
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2007-06-08

Cognitive and Behavioral Model Ensembles for Autonomous Cognitive and Behavioral Model Ensembles for Autonomous

Virtual Characters Virtual Characters

Jeffrey S. Whiting
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Whiting, Jeffrey S., "Cognitive and Behavioral Model Ensembles for Autonomous Virtual Characters"
(2007). Theses and Dissertations. 923.
https://scholarsarchive.byu.edu/etd/923

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F923&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/923?utm_source=scholarsarchive.byu.edu%2Fetd%2F923&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

COGNITIVE AND BEHAVIORAL MODEL ENSEMBLES FOR AUTONOMOUS

VIRTUAL CHARACTERS

by

Jeffrey S. Whiting

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Computer Science

Brigham Young University

August 2007

Copyright c© 2007 Jeffrey S. Whiting

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Jeffrey S. Whiting

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Parris K. Egbert, Chair

Date Dan Ventura

Date Quinn Snell

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Jeffrey S.
Whiting in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Parris K. Egbert
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg, Associate Dean
Physical and Mathematical Sciences

ABSTRACT

COGNITIVE AND BEHAVIORAL MODEL ENSEMBLES FOR AUTONOMOUS

VIRTUAL CHARACTERS

Jeffrey S. Whiting

Computer Science

Master of Science

Cognitive and behavioral models have become popular methods to create au-

tonomous self-animating characters. Creating these models presents the following

challenges: (1) Creating a cognitive or behavioral model is a time intensive and com-

plex process that must be done by an expert programmer (2) The models are created

to solve a specific problem in a given environment and because of their specific na-

ture cannot be easily reused. Combining existing models together would allow an

animator, without the need of a programmer, to create new characters in less time

and would be able to leverage each model’s strengths to increase the character’s

performance, and to create new behaviors and animations. This thesis provides a

framework that can aggregate together existing behavioral and cognitive models into

an ensemble. An animator only has to rate how appropriately a character performed

and through machine learning the system is able to determine how the character

should act given the current situation. Empirical results from multiple case studies

validate the approach taken.

ACKNOWLEDGMENTS

I would like to thank my wife Laurie for her never ending expressions of love,

patience, and encouragement. I would also like to acknowledge Dr. Egbert and my

committee members for their time and help on this thesis.

Table of Contents

Acknowledgements xi

List of Tables xvii

List of Figures xix

1 Overview 1

1.1 Introduction . 1

1.2 Overview of Thesis . 2

1.3 Thesis Statement . 3

2 Related Work 5

3 Proposed Solution 9

3.1 Methods . 9

3.2 Ensemble Controller . 10

3.3 Action Selection . 13

3.4 Context Sensitive Weights . 14

3.5 Learning the Context Sensitive Rating 15

3.5.1 State Representation . 16

3.6 Putting It All Together . 17

4 Feasibility Study, Case Studies, and Comparisons 21

xiii

4.1 Feasibility Study: Simple Capture the Flag 22

4.1.1 Introduction & Environment 22

4.1.2 Behaviorial Models . 22

4.1.3 Results . 22

4.1.4 Conclusion . 25

4.2 Case Study 1: Multi-Agent Capture the Flag 26

4.2.1 Introduction & Environment 26

4.2.2 Behavioral Models . 27

4.2.3 Results . 27

4.2.4 Conclusion . 28

4.3 Case Study 2: Flocking . 30

4.3.1 Introduction & Environment 30

4.3.2 Behavioral Models . 30

4.3.3 Results . 32

4.3.4 Conclusion . 35

4.4 Case Study 3: Crowd Simulation Using a Combat Situation 38

4.4.1 Introduction & Environment 38

4.4.2 Troop Cognitive Models . 38

4.4.3 Commander Cognitive Models 39

4.4.4 Results . 40

4.4.5 Conclusion . 44

4.5 Machine Learning Algorithms . 45

4.5.1 Algorithms . 45

4.5.2 Feasibility Study Results . 45

4.5.3 Capture The Flag Results . 47

4.5.4 Flocking Results . 47

xiv

4.5.5 Crowd Simulation Results . 48

4.5.6 Conclusion . 49

5 Conclusion & Future Work 51

5.1 Conclusion . 51

5.2 Future Work . 52

Bibliography 57

xv

xvi

List of Tables

4.1 Capture the Flag Results . 24

4.2 Capture the Flag Results with Additional Feedback 25

4.3 Multi-Agent Capture the Flag Results 28

4.4 Flocking Results . 33

4.5 Crowd Simulation Results (Rush Commander) 42

4.6 Crowd Simulation Results (End-Around Commander) 42

4.7 Crowd Simulation Results (Ensemble Commander) 43

4.8 Crowd Simulation Results (Ensemble Commander and Ensemble Troops) 44

4.9 Feasibility Study Learning Algorithm Comparison 1 46

4.10 Feasibility Study Learning Algorithm Comparison 2 46

4.11 Feasibility Study Learning Algorithm Comparison 3 46

4.12 Feasibility Study Learning Algorithm Comparison 4 46

4.13 Capture the Flag Learning Algorithm Comparison 47

4.14 Flocking Learning Algorithm Comparison 47

4.15 Crowd Simulation Learning Algorithm Comparison 1 48

4.16 Crowd Simulation Learning Algorithm Comparison 2 48

xvii

xviii

List of Figures

1.1 The Computer Graphics Modeling Pyramid 1

1.2 Additions Made to the Computer Graphics Modeling Pyramid 3

3.1 Sequence Diagrams to Get the Next Action 11

3.2 Ensemble Controller Diagram . 12

3.3 Feedback System . 15

3.4 System Feedback Process . 17

4.1 Capture the Flag Environment . 23

4.2 Multi-Agent Capture the Flag Environment 26

4.3 The Flocking Environment . 31

4.4 Three Groups of Flocking Birds . 32

4.5 Starting Location of the Birds . 33

4.6 Birds Avoiding the Obstacle and Staying in Formation 34

4.7 Bird Performing a Completely New Action 35

4.8 Leading Bird Performing a Stunt . 36

4.9 Field with All 100 Birds . 37

4.10 Combat Situation Environment . 39

4.11 Crowd Simulation Characters . 40

xix

xx

Chapter 1

Overview

1.1 Introduction

Research in virtual character animation has focused recently on autonomous

self-animating characters. Several different approaches to this problem have been

developed and although these approaches differ greatly in their methodology, com-

monalities exist between them. Funge et al. [1999] have attempted to extract these

commonalities into their computer graphics modeling hierarchy, as shown in Fig-

ure 1.1. Geometric and kinematic modeling involves the low level animation of geo-

metric models, physical modeling applies real world physics to the character’s motion,

and behavioral and cognitive modeling attempt to create an executable model of the

character’s thought process. Cognitive Modeling seeks to accomplish long-term goals

whereas behavioral models are reactive and seek to fulfill immediate goals.

Figure 1.1: The computer graphics modeling pyramid.

1

The lower levels of the CG pyramid are generally considered to be better-

understood problems that are simpler to implement. The higher levels are less well

understood problems. Cognitive modeling, for example, has recently gained the at-

tention of a few research groups but still remains a relatively undeveloped area.

Creating cognitive and behavioral models presents several challenges. First,

creating a cognitive or behavioral model is a time intensive and complex process that

is done by an expert programmer. The models are created to solve a specific problem

in a given environment and because of their specific nature cannot be easily reused.

This presents an interesting dilemma for animators and designers that are constantly

creating new environments and problems but wish to incorporate autonomous char-

acters. If existing models could be combined together the animator could create a

new character in less time and without the need of a programmer. The new character

would essentially be a composite of the existing models and under the direction of

the animator each model’s strengths would be leveraged to increase the character’s

performance, and to create new behaviors and animations.

1.2 Overview of Thesis

This thesis proposes a framework that can use existing cognitive and behavioral

models and combine them to produce a character that acts according to the animator’s

desire. Each individual behavioral or cognitive model is combined in an ensemble

similar to many machine learning ensembles [Dietterich 1997]. Although any one

model may be insufficient to produce the desired result, the ensemble of models

helps make up for the individual deficiencies. An ensemble controller is responsible

for coordinating and choosing which model to use given the current state of the

environment. When the character needs to make a decision, the ensemble controller

polls each model for its suggested action. Each action is weighted according to the

model’s context sensitive weight and the best model is chosen to control the character.

