

Brigham Young University BYU ScholarsArchive

Theses and Dissertations

2007-05-08

## Investigation of the Iron Oxidation Kinetics in Mantua Reservoir

Scott H. Lathen Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Civil and Environmental Engineering Commons

#### **BYU ScholarsArchive Citation**

Lathen, Scott H., "Investigation of the Iron Oxidation Kinetics in Mantua Reservoir" (2007). *Theses and Dissertations*. 918. https://scholarsarchive.byu.edu/etd/918

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen\_amatangelo@byu.edu.

# INVESTIGATION OF THE IRON OXIDATION KINETICS

### IN MANTUA RESERVOIR

by

Scott H. Lathen

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Civil and Environmental Engineering

Brigham Young University

August 2007

### BRIGHAM YOUNG UNIVERSITY

### GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Scott H. Lathen

This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory.

Date

Gustavious P. Williams, Chair

Date

Norman L. Jones

Date

E. James Nelson

### BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Scott H. Lathen in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.

Date

Gustavious P. Williams Chair, Graduate Committee

Accepted for the Department

E. James Nelson Graduate Coordinator

Accepted for the College

Alan R. Parkinson Dean, Ira A. Fulton College of Engineering and Technology

#### ABSTRACT

# INVESTIGATION OF THE IRON OXIDATION KINETICS IN MANTUA RESERVOIR

Scott H. Lathen Department of Civil and Environmental Engineering Master of Science

Irrigation of the municipal cemetery in Brigham City, Utah resulted in stained headstones in 2001 and 2002. The water used in the irrigation came from Mantua reservoir, a medium sized impoundment situated near the mouth of Box Elder Canyon. In order for Brigham City to establish a city wide secondary pressurized irrigation system using water from Mantua reservoir, the cause and the source of staining problem must be determined. Previous research (Wallace 2006) determined that the source of the staining was the reduction of iron found in Mantua Reservoir sediments that occurred when seasonal variations in the reservoir caused anaerobic conditions. The reduced iron then dissolved in the water and was used in the irrigation system, causing re-oxidation of the iron. The oxidized iron then precipitated out on the headstones causing the staining. The

purpose of this investigation is to determine the iron oxidation kinetics after the reaeration of the water which will help determine appropriate mitigation methods. A secondary purpose is to confirm the Mantua reservoir's capacity to become anaerobic, resulting in the conditions which cause staining.

Using laboratory investigations and computer modeling, I determined that on reaeration, fifty percent of the dissolved iron in the water precipitates in five hours. Using first-order kinetics to model this process, I found the rate constant of the kinetic reaction to be 0.0029 min<sup>-1</sup>. Fitting a geochemical computer model of the iron oxidation kinetics in Mantua reservoir, which uses a higher-order kinetics model to better model this process, to experimental kinetic data yielded a rate constant of  $4x10^{13}/atm x min$ .

I also recreated the staining process in the laboratory using concrete. This was successful and provided visual evidence that the iron precipitates out of the water and stained the concrete within a couple of hours of application. Field data collected from Mantua reservoir showed that the dissolved oxygen concentration in the reservoir drops regularly below levels consistent with equilibrium to the atmosphere. While my field measurements did not record anaerobic conditions, based on the patterns shown, this study shows that it would be possible for anaerobic conditions to occur during warmer weather.

#### ACKNOWLEDGMENTS

First, I wish to thank Dr. Gus Williams for his advice and technical assistance throughout the entire duration of this study. I would also like to thank Rob Wallace for finding this project and conducting the initial research that provides the basis for this study.

The project was funded in its entirety by the Division of Public Works of Brigham City, Utah.

Finally, I would like to thank my wife for her support and her sacrifice to support and assist me in this project.

### TABLE OF CONTENTS

| ACKNOWLEDGMENTS vii |                       |       |                                           |     |  |  |
|---------------------|-----------------------|-------|-------------------------------------------|-----|--|--|
| Т                   | TABLE OF CONTENTS vii |       |                                           |     |  |  |
| L                   | LIST OF TABLES ix     |       |                                           |     |  |  |
| L                   | LIST OF FIGURES xi    |       |                                           |     |  |  |
| 1                   | Introduction          |       |                                           |     |  |  |
|                     | 1.                    | 1 1   | Mantua Reservoir Background               | . 3 |  |  |
|                     | 1.                    | 2 0   | Objectives                                | . 7 |  |  |
| 2 Chemistry         |                       |       |                                           | .9  |  |  |
|                     | 2.                    | 1 (   | Chemical Conditions of Mantua Reservoir   | . 9 |  |  |
|                     | 2.                    | 2 ]   | Iron Oxidation Kinetics                   | 12  |  |  |
|                     | 2.                    | 3     | Factors Affecting Iron Oxidation Kinetics | 14  |  |  |
| 3                   |                       | Meth  | ods and Experimental Procedures           | 19  |  |  |
|                     | 3.                    | 1     | Sampling Methods and Locations            | 19  |  |  |
|                     | 3.                    | 2 0   | Qualitative Procedures                    | 20  |  |  |
|                     | 3.                    | 3     | DO Testing in Mantua Reservoir            | 21  |  |  |
|                     | 3.                    | 4 ]   | Laboratory Procedures                     | 23  |  |  |
|                     |                       | 3.4.1 | Anaerobic Conditions                      | 23  |  |  |
|                     |                       | 3.4.2 | Standards                                 | 24  |  |  |
|                     |                       | 3.4.3 | Re-aeration and Iron Measurement          | 26  |  |  |
| 4                   |                       | Com   | puter Modeling Procedures                 | 29  |  |  |
|                     | 4.                    | 1 ]   | PHREEQC                                   | 29  |  |  |

|                                                                      | 4.2                                                        | Mantua Model Development                      | 30 |  |  |
|----------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|----|--|--|
| 5                                                                    | Exp                                                        | erimental and Modeling Results and Discussion | 33 |  |  |
|                                                                      | 5.1                                                        | Field Results                                 | 33 |  |  |
|                                                                      | 5.2                                                        | Qualitative Staining Results                  | 37 |  |  |
|                                                                      | 5.3                                                        | Quantitative Experimental Results             | 40 |  |  |
|                                                                      | 5.4                                                        | PHREEQC Model Results                         | 44 |  |  |
| 6                                                                    | Con                                                        | clusions                                      | 49 |  |  |
|                                                                      | 6.1                                                        | Application                                   | 51 |  |  |
| R                                                                    | References                                                 |                                               |    |  |  |
| A                                                                    | ppendi                                                     | x A. Field Data                               | 57 |  |  |
| A                                                                    | ppendi                                                     | x B. PHREEQC Files                            | 59 |  |  |
| B-1: Partial input file for Example 9 (Parkhurst and Appelo 1999) 59 |                                                            |                                               |    |  |  |
|                                                                      | B-2: Mantua PHREEQC model complete input and output file61 |                                               |    |  |  |
| B-3: PHREEQC Partial Output File                                     |                                                            |                                               |    |  |  |
| Appendix C. Iron Standards Calculations79                            |                                                            |                                               |    |  |  |

### LIST OF TABLES

| Table 1-1: Attributes of Mantua Reservoir                                          | 3  |
|------------------------------------------------------------------------------------|----|
| Table 2-1: Rate Constants for Iron Oxidation <sup>2</sup>                          | 13 |
| Table 3-1: Standards                                                               | 25 |
| Table 5-1: Staining Observations                                                   | 37 |
| Table 5-2: Spectrophotometer Results                                               | 41 |
| Table A-1: Field Data Collected from Mantua Reservoir (24 hour period, 9/11/2006). | 57 |
| Table C-1: Standards Calculations                                                  | 79 |
| Table C-2: Iron Standards                                                          | 79 |

### LIST OF FIGURES

| Figure 1-1: Headstone staining (Wood 2002)                      | 2  |
|-----------------------------------------------------------------|----|
| Figure 1-2 : Mantua reservoir                                   | 4  |
| Figure 2-1: March 31st results (Wallace 2006)                   | 11 |
| Figure 3-1: Aerial view of Mantua Reservoir                     | 20 |
| Figure 3-2: Iron standards calibration curve                    | 26 |
| Figure 5-1: DO and temp measurements                            | 34 |
| Figure 5-2: Concrete before spraying                            |    |
| Figure 5-3: Stained concrete                                    |    |
| Figure 5-4: Iron oxidation over time                            | 42 |
| Figure 5-5: Revised iron oxidation over time                    | 43 |
| Figure 5-6: Change in iron concentration using default <i>k</i> | 44 |
| Figure 5-7: Model vs experimental iron concentrations           | 46 |
| Figure 5-8: Model of Mantua iron oxidation kinetics             | 46 |

### **1** Introduction

Brigham City, Utah installed a pressurized irrigation system to provide more effective water use and make irrigation more efficient. The system was restricted to just irrigating the city cemetery in the initial installation, though expansion to the rest of the City was planned. The system ran without serious problems until 2001, when workers found the headstones in the municipal cemetery were stained a dark reddish brown (Bigelow 2002). Ferric iron (Fe<sup>3+</sup>) had precipitated from the irrigation water, caused the staining on the headstones, and is the source of the red color of the stain (Wallace 2006). The water used in the pressurized irrigation system comes from Mantua Reservoir.

After the first appearance of the staining, the city shock treated the pipeline with bactericides in order to eliminate a biofilm observed to be lining the pipes. At this time, it was thought that the biofilm was the main factor causing the staining. The city also introduced iron and manganese sequestering agents, as well as chlorinated the water in an effort to prevent a recurrence of the staining. The staining did not occur during the remainder of that watering season, however the staining did return during the 2002 irrigation season despite the continued water treatments initiated the previous year.

Due to the continued staining from the system, Brigham City refrained from using Mantua water in the irrigation system and has switched to culinary water (Bigelow 2002).

Figure 1-1 is a photograph taken from the Brigham City cemetery sexton's report on the staining.



Figure 1-1: Headstone staining (Wood 2002)

The staining has not occurred in a predictable pattern or at a constant frequency and it has been difficult to establish common links between the staining events, this caused significant difficulty in determining the source and cause of the staining so they can use the Mantua water in the pressurized irrigation system and expand the irrigation system beyond the cemetery.

