library

- SPRC091

118

Bibliography

[1] A. Lozano, F. R. Farrokhi, and R. A. Valenzuela, “Lifting the Limits on High-
Speed Wireless Data Access,” IEEE Communications Magazine, vol. 39, no. 9,
pp. 156–162, September 2001. 1

[2] www.3GNewsroom.com, “US 3G Auction Tops 15 Billion,” http://www.
3gnewsroom.com/3g news/jan 01/news 0181.shtml, January 2001 (accessed
2002). 1

[3] G. Foschini and M. J. Gans, “On the Limits of Wireless Communications in a
Fading Environment When Using Multiple Antennas,” Wireless Personal Com-
munication, pp. 315–335, 1998. 2

[4] C. Peel and A. Swindlehurst, “Performance of Unitary Space-Time Modulation
in Rayleigh Fading,” IEEE International Conference on Communications, vol. 9,
pp. 2805–2808, 2001. 5

[5] ——, “Performance of Unitary Space-Time Modulation in a Continuously
Changing Channel,” IEEE Proceedings on Acoustics, Speech, and Signal Pro-
cessing, vol. 4, pp. 2433–2436, 2001. 5

[6] Q. Spencer and A. Swindlehurst, “Some Results on Channel Capacity When
Using Multiple Antennas,” in IEEE Vehicular Technology Conference, Fall, 2000.
5

[7] J. W. Wallace and M. A. Jensen, “Experimental Characterization of the MIMO
Wireless Channel,” IEEE Antennas and Propagation Society International Sym-
posium, vol. 3, pp. 92–95, 2001. 5

[8] ——, “Measured Characteristics of the MIMO Wireless Channel,” IEEE Vehic-
ular Technology Conference, vol. 4, pp. 2038–2042, Fall, 2001. 5

[9] ——, “Characteristics of Measured 4x4 and 10x10 MIMO Wireless Channel Data
at 2.4-GHz,” IEEE Antennas and Propagation Society International Symposium,
vol. 3, pp. 96–99, 2001. 5

[10] ——, “Modeling the Indoor MIMO Wireless Channel,” IEEE Transactions on
Antennas and Propagation, vol. 50, no. 5, pp. 591–599, May 2002. 5

[11] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling the Statistical
Time and Angle of Arrival Characteristics of an Indoor Multipath Channel,”
IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 347–360,
March 2000. 5

119

http://www.3gnewsroom.com/3g_news/jan_01/news_0181.shtml
http://www.3gnewsroom.com/3g_news/jan_01/news_0181.shtml

[12] ——, “Experiments in Modeling the Space-Time Indoor Wireless Communica-
tion Channel,” IEEE Workshop on Signal Processing Advances in Wireless Com-
munications, 1997. 5

[13] J. W. Wallace, M. A. Jensen, A. L. Swindlehurst, and B. D. Jeffs, “Experimental
Characterization of the MIMO Wireless Channel: Data Acquisition and Analy-
sis,” IEEE Transactions on Wireless Communications, vol. 2, no. 2, pp. 335–343,
March 2003. 5, 13, 18

[14] Jon W. Wallace and Brian D. Jeffs and Michael A. Jensen, “A Real-Time Mul-
tiple Antenna Element Testbed for MIMO Algorithm Development and Assess-
ment.” Antennas and Propagation Society, June 2004. 5

[15] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “De-
tection Algorithm and Initial Laboratory Results Using V-BLAST Space-Time
Communication Architecture,” Electronics Letters, vol. 35, no. 1, pp. 14–16,
January 1999. 7

[16] G. J. Foschini, “Layered Space-Time Architecture for Wireless Communication
in a Fading Environment When Using Multi-Element Antennas,” Bell Labs Tech-
nical Journal, pp. 41–59, Autumn 1996. 7

[17] Concurrent Technologies, “VP 100 Embedded PC (Discontinued),” http://www.
gocct.com, 2003 (accessed 2007). xxv, 15

[18] Pentek Inc., Pentek Model 4292/4292 Operating Manual, A.2 ed., One Park Way,
Upper Saddle River, NJ 07458, February 20 2003. xxv, 16

[19] ——, Pentek Raceway Handbook, One Park Way, Upper Saddle River, NJ 07458,
2002. xxv, 17

[20] ——, Pentek Model 6229 Operating Manual, B.1 ed., One Park Way, Upper
Saddle River, NJ 07458, February 01 2001. 18

[21] J. W. Wallace, “Modeling Electromagnetic Wave Propagation in Electrically
Large Structures,” Ph.D. dissertation, Brigham Young University, December
2001. 18

[22] Pentek Inc., Pentek Model 6216 Operating Manual, B ed., One Park Way, Upper
Saddle River, NJ 07458, April 09 2001. 20, 21

[23] M. Morisio, “Commercial-Off-The-Shelf (COTS): A Survey,” University of Mary-
land, Tech. Rep., December 2000. 25

[24] COTS-Based System (CBS) Initiative - Carnegie Mellon University, “COTS and
Open Systems - An Overview,” http://www.sei.cmu.edu/cbs/cbs description.
html, September 2000 (accessed 2002). 25

120

http://www.gocct.com
http://www.gocct.com
http://www.sei.cmu.edu/cbs/cbs_description.html
http://www.sei.cmu.edu/cbs/cbs_description.html

[25] www.cputech.com, “Commercial Off The Shelf (COTS) Technology - Applica-
tion to the Defense Sector,” http://www.cputech.com/tech-cots-rec.html, 2002
(accessed 2002). 26

[26] Y. Jain, “Parallel Processing With the TMS320C40 Parallel Digital Signal Pro-
cessor,” Sonitech International Inc., Tech. Rep. SPRA053, February 1994. 27,
28