The context sensitive weights are learned through feedback given by the animator on

how appropriately the character performed in a given situation. Through feedback

given on specific examples, the framework is able to generalize to new situations

2

allowing the character to act well without the need for additional feedback. Figure 2

shows the additions this thesis makes to the CG modeling pyramid. As can be seen,

the ensemble controller is able to manage multiple cognitive and behavioral models

for a single character, allowing for new behaviors, new animations, and increased

performance of the character.

Figure 1.2: Additions made to the computer graphics modeling pyramid by this
thesis (shown in blue).

1.3 Thesis Statement

Adding ensemble controllers to the current CG modeling hierarchy allows for

the use of multiple cognitive and behavioral models in combination to create new

behaviors and animations, and to increase overall performance.

3

4

Chapter 2

Related Work

An agent is an entity that is able to perceive its environment, make choices, and

then perform actions that carry out those choices [Stone and Veloso 2000, Weiss 1999].

An agent may be a real physical agent (e.g. robots, humans, animals, etc.) or virtual

agent existing in computer-generated environments such as cinematic special effects,

simulators, video games, etc. Of special interest are autonomous virtual characters.

These virtual characters are independent, self-directed, and self-governing. They are

able to make decisions without direction.

Many different systems have been created to control autonomous virtual agents

[Tu and Terzopoulos 1994, Perlin and Goldberg 1996, Blumberg and Galyean 1995,

Monzani et al. 2001, Burke et al. 2001, Isla and Blumberg 2002]. The results of these

techniques are exceptional but somewhat limited. They are primarily reactive (i.e.

behavioral) systems unable to deliberate, they have no ability to learn or adapt their

behavior, and they must be explicitly programmed which is difficult.

Funge et al. [1999] have attempted to extract commonalities between the

different systems into their computer graphics modeling hierarchy (see Figure 1.1) and

have added cognitive modeling. Cognitive models select goals and make deliberative

decisions whereas behavioral models only make reactive decisions. Cognitive and

behavioral modeling techniques are powerful tools to build autonomous characters.

Though considered difficult to create, many models exist that perform specific tasks

[Burke et al. 2001], reach designated goals [Funge et al. 1999], or behave in a stylistic

manner [Blumberg et al. 2002].

Machine learning algorithms have been used within almost every level of the

CG hierarchy. Faloutsos et al. [2001] employed Support Vector Machines (SVM) to

5

learn the preconditions of specialized physical controllers allowing them to be used

in a general purpose motor control system. Their work represents one of the first

systems to combine multiple models together to improve the character’s performance.

However, their technique is not suitable for behavioral and cognitive models and is

thus limited to physics-based motor controllers due to the relative simplicity of the

motor controllers, reliance of the machine learning technique on domain knowledge,

and the intrusive nature of the framework that places strict requirements on the motor

controllers. Dinerstein [2004, 2005a, 2005b] used emotional feedback during goal

selection, simulation-based learning and mimicking in task selection, and adaptive

action prediction and mimicking during action selection. Recent work has focused

on using machine learning techniques within the cognitive and behavioral models to

allow the virtual characters to learn from their experience, perform better over time,

learn new behaviors, and speedup the execution of the cognitive models. Blumberg

[2002] has done an excellent job of incorporating machine learning within the models.

Dinerstein [2004] used a machine learning algorithm to approximate the cognitive

model which increased the scalability and decreased the creation time.

Little effort has been directed into how to combine multiple cognitive and

behavioral models together. However, it would be advantageous to leverage the

strengths of each model to improve the overall performance of the character according

to the animator’s desire. This thesis presents a novel framework for combining multi-

ple cognitive and behavioral models together to increase the character’s performance

and to create new behaviors and animations. This frees the animator from having to

create cognitive and/or behavioral models from scratch each time one is needed.

Inspiration for this thesis comes in part from current research into ensemble

learning [Dietterich 1997]. Ensemble learning consists of a set of classifiers whose

individual decisions are combined in some manner, usually by weighted or unweighted

voting, to classify new examples. Combining the classifiers together results in the

ensemble being more accurate than the individual classifiers.

Methods for constructing good ensembles of classifiers is one of the most active

areas of research. Bagging and boosting rely on subsampling the data or feature sets

6

to create multiple classifiers [Freund and Schapire 1996, Breiman 1996]. In bagging,

multiple classifiers are created based on subsets of the data and predicts the class

through unweighted voting. In boosting, the later classifiers focus on data that is

misclassified and weighted voting, based on the error rate of the classifier, is used

to predict the class. Stacking takes a different approach from bagging and boosting.

It uses a set of classifiers and learns a function that combines the predictions of the

individual classifiers. Wolpert [1992] proposes a stacking scheme using a leave-one-out

cross validation.

Gating networks, in addition to learning the weights for a model that uses

learned weights, learn a gating function that produces as output the weights for such

a model [Jordan and Jacobs 1993]. Thereby the gating function allows the model to

change its set of weights based on the input making weights become context sensitive.

In theory the gating function can be arbitrarily complex and can be applied to any

weighted model (function). The weighted model can be a traditional machine learning

technique, an ensemble of classifiers, a stacking scheme, or any other weighted method.

7

8

Chapter 3

Proposed Solution

3.1 Methods

The goal of this thesis is to create a framework that can combine existing cog-

nitive and behavioral models to allow for new characters and increased performance

with only a small amount of time required for setup. The framework must be mini-

mally intrusive, easy to implement, and in general not limit the types of cognitive and

behavioral models that can be used. For this work, cognitive and behavioral models

are considered black boxes. The only requirement is that they produce an action that

can be carried out by the lower level motor controller(s). This requirement utilizes

the well established and widely used method of layering specific controllers, starting

with low level geometric controllers and moving up the abstract layers to cognitive

models, to construct autonomous characters [Funge et al. 1999]

For example, an animator has two cognitive models available, C1 which herds

a flock of sheep and C2 that is able to navigate complex obstacles. It would be

beneficial to use the models in combination enabling a virtual German Shepherd dog

to excel at both tasks. To permit multiple cognitive and behavioral models for a single

character, a framework must be created to coordinate and manage these models. The

framework must include a controller to coordinate the models and a simple and easy-

to-use mechanism for receiving feedback on which models perform the best in the

current state of the environment.

The following sections describe the details of this framework. Section 3.2

explains what the ensemble controller is and its essential role in the framework. The

methods used by the ensemble controller to choose an action are described in Section

3.3. Section 3.4 discusses the context sensitive weighting used for each cognitive

9

or behavioral model. We investigate how the context sensitive ratings are learned

from the animator and how the current state of the environment is represented in

Section 3.5. Section 3.6 concludes this chapter explaining how the different parts of

the framework work together.

3.2 Ensemble Controller

The ensemble controller is the central element of the system. It sits in between

the cognitive and behavioral models and the lower level controller, usually the physi-

cal controller (refer to Figure 1.2). This controller is responsible for coordinating and

managing the models and replicates their output—an action to be taken. Similar to

an ensemble classifier that takes a set of classifiers L1 ... Ln and combines their indi-

vidual decisions (typically through unweighted or weighted voting) [Dietterich 1997],

the ensemble controller combines the individual cognitive or behavioral models C1 ...

Cn actions using weighted voting. Ensemble classifiers are most effective when they

disagree with each other and have uncorrelated errors [Hansen and Salamon 1990].

Likewise, the most effective ensembles come from a combination of models that per-

form different actions given the same state allowing the animator to choose the best

one.

When the character needs to make a decision, each model Ci in the ensemble

is polled and returns its suggested action ai. Each action, along with its weighting wi

(based on the current state of the environment S), is considered and an appropriate

action or combination of actions is chosen. Therefore the ensemble controller E takes

as input a set of weighted actions along with the current state and outputs an action:

E({a1, w1}, {a2, w2}, ...{ai, wi}, S) → a (3.1)

Figure 3.1 (b) shows the call sequence of the ensemble controller to return the next

action and Figure 3.1 (a) shows the normal call sequence. It is important to note

that the cognitive model is unaffected by and need not even know about the ensemble

controller. The same applies to the lower level controller.

10

(a) Normal Call Sequence

(b) Call Sequence with Ensemble Controller

Figure 3.1: Subfigure (a) shows the normal call sequence to retrieve the next action,
subfigure (b) shows the modification made to this call sequence by the framework.
Notice that the cognitive model is unaffected by this change.

11

The weighting for each cognitive or behavioral model is determined by the

animator. The animator rates each model based on how well it performs in the current

situation. A machine learning algorithm is then responsible to learn the rating based

on the current state of the environment and later generalize to unseen states. A tuple

is created containing the cognitive or behavioral model C and its associated learner

L (Figure 3.2). These tuples are used to create the inputs (a1, w1), ...(ai, wi) for the

ensemble controller.