In 2005, Brigham City initiated a feasibility study to explore the possibility of creating a city wide pressurized irrigation system. Mantua Reservoir was identified as one potential and preferred source for the irrigation water (Bigelow 2005). This proposed expansion is not feasible using water from Mantua Reservoir until the threat of iron staining is removed. The city wants to understand the source of the staining, the mechanisms and situations that cause staining, and develop potential measures that can be taken to eliminate or minimize the problem.

#### 1.1 Mantua Reservoir Background

Mantua Reservoir, shown in Figure 1.2, is a medium-sized reservoir located at the top of Box Elder Canyon just east of Brigham City. Table 1-1 summarizes the significant attributes of Mantua Reservoir (Loveless *et al* 1997).

| Elevation (ft):    | 5159  |
|--------------------|-------|
| Surface Area       | 554   |
| Watershed Area     | 5559  |
| Capacity (acre-    | 10450 |
| Mean Depth (ft):   | 14    |
| Max Depth (ft):    | 20    |
| Length (miles):    | 1.12  |
| Width (miles):     | 1.02  |
| Shoreline (miles): | 2.1   |

Mantua Reservoir is a shallow reservoir that has a fairly large surface area. These two characteristics make the water unusually warm, exceeding the state guidelines of 20°C for a cold water fishery, promoting the growth of a myriad of aquatic life (Loveless *et al* 1997). Mantua also has a high loading of nutrients including phosphorus loadings that usually exceed regulations. The reservoir, shown in Figure 1-2, supports large blooms of blue-green algae and the production of macrophytes. The large quantity of aquatic organisms contributes to a low amount of dissolved oxygen (DO) in the system (Loveless *et al* 1997). The lake's beneficial use classification is 3A, a cold water fishery, 2B, for recreational use, and 4, protected for agricultural irrigation uses (Utah Department of Environmental Quality 2000).



Figure 1-2 : Mantua Reservoir

In the course of the Clean Lakes Study (Loveless *et al* 1997) it was observed that during the period from May to September, the DO concentration within one meter of the reservoir bottom was depressed below acceptable levels which were 3.0 mg/L. The DO conditions improved between July 18<sup>th</sup> and August 10<sup>th</sup> because of increased wind action, resulting in better mixing in the reservoir, mixing the aerated surface water with the lower waters. The low DO concentrations in the summer resulted from the hot stagnant conditions, decomposition of organic matter, and photosynthesis by aquatic vegetation (Loveless *et al* 1997).

The area surrounding the reservoir contributes to the characteristics in Mantua Reservoir that result in low DO. The Mantua Fish Hatchery is located at the head waters of Maple Creek, a major contributor to Mantua Reservoir. The hatchery is a major point source for total phosphorus loading to the reservoir which supports the high level of biological activity observed. Also of significance to this study is the composition of the sediments surrounding the reservoir and forming the bed of the reservoir. These sediments have a very high quantity of iron (III) minerals in the soil. Loveless *et al* (1997) gives the iron concentration in the lake bed sediments as 16,600 and 13,300 (mg/kg) respectively in the North and South arms of the reservoir. Wallace (2006) found the concentration of ferric iron in the reservoir sediments to be 16,500 mg/kg dry weight in sediment samples taken near the outlet and dam.

Big Creek is the outlet for Mantua Reservoir and has an average flow of 21 cubic feet per second. Brigham City captures Big Creek at the reservoir outlet and pipes the water into the city for power and irrigation uses. The head difference between the

reservoir and the city also allows the water to be used as a power generating source (Loveless *et al* 1997).

Previous research by Wallace (2006) determined that the iron found in the sediments of Mantua Reservoir is responsible for the staining of the Brigham City. The research concluded that when conditions cause the hypolimnion of the reservoir to become anaerobic, the ferric iron in the sediments is reduced to ferrous iron. Ferrous iron has a solubility constant sixteen orders of magnitude higher (Sawyer et al 2003) than ferric iron and therefore readily dissolves into the reservoir water. This dissolution process is catalyzed by biological activity which greatly increases the rate at which the iron dissolves. The iron-rich water is then taken into the reservoir outlet and piped to Brigham City in a closed system that is not re-aerated. When the iron saturated water leaves the Brigham City irrigation system and is sprayed onto the cemetery lawn, the water is re-aerated causing the ferrous iron to oxidize to ferric iron. At this point, the water becomes over saturated with respect to iron which then precipitates onto the headstones of the cemetery causing the observed staining (Wallace 2006). The reason the observed staining occurred intermittently was because the exact conditions which would cause the reservoir to go anaerobic are not common. These conditions occur at night during low-water, high-temperature, and low-wind conditions. Under these conditions degradation of biological matter in the reservoir uses the available oxygen and under these conditions there is no mechanism for re-aeration of the hypolimnion waters at the bottom of the reservoir.

#### 1.2 Objectives

The objective of my research is to determine the kinetics of the oxidation of ferrous iron to ferric iron and the subsequent precipitation of the ferric hydroxides, the source of the staining in Brigham City. Understanding the kinetics of this reaction will allow various treatment and mitigation alternatives to be evaluated. Previous research (Wallace 2006) determined that iron in the reservoir water does undergo reduction and oxidation based on the dissolved oxygen conditions in the water and is potentially catalyzed by microorganisms, speeding up the dissolution of the iron from the sediments to the water. The knowledge of the iron chemistry which occurs and causes this problem allows Brigham City to focus on remediation of the iron at the source. Modeling the kinetics of the oxidation reaction will allow Brigham City to choose the most effective treatment method and aid in design of a chosen treatment system.

In order to determine the reaction kinetics, I have used both experimental procedures and theoretical models. The experimental approach involved taking water and sediment samples from Mantua and allowing them to go anaerobic. The anaerobic conditions forced the reduction of ferric iron found in the sediments allowing the newly formed ferrous iron to dissolve in the water. I then re-aerated the water, causing the oxidation of the ferrous iron back to the ferric state, and recorded the amount of ferrous iron remaining after established time periods had elapsed. By repeating the experiment at various times, I generated a rate curve which describes the iron oxidation kinetics for the combination of Mantua Reservoir water and sediments.

In an effort to confirm the findings of Wallace (2006) who determined the staining mechanism, I recorded the reservoir DO levels over an extended period of time

to determine if DO levels near the bottom of the reservoir were significantly depleted at night. Also using the water and sediment samples collected from the reservoir I have replicated the staining seen in the Brigham City cemetery.

I developed the theoretical geochemical model using PHREEQC, developed by Parkhurst and Appelo (1999), to model the oxidation kinetics. The parameters used to create and define this model were taken from the Clean Lakes Study (Loveless *et al* 1997) performed on Mantua Reservoir. After the development of a preliminary model based on these data, I used the experimental data obtained from the laboratory procedures using Mantua Reservoir water and sediments to refine the model to fit the measurements I had which characterize Mantua Reservoir. A model of the iron oxidation kinetics allows a number of different scenarios to be evaluated and recommendations can be made to determine the treatment options available to Brigham City.

### 2 Chemistry

#### 2.1 Chemical Conditions of Mantua Reservoir

Previous studies conducted on Mantua Reservoir (Loveless *et al* 1997 and Wallace 2006) determined the general geochemistry that governs the reservoir. The Clean Lakes Study (Loveless *et al* 1997) described the nutrients, metals, and chemicals found in the reservoir, the inlets to the reservoir, and in the sediments forming the lake bed. Of particular interest to my research is the amount of iron that was found in the sediment and water of the reservoir and the DO conditions of Mantua. The study found that iron levels in the reservoir water averaged less than 20  $\mu$ g/L over the course of the study. However, the iron levels in the lake bed sediments were quite high in both the north and south arms of the reservoir with measurements of 16,600 mg/Kg and 13,300 mg/Kg respectively (Loveless *et al* 1997).

The Clean Lakes Study (Loveless *et al* 1997) also recorded the DO in Mantua Reservoir. The DO levels found in this study were a source of extra concern during the summer months, May through September, because they were low. This is the same time of the year as when the cemetery staining occurred. During these months the DO was measured to be less than 3.0 mg/L within one meter of the reservoir bottom. The water above one meter from the bottom generally had measured DO levels within acceptable parameters. Exceptions occurred on several days, most notably July 18<sup>th</sup>, when low DO levels were measured farther from the reservoir bottom. On July 18<sup>th</sup> the DO was measured at only 1.0 mg/L two meters from the bottom. This indicates that under some conditions, the DO levels in the bottom of the reservoir could become anaerobic.

Research by Wallace (2006) concluded that low DO, especially completely anaerobic conditions, would cause the iron in the sediments to reduce to the ferrous state and dissolve in the reservoir water. Iron reduction is a geochemical process that is probably accomplished by the microorganisms in the water using iron (III) as the terminal electron acceptor instead of oxygen (Sawyer et al 2003). This biological process also speeds up the iron dissolution. Ferrous iron ( $Fe^{2+}$ ) has a solubility product (ksp) that is fifteen orders of magnitude higher than ferric iron allowing the ferrous iron to dissolve into the reservoir water at significantly higher amounts that are possible under aerated conditions (Sawyer et al. 2003). Once the anaerobic reservoir water, with the dissolved ferrous iron, is re-oxygenated, such as through the action of being sprayed out of a sprinkler system, the iron (II) oxidizes to form the insoluble iron (III) which is oversaturated with respect to iron. The excess iron then precipitates as ferric hydroxide compounds causing the staining observed in the cemetery (Wallace 2006). In order to characterize and replicate these natural conditions Wallace (2006) collected water and sediment samples from Mantua. These samples were placed in BOD bottles, allowing the water to become anaerobic. The bottles were opened and DO was measured to confirm anaerobic conditions. At this point the water was stirred in order to accomplish aeration. At each stage, the original water, the anaerobic water in contact with the sediments, and the re-aerated water, the concentration of ferrous iron in solution was measured using the phenanthroline method and a spectrophotometer. Figure 2-1 is a bar

chart showing the concentration of ferrous iron in the water under the various DO conditions measured in this study to characterize the processes observed using water and sediment collected at Mantua reservoir.



Figure 2-1: March 31st results (Wallace 2006)

The water under anaerobic conditions contains a significantly higher concentration of ferrous iron, this represents the conditions that could occur during warm, wind-free summer nights at Mantua. Upon re-oxygenation the ferrous iron concentration in solution drops from almost 7 ppm to about 3.5 ppm, the iron is precipitated from solution. This drop in iron concentrations from the anaerobic water conditions to the reaerated water conditions is attributed to the oxidation of the ferrous iron creating insoluble ferric iron that precipitates out of the reservoir water and causes the problematic staining on the headstones (Wallace 2006).