[27] M. J. Flynn, “Very High-Speed Computing Systems,” Proceedings of IEEE,
vol. 54, pp. 1901–1909, 1966. 27

[28] S. H. Roosta, Parallel Processing and Parallel Algorithms. Springer, 2000. 28,
31, 33, 36, 38, 39

[29] G. Kotsis, “Interconnection Topologies and Routing for Parallel Processing Sys-
tems,” Ph.D. dissertation, Institute for Applied Information and Information
Systems, University of Vienna, 1992. 29

[30] A. L. DeCegama, Parallel Processing Architectures and VLSI Hardware. Pren-
tice Hall, 1989. 30, 53

[31] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Com-
munication. Cambridge University Press, 2003. 42, 44

[32] S. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communica-
tions,” IEEE Journal on Selected Areas of Communications, vol. 16, no. 8, pp.
1451–1458, October 1998. 43

[33] B. L. Hughes, “Differential Space-Time Modulation,” IEEE Transactions on
Information Theory, vol. 46, pp. 2567–2578, November 2000. 43, 48, 49, 50

[34] D. Reynolds, X. Wang, and H. V. Poor, “Blind Adaptive Space-Time Multiuser
Detection for Fading Multipath Channels,” Military Communications Confer-
ence, vol. 2, pp. 1055–1059, 2001. 43

[35] B. M. Hochwald and W. Sweldens, “Differential Unitray Space-Time Modula-
tion,” IEEE Transactions on Communications, vol. 48, pp. 2041–2052, December
2000. 50, 51

[36] Pentek Inc., “Model 6250 General Information,” http://www.pentek.com/
products/detail.cfm?Model=6250, 2007 (accessed March 3, 2007). 102

[37] ——, “Model 4293 General Information,” http://www.pentek.com/products/
detail.cfm?Model=4293, 2007 (accessed March 3, 2007). 102

121

http://www.cputech.com/tech-cots-rec.html
http://www.pentek.com/products/detail.cfm?Model=6250
http://www.pentek.com/products/detail.cfm?Model=6250
http://www.pentek.com/products/detail.cfm?Model=4293
http://www.pentek.com/products/detail.cfm?Model=4293

	Performance of MIMO Space-Time Coding Algorithms on a Parallel DSP Test Platform
	BYU ScholarsArchive Citation

	Title
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Commercial-Off-The-Shelf Hardware
	1.2 MIMO Space-Time Codes
	1.3 BYU Wireless Lab
	1.4 Objective
	1.5 Overview

	2 MIMO Real-Time System
	2.1 System Level Diagram
	2.2 Transmitter
	2.2.1 DSP and Host Hardware
	2.2.2 RF Transmission

	2.3 Receiver
	2.3.1 RF Front-End
	2.3.2 DSP and Host Hardware

	2.4 Summary

	3 Parallel Processing
	3.1 Need For Parallel Processing
	3.2 Parallel Processing Taxonomy
	3.3 Parallel Processing Topologies and Architectures
	3.3.1 Bus Parallel Processing
	3.3.2 Line and Ring Parallel Processing
	3.3.3 Mesh Parallel Processing
	3.3.4 Star Parallel Processing
	3.3.5 Hypercube or n-Cube Parallel Processing
	3.3.6 Binary Tree Parallel Processing
	3.3.7 Pyramid Parallel Processing
	3.3.8 Summary

	4 Space-Time Algorithms
	4.1 Background
	4.2 Space-Time Coding Algorithms
	4.2.1 Alamouti Space-Time Codes
	4.2.2 2 x 2 Differential Space-Time Modulation
	4.2.3 4 x 4 Differential Space-Time Modulation

	4.3 Summary

	5 Space-Time Algorithms and Parallel Processing
	5.1 Benchmarks
	5.2 Assumptions and Methods
	5.3 Alamouti Parallel Processing
	5.3.1 Bus
	5.3.2 Line/Ring
	5.3.3 Grid/Mesh
	5.3.4 Star

	5.4 2 x 2 Differential Space-Time Parallel Processing
	5.4.1 Bus
	5.4.2 Line/Ring
	5.4.3 Grid/Mesh
	5.4.4 Star

	5.5 4 x 4 Differential Space-Time Parallel Processing
	5.5.1 Bus
	5.5.2 Line/Ring
	5.5.3 Grid/Mesh
	5.5.4 Star
	5.5.5 Hypercube
	5.5.6 Binary Tree
	5.5.7 Pyramid

	5.6 Summary

	6 Results
	6.1 Methodology
	6.2 Communications Processors
	6.3 Alamouti Real-Time Processing
	6.3.1 Bus
	6.3.2 Line/Ring
	6.3.3 Comparison

	6.4 2 x 2 Differential Space-Time Real-Time Processing
	6.4.1 Bus
	6.4.2 Line/Ring
	6.4.3 Star
	6.4.4 Comparison

	6.5 4 x 4 Differential Space-Time Real-Time Processing
	6.5.1 Bus
	6.5.2 Line/Ring
	6.5.3 Grid/Mesh
	6.5.4 Star
	6.5.5 Hypercube
	6.5.6 Binary Tree
	6.5.7 Pyramid
	6.5.8 Comparison

	6.6 Interpretation

	7 Conclusion
	7.1 Discussion and Recommendations
	7.2 Future Work

	A Benchmarks
	A.1 Global Memory Benchmarks
	A.2 Flash Memory Benchmarks
	A.3 Arithmetic Benchmarks
	A.4 Memory To Memory Transfers
	A.5 IPBIFO Transfers Benchmarks
	A.6 RACEway®
	A.7 FIR Filter Benchmarks
	A.8 Table of Benchmarks used

	Bibliography