Figure 3.2: The framework contains tuples of cognitive models C and the machine
learning algorithm L. The ensemble controller polls C1 through Cn and uses the context
sensitive weights (wi) to choose the model Ci that will control the virtual character.

An alternative technique to the one presented above involves replacing each

individual learning algorithm for models and the ensemble controller with one learn-

ing algorithm. The learning algorithm would then be entirely in charge of selecting

the appropriate action based on the current state and the animator’s feedback. The

current technique is chosen because it simplifies the feedback mechanism, which re-

duces the burden on the animator, and allows for various model selection methods.

The system doesn’t present the animator with the actions of each model for every

state but instead begins with an initial state from which all models are evaluated.

Even though subsequent states for each model are different, the individual learning

12

algorithms associated with each model are able to learn animator’s preference. Thus,

the animator is able to rate each model individually and doesn’t have to evaluate all

models for all given states as would be required in the alternative technique.

3.3 Action Selection

Once the ensemble controller has the action and weight tuple (ai, wi) for each

model it chooses an action based on the weighting. There are several ways this

can be done. The particular action selection method that is used depends on the

environment. Methods that could be used are:

• The top action is chosen. This method chooses the action with the highest

weighting.

• The action is probabilistically chosen. The top m actions are considered

and their weights are normalized to form a probability distribution function

(PDF). The action is then stochastically chosen based on that PDF.

• The actions are blended. The top m actions are considered and the resulting

action is a linear combination based on the weights. This method is only suitable

for cognitive and behavioral models that output real valued actions that can be

linearly combined.

Each method has its relative advantages. Choosing the top action maximizes

the performance of the character with respect to the feedback given by the animator.

Because of this it is the method used in 2 of the 3 case studies (sections 4.2, 4.4)

to highlight the performance gains possible by implementing the framework. When

interacting with a human controlled avatar it is not always desirable to choose the top

action as it makes the agent deterministic—given a state, the same action is always

chosen—allowing the human to guess future actions. Finally, blending the actions

together can only be used in a small number of environments where it is possible.

Completely new actions are created based on a linear or quadratic combination of the

suggested actions. Blending the actions together requires real valued action vectors

13

such as velocities or accelerations. Categorical actions such as “capture the red flag”,

“intercept the red agent”, etc., cannot be combined together in this way. In the

flocking case study (section 4.3) the actions are linearly combined together allowing

the virtual birds to avoid obstacles while staying in formation.

3.4 Context Sensitive Weights

Each model has its own set of context sensitive weights learned from the feed-

back given by the animator. The weights are not static but vary based on the current

state of the environment. The weight for model i at time t is given by

wi(s, t) = λi(s) +
n∑

j=1,j 6=i

λj(s) ∗ δ(ai, aj) + τ(t) (3.2)

Where:

• λ(s) is the context sensitive rating. This value is learned from the feedback given

by the animator and is in the range of [0..1]. The machine learning algorithm

uses the current state of the environment to determine the appropriate weight.

• δ(ai, aj) is the action similarity metric. This computes the similarity between

actions ai and aj and is provided by an expert. The same action would have

a value of 1.0 and completely different actions would have a value of 0.0. The

sum over the action similarities
∑

λj ∗ δ(ai, aj) increases the probability that

models proposing similar actions will be chosen.

• τ(t) is the temporal boost. This term reduces temporal aliasing, i.e. rapidly

switching between models. When a model is first chosen it is given a boost

that decays over time. This helps prevent the character from rapidly switching

between models in a short amount of time and is comparable to momentum

used in neural networks. The boost at time t with a decay rate of r and an

initial boost b is represented by τ(t) = rt ∗ b

14

3.5 Learning the Context Sensitive Rating

The central variable in the weight calculation is the context sensitive rating.

This value is learned through the feedback given by the animator. It is desirable that

the learning process be as easy and as unobtrusive as possible to reduce the burden

placed on the animator and to keep the time to train the system small.

The framework records the actions taken by the character, the current model,

and the current state information. Offline the animator is able to review the charac-

ter’s actions and easily rate how appropriately the character performed using a basic

slider on a scale from 0.0 to 1.0 with 0.0 being dislike, 0.5 neutral, and 1.0 like (see

Figure 3.3). The rating given is then associated with the active model and the current

state. Each model has an associated learner that attempts to learn a mapping of the

animator’s preference onto the state (refer to Figures 1.2 and 3.2). Because the pref-

erence is mapped onto the environment state the weights become context sensitive,

i.e. weights are different based on the character’s current state.

Figure 3.3: The simple slider used by the animator to give feedback to the framework.
A learning algorithm uses the current state and the animator preference to learn the
context sensitive ratings.

The learner can be any machine learning technique that can do regression. Al-

gorithms we will explore in this work include k-nearest neighbors (K-NN)

[Cover and Hart 1967] and regression trees [Breiman and Breiman 1984]. K-NN has

15

the advantage of extremely quick training time and robustness. In addition to their

reasonable training times and fast execution times, regression trees have the ability to

ignore extraneous features. Since the weights are learned quantities, the framework

is able to generalize from the animator provided examples to unseen states. Giving

feedback doesn’t have to be a one-time event as the animator has the ability to give

additional feedback at a later time to help improve the character’s performance.

3.5.1 State Representation

Providing an adequate representation of the state for the learning algorithm

is a challenging problem. When the system is introduced into a specific environment

it is not known ahead of time how the ensemble will be used and what features are

most important to adequately learn the animator’s preference. This implies that as

many features as possible should be included in the state representation. This gives

the learner the opportunity to use the feature(s) that are best suited for learning

the preference. Unfortunately, extraneous and potentially unimportant features can

prohibit learning. To satisfy these two constraints a very large number of features

are included in the state representation. Once the animator has rated each model,

a feature selection algorithm can be run on the resulting data to reduce the feature

set or the animator can choose which specific features are most correlated with the

feedback. The reduced feature set and data are given to the learner. This should help

provide sufficient information to the framework using only the most salient features.

The chosen algorithm for this framework is the k-nearest neighbor (K-NN)

algorithm [Cover and Hart 1967]. K-NN is robust to noise and has a quick training

time. Feature selection is important for the K-NN learner as extra dimensions will

significantly reduce its effectiveness. In addition, the results will be rerun using a re-

gression tree algorithm [Breiman and Breiman 1984] which will then be compared to

K-NN. The regression tree algorithm does automatic feature selection when building

the decision trees, making it a good contrast to the K-NN algorithm.

16

3.6 Putting It All Together

For the framework to successfully increase the performance of the character

and utilize multiple cognitive and behavioral models the system must be trained.

Typically the training process is done in several stages (Figure 3.4). The animator

selects multiple scenarios that are representative of what he/she wishes to accomplish.

Each model is run in those scenarios and feedback is give on how well each one did.

Next, the simulation is run again but this time with the ensemble controller active

and using the feedback just given. The performance of the character is once again

evaluated and additional feedback is given on how well the character performed. At

this point if the animator is satisfied with the character’s performance no additional

training needs to be done. Otherwise additional feedback can be given or additional

scenarios setup to improve the character’s performance until the animator is satisfied.

Although this process can take several iterations, typically it is not very time con-

suming (usually under an hour), is significantly faster than creating a new cognitive

model from scratch, and does not require an expert programmer.

Figure 3.4: The process the animator uses to give feedback to the system.

To give an example of this process we will look at the flocking case study in

section 4.3. The goal of this case study is to allow the virtual birds to flock together

in a V-formation while avoiding the obstacles and following the flock leader who will

be performing various stunts. There are three behavioral models {B1, B2, B3} that

excel at each individual task.

B1 A “boid” model which avoids obstacles and flocks towards other virtual birds

[Reynolds 1987].

17

B2 A V-formation model that dynamically forms flocks in the shape of a V

[Gervasi and Prencipe 2004].

B3 A stunt model that can perform a number of different scripted stunts.

We first setup three scenarios that are most representative of what we are

trying to accomplish. In the first scenario, S1, the virtual bird is placed on a collision

course with an obstacle. In the second scenario, S2, the virtual bird is placed at the

head of the flock. And in the third scenario, S3, the virtual bird is placed around

other birds as a follower. Once the scenarios are setup we run the simulation to

determine how well each individual behavioral model works in the different scenarios.

In scenario S1, model B1 receives higher ratings the closer it gets to the obstacle

because it was successfully avoiding it, while the other models (B2, B3) receive neutral

ratings because they would make no attempt to avoid the obstacle. In scenario S2,

model B3 is rated the highest since we want the leader to perform stunts. Finally in

scenario S3 model B2 is rated the most favorable due to our desire to have them form

a V-formation.