#### 2.2 Iron Oxidation Kinetics

The research of Wallace (2006) demonstrated that the mechanism for the headstone staining was the change in the aerobic condition of the water and the subsequent reduction and oxidation of the iron found in the lake bed sediments. In addition to knowing the staining mechanism, it is important to know the kinetics of the reaction in order to provide treatment recommendations.

Only minor changes in environmental conditions are necessary to initiate the oxidation or reduction of iron in natural systems (O'Neil 1985). The mixing of oxygen, at even small amounts, with the ferrous iron oxidizes the iron, forming the insoluble ferric iron ( $Fe^{3+}$ ) which then will precipitate out of the water and cause staining (Sawyer et. al. 2003). Equation 2-1 is the reaction describing the oxidation of ferrous iron and the precipitation of ferric hydroxides:

$$4Fe^{2^+} + O_2 + 10H_2O \leftrightarrow 4Fe(OH)_{3(s)} \downarrow + 8H^+$$
(2-1)

Iron oxidation kinetics has been vigorously studied resulting in established mathematical models used to predict the rate of iron oxidation in various systems. Singer and Stumm (1970) investigated iron oxidation kinetics, determining that the rate of oxidation follows a predictable model. Their research yielded the widely accepted equation (equation 2-2) describing the kinetics of ferrous iron oxidation.

$$\frac{-d[Fe^{2+}]}{dt} = k[Fe^{2+}][OH^{-}]^2 Po_2$$
(2-2)

 $Po_2$  is the partial pressure of the atmospheric oxygen exerted on the water surface and can be replaced with the DO concentration in the water (Stumm and Lee 1961). The rate constant, *k*, varies with the experimental method used to determine it. Equation 2-2 is first order with respect to the ferrous iron concentrations and second order with respect to the concentration of the hydroxyl ions. As a result, the greater the pH of the water, the faster the ferric iron forms and can precipitate (Houben 2004). Table 2-1 summarizes different values used for the rate constant.

| Rate Constant <sup>1</sup><br>k (1/mol <sup>3</sup> x min) | Temperature<br>(°C) | Reference                   |
|------------------------------------------------------------|---------------------|-----------------------------|
| 0.8-1.7x10 <sup>16</sup>                                   | 10                  | Davison and Seed (1983)     |
| 1.4x10 <sup>16</sup>                                       | 25                  | Tamura et al. (1976)        |
| 0.7x10 <sup>16</sup>                                       | 10                  | Millero et al. (1987)       |
| 1.7(±0.4)x10 <sup>16</sup>                                 | 10                  | Laxen and Sholkovitz (1981) |
| 6.0x10 <sup>16</sup>                                       | 25                  | Stumm and Morgan (1996)     |

Table 2-1: Rate Constants for Iron Oxidation<sup>2</sup>

<sup>1</sup> rate constant for concentration of dissolved oxygen

<sup>2</sup> Modified from Houben (2004)

Equation 2-2 can be arraigned to be a function of pH instead of the hydroxyl ion concentrations (Houben 2004). This results in equation 2-3 which shows the oxidation rate as a function of both the DO concentration and the pH (or  $[H^+]$ ):

$$\frac{-d[Fe^{2+}]}{dt} = k[Fe^{2+}][H^+]^{-2}[O_{2(aq)}]$$
(2-3)

where *k* is the kinetic rate constant,  $[Fe^{2+}]$  is the concentration of the ferrous iron dissolved in the water,  $[H^+]$  is the concentration of the hydrogen ions, and  $[O_{2(aq)}]$  is the concentration of DO in the aqueous solution. At pH values less than 3.5, the rate of iron oxidation is independent of the pH and that term is dropped from the equation. When this term is dropped, the rate constant increases to  $1.0 \times 10^{-7}$  (Singer and Stumm 1970).

Since the oxidation of ferrous iron is proportional to the concentration of ferrous iron in the reservoir, when other parameters are held constant, first-order kinetics can be used to determine the experimental rate constant (k). Equation 2-4 is the equation that describes these first-order kinetics (Sawyer *et al* 2003).

$$C = C_0 e^{-kt} \tag{2-4}$$

where *C* is the final concentration of the substance,  $C_0$  is the initial concentration at t = 0, *t* is the time that the reaction proceeds, and *k* is the kinetic rate constant for the reaction. It should be noted that while all these equations use *k* as the rate constant, it is different for each equation used.

#### 2.3 Factors Affecting Iron Oxidation Kinetics

A number of factors can influence the rate of ferrous iron oxidation (Liang 1993). Various environmental conditions, the presence of other ions, and the presence of iron oxidizing bacteria can all increase the rate of oxidation. Of the possible environmental factors, an increase in pH has the most dramatic effect on the kinetics of the system. A unit increase in the pH will result in a 100-fold increase in the oxidation rate of the ferrous iron (Morgan and Stumm 1996). Though less dramatic, a 15 degree Celsius change in the system, for a constant pH, will result in a 10-fold increase in the oxidation rate (Morgan and Stumm 1996). At high pH levels, greater than 7, the oxidation of the soluble ferrous iron in the system can happen in just minutes (Appelo and Parkhurst 2005). The increased oxidation rate resulting from a higher pH is a consequence of enhanced electron-transfer capacity (Houben 2004).

The presence of other metal ions can also have a catalytic effect on the oxidation of ferrous iron; particularly  $Cu^{2+}$  and  $Co^{2+}$  in trace amounts increase the reaction rate (Morgan and Stumm 1996). Other anions that form complexes with iron will also speed up the reaction (Morgan and Stumm 1996). Of particular note, when ferric iron is added to the water, it acts as a catalyst for the ferrous to ferric iron reaction (Tamura *et al* 1976). As a result, the more ferrous iron oxidized to the ferric state, the faster the reaction proceeds. Tamura *et al* (1976) proved that the catalytic effect of ferric iron happens as the ferrous iron in solution sorbs onto the suspended ferric iron particles. The ferrous iron is then oxidized on the surface of the ferric iron particles. Rising pH linearly increases the sorption of ferrous iron due to the higher amount of negative surface charge of the oxide. The increased rate of oxidation from the inclusion of ferric iron in the system leads to a new kinetic model based on equations 2-2 and 2-3 (Tamura *et al* 1976). Equation 2-5 is the revised kinetic model:

$$\frac{-d[Fe^{2+}]}{dt} = k_1 [Fe^{2+}] [H^+]^{-2} [O_{2(aq)}] + k_2 [Fe^{3+}] [Fe^{2+}] [H^+]^{-2} [O_{2(aq)}]$$
(2-5)

where  $k_2$  is the product of the equilibrium constant for the sorption of Fe<sup>2+</sup> onto ferric oxide and the rate constant of the oxidation at the surface. The value of this constant is given as  $1.71 \times 10^{-5}$  mol/min (Tamura *et al* 1976). Equation 2-5 indicates that the pH has a more significant impact on the homogenous portion of the equation than on the heterogeneous part. Therefore the effect of ferric iron on the reaction rate is more important at lower pH levels. The catalytic effect of ferric iron is significant only when the concentrations of ferrous iron is greater than 3 mg/L otherwise there is insufficient catalytic surface to greatly impact the kinetics (Tamura *et al* 1976). This implies that once precipitation and staining start, it will proceed rapidly.

In addition to metal ions and physical environmental conditions, the presence of iron oxidizing bacteria will significantly increase the rate of the reaction (Okereke and Stevens 1991), just as iron-reducing bacteria can significantly increase the dissolution rate from the sediments (Wallace 2006). The presence of microbes can accelerate the reaction rate by a factor of  $10^6$  (Singer and Stumm 1970). *Thiobacillus ferrooxidans* are the bacteria most responsible for the oxidation of ferrous iron in low DO conditions. *T. ferrooxidans* are acidophilic chemolithotrophs that will increase the oxidation rate of Fe<sup>2+</sup> when the pH values in the water fall below 3.5 (Okereke and Stevens 1991). The effect of the microbes on the kinetics of the reaction varies greatly depending on the environmental conditions present. Included in the variables which can affect the system is the actual concentration of the bacteria present in the system. An increase in the concentration of *T. ferrooxidans* results in an increase in the rate of the reaction. Equation 2-6 describes the oxidation rate of ferrous iron based on the bacterial

concentration, the ferrous iron concentration, and the temperature of the system (Okereke and Stevens 1991):

$$Y = 0.68(B) + 0.02(B)(T) + 1.8x10^{-4}(T^2) - 0.46(B^2) -5x10^{-5}(F)(T) - 1.2x10^{-3}(F)(B) - 0.22$$
(2-6)

where B is the bacterial cell concentration (mg/mL) and F is the ferrous iron concentration (millimolar) with T being the temperature in degrees Celsius (Okereke and Stevens 1991).
# **3** Methods and Experimental Procedures

#### **3.1** Sampling Methods and Locations

In order to determine the kinetic reaction coefficient (*k*) for iron oxidation, water and sediment samples were collected from Mantua Reservoir and used in laboratory procedures to determine the ferrous iron content of the reservoir water at various oxidation states. The water entering the irrigation system is the water of highest concern for this study. The reservoir outlet that supplies the irrigation system is located on the west side of the reservoir. The samples collected for this study were taken from a floating pier, also located on the west side of the reservoir, approximately 100 feet from the reservoir outlet. Figure 3-1 is an aerial photo of Mantua Reservoir. The floating pier (not visible in the figure) is located at the south west corner of the reservoir. The outlet is approximately 100 ft to the north from the pier, along the western shore of the reservoir.

I used a soil auger to remove samples of the reservoir bottom sediments. These samples were taken from the sediments beneath the floating pier. After collecting the sediment samples in buckets, the remainder of each bucket was filled with water collected from the surface of the reservoir. Surface water has low dissolved ferrous iron due to the aerobic conditions present at the water and air interface (Campbell 1989). After collection, the sediment and water samples were transported back to the laboratory for analysis.



Figure 3-1: Aerial view of Mantua Reservoir

The samples used in the laboratory procedures were collected on two separate occasions. The first sample set was taken on September 8, 2006 in the early afternoon. The second sampling date was on October 6, 2006 also in the early afternoon. The procedures used for collecting the samples were the same for both days.