After the first round of training, the simulation is run and the results ob-

served. The birds generally performed quite well by avoiding obstacles, flocking in a

V-formation and performing stunts. However the birds following in the V-formation

would begin to avoid an obstacle but stop too soon, ignore the obstacle, and get back

into a perfect V, hitting the obstacle. After running the initial simulation, additional

feedback is given and model B2 is given a lower rating, and model B1 is given a much

higher rating in the problem areas. After giving the feedback the birds performed

as desired—they avoided the obstacle while maintaining a V-formation the best they

could. Adjusting the simulation also brought out another situation that had not been

handled to that point by our scenarios—the case of a single bird. In this situation

it was decided to have the bird do stunts until it found other nearby birds. That

scenario was created and feedback was given favoring B3.

After the additional scenario was created and feedback given the results were

found to be satisfactory and we were done training the system. With the framework

18

trained, we could then test the system in a variety of settings to see how well the

ensemble controller responded. We were able to achieve satisfactory results (see

section 4.3.3) and the process took a little over 30 minutes.

The following chapter explores how the framework performed in a variety of

circumstances. To create the model ensembles, the system had to be trained, as

outlined above, for each case study. All together the case studies provide an array

of difficult challenges to stress the system in different ways allowing us to gauge its

performance and to test its validity.

19

20

Chapter 4

Feasibility Study, Case Studies, and Comparisons

This chapter contains the results of using the framework in a number of differ-

ent scenarios. First a feasibility study is carried out to test the merit of the idea. The

particular application used for the feasibility study is the game of capture the flag,

using a single agent. Following the feasibility study several case studies are described

which use the framework. The following case studies were implemented:

• Multi-Agent Capture the Flag

• Flocking

• Crowd Simulation Using a Combat Situation

Each case study describes the unique challenges it provides, relates the cognitive or

behavioral models used, and presents the results. In addition, a comparison between

K-NN and the regression tree algorithm is provided which evaluates the impact the

machine learning algorithm has on the framework.

21

4.1 Feasibility Study: Simple Capture the Flag

4.1.1 Introduction & Environment

The goal of this study is to verify the feasibility of our proposed framework and

explore the different parameters within the framework. With this goal in mind the

study is designed to be simple. The environment consists of a discrete 16x16 world

(Figure 4.1) with one blue agent, one blue flag, and one red flag. The goal is for the

agent to retrieve the red flag and return it to where the blue flag is. Feedback is

only given on one instance of the map (i.e. both flags are not moved for the duration

of the system training). The ensemble controller then attempts to use the context

sensitive weights to choose the best behavioral model, which should lead the character

to capture the red flag and return it to the blue base.

The state representation for this study consists of the following variables:

~P : The x and y position of the agent in the world.

~R: The translation vector from the agent’s current position to the enemy’s flag.

~B: The translation vector from the agent’s current position to its own flag.

Hr: If the red flag is currently being held by an agent.

Hb: If the blue flag is currently being held by an agent.

4.1.2 Behaviorial Models

Four very simple behavioral models are used. The four models are labeled B1,

B2, B3, and B4. Each model is unintelligent and always performs the same action

regardless of the current state of the world. B1 moves the agent to the left, B2 moves

the agent to the right, B3 moves the agent up, and B4 moves the agent down. Because

each model will only move in one direction it is not possible for any one single model

to successfully capture the flag.

4.1.3 Results

The above models are used to capture the flag despite the fact that neither

the ensemble controller, the behavioral models, nor any single part of the system has

22

Figure 4.1: Shown here is the CTF environment.

enough information to know what model should be chosen to successfully capture the

flag. The success of the agent is entirely dependent upon a transfer of knowledge

from the animator to the framework through the context sensitive weights. Therefore

feedback will be given to the system rating highly models that move the agent towards

the red flag and then back towards the blue base after picking up the flag.

To measure the performance of the framework, the agent and the two flags are

randomly placed in the world. The agent is then given the opportunity to capture

the flag within 200 turns and the simulation is ended when the flag is captured or the

200 turn limit is reached. If the flag has not been captured the simulation is ended

and it is recorded that no capture was made. At least 500 rounds of testing are done

for each combination of parameters.

Running the Simulation with the Initial Feedback

The results in Table 4.1 show that the framework was able to correctly learn the

context sensitive weights and successfully capture the flag. When choosing the top

model the character was able to capture the flag 84.1% of the time. In the cases in

23

which the agent did not capture the flag, it would get stuck in a “rut” moving back

and forth between several squares repeatedly. Temporal boosting had a negative

effect on performance because it caused the agent to stay with a particular model

and overshoot its desired destination increasing the likelihood of finding a rut.

Probabilistically choosing the model resulted in better performance, a 99.2%

capture rate. The capture rate is much higher because of the stochastic nature of

using the PDF to select the model—the agent will eventually choose an action that

gets it out of any ruts. Unfortunately this caused the agent to look unintelligent as

its movements tended to be stuttered and jerky. Statistically this can be seen in the

higher number of turns needed to capture the flag. When choosing the top model the

agent was able to go to the flag, pick it up, and return it without hesitation unlike

the stochastic method. Temporal boosting reduced the agent’s stuttering and made

it appear more intelligent but it still continued to overshoot its goals wasting turns.

The only time the agent did not capture the flag was when the 200 turn limit was

reached.

Table 4.1: Capture the Flag Results
Parameters Capture Rate Avg. Number

of Turns
Choose top action without temporal
boosting

84.1% 27.1

Choose top action with temporal
boosting

58.2% 36.2

Probabilistically choose the action
without temporal boosting

99.2% 85.2

Probabilistically choose the action
with temporal boosting

96.4% 97.0

Running the Simulation with an Additional Round of Feedback

The framework can be given feedback at anytime to improve performance. The

CTF simulation runs were repeated, but this time additional feedback was given

24

whenever the agent got stuck in a rut. Table 4.2 shows that the agent did improve its

performance particularly when choosing the top model without temporal boosting.

It went from scoring 84.1% to 98.2%. Giving additional feedback can be an effective

method to increase the agent’s performance.

Table 4.2: Capture the Flag Results with Additional Feedback
Parameters Capture Rate Avg. Number

of Turns
Choose top model without temporal
boosting

98.2% 31.2

Choose top model with temporal
boosting

51.2% 34.8

Probabilistically choose the model
without temporal boosting

100% 73.1

Probabilistically choose the model
with temporal boosting

99.6% 91.1

4.1.4 Conclusion

The framework was able to successfully combine the strengths of each indi-

vidual model and successfully perform a task that none of them could possibly do

alone. There was a transfer of knowledge from the animator to the system enabling

the character to successfully capture the flag. In addition, the character’s perfor-

mance continued to improve through multiple rounds of feedback. The feasibility

study shows that the framework is able to learn the animator’s preferences, improve

the performance of the character, and create a new behavior.

25

4.2 Case Study 1: Multi-Agent Capture the Flag

4.2.1 Introduction & Environment

This study is built upon the feasibility study but adds additional elements to

test the framework. Multiple agents are introduced, the world is enlarged by a factor

of 4, and impassible squares are added (see Figure 4.2). Specifically, the world is a

32x32 grid with 10% of the board randomly covered in obstacles. There are two blue

agents and two red agents along with a flag for each team.

The state representation for this study consists of the following variables:

~P : The x and y position of the agent in the world.

~R: The translation vector from the agent’s current position to the enemy’s flag.

~B: The translation vector from the agent’s current position to its own flag.

Hr: If the red flag is currently being held by an agent.

Hb: If the blue flag is currently being held by an agent.

Do: The distance to the agent’s own flag.

De: The distance of the agent to the enemies flag.

Figure 4.2: Shown here is the multi-agent CTF environment. The world is signifi-
cantly larger (32x32), includes obstacles, and has multiple agents.

26

4.2.2 Behavioral Models

In order to deal with the more complex world, three new behavioral models

were created.

A* Model. The A* model is based on the popular A* search algorithm and will

plan a path through the obstacles to capture the flag [Hart et al. 1968].

Potential Fields Model. The potential fields model uses imaginary forces to direct

the agent [Andrews and Hogan 1983, Khatib 1986]. Obstacles and enemies ex-

ert repulsive forces, while the goal applies an attractive force. The agent simply

follows these forces to capture the flag. No path planning is done but the agent

is better able to avoid enemies than the A* model.

Arc Defense Model. This model attempts to put the agent between the enemy

and the agent’s own flag, thereby preventing the enemy from making a capture.

This is the only model that does not actively seek to capture the enemy’s flag.

4.2.3 Results

For each simulation the map is randomly generated with 10% of the board

covered in obstacles, the flags are randomly placed with the surrounding obstacles

removed, and the agents are randomly placed on their side of the map. The simulation

is allowed to run until a team captures the flag or 500 turns have passed and then a

new map is given. A minimum of 600 rounds are simulated between the teams while

recording the number of times each team captured the flag and the number of turns

to capture the flag.

In order to establish baseline performance each cognitive model was tested

against itself. The expected value with a random world and randomly placed agents

is an even split between the two teams. The results (Table 4.3) confirm that the teams

did split the captures when using the same models. With the arc defense model, both

teams are only defending their flag and no captures are made.

To test the framework, one of the blue agents was given an ensemble of the

three models while the other agents were restricted to one of the other models. The

27

blue agent with the ensemble controller had a notable impact on the results. When

the other agents were using the A* model it resulted in a 8.4% spread between the

teams—the blue team captured the flag 54.2% of the time compared to 45.8% of the

time for the red team. With the potential fields models the spread was not as large

but was still in blue’s favor at 4.0%. Finally with the arc defense models there was

a 100% spread between the teams because red never attempted to capture the blue

team’s flag. In this run the blue team captured the flag 19.7% of the time. The

ensemble of behavior models increased the agent’s performance demonstrating the

effectiveness of the framework.

Table 4.3: Multi-Agent Capture the Flag Results
Cognitive Models Baseline Results Ensemble Results

A* model.

Red: 50.2%
Blue: 49.8%
Total Captures: 100/100
Average Turns: 46.4

Red: 45.8%
Blue*: 54.2%
Total Captures: 99.5/100
Average Turns: 51.4

Potential fields model.

Red: 49.2%
Blue: 50.8%
Total Captures: 88.5/100
Average Turns: 117.6

Red: 48.0%
Blue*: 52.0%
Total Captures: 90.2/100
Average Turns: 109.7

Arc defense model.

Red: 0%
Blue: 0%
Total Captures: 0/100
Average Turns: 500

Red: 0%
Blue*: 100%
Total Captures: 19.7/100
Average Turns: 430.6

*One agent on the blue team was using an ensemble.

4.2.4 Conclusion

In this case study, a multi-agent capture the flag game was simulated. One

agent used the ensemble controller while the other three agents were restricted to a

single model. In all cases the agent with the ensemble controller performed better than

the agents using a single model. The results show that the ensemble character had

an impact on the outcome of the simulation. This study suggests that the ensemble

28

controller framework can improve the performance of an agent in a complex, multi-

agent environment.

29

4.3 Case Study 2: Flocking

4.3.1 Introduction & Environment

The flocking simulation consists of a large area with various trees, plants,

mountains and virtual birds—see Figure 4.3. The birds attempt to flock together

while avoiding the obstacles in the environment (Figure 4.4). In the case study

presented in the previous section, the best action was chosen based on its weighting.

In this case study, we augment the action of the ensemble controller to be able to

blend actions together to create novel actions. This is possible because the models

output real number acceleration vectors which can be combined. This study uses

a continuous environment, and of all the case studies presented here, contains the

largest number of concurrent virtual characters running multiple behavior models,

stressing the performance of the solution.

The state representation for this study consists of the following variables:

~P : The x, y, and z position of the agent in the world.

Do: The distance of the agent to the nearest obstacle.

Ao: The direction of the obstacle relative to the agent’s current direction.

H: If agent is currently at the head of a flock of birds in the V-formation.

4.3.2 Behavioral Models

Rather than creating custom behavioral models for this study, existing models

are used with the ensemble controller. The following models are included:

The boid model created by Reynolds [1987]. The boid model has three simple

steering behaviors that control how the individual boid maneuvers based on the

positions and velocities of nearby flock mates. The three steering behaviors are

cohesion (the attraction of boids to each other), alignment (match the velocity

and heading of flock mates) and separation (avoiding any crowding of local

flock mates). These forces allow the boids to flock based completely on their

local perception of the world. In addition to the three basic steering behaviors,

an obstacle avoidance behavior is also included allowing the boids to dodge

30

Figure 4.3: The flocking world is made up of trees, plants, mountains and birds. When
the birds reach the edge of the area, represented by the surrounding mountains, they
wrap around to the other side. There are different obstacles the birds must avoid—the
large mountain in the middle of the field and the randomly placed trees.

obstacles. A base implementation used in [Platt 2004] was slightly modified to

fit this study’s particular environment.

A V-formation model [Gervasi and Prencipe 2004]. Gervasi and Prencipe’s work

involves the distributed coordination and control of anonymous, memoryless vir-

tual birds that can freely move in a two-dimensional plane with a designated

leader. Their algorithm was used as a basis to form a V-formation model that

works in a three-dimensional world and without any predesignated leaders. In

addition, the work of Leonard and Fiorelli [2001] on coordinating groups of

autonomous vehicles was used as a reference for this model.

Scripted stunt model. A scripted stunt model allows an agent to perform a num-

ber of different stunts. The possible stunts are a figure 8, an S shaped path, a

loop left and a loop right.

31

Figure 4.4: Three groups of flocking birds can be seen here. They attempt to stay
together while avoiding obstacles such as trees and mountains.

4.3.3 Results

This case study is evaluated primarily on a statistical level but is also eval-

uated on a visual level. Statistically the number of collisions the birds have with

the obstacles is compared. Visually we expect the birds to attempt to flock in a

V-formation while avoiding the obstacles. Additionally when a boid is leading the

formation it should begin performing stunts, inducing the other birds to follow. For

each simulation, 100 birds start off at random locations on the map with random

horizontal and vertical directions (see Figure 4.5); consequentially, the birds do not

start out in flocks and must seek nearby birds to form flocks.

Statistical Results

To gather the results, 3 different simulations were done for 3 minutes each, and their

outputs were averaged. Table 4.4 shows the number of collisions per second with

32

Figure 4.5: When starting a simulation the virtual birds are placed randomly on the
map with random horizontal and vertical headings. The birds must actively seek out
nearby birds to form flocks.

100 virtual birds in the field. Of the base models only the boid model features the

collision avoidance algorithm and can be considered the baseline for the results. The

V-formation and stunt models hit the obstacles at a rate of 16.25 and 8.43 per second

respectively, which was much higher than the boid model rate of 3.0 collisions per

second. When the birds are using an ensemble of the models they achieved a rate

of 3.23 collisions per second which is very close to our baseline even though they are

using all three models at the same time. The ensemble was able to successfully learn

the animator’s preference to avoid the obstacles thus meeting our goals statistically.

Table 4.4: Flocking Results
Model Collisions per Second
Boid 3.00
V-formation 16.25
Stunt 8.43
Ensemble 3.23

33

Visual Results

In addition to avoiding collisions, the ensemble method needs to meet our visual goals

to be considered a success. The goals are to flock in a V-formation while avoiding

the obstacles and to performs stunts when leading the formation. The visual goals

can be considered subjective in nature because there is no metric to define how well

the birds are meeting the goals and also the written format of this work makes it

hard to convey the degree to which the goals are met. Although subjective, it is

important for birds to meet our visual goals or little has been gained by using the

ensemble. In Figure 4.6 we can see how the model ensemble reacts as the formation

approaches the tree. As the birds get closer to the obstacle they begin to avoid it

while at the same time attempting to stay in formation. The actions are linearly

blended to produce a completely new action (see Figure 4.7). The new action allows

the birds to successfully avoid the tree when close, but to get back into formation

shortly after—thus meeting our primary visual goal.

Figure 4.6: The birds are able to keep in formation while avoiding the obstacle.

34

Figure 4.7: Seen here is a bird and the suggested actions of the models as well as
the chosen action. The blue, red, and green (not visible) lines represent the different
suggested actions by the behavioral models and the white line represents the actual
action taken. As can be seen, the final action is a weighted combination of the different
suggested actions.

The bird that is currently leading has also successfully learned not only to

avoid obstacles but to perform various stunts (Figure 4.8) meeting our second goal.

Figure 4.9 is a snapshot of the simulation after it had been running for approximately 1

minute showing the birds and the different visual goals they are meeting. Statistically

we know the birds are successfully avoiding the obstacles. To get to this point in time,

the birds had to first find nearby birds, second dynamically form flocks, and third

form a V-formation. As can be seen in Figure 4.9 they are avoiding the obstacles,

flocking in V-formations, and performing various stunts.