## 3.2 Qualitative Procedures

The first experiments performed were qualitative methods to confirm the findings of Wallace *et al* (2006) that the change in oxidation state of iron found in the lake bed sediments would cause the observed staining by first dissolving then precipitating iron from the sediments. In order to accomplish this objective, samples of water and sediment from Mantua Reservoir were subjected to the same conditions that we believe are responsible for the staining and the results were documented.

To perform these experiments, first the sediment and water from Mantua Reservoir was transferred to a BOD bottle. The bottle was a standard 300 mL BOD bottle with 1.25 inches of sediment on the bottom and the remainder filled with reservoir water. The BOD bottle was sealed and placed in a dark cabinet, to prevent photosynthesis from generating oxygen. Prior to the transfer of the water and sediment to the BOD bottles, a 16 oz bottle of Sprite was added to the water in the 5 gallon bucket, in order to renew the food source for the microbes. This was necessary to compensate for the delay between the time the water was collected from the reservoir and when it was used in the laboratory procedures. During this time, the bacteria used all the available food initially present in the reservoir water.

After allowing the BOD bottles to sit in the cabinet for three days, to completely deplete the DO, the water was sprayed onto a concrete core sample using a pump, simulating the action of a sprinkler in the Brigham City Cemetery irrigation system. I photographed the concrete core samples immediately before spraying with the Mantua water and several times over the next day to compare the amount of visible staining. These results are presented in Section 5.2.

#### 3.3 DO Testing in Mantua Reservoir

Along with laboratory procedures to confirm the findings of Wallace (2006), we also deployed a sonde in Mantua Reservoir to record the fluctuation of DO levels in the reservoir. The purpose of the DO measurements was to prove that the oxygen state of the

reservoir fluctuates and that the DO levels will reach sufficiently low levels to allow the reduction of ferric iron to soluble ferrous iron (Sawyer *et al* 2003). Wallace (2006) established conditions which could cause staining, but did not confirm that these conditions occur in Mantua Reservoir, which was the goal of these measurements. The data obtained from the sonde was correlated with weather station data in order to prove the hypothesis that temperature and wind conditions (which provides mixing of the reservoir water) contribute to the depletion of oxygen in the lower layers of the reservoir and that under the right conditions, water at the bottom of Mantua Reservoir could become anaerobic, dissolving high levels of iron from the sediments.

I used a YSI 600 OMS (optical monitoring sensor) sonde with an additional DO probe. The sonde is internally powered and capable of storing up to 150,000 bits of data. The DO probe is a YSI 6150 Optical Dissolved Oxygen Sensor. Optical sensors do not require changing a membrane frequently in order to achieve accurate results (YSI Incorporated 2006). Prior to deployment, the sonde and accompanying DO probe were calibrated according to the procedures in the operating manual (YSI Incorporated 2006). The sonde was deployed by swimming underneath the floating pier and using 8 feet of rope to attach it to a brace on the underside of the pier. This positioned the sonde about 2 to 3 feet above the sediment. The sonde was not positioned lower in case the reservoir levels changed during the measuring period, lowering the dock and potentially having the sonde contact the sediments.

The probe was set to record for a period of thirty days starting on September 8<sup>th</sup>, 2006. The sonde took readings every 15 minutes over this time period. The parameters measured were time, temperature, DO concentration, resistivity, total dissolved solids

(TDS), and salinity. Of these parameters, the DO concentration and temperature were the only data used in this study. The probe was retrieved on October 8<sup>th</sup>, 2006 using a DO probe recovery device that I constructed using a broom and an old metal hanger. The data was uploaded from the sonde to a computer and analyzed using the software included with the probe. The results of these measurements and discussions are included in Section 5.1.

#### 3.4 Laboratory Procedures

In order to determine the iron oxidation kinetics of Mantua Reservoir I used the collected samples to determine the kinetics rate constant (k). The laboratory procedures involved forcing the water samples to go anaerobic while in contact with the sediments, re-aerating the samples, and simultaneously recording the concentration of ferrous iron remaining in the water during the re-aeration period. The following sub-sections detail the steps required to accomplish each phase of the laboratory procedures.

## 3.4.1 Anaerobic Conditions

After transporting the samples from Mantua Reservoir to the lab, they were kept stored in sealed buckets until there was sufficient time to conduct the experimental procedures. The samples collected on September 8<sup>th</sup>, 2006 (the day the probe was deployed) were run on October 21<sup>st</sup>, 2006. The delay between collecting the samples and running the experimental procedures necessitated the addition of a food source for the microbes in order for them to use the available oxygen in the water and aid in the oxidation and reduction processes. The food source added was a 16 oz. bottle of Sprite. The sample bucket, which included two inches of sediment, was then sealed and stored in

a dark refrigeration room at normal room temperature of about 20 degrees Celsius. The bucket and water samples were then left overnight to allow time for the microbes to use all of the DO in the water as well as oxygen in the headspace of the bucket. In order to confirm the anaerobic state of the Mantua water samples, a YSI model DO probe was used to confirm the DO oxygen state of the water, which for these tests was zero.

#### 3.4.2 Standards

To measure the concentration of ferrous iron in the Mantua water as it was reaerated, a set of standards was prepared with known concentrations of iron. These standards were used to create a calibration curve to quantify experimental results.

To create the calibration curve I needed to determine the iron concentration range needed to fit the experimental data. For each trial, conducted with samples gathered on different days, new standards and calibration curves were created. Wallace *et al* (2006) found the maximum concentration of iron to be slightly less than 7 ppm for the samples collected on March 31<sup>st</sup>, 2006 with the minimum being essentially 0 ppm within the ranges of the method used. As a result, the four points I used for the calibration curve were nominally 1 ppm, 2 ppm, 5 ppm, and 8 ppm, which provided a smooth curve and bracketed the iron concentration range I required.

The standards were created by dissolving ferric chloride (FeCl<sub>3</sub>) in de-ionized (DI) water in a 1000-mL volumetric flask. In order to achieve an iron concentration of 100 ppm, 0.495 grams of ferric chloride were dissolved in the DI water. This produced an iron concentration of 102.265 mg/L in the 1000 mL flask. This concentrated standard was then diluted to the desired concentrations necessary for the calibration curve by mixing 1, 2, 5, and 8 mL, respectively from the concentrated 100 ppm standard into a 100

mL volumetric flask and filling with DI water. The actual concentrations of the four points on the calibration curve are given in Table 3-1. The spreadsheet used to calculate the necessary iron concentrations for the points on the calibration curve and the calculations used is included in Appendix C.

| Desired Concentration (ppm) | Actual Dilution (ppm) |  |  |
|-----------------------------|-----------------------|--|--|
| 1                           | 1.023                 |  |  |
| 2                           | 2.045                 |  |  |
| 5                           | 5.113                 |  |  |
| 8                           | 8.181                 |  |  |

Table 3-1: Standards

The calibration curve was created by measuring the known iron standards concentrations using the same procedures that the iron concentrations in the Mantua samples were measured. First, ten mL from each of the four standard concentrations were placed in test vials that fit the spectrophotometer. A packet of FerroVer Iron Reagent was then added to each vial. The reagent is a phenanthroline based powder that dissolves and creates a colorimetric change in the sample, the strength of which varies based on the concentration of the iron present. Each standard was measured in the spectrophotometer at a wavelength of 510 nanometers, the necessary wavelength to accurately determine the iron concentration (APHA 1995). The amount of light absorbed by each standard was recorded and a calibration curve was created based on the absorbance and the associated concentration of iron. Normally the calibration curve would be piecewise linear, using each measured data point. However, for these data, the curve approximated a straight line. To make calculations simpler, a linear trend line was

fit to the calibration points creating a linear equation that determines iron concentration based on the absorbance of a sample. Figure 3-2 is the calibration curve created using the ferric chloride standards.



Figure 3-2: Iron standards calibration curve

#### 3.4.3 Re-aeration and Iron Measurement

To measure the experimental results, the anaerobic state of the Mantua water sample was first confirmed, and then the procedure used to measuring the iron concentration in the standards was followed to measure the iron concentration in the Mantua water. First the water in the sample bucket was decanted from the sediment by pouring it into a smaller container. Immediately upon opening the bucket of anaerobic water, a sample was removed and the iron was measured. This sample was an attempt to measure the amount of dissolved iron before any aeration. A mixer was then placed in this bucket to provide adequate re-oxygenation to the entire water sample. At specified times, a sample of the Mantua water was removed from the mixing bucket and filtered using a bottle top filter and a vacuum pump. The purpose of the filtration was to ensure that the ferric iron that had already precipitated was removed from the sample and measure only the remaining ferrous iron in the reservoir water. After the sample was filtered, two ten mL test vials were prepared with the FerroVer reagent. The absorbance or these two vials were then measured in the spectrophotometer at the required wavelength of 510 nanometers. The recorded absorbance for each sample was compared to the calibration curve in order to determine the concentration of ferrous iron in the water, which was averaged for the two samples taken. This process was repeated as quickly as possible, being constrained by the time required to filter each sample. The result was a kinetics curve relating time since re-aeration to the concentration of ferrous iron remaining in the water. From the kinetics curve, and using the first-order kinetics equation (equation 2-4), the rate constant for iron oxidation kinetics in Mantua Reservoir was determined. This is discussed more fully in Section 5.3.

# 4 Computer Modeling Procedures

#### 4.1 PHREEQC

To better understand the iron oxidation kinetics of Mantua Reservoir I created a computer model. The model allowed me to evaluate the kinetics of iron oxidation for any conditions that may be present at the reservoir, based on the kinetic models present. The parameters that can be adjusted in the model related to iron precipitation kinetics include the water temperature, pH, and the loading rates of the various nutrients and inorganic constituents. The current conditions of the water at Mantua reservoir could be used to setup the model and using the experimentally determined k, the kinetics for iron oxidation can be predicted under various conditions.

The program used to develop the model of Mantua Reservoir was PHREEQC. PHREEQC was developed by Parkhurst and Appelo for United States Geological Survey (USGS). The program was created to conduct low temperature aqueous geochemical calculations (Parkhurst and Appelo 1999). In this case low temperatures are those expected in the surface environment, in many geochemical applications, the reactions take place at high temperatures deep underground. The primary use of PHREEQC is as a speciation program to calculate saturation indices and the distribution of aqueous species. Kinetic reactions can also be modeled using an embedded Basic editor. The kinetic rate

expressions are written using Basic and then PHREEQC interprets the code and runs the kinetic calculations (Parkhurst and Appelo 1999).