4.3.4 Conclusion

The continuous environment in this case study presented an important chal-

lenge that the framework was able to overcome. The ensemble characters were a

success and met the statistical goals and the subjective visual goals. The linear

blending of actions not only produced completely new actions not suggested by any

single model but also increased the performance of the birds. They were able to

avoid obstacles while at the same time staying in formation. Finally, there was no

significant performance decrease with the ensemble characters.

35

Figure 4.8: The leading bird is performing a figure S stunt with the other birds
following. The birds following are able to stay in formation throughout the maneuver.

36

(a) Field

(b) Highlighted Field

Figure 4.9: Subfigure (a) shows the field with all 100 birds using the ensemble
controller, and subfigure (b) shows the same map with met visual goals highlighted.
The red highlighted birds are performing a stunt, the yellow ones are flocking in a
V-formation while following their leader, and the blue ones are avoiding the obstacles
while staying as much as possible in V-formation.

37

4.4 Case Study 3: Crowd Simulation Using a Combat Situation

4.4.1 Introduction & Environment

The object of this case study is to test the framework in a continuous en-

vironment, with complex characters, with multiple goals, and with the layering of

ensemble controllers. The environment is a large continuous area where one army

attempts to secure two target locations on the map. The attacking team has three

different types of characters—a paladin, a mage, and a nurse—while the defending

team is a horde of skeletons. A new character is created using an ensemble of the

characters to create a “super character” that can perform all of the actions of the

paladin, mage, and nurse (the top action is chosen). Although the characters act

independently, a commander directs where they go and when they attack. Different

commanding strategies are created—a rush strategy and an end-around strategy. An

ensemble of cognitive models using these strategies is also created to improve the

commander’s performance.

The state representation for this study consists of the following variables:

~P : The x, and y position of the agent in the world.

T : The team the agent is on.

Df : The distance of the agent to the closest friendly agent.

Hf : The health of the closest friendly agent.

De: The distance of the agent to the closest enemy.

He: The health of the closest enemy.

4.4.2 Troop Cognitive Models

The are five different characters created for this case study each with 100

health points and different abilities. (see Figure 4.11).

• The paladin is a close combat character that actively seeks out nearby enemies

and has the strongest attack of any character—Figure 4.11(a).

• The mage can attack from a distance by throwing fireballs at the enemy—

Figure 4.11(b). Although her attack isn’t as strong as the Paladin’s, because

38

she can attack from a distance before the Paladin can, it is an even fight between

the two.

• The Nurse heals other characters around her but is unable to attack the enemy

or heal herself—Figure 4.11(c).

• A “super character” is created that uses an ensemble of the above cognitive

models to perform the actions of all three—Figure 4.11(d).

• The skeleton character is similar to the paladin. It is only able to attack at

close range and is similar in strength—Figure 4.11(e).

Figure 4.10: Shown here is the combat situation environment. The super character
is attempting to secure the location specified by the target.

4.4.3 Commander Cognitive Models

In addition to the troop cognitive models there are two commander cognitive

models that attempt different strategies. The first model, rush commander, attempts

to secure the points as quickly as possible by charging the enemy. It does this by

39

(a) Paladin (b) Mage (c) Nurse

(d) Super Character (e) Skeleton

Figure 4.11: This figure shows each character present in the case study.

following the shortest path to the target locations and cutting through the defend-

ing team. The second model, the end-around commander, takes a more defensive

approach. It attempts to use an end-around strategy by avoiding the enemy all to-

gether. When the enemy gets close, a defensive formation is taken and the enemy

is allowed to attack. The commander controlling the defending skeletons patrols the

area around the two target locations and attacks when the other team gets close.

4.4.4 Results

The attacking team is made up of 12 characters—4 paladins, 4 mages, and 4

nurses. The defending team is made up of 8 skeletons. This setup was chosen because

it allows each character to exhibit their unique skills, each team has the same num-

ber of offensive characters giving them similar attacking abilities, and although the

attacking team has a slight edge the results are not lopsided (see winning percentage

without ensembles in Table 4.5).

For the ensemble simulations, two paladins and two mages were replaced by

super characters. Each simulation involved the random placement of the characters

40

on their side of the field and was run until the two target locations were secured

or until every member of the attacking team was killed. For each simulation, the

following statistics were gathered:

Simulation Time. The amount of time it took before an ending condition was

reached.

Winning Percentage. The overall winning percentage of the attacking team.

Defending Team Damage. The amount of damage the defending team took from

the attacking characters.

Defending Team Deaths. The number of characters on the defending team that

died in the battle.

Attacking Team Damage. The amount of damage the attacking team took.

Attacking Team Deaths. The number of characters on the attacking team that

died in battle.

Attacking Team Healing. The amount of health that was restored to the attacking

team characters.

A two sided t-test was performed on each variable and is only considered signif-

icant above the 95th percentile. Fifty-one battles were simulated for each commander

with and without the super characters.

Table 4.5 shows the results with the rush commander. The super characters

had a large impact on battles. Not only did the winning percentage rise from 58.8% to

78.4% but the attacking team performed significantly better in almost every category

showing that the super character was performing the unique skills of all three cognitive

models.

Table 4.6 shows the results with the end-around commander. Compared to

the rush commander, the end-around commander (80.4% compared to 58.8%) has

a much better winning percentage. Even though the base simulation had a high

41

Table 4.5: Simulation Results With Rush Commander
Statistic Without Ensembles With Ensembles T -Test
Simulation Time 170.6s 181.7s 0.123
Winning Percentage 58.8% 78.4% 0.033
Defending Team Damage 664.1 805.2 2.07 ∗ 10−4

Defending Team Deaths 5.7 7.5 5.20 ∗ 10−5

Attacking Team Damage 1087.4 1020.8 0.34
Attacking Team Deaths 8.6 7.0 0.024
Attacking Team Healing 163.4 229.6 5.44 ∗ 10−5

winning percentage, adding the super character still had a large impact. The winning

percentage with the super characters rose to 98.0%.

Table 4.6: Simulation Results With the End-Around Commander
Statistic Without Ensembles With Ensembles T -Test
Simulation Time 222.9s 232.6s 0.42
Winning Percentage 80.4% 98.0% 0.0038
Defending Team Damage 732.9 731.8 0.98
Defending Team Deaths 6.7 7.0 0.56
Attacking Team Damage 891.5 765.4 .078
Attacking Team Deaths 6.4 4.6 0.0061
Attacking Team Healing 182.7 212.7 0.15

In addition to creating an ensemble of the troop cognitive models, an ensemble

of the commander cognitive models was also made. The results show that without

using a commander ensemble, the end-around commander has a much higher winning

percentage (80.4% to 58.8%) but is a lot slower than the rush commander (222.9s to

170.6s). The enhanced commander should secure the locations more quickly while at

the same time avoiding the enemy and taking a defensive posture when the enemy

gets close.

The same simulation procedures were used—51 battles for each commander

with and without the super characters—and the results were recorded. Table 4.7

shows the results of the simulation using ensemble commanders but not ensemble

42

troops. Without super characters the ensemble of the commander cognitive models

performed as desired. While not as fast as the rush commander, the simulation time

was reduced significantly from the end-around commander’s time of 222.9s to 193.7s.

Also the winning percentage jumped to 88.2%, which was better than either individual

commander. Table 4.8 shows the results of using both ensemble commanders and

ensemble troops. This simulation produced the best results. The commander won

quickly and often and provided the best overall performance seen in the case study.

Table 4.7: Simulation Results With Ensemble Commander but no Ensemble Troops

Ensemble
Commander

Rush
Commander

T -Test
End-
Around
Commander

T -Test

Simulation Time 193.7s 170.6s 0.0021 222.9s 0.0019
Winning
Percentage

88.2% 58.8% 0.00062 80.4% 0.28

Defending Team
Damage

781.3 664.1 0.077 732.9 0.23

Defending Team
Deaths

7.2 5.7 0.0019 6.73 0.25

Attacking Team
Damage

874.4 1087.4 0.0045 891.5 0.80

Attacking Team
Deaths

6.2 8.6 0.00076 6.35 0.79

Attacking Team
Healing

178.8 163.4 0.35 182.7 0.83

43

Table 4.8: Simulation Results With Ensemble Commander and Ensemble Troops

Ensemble
Commander

Rush
Commander

T -Test
End-
Around
Commander

T -Test

Simulation Time 191.2s 181.7s 0.19 232.6s 0.00018
Winning
Percentage

94.1% 78.4% 0.021 98.0% 0.31

Defending Team
Damage

761.8 805.2 0.17 731.8 0.55

Defending Team
Deaths

7.2 7.5 0.39 7.01 0.71

Attacking Team
Damage

800.2 1020.8 0.00030 765.16 0.59

Attacking Team
Deaths

5.2 7.02 0.0035 4.63 0.29

Attacking Team
Healing

190.9 229.7 0.013 212.6 0.26

4.4.5 Conclusion

In this crowd simulation study, an attacking team made up of three different

character types (paladin, mage, and nurse) attempts to secure two target locations on

the map defended by a horde of skeletons. Overall, incorporating the framework into

this case study worked well. Performance was improved in nearly every aspect and

combining multiple model ensembles brought even better performance. The results

were found to be statistically significant at the 95th percentile. In addition, the super

character performed the unique actions of all three behavioral models allowing for

new behaviors and animations.