#### 4.2 Mantua Model Development

To develop a model of the iron oxidation kinetics taking place in Mantua Reservoir water, I used example 9 of the PHREEQC models provided with the program which was created to conduct kinetic calculations for the oxidation of ferrous iron to ferric iron. Example 9 is titled "Kinetic Oxidation of Dissolved Ferrous Iron with Oxygen" (Parkhurst and Appelo 1999) and is included in Appendix B. I used this example model as the basis for the iron oxidation kinetics model developed for Mantua Reservoir.

Example 9 is used in the documentation to demonstrate the ability of PHREEQC to conduct kinetic calculations for the oxidation of  $Fe^{2+}$  to  $Fe^{3+}$  in water (Parkhurst and Appelo 1999). The rate equation, Equation 4-1, used in the model was adapted from Singer and Stumm (1970):

$$\frac{dm_{Fe^{2+}}}{dt} = -\left(2.91x10^{-9} + 1.33x10^{12}\,\alpha_{OH^-}^2 P_{O_2}\right)m_{Fe^{2+}} \tag{4-1}$$

where *t* equals the time in seconds,  $a_{OH}^2$  is the activity of the hydroxyl ion,  $m_{Fe2+}$  is the total molality of ferrous iron in solution, and  $P_{O2}$  is the partial pressure of the oxygen (Parkhurst and Appelo 1999). The kinetics rate equation is solved using a 4th- and 5th-order Runge-Kutta-Fehlberg algorithm that is embedded within PHREEQC. PHREEQC calculates equilibrium before starting a kinetic calculation and again when each kinetic

reaction increment is added. The model calculates equilibrium for all solution-species, and for all exchange, equilibrium-phase, solid-solutions, surface assemblages and gas phases that are defined. A check is performed to ensure that the difference between the fourth- and fifth-order estimates of the integrated rate over a time interval does not vary by more than a user-defined tolerance. Failure to achieve results within the user defined tolerances will automatically restart the integration with a smaller time interval (Parkhurst and Appelo 1999).

The model I created of Mantua reservoir was based on the example provided with the program. Like the example, the purpose of the Mantua model is to simulate the oxidation of ferrous iron to ferric iron using oxygen in a natural water system, however the two models use separate geochemical environments. The PHREEQC model of Mantua Reservoir is presented in Appendix B. Several changes were required to adapt the example model to reflect the conditions present at Mantua reservoir. The first section of the Mantua model, SOLUTION\_MASTER\_SPECIES and SOLUTION\_SPECIES, decouples the valence state of iron and defines the possible iron species found in the water (Parkhurst and Appelo 1999). This section of the code remained unchanged from the example in the Mantua model.

The next section of the model, starting with EQUILIBRIUM\_PHASES 3, defines the conditions at Mantua Reservoir and defines the species that have the potential to precipitate out of the water, in this case ferric hydroxide. This section is followed by the SOLUTION1 section which defines the concentrations, in mmol/kilograms of water (kgw), of the applicable constituents and the physical characteristics of the water; this section was modified to match measured conditions at Mantua. Of particular importance

is the concentration of ferrous iron in the water, also expressed in mmol/kgw. The EQUILIBRIUM PHASES 1 heading defines the partial pressure of atmospheric oxygen that serves to aerate the water and cause the oxidation of the ferrous iron. This value is the negative log of the partial pressure for oxygen in the atmosphere at 5000 feet of elevation for the Mantua model (Parkhurst and Appelo 1999).

The final section of the PHREEQC model code is the kinetics calculation. The RATES data block is used to define the kinetics rate equation (see equation 4-1) used in the model calculations. This is followed by the KINETICS data block which invokes the rate expression and defines the parameters, especially the time increments. The final section of the code defines the desired output form of the results. For the Mantua model, a graph is created showing the total concentrations of ferrous and ferric iron versus time was created (Parkhurst and Appelo 1999).

After developing a generic model for Mantua Reservoir which used the measured field environmental data, I refined the model by adjusting the rate constant to fit the observed kinetics data for the oxidation of ferrous iron that was measured in the laboratory. This required adjusting the rate constant in Equation 4-1 by an order of magnitude from the value used in the example model. This rate increase can be attributed to microorganisms catalyzing the reaction, a factor that is not considered in the rate constant provided in the example. Mantua has significant biological activity and the example problem did not consider biological activity.

# 5 Experimental and Modeling Results and Discussion

#### 5.1 Field Results

Field measurement of the conditions at Mantua Reservoir was used to support my work and verify previous work. The deployment of the DO probe at Mantua Reservoir to measure DO values over time, served to confirm that the anaerobic conditions necessary to support the conclusions of Wallace (2006) could occur in the field. Data was collected by the sonde every fifteen minutes over a four week period starting the beginning of September, 2006 and ending the first week of October, 2006. A sample of the raw data obtained by the sonde is included in Appendix A. Figure 5-1 is a plot of the DO concentration and the water temperature of Mantua Reservoir over the period tested.

As expected, the DO concentration increases with lower water temperatures. Water has a greater capacity to dissolve and store oxygen at colder temperatures (Sawyer *et al* 2003). Of particular interest for the purposes of this study was the variation in the DO. Large variations, up to 6 ppm, occurred over relatively short periods as seen by the large repetitive changes between 50 to 150 hours and 500 to 600 hours. For example, on September 11<sup>th</sup>, 2006 (75 hours), starting at around 2:00 pm, the DO concentration in the reservoir steadily dropped from about 8.0 mg/L to 3.62 mg/L at 5:30 pm on the same day. The corresponding water temperature at the time only dropped one-tenth of a degree Celsius (from 19.28 degrees to 19.18). Using weather station data obtained from a site in



Figure 5-1: DO and temp measurements

nearby Brigham City, the maximum wind velocity during this period peaked at 5 miles per hour (mph) at 5:30 pm and the corresponding temperature at this time was 82 degrees Fahrenheit (Utah Department of Air Quality 2006). Although Mantua Reservoir and Brigham City are only about 5 miles apart (Mantua Reservoir TMDL 2000), the reservoir is located within the sheltered Box Elder Canyon so the wind and temperature profiles could vary significantly between the two locations. Also there is a difference of 782 feet in elevation between the weather station and the reservoir that could result in different wind velocities and air temperature at the two locations. The data collected from Mantua Reservoir includes ten instances in the one-month period, like the one described above, where a sharp drop in the DO concentration occurred over a matter of a few hours. A number of factors could have significant effect on the data collected and the data might not reflect the exact conditions at the water-sediment interface. Wallace (2006) concluded the reduction of iron in the sediments under anaerobic conditions, and the subsequent dissolution of the ferrous iron into the reservoir water, occurred immediately above the sediments at the bottom of the lake. The DO probe was deployed about two feet off the lake bottom for fear of dropping reservoir water levels, sinking the sonde into the sediments. At a greater depth, the DO concentration most likely drops more during the calm periods than the values measured as there is less mixing and diffusion of the oxygen from the atmosphere (Loveless *et al* 1997).

Another important consideration is the time period when the sonde was deployed. The staining was observed in the middle of summer (Wood 2002), during hot temperatures, stagnant wind conditions, and low water levels in the reservoir. However, the probe collected data at the end of summer and the beginning of fall, when the atmospheric and water temperatures are beginning to drop and there was more wind. This is significant because, based on Henry's law (Sawyer *et al* 2003) as the water temperature drops the water has a greater capacity for dissolved oxygen and the biological processes that use the available oxygen in the reservoir begin to slow. Henry's law, given in equation 5-1, states that the amount of gas that will dissolve into a liquid, at constant temperature, is proportional to the partial pressure of the gas above the liquid (Sawyer *et al* 2003).

$$K_{H} = \frac{P_{gas}}{C_{equ}}$$
(5.1)

 $P_{gas}$  is the partial pressure of the gas above the water,  $C_{equ}$  is the equilibrium concentration of the gas dissolved into the liquid, and  $K_H$  is the Henry's law constant at a given temperature (Sawyer *et al* 2003).  $K_H$  for water at 20° Celsius is 0.73 atm-m<sup>3</sup>/mol and the atmospheric partial pressure of oxygen at 5000 feet of elevation is 0.16 atm (Sawyer *et al* 2003). Using equation 5.1, the equilibrium DO concentration for Mantua Reservoir is 0.22 mol/m<sup>3</sup> or 7.19 mg/L. Assuming complete mixing with the atmospheric oxygen, Mantua Reservoir would have the above calculated DO concentration.  $K_H$  is sensitive to temperature however, and slight changes in temperatures significantly affect the solubility limits for oxygen.

Spikes in the recorded DO concentration above the theoretical saturation limit of the reservoir could indicate the possibility that an air bubble was resting on the optical sensor of the probe, inflating the recorded DO concentration or that photosynthesis of the aquatic life caused the DO levels to become supersaturated. The sharp drops in DO concentration indicate that there is a lack of mixing in the lower layers of the reservoir with the saturated upper layers and that biological processes are quickly using the available oxygen.

Though the field measurements did not record the hypolimnion in an anaerobic state, the dips indicate that there are regular periods of reduced mixing between the water layers of the reservoir and under the correct conditions could result in anaerobic water in the hypolimnion. Measurements in warmer weather, with warmer water which would reduce the DO capacity of the water, and increased biological activity that would more quickly use the available oxygen would make anaerobic conditions more likely. Deploying the sonde at a greater depth would measure conditions near the sediment-

water interface where there is less mixing of the hypolimnion with the upper reservoir water levels and further increase the likelihood of anaerobic conditions occurring which are favorable for the reduction of ferric iron. Despite the limitations of the field measurements, the regular large drops in DO concentration provide evidence of the ability of Mantua Reservoir to become anaerobic in the lower water levels. This corresponds to the research conducted by Loveless *et al* (1997) which found that the DO levels dropped below acceptable levels in the summer months.

### 5.2 Qualitative Staining Results

I performed qualitative experiments to recreate the staining observed in the Brigham City cemetery and to determine the amount of time necessary for visual staining. This experiment consisted of spraying water saturated with iron onto concrete as described in Section 3.2.

The primary results from this experiment are qualitative observations of the staining evident over a measured period of time. Table 5-1 is the recorded observations at each respective time.

| Time  | Observations                     |
|-------|----------------------------------|
| 11:02 | Concrete sprayed                 |
| 12:05 | Concrete still drying, no visual |
| 1:03  | Iron precipitates visually       |
| 2:00  | More precipitates on lid         |
| 3:00  | Faint staining evident on        |
| 10:00 | Noticeable staining on           |

Table 5-1: Staining Observations

Figures 5-2 and 5-3 are photographs of the concrete before spraying with water and after the staining occurred and are indicative of the results obtained from the staining experiment. The faint brownish hue, visible in Figure 5-3, is the result of the precipitation of the insoluble ferric iron from the water after being re-aerated by contact with the atmosphere and spraying on the concrete. Though not as visible on the concrete cores, a white surface (a bucket lid), placed under the core to catch the excess water spray, and clearly showed precipitated iron after this experiment. These ferric iron precipitates appeared and caused visible staining approximately two hours after the concrete core was sprayed with anaerobic Mantua Reservoir water. The iron precipitated out of the water before evaporation could take effect to eliminate the water.



**Figure 5-2: Concrete before spraying** 



Figure 5-3: Stained concrete

One difference between the observed field conditions and the qualitative lab experiment is the duration of the exposure. In Brigham City's cemetery, the headstones are exposed to the Mantua water through the irrigation system. A typical zone in an irrigation system is run for approximately 30 minutes. During that time the headstones will be sprayed every few seconds by one or more nearby sprinklers. In contrast, due to the very limited supply of anaerobic Mantua water, I was only able to spray the concrete core continuously for about two minutes. The effect of this difference is that the headstones have the potential for many times the iron exposure and therefore more evident staining. However, as shown by Wallace (2006) staining will only occur when the irrigation water is anaerobic and iron-rich, a condition which will only occur rarely, when the correct conditions happen at Mantua Reservoir.

The difference between the materials sprayed could also change the kinetics of the iron precipitation. The materials in concrete contain high carbonate quantities, giving concrete a basic pH (Mindness *et al* 2003). As seen in the equations that describe the iron oxidation kinetics (equations 2-2, 2-3, 2-5, and 4-1), the rate at which ferrous iron is oxidized to ferric iron is a function of the pH of the system. As the water becomes more basic through contact with the concrete the pH rises and the rate of oxidation is increased. Though the concrete has the potential to increase the oxidation rate of the ferrous iron, the water observed on the bucket lid exhibited precipitated iron quicker than the concrete despite having less contact time as it ran off the concrete. This experiment indicates that staining could occur very rapidly, on the order of a few hours, after spraying the headstones with water.

## 5.3 Quantitative Experimental Results

The purpose of the laboratory experiments was to determine the kinetics of iron oxidation in Mantua Reservoir and provide information that could be used to predict and understand the precipitation reactions. The primary objective was to determine the rate constant (k) that governs the oxidation rate in the reservoir water. This rate constant can then be used in models of the reservoir in order to predict the speed of the reaction and assist in the development of remediation options.

Table 5-2 presents the results of these experiments (described in Section 3.4).Table 5-2 contains the amount of iron in the water from Mantua Reservoir after various

time increments. This table includes the date and time that all of the samples were removed from the bucket of water and also the times that they were actually run in the spectrophotometer. The delay was caused by excessive fouling of the bottle top filters from the suspended sediments. The amount of time between each sample is also included. Table 5-2 also includes the average absorbance measured for each sample and the associated concentration as determined using the calibration curve.

|         |        |         | _     |                     |       |           | Average |
|---------|--------|---------|-------|---------------------|-------|-----------|---------|
|         |        | Time    | Run   | $\Delta \mathbf{T}$ |       |           | [Fe]    |
| Date    | Sample | Removed | Time  | (min)               | abs   | [Fe] mg/L | mg/L    |
| Oct. 21 | 1-1    | 11:25   | 11:28 | 0                   | 2.365 | 9.92      | 9.87    |
|         | 1-2    |         |       |                     | 2.344 | 9.82      |         |
|         | 2-3    |         |       |                     | NA    | NA        | 8.69    |
|         | 2-4    | 11:45   | 11:55 | 27                  | 2.083 | 8.69      |         |
|         | 3-5    | 12:10   | 12:20 | 62                  | 1.706 | 7.05      | 7.04    |
|         | 3-6    |         | 12:23 | 65                  | 1.705 | 7.04      |         |
|         | 4-7    | 12:37   | 12:55 | 97                  | 1.369 | 5.58      | 5.53    |
|         | 4-8    |         | 1:00  | 102                 | 1.346 | 5.48      |         |
|         | 5-9    | 1:35    | 1:47  | 149                 | 1.333 | 5.42      | 5.43    |
|         | 5-10   |         | 1:50  | 152                 | 1.339 | 5.45      |         |
|         | 6-11   | 3:43    | 3:55  | 277                 | 1.662 | 6.85      | 6.79    |
|         | 6-12   |         | 3:58  | 280                 | 1.635 | 6.74      |         |
|         | 7-13   | 6:50    | 7:05  | 467                 | 0.722 | 2.76      | 2.76    |
|         | 7-14   |         | 7:10  | 472                 | 0.721 | 2.76      |         |
|         | 8-15   | 9:10    | 9:20  | 542                 | 0.628 | 2.35      | 2.33    |
|         | 8-16   |         | 9:23  | 545                 | 0.619 | 2.31      |         |
| Oct. 22 | 9-17   | 3:31    | 3:48  | 1650                | 0.106 | 0.08      | 0.07    |
|         | 9-18   |         | 3:51  | 1653                | 0.104 | 0.07      |         |

**Table 5-2: Spectrophotometer Results** 

From these results it is evident that the oxidation and precipitation of ferrous iron in Mantua Reservoir water proceeds quickly. An initial concentration of almost 9.0 mg/L drops to almost nothing in a little over a day. After just two hours, the concentration dropped by about 3.0 mg/L (from 8.69 mg/L to 5.42 mg/L). The first three samples were discarded because I added a couple drops of hydrochloric acid (HCl) to each vial in an effort to acid digest all of the iron. Acid digestion insures that all of the iron that was in solution after filtration remained in solution and did not precipitate (Sawyer *et al* 2003). However, use of the FerroVer reagent eliminates the need for acid digestion. This was realized when the second batch of water was removed and split into two samples (2-3 and 2-4). I added the HCl to sample 2-3 and only added the reagent to 2-4. The samples with the acid turned a milky white color and precipitates settled to the bottom of the vial; the reagent reacted with the HCl in a way which made the sample unusable. Sample 2-4 and all of the subsequent samples produced the expected colorimetric change. Figure 5-4 is a graph of the total time elapsed versus the iron concentration remaining in the water.



Figure 5-4: Iron oxidation over time

Figure 5-4 includes a trend line, its associated exponential equation, and an R-squared value. R-squared for this trend line is 0.9779. Removing the outlier point and using the average time elapsed and concentration yields Figure 5-5.



Figure 5-5: Revised iron oxidation over time

By removing the outlier point the R-squared value moves closer to one, with a value of 0.9918, indicating that the trend line is a better fit to the data. Equation 5-2 is the equation for the revised trend line:

$$y = 8.9877e^{-0.0029x} \tag{5-2}$$

where x is the time in minutes and y is the iron concentration in mg/L remaining in the water. This equation is the form of equation 2-4 describing first-order kinetics with x corresponding to t and y to C. This gives a rate constant k for Mantua Reservoir water of 0.0029 min<sup>-1</sup>, based on my experimental results

# 5.4 PHREEQC Model Results

Mantua Reservoir was first modeled using the default rate constant provided with the iron oxidation kinetics example (see equation 4-1 and Section 4.2). The model-produced result is a plot of the change in concentration of both ferrous iron ( $Fe^{2+}$ ) and ferric iron ( $Fe^{3+}$ ) versus time. Figure 5-6 is the plot produced using the default rate constant.



Figure 5-6: Change in iron concentration using default k

As the ferric iron concentration rises, due to the solubility product being extremely low ( $K_{sp}$ = 2.79x10<sup>-39</sup>), the aqueous solution becomes supersaturated with respect to iron (III) (Sawyer *et al* 2003). The insoluble ferric iron will then begin to precipitate out of the solution. Using the default rate constant, after five days the ferrous iron concentration in the water has dropped by fifty percent. However, this model does not cause the oxidation to occur at close to the same rate as seen experimentally, with the experimental and observed reaction rates being much faster. Again, this discrepancy is probably the result of a biological component to the iron oxidation as was discussed in Section 2.3.

In order to more accurately predict the iron oxidation kinetics in Mantua Reservoir water, the model was modified to use the measured kinetic data from my laboratory experiments. Through a trial and error process of adjusting the rate constant, I created a model that closely matched the experimental data. Figure 5-7 is a plot of the concentration of ferrous iron over time based on the revised model and on the experimental data.

The rate constant found was  $4 \times 10^{13}$ /atm x min, thirty times bigger than the default value. This value is different than the one shown in Figure 5-5 because a different kinetics equation was used in the PHREEQC model rather than the first-order model presented above. Using the fitted theoretical rate constant from calibrating the PHREEQC model to the laboratory results, the complete oxidation of ferrous iron in Mantua Reservoir water was modeled.

Figure 5-8 presents the same parameters as Figure 5-6, but the data were calculated by applying the calibrated rate constant from the Mantua water experimental



Figure 5-7: Model vs experimental iron concentrations



Figure 5-8: Model of Mantua iron oxidation kinetics

results. Figure 5-8 shows that after one day there is virtually no ferrous iron (0.15 mg/L) remaining in the reservoir water and after only four hours half of the ferrous iron dissolved in the water has been oxidized to ferric iron. This matches both observations and laboratory experiments. This also matches the staining events in the Brigham City cemetery, where staining occurred overnight and no stain build-up was noticed.

I propose that the explanation for the difference in the rate constants between the PHREEQC example model and the Mantua water model is the catalytic effects of microorganisms. As Okereke and Stevens (1991) proved with their research, the presence of iron oxidizing bacteria greatly increases the rate of iron oxidation. The presence of microbes can accelerate the reaction rate by a factor of 10<sup>6</sup> (Singer and Stumm 1970). *Thiobacillus ferrooxidans* are the most common microbes that oxidize ferric iron. Based on the research of Okereke and Stevens (1991), the right microbes could easily accelerate the kinetics of iron oxidation by an order of magnitude which would account for the differences found.