44

4.5 Machine Learning Algorithms

4.5.1 Algorithms

The machine learning algorithm used to learn the context sensitive rating in

all of the case studies was k-nearest neighbors (K-NN) [Cover and Hart 1967]. K-

NN was chosen because of its robustness to noise and its ability to easily work in

continuous environments. This is important because the feedback given to the frame-

work comes directly from the animator. He/she will most likely not give consistent

feedback resulting in noisy training data.

To test the impact the machine learning algorithm has on the framework the

case studies were rerun using the regression tree algorithm [Breiman and Breiman 1984].

Only t-test scores above the 95th percentile are considered significant when compar-

ing the algorithms. A regression tree is quite different from the K-NN learner. This

algorithm attempts to predict the regression variable by partitioning the data using a

tree of split (if-then-else) conditions. When using continuous variables the regression

tree is only able to provide a rough approximation because it must choose a split

point. In contrast, K-NN simply looks at its closest K neighbors and uses a weighted

combination of their values to predict the regression variable. Like K-NN, regression

trees have moderate to quick training times and are moderately robust to noise.

4.5.2 Feasibility Study Results

Tables 4.9 and 4.10 show the results with the top model being chosen and

Tables 4.11 and 4.12 show the results when probabilistically choosing the model. In

three of the four cases, K-NN performed statistically better than the regression tree.

The training data for this case study was particularly noisy, which most likely reason

K-NN to perform better.

45

Table 4.9: Feasibility Study Learning Algorithm Comparison with Top Model Chosen
and Temporal Boosting

K-NN Regression Tree T -Test
Capture Rate 58.3% 52.8% 0.11
Number of Turns 34.9 36.2 0.26

Table 4.10: Feasibility Study Learning Algorithm Comparison with Top Model Chosen
and No Temporal Boosting

K-NN Regression Tree T -Test
Capture Rate 84.1% 78.7% 0.046
Number of Turns 27.4 36.2 0.57

Table 4.11: Feasibility Study Learning Algorithm Comparison with Probabilistically
Choosing the model and Temporal Boosting

K-NN Regression Tree T -Test
Capture Rate 96.4% 91.2% 0.0005
Number of Turns 97.02 94.6 0.34

Table 4.12: Feasibility Study Learning Algorithm Comparison with Probabilistically
Choosing the model and No Temporal Boosting

K-NN Regression Tree T -Test
Capture Rate 99.5% 92.1% 4.53 ∗ 10−8

Number of Turns 97.02 94.6 0.037

46

4.5.3 Capture The Flag Results

The A* model was used for comparison between the learning algorithms. The

blue team had one character using the model ensembles and the same simulation

parameters were used (see Section 4.2.3). Unlike the feasibility study this study

showed no statistical difference between the learning algorithms (see Table 4.13).

The t-test scores were all very high, greater than 0.32, and the scores had small

differences.

Table 4.13: Capture the Flag Learning Algorithm Comparison
K-NN Regression Tree T -Test

Blue Winning Percentage 53.7% 52.4% 0.64
Red Winning Percentage 46.9% 47.4% 0.57
Total Capture Percentage 99.6% 99.9% 0.35
Number of Turns 51.2 49.9 0.32

4.5.4 Flocking Results

The flocking case study favored the K-NN learner (see Table 4.14). The re-

gression tree learner still performed quite well with a collision rate of 5.01 which is

much better than the 16.25 and 8.43 collisions per second of the V-formation model

and Stunt model respectively. With the K-NN learner, when approaching an obstacle

the bird would begin to avoid it while trying to stay in formation until it had com-

pletely passed the obstacle. With the regression tree, there appeared to be a point

where the bird would completely stop trying to avoid the obstacle and would get back

into formation. This is most likely due to where the split point was chosen on the

continuous attribute. However, despite this, the regression tree still did quite well.

Table 4.14: Flocking Learning Algorithm Comparison
K-NN Regression Tree T -Test

Collision Rate 3.23 5.01 0.049

47

4.5.5 Crowd Simulation Results

The crowd simulation results were rerun with the regression tree (Tables 4.15

and 4.16). With just the commander cognitive models there was no significant dif-

ference between the two algorithms. When both the commander and troops use an

ensemble of the models the regression tree actually performed significantly better in

four of the seven categories. This case study helps to show that there will be different

domains where each learner will perform better than the others.

Table 4.15: Crowd Simulation Learning Algorithm Comparison with Ensemble Com-
manders and No Ensemble Troops

Statistic K-NN Regression Tree T -Test
Simulation Time 193.7s 191.6s 0.77
Winning Percentage 88.2% 84.3% 0.57
Defending TeamDamage 781.3 763.6 0.63
Defending Team Deaths 7.2 7.0 0.61
Attacking TeamDamage 874.4 909.3 0.58
Attacking Team Deaths 6.2 6.4 0.73
Attacking Team Healing 178.8 180.4 0.92

Table 4.16: Crowd Simulation Learning Algorithm Comparison with Ensemble Com-
manders and Troops

Statistic K-NN Regression Tree T -Test
Simulation Time 191.2s 200.5s 0.18
Winning Percentage 94.1% 98.0% 0.31
Defending TeamDamage 761.8 829.8 0.030
Defending Team Deaths 7.2 7.9 0.021
Attacking TeamDamage 800.2 666.6 0.018
Attacking Team Deaths 5.2 3.9 0.012
Attacking Team Healing 190.9 183.6 0.63

48

4.5.6 Conclusion

These particular case studies tend to slightly favor K-NN over regression trees.

K-NN performed better in 2 of the 4 studies while regression trees performed better

in 1 study with other study being a toss-up. However, the differences in performance

were small even when statistically significant. Overall, both algorithms performed

well and showed that the machine learning algorithm has a small impact on the

framework. On the studies found in this thesis, the success of the framework depends

more heavily on the animator giving accurate feedback than on the machine learning

algorithm.

49

50

Chapter 5

Conclusion & Future Work

5.1 Conclusion

Limitations with current techniques for creating cognitive and behavioral mod-

els include the need for a programmer to create the models through a time intensive

and complex process and an inability to reuse or combine existing models together.

This thesis has presented a novel framework that is able to overcome these limitations.

The framework consists of an ensemble of cognitive and behavioral models

coordinated by an ensemble controller (Section 3.2, Figure 3.2). The ensemble con-

troller is able to synergistically combine the individual models together (leveraging

the strengths of each one) and improve the character’s performance. The manner

in which the models are combined together is determined by the animator’s feed-

back given to the system and varies depending upon the current environment state

(sections 3.3, 3.5).

A simple capture the flag feasibility study was performed (section 4.1) that

showed the framework is able to correctly learn the feedback given by the animator

and allow the character to perform a new task—capture the flag. The next study,

multi-agent capture the flag (section 4.2), built upon the first study and included a

more complex environment and multiple agents. The flocking case study (section 4.3)

and the crowd simulation using a combat situation case study (section 4.4) continued

to stress the framework by introducing a continuous environment, complex cogni-

tive models, large numbers of agents, layering of model ensembles, and blending of

suggested actions. In each of the case studies the framework was empirically shown

to increase the character’s performance. Furthermore the characters exhibited new

behaviors and animations not present in the individual models.

51

The framework successfully leveraged multiple cognitive models. The average

time taken to train the system can be measured in minutes as opposed to the days

or weeks it takes a programmer to create new cognitive and behavioral models. The

animator is able to control how the models work together through the feedback given

to the system.

This thesis shows that it is possible to successfully create cognitive and be-

havioral model ensembles that improve performance of the character. This type of

framework allows for reuse of models already created, the potential creation of spe-

cialized cognitive models that excel at a specific task that can be shared with others,

and rapid creation of new characters through combination of existing models.