# 6 Conclusions

The purpose of this research was to confirm the capacity of Mantua Reservoir to achieve anaerobic conditions, causing the reduction and eventual oxidation of iron, and to determine the ferrous iron oxidation kinetics and thus how quickly staining could occur. Knowing the rate of the oxidation reaction will assist in the determination of practical remediation efforts by determining the residence time of the water after treatment before it could be used in the irrigation system.

The efforts to confirm the potential for Mantua Reservoir revealed that even in early fall, the DO concentration in the hypolimnion fluctuates severely. Though the study was conducted when the water temperature was already decreasing, causing an increase in the potential equilibrium DO concentration, the fact that the DO levels oscillated gave evidence that anaerobic conditions are likely in the lower water layers of Mantua Reservoir during the warmer summer conditions. The field data collected confirmed the results obtained by Loveless *et al* (1997) as part of the Clean Lakes Study. Their field work found DO levels as low as 3.0 mg/L within a meter of the bottom. Anaerobic conditions are required for the reduction of ferric iron, which is found in abundance in Mantua sediments. Reduced iron, in the ferrous state, is much more soluble than ferric iron and dissolves into the water only to be oxidized upon re-aeration through the irrigation system (Sawyer *et al* 2003). The iron oxidation kinetics for Mantua Reservoir were determined using three different methods. The first method was a qualitative observation of the staining caused by iron precipitation on a cement core. Though the conditions of the experimentally derived staining differed from the field conditions, iron precipitation was evident after only two hours of observation. This showed that if the anaerobic conditions existed in Mantua Reservoir resulting in high amounts of dissolved iron, the use of the pressurized irrigation system would cause staining to appear on the headstones within a matter of hours.

The experimental results of the iron oxidation for Mantua yielded results that showed the iron was quickly oxidized and precipitated from the Mantua water. The ferrous iron was almost completely gone after 26 hours and had been reduced by over a third in just a couple of hours. Fitting a simple first order kinetics equation to the experimental data yielded a rate constant of 0.0029 min<sup>-1</sup>, giving a half life of 239 minutes or approximately 4 hours. As with the qualitative results, the kinetics experiment has proved that the iron will precipitate out of the water and cause staining in Brigham City.

The creation of a geochemical computer model, using PHREEQC, also confirmed the speed of the iron oxidation kinetics. Using an example provided with the software as a foundation, and modifying the example to match the measured physical and chemical properties of Mantua Reservoir, resulted in a model in which the computed ferrous iron concentration dropped by fifty percent over the course of five days. This was not a good fit to the experimental data and therefore the model was calibrated to the experimental results from the actual Mantua water. The rate constant in the calibrated model was

 $4x10^{13}$ /atm x min. With the rate constant calibrated to experimental results and a computer model of the oxidation kinetics, the oxidation of iron was predicted for any changing conditions of the reservoir. Model calculations showed that the majority of the iron would precipitate in a few hours.

### 6.1 Application

Knowing the iron oxidation kinetics of Mantua Reservoir water makes remediation recommendations possible. The purpose of this section is not to exhaustively study all of the technology available for the removal of dissolved iron in water but rather to provide an overview of possibilities for Brigham City to employ at Mantua Reservoir or in their irrigation system. (For a comprehensive study on iron treatments refer to *Iron and Manganese Treatment for Small Systems*, a thesis prepared by Harry Campbell for Brigham Young University, 1989).

There are two general approaches that could be applied. The first and recommended approach is to change conditions at Mantua Reservoir so that the hypolimnion does not become anaerobic. In addition to addressing the staining problem, this approach has the potential to address several other problems noted at Mantua including water quality and aesthetics. The second approach is to treat iron rich water after it leaves Mantua Reservoir before being used for irrigation.

The simplest and preferred solution to the staining problem would be to prevent iron from dissolving from the sediment under anaerobic conditions. Prevention would involve precluding the reservoir from becoming anaerobic in the hypolimnion by aeration or circulation. There are numerous commercial systems designed to aerate lagoons and

reservoirs that could potentially be used at Mantua. During the course of my lab experiments, there were numerous failed attempts to conduct the experimental phase of the kinetics investigation. Invariably the failure was a consequence of excessive DO in the water preventing iron from dissolving from the sediments, as little as 2.0 mg/L, in the water sample. (The one successful attempt had a DO concentration of 1.0 mg/L after opening the bucket and mixing to a small degree by using a field DO probe which might have caused some of the DO in solution). In any cases where the water contained measurable amounts of DO, after testing with the spectrophotometer, these failed tests only included trace amounts of iron because the iron was never dissolved from the sediments.

From these failures, I learned that very little oxygen is necessary to prevent the dissolution of iron from the sediments. As a result, remediation methods that increase the dissolved oxygen in the hypolimnion would successfully prevent ferric iron from being reduced and then dissolved as ferrous iron into the water column. Diffusers laid on the bed of the reservoir, near the outlet, would prevent the system from going anaerobic and also oxidize any iron already dissolved in the water causing it to precipitate and settle out before reaching the irrigation system. Another preventative measure would be to put a floating mixer anchored in the area of the outlet (this area is already restricted to recreational activities). This would have the effect of mixing the DO saturated surface waters with lower layers that have the greatest potential for becoming anaerobic. Like the diffusers this would prevent the microorganisms from using the ferric iron found in the reservoir sediments as an electron acceptor and would oxidize any ferrous iron

dissolved in the water. Both types of systems, and others such as sprayers and mixers, are commercially available.

The second general category is treating the water before irrigation. The basic idea of iron removal most commonly employed is the oxidation of the ferrous iron and subsequent clarification of the water, either using filtration or precipitation (Campbell 1989). This is exactly the process that is occurring in the system comprising Mantua Reservoir and the Brigham City secondary irrigation system. The major difference is the location of the removal of the iron hydroxide precipitates. In an engineered process they will be either removed in a settling basin or using a filtration system (Campbell 1989). In Brigham City's system the iron precipitates settle out on the headstones of the cemetery.

A solution would be to cause the iron to settle out, after oxidation, in a controlled location. This could be as simple as cascading the water over rocks, or other obstacles, far enough up the system to allow the iron (III) a chance to settle out. Immediately below the dam, before entering the penstock would allow treatment while retaining the pressure head required for power generation. The cascading water would be re-aerated and cause the oxidation of the ferrous iron. The reaction rate is fast enough, as determined by this study, to cause the iron to oxidize and settle out before entering the penstock and reaching the sprinklers of the city irrigation system. To prevent the iron precipitates from causing problems in the pipe distribution network a small settling pond, with a hydraulic detention time of a couple of hours, could be placed after the cascade to give the majority of the iron hydroxides a place to settle out.
## References

- American public Health Association (APHA) (1995). *Standard Methods for the Examination of Water and Wastewater*. 15 ed. AWWA–WPCF, Washington D.C.
- Bigelow, W.S. (2002). *Cemetery Headstone Staining Report.* Hansen, Allen, and Luce Inc. SaltLake City, Utah. (Report to the Brigham City Water Superintendent).
- Bigelow, W.S. (2005). *Proposal for Water Quality Study for Brigham City Pressuriaed Irrigation System*. Hansen, Allen, and Luce Inc. SaltLake City, Utah. (Letter to Dr. Gus Williams, BYU).
- Campbell, H. (1989). *Iron and Manganese Treatments for Small Systems*. Brigham Young University, Provo, UT.
- Davidson, W. and G. Seed (1983) "The Kinetics of the Oxidation of Ferrous iron in Synthetic and Natural Waters." *Geochimica et Cosmochimica Aeta*. Vol 47.
- Houben, G. J. (2004). "Modeling the Buildup of Iron Oxide Encrustations in Wells." *Groundwater*. Vol. 42 No. 1.
- Laxen, D.P.H. and E.R. Sholkovitz (1982). "Adsorption (Co-precipitation) of Trace Metals in natural Concentrations of Hydrous Ferric Oxide in Lake Water Samples." *Environmental Technology Letters*. Vol. 2.
- Liang, L., J.A McNabb, J.M. Paulk, B. Gu, and J.F McCarthy (1993). "Kinetics of Fe(II) Oxygenation at Low Partial Pressure of Oxygen in the Presence of Natural Organic Matter." *Environmental Science Technology*. Vol. 27 No. 9.
- Loveless, R.M., R. Jones, and D. Wham (1997). Phase I Clean Lakes Study: Diagnostic and Feasibility Report on Mantua Reservoir Utah Department of Environmental Quality, Salt Lake City, Utah (in conjunction with US Environmental Protection Agency, Region VIII).
- Millero, F.J., S. Sotolongo, and M. Izaguirre (1987). "The Oxidation Kinetics of Fe(II) in Seawater." *Geochimica et Cosmochimica Aeta*. Vol. 51.

- Mindness, S., J. F. Young, and D. Darwin. (2003) *Concrete*. Prentice Hall: Upper Saddle River, NJ.
- Okereke, A. and S. E. Stevens Jr. (1991). "Kinetics of iron Oxidation by *Thiobacillus ferrooxidans*." *Applied and Environmental Microbiology*. Vol. 57.
- O'Neil, P. (1985). Environmental Chemistry, second edition. Chapman and Hall: London.
- Parkhurst, D.L. and C.A.J. Appelo (1999). User' Guide to PHREEQC (version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. United States Geological Survey, Water-Resources Investigations Report 99-4259, Denver, Colorado.
- Sawyer, C.N., P.L. McCarty, and G.F. Parkin (2003). *Chemistry for Environmental Engineering and Science, fifth edition*, McGraw Hill, Burr Ridge, IL.
- Singer, P.C. and W. Stumm (1970). "Acidic Mine Drainage: The Rate-Determining Step." *Science*. Vol. 167.
- Stumm, W. and G.F. Lee (1961). "Oxygenation of Ferrous Iron." *Industrial and Engineering Chemistry*. Vol. 53 No. 2
- Stumm, W. and J.J. Morgan (1996). *Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, third edition.* John Wiley and Sons, New York.
- Tamura H., K. Goto, and M. Nagayama (1976). "The Effect of Ferric Hydroxide on the Oxygenation of ferrous Ions in Neutral Solutions." *Corrosion Science*. Vol. 16.
- Utah Department of Environmental Quality (2000). *Mantua Reservoir TMDL*. Division of Water Quality: TMDL Section. Salt Lake City, UT.
- Utah Department of Air Quality (2006) Brigham City Monitoring Station. Brigham City, UT
- Wallace, R.D. (2006). Dynamic Interaction of Iron Chemistry in Mantua Reservoir and Ferric Staining in the Secondary Water System of Brigham City, Utah. Brigham Young University, Provo, UT.
- Wood, C. (2002). "Cemetery Stone Discoloration." Brigham City Cemetery Report. Brigham City, UT.
- YSI Incorporated (2006). "6-Series Environmental Monitoring System" YSI Environmental Operations Manual. Yellow Springs, OH.