5.2 Future Work

The challenges of creating cognitive and behavioral model ensembles has only

begun to be explored. Future work includes the exploration of different learning al-

gorithms and their impact on performance, how best to weight each model—perhaps

a weight scheme more like boosting (or any one of the many different weight tech-

niques), a rigorus mathematical analysis of the system, analysis of the scalability of

the system to thousands of agents, what constitutes a good state representation, and

how to improve animator control over the character. Further work could be done to

reduce the burden on the animator. The current framework requires the animator to

give feedback on each model individually. A more ideal system would only ask for

feedback when the animator disliked a particular model and would then automati-

cally explore the alternative models. Finally, given the enormous variability in how

cognitive and behavioral models are created and integrated into the computer graph-

ics modeling hierarchy, this framework will not work for all models. Additional work

could be done in those situations to determine how best to implement an ensemble

framework.

The ensemble controller bears a resemblance to a perceptron [Rosenblatt 1958].

Perceptrons are not among the most powerful machine learning techniques. The en-

semble controller could potentially be replaced with a high order machine learning

52

technique. Challenges to this approach would include keeping the feedback mecha-

nism easy and simple, figuring out how to do the model selection, and developing a

system that would not require domain knowledge of the problem (keeping the envi-

ronment and cognitive models as black boxes).

53

54

Bibliography

Andrews, J. R., and Hogan, N. 1983. Impedance Control as a Framework for
Implementing Obstacle Avoidance in a Manipulator. Control of Manufacturing
Processes and Robotic Systems , 243–251.

Bellman, R. 1961. Adaptive Control Processes: A Guided Tour. Princeton Univer-
sity Press.

Blumberg, B., and Galyean, T. 1995. Multi-level direction of autonomous
creatures for real-time virtual environments. Proceedings of SIGGRAPH 95 , 47–
54.

Blumberg, B., Downie, M., Ivanov, Y., Berlin, M., Johnson, M., and
Tomlinson, B. 2002. Integrated learning for interactive synthetic characters.
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques , 417–426.

Breiman, B., and Breiman, L. 1984. Classification and Regression Trees. Chap-
man & Hall/CRC.

Breiman, L. 1996. Bagging Predictors. Machine Learning 24, 2, 123–140.

Burke, R., Isla, D., Downie, M., Ivanov, Y., and Blumberg, B. 2001.
CreatureSmarts: The Art and Architecture of a Virtual Brain. Proceedings of the
Game Developers Conference, 147–166.

Cover, T., and Hart, P. 1967. Nearest neighbor pattern classification. Informa-
tion Theory, IEEE Transactions on 13, 1, 21–27.

Dietterich, T. 1997. Machine learning research: Four current directions. AI
Magazine 18, 4, 97–136.

Dinerstein, J., and Egbert, P. 2005a. Fast Multi-level Adaptation for Interactive
Autonomous Characters. ACM Transactions on Graphics (TOG) 24, 2, 262–288.

Dinerstein, J., Egbert, P., Garis, H., and Dinerstein, N. 2004. Fast and
Learnable Behavioral and Cognitive Modeling for Virtual Character Animation.
Computer Animation and Virtual Worlds 15, 2, 95–108.

Dinerstein, J., Ventura, D., and Egbert, P. 2005b. Fast and Robust Incre-
mental Action Prediction for Interactive Agents. Computational Intelligence 21, 1,
90–110.

55

Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable
controllers for physics-based character animation. In SIGGRAPH 2001, Computer
Graphics Proceedings, ACM Press / ACM SIGGRAPH, E. Fiume, Ed., 251–260.

Freund, Y., and Schapire, R. 1996. Experiments with a new boosting algorithm.
Machine Learning: Proceedings of the Thirteenth International Conference 148 ,
156.

Funge, J., Tu, X., and Terzopoulos, D. 1999. Cognitive modeling: knowledge,
reasoning and planning for intelligent characters. Proceedings of the 26th annual
conference on Computer graphics and interactive techniques , 29–38.

Gervasi, V., and Prencipe, G. 2004. Coordination without communication: the
case of the flocking problem. Discrete Applied Mathematics 144, 3, 324–344.

Grzeszczuk, R., Terzopoulos, D., and Hinton, G. Neuroanimator: Fast
neural network emulation and control of physics-based models. SIGGRAPH 98
Conference Proceedings. Annual Conference Series , 9–20.

Hansen, L., and Salamon, P. 1990. Neural network ensembles. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 12, 10, 993–1001.

Hart, P., Nilsson, N., and Raphael, B. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics 4, 2, 100–107.

Isla, D., and Blumberg, B. 2002. New Challenges for Character-Based AI for
Games. AAAI Spring Symposium on AI and Interactive Entertainment, Palo Alto,
CA, March.

Jordan, M., and Jacobs, R. 1993. Hierarchical mixtures of experts and the
EM algorithm. Neural Networks, 1993. IJCNN’93-Nagoya. Proceedings of 1993
International Joint Conference on 2 .

Khatib, O. 1986. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. The International Journal of Robotics Research 5, 1, 90.

Leonard, N., and Fiorelli, E. 2001. Virtual leaders, artificial potentials and
coordinated control of groups. Decision and Control, 2001. Proceedings of the 40th
IEEE Conference on 3 , 2968–2973.

Monzani, J., Caicedo, A., and Thalmann, D. 2001. Integrating Behavioural
Animation Techniques. Computer Graphics Forum 20, 3, 309–318.

Opper, M., and Haussler, D. 1991. Generalization performance of Bayes optimal
classification algorithm for learning a perceptron. Physical Review Letters 66, 20,
2677–2680.

56

Perlin, K., and Goldberg, A. 1996. Improv: a system for scripting interactive
actors in virtual worlds. Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques , 205–216.

Platt, R. 2004. 3D Boids Simulation. http://www.navgen.com/3d boids/.

Reynolds, C. 1987. Flocks, herds and schools: A distributed behavioral model.
ACM SIGGRAPH Computer Graphics 21, 4, 25–34.

Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychol Rev 65, 6, 386–408.

Stone, P., and Veloso, M. 2000. Multiagent Systems: A Survey from a Machine
Learning Perspective. Autonomous Robots 8, 3, 345–383.

Tomlinson, B., Downie, M., Berlin, M., Gray, J., Wong, A., Burke, R.,
Isla, D., Ivanov, Y., Johnson, M., Lyons, D., et al. AlphaWolf. Proceedings
of SIGGRAPH 2001: conference abstracts and applications , 2.

Tu, X., and Terzopoulos, D. 1994. Artificial fishes: physics, locomotion, per-
ception, behavior. Proceedings of the 21st annual conference on Computer graphics
and interactive techniques , 43–50.

Weiss, G. 1999. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press.

Witten, I., and Frank, E. 2000. Data mining: practical machine learning tools
and techniques with Java implementations. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA.

Wolpert, D. 1992. Stacked generalization. Neural Networks 5, 2, 241–259.

57

	Cognitive and Behavioral Model Ensembles for Autonomous Virtual Characters
	BYU ScholarsArchive Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Overview
	1.1 Introduction
	1.2 Overview of Thesis
	1.3 Thesis Statement

	2 Related Work
	3 Proposed Solution
	3.1 Methods
	3.2 Ensemble Controller
	3.3 Action Selection
	3.4 Context Sensitive Weights
	3.5 Learning the Context Sensitive Rating
	3.5.1 State Representation

	3.6 Putting It All Together

	4 Feasibility Study, Case Studies, and Comparisons
	4.1 Feasibility Study: Simple Capture the Flag
	4.1.1 Introduction & Environment
	4.1.2 Behaviorial Models
	4.1.3 Results
	4.1.4 Conclusion

	4.2 Case Study 1: Multi-Agent Capture the Flag
	4.2.1 Introduction & Environment
	4.2.2 Behavioral Models
	4.2.3 Results
	4.2.4 Conclusion

	4.3 Case Study 2: Flocking
	4.3.1 Introduction & Environment
	4.3.2 Behavioral Models
	4.3.3 Results
	4.3.4 Conclusion

	4.4 Case Study 3: Crowd Simulation Using a Combat Situation
	4.4.1 Introduction & Environment
	4.4.2 Troop Cognitive Models
	4.4.3 Commander Cognitive Models
	4.4.4 Results
	4.4.5 Conclusion

	4.5 Machine Learning Algorithms
	4.5.1 Algorithms
	4.5.2 Feasibility Study Results
	4.5.3 Capture The Flag Results
	4.5.4 Flocking Results
	4.5.5 Crowd Simulation Results
	4.5.6 Conclusion

	5 Conclusion & Future Work
	5.1 Conclusion
	5.2 Future Work

	Bibliography