# Appendix A. Field Data

### Table A-1: Field Data Collected from Mantua Reservoir (24 hour period, 9/11/2006)

| MDV         C         (mgL)         KOmm.cm         git         ppt         mS/cm         %           9/11/2006 0:15         19.38         6.07         584         0.125         0.09         0.192         87.7           9/11/2006 0:45         19.33         7.93         5.84         0.125         0.09         0.192         88.4           9/11/2006 0:45         19.37         7.86         5.84         0.125         0.09         0.192         88.4           9/11/2006 1:15         19.37         7.81         5.84         0.125         0.09         0.192         88.4           9/11/2006 1:45         19.31         7.8         5.85         0.125         0.09         0.192         84.6           9/11/2006 1:45         19.23         7.75         5.85         0.125         0.09         0.192         84.6           9/11/2006 2:45         19.22         7.3         5.85         0.125         0.09         0.192         80.3           9/11/2006 3:00         19.21         7.33         5.86         0.125         0.09         0.192         79.1           9/11/2006 3:30         19.14         6.98         5.86         0.125         0.09         0.192         77.2                                                                                                                                          | DateTime        | Temp  | ODO Conc | Resistivity | TDS   | Salinity | SpCond | 000% |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|----------|-------------|-------|----------|--------|------|
| 9r11/2006 0.00         19.39         7.97         5.83         0.125         0.19         86.7           9r11/2006 0.30         19.38         7.93         5.84         0.125         0.09         0.192         87.7           9r11/2006 0.30         19.38         7.93         5.84         0.125         0.09         0.192         86.2           9r11/2006 1.30         19.37         7.81         5.84         0.125         0.09         0.192         86.4           9r11/2006 1.30         19.33         7.85         5.84         0.125         0.09         0.192         86.1           9r11/2006 1.45         19.33         7.85         5.84         0.125         0.09         0.192         84.6           9r11/2006 1.45         19.33         7.85         5.85         0.125         0.09         0.192         84.6           9r11/2006 2.30         19.24         7.41         5.85         0.125         0.09         0.192         78.4           9r11/2006 3.30         19.14         6.98         5.86         0.125         0.09         0.192         79.4           9r11/2006 3.30         19.14         6.98         5.86         0.125         0.09         0.192         74.5 <td>M/D/Y</td> <td>C</td> <td>(ma/L)</td> <td>KOhm.cm</td> <td>a/L</td> <td>ppt</td> <td>mS/cm</td> <td>%</td>                     | M/D/Y           | C     | (ma/L)   | KOhm.cm     | a/L   | ppt      | mS/cm  | %    |
| 9/11/2006 0:15         19.38         7.07         5.84         0.125         0.09         0.192         87.7           9/11/2006 0:00         19.37         7.86         5.84         0.125         0.09         0.192         86.4           9/11/2006 1:15         19.37         7.81         5.84         0.125         0.09         0.192         86.1           9/11/2006 1:15         19.37         7.83         5.84         0.125         0.09         0.192         86.2           9/11/2006 1:45         19.31         7.8         5.85         0.125         0.09         0.192         84.6           9/11/2006 2:15         19.27         7.75         5.85         0.125         0.09         0.192         84.3           9/11/2006 2:16         19.24         7.41         5.85         0.125         0.09         0.192         79.4           9/11/2006 3:00         19.21         7.3         5.86         0.125         0.09         0.192         79.4           9/11/2006 3:45         19.14         6.98         5.86         0.125         0.09         0.192         74.9           9/11/2006 4:45         19.14         6.91         5.86         0.125         0.09         0.192 <td>9/11/2006 0:00</td> <td>19.39</td> <td>7.97</td> <td>5.83</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>86.7</td>        | 9/11/2006 0:00  | 19.39 | 7.97     | 5.83        | 0.125 | 0.09     | 0.192  | 86.7 |
| 9/11/2006 0.30         19.38         7.93         5.84         0.125         0.09         0.192         88.2           9/11/2006 1.00         19.37         7.81         5.84         0.125         0.09         0.192         86.4           9/11/2006 1.15         19.37         7.81         5.84         0.125         0.09         0.192         86.1           9/11/2006 1.45         19.33         7.85         5.84         0.125         0.09         0.192         84.6           9/11/2006 2.00         19.29         7.75         5.85         0.125         0.09         0.192         84.6           9/11/2006 2.01         19.24         7.41         5.85         0.125         0.09         0.192         81.5           9/11/2006 2.01         19.24         7.41         5.85         0.125         0.09         0.192         79.1           9/11/2006 3.00         19.21         7.33         5.86         0.125         0.09         0.192         77.2           9/11/2006 3.05         19.14         6.92         5.86         0.125         0.09         0.192         76.1           9/11/2006 4.05         19.14         6.92         5.86         0.125         0.09         0.192 </td <td>9/11/2006 0:15</td> <td>19.38</td> <td>8.07</td> <td>5.84</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>87.7</td> | 9/11/2006 0:15  | 19.38 | 8.07     | 5.84        | 0.125 | 0.09     | 0.192  | 87.7 |
| 9/11/2006 0.45         19.37         7.86         5.84         0.125         0.09         0.192         85.4           9/11/2006 1:15         19.37         7.81         5.84         0.125         0.09         0.192         85.2           9/11/2006 1:45         19.33         7.85         5.84         0.125         0.09         0.192         85.2           9/11/2006 1:45         19.31         7.8         5.85         0.125         0.09         0.192         84.6           9/11/2006 1:45         19.31         7.8         5.85         0.125         0.09         0.192         84.3           9/11/2006 2:15         19.24         7.41         5.85         0.125         0.09         0.192         79.4           9/11/2006 3:00         19.21         7.33         5.85         0.125         0.09         0.192         77.2           9/11/2006 3:03         19.14         6.98         5.86         0.125         0.09         0.192         74.9           9/11/2006 3:30         19.14         6.92         5.86         0.125         0.09         0.192         74.7           9/11/2006 4:15         19.07         6.81         5.86         0.125         0.09         0.192 <td>9/11/2006 0:30</td> <td>19.38</td> <td>7.93</td> <td>5.84</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>86.2</td>        | 9/11/2006 0:30  | 19.38 | 7.93     | 5.84        | 0.125 | 0.09     | 0.192  | 86.2 |
| 9/11/2006         10.10         10.37         7.81         5.84         0.125         0.09         0.192         84.9           9/11/2006         1.15         19.37         7.85         5.84         0.125         0.09         0.192         86.1           9/11/2006         1.45         19.31         7.85         5.85         0.125         0.09         0.192         84.6           9/11/2006         2.01         19.27         7.55         5.85         0.125         0.09         0.192         81.5           9/11/2006         2.30         19.24         7.41         5.85         0.125         0.09         0.192         79.1           9/11/2006         2.30         19.24         7.41         5.85         0.125         0.09         0.192         79.1           9/11/2006         3.01         9.14         6.92         5.86         0.125         0.09         0.192         75.5           9/11/2006         3.19         1.4         6.92         5.86         0.125         0.09         0.192         76.1           9/11/2006         3.45         19.14         6.92         5.86         0.125         0.09         0.192         76.1                                                                                                                                                                       | 9/11/2006 0:45  | 19.37 | 7.86     | 5.84        | 0.125 | 0.09     | 0.192  | 85.4 |
| 9/11/2006 1:16         19.37         7.83         5.84         0.125         0.09         0.192         86.1           9/11/2006 1:45         19.31         7.8         5.85         0.125         0.09         0.192         84.6           9/11/2006 2:00         19.29         7.75         5.85         0.125         0.09         0.192         84.6           9/11/2006 2:15         19.24         7.41         5.85         0.125         0.09         0.192         81.5           9/11/2006 2:45         19.24         7.41         5.85         0.125         0.09         0.192         77.1           9/11/2006 3:30         19.14         6.86         5.86         0.125         0.09         0.192         77.2           9/11/2006 3:30         19.14         6.92         5.86         0.125         0.09         0.192         76.1           9/11/2006 4:00         19.14         6.92         5.86         0.125         0.09         0.192         76.2           9/11/2006 4:01         19.14         6.92         5.86         0.125         0.09         0.192         76.2           9/11/2006 6:15         19.07         6.81         5.86         0.125         0.09         0.192 <td>9/11/2006 1:00</td> <td>19.37</td> <td>7.81</td> <td>5.84</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>84.9</td>       | 9/11/2006 1:00  | 19.37 | 7.81     | 5.84        | 0.125 | 0.09     | 0.192  | 84.9 |
| 9/11/2006         1:30         1         7.85         5.84         0.125         0.09         0.192         85.2           9/11/2006         1:0         19.29         7.75         5.85         0.125         0.09         0.192         84.6           9/11/2006         2:00         19.29         7.75         5.85         0.125         0.09         0.192         84.3           9/11/2006         2:30         19.24         7.41         5.85         0.125         0.09         0.192         78.1           9/11/2006         3:00         19.21         7.33         5.86         0.125         0.09         0.192         77.2           9/11/2006         3:01         19.14         6.92         5.86         0.125         0.09         0.192         74.7           9/11/2006         3:45         19.14         7.03         5.86         0.125         0.09         0.192         76.1           9/11/2006         4:15         19.07         6.81         5.86         0.125         0.09         0.192         71.8           9/11/2006         19.02         6.86         5.86         0.125         0.09         0.192         71.8           9/11/2006 <t< td=""><td>9/11/2006 1:15</td><td>19.37</td><td>7.93</td><td>5.84</td><td>0.125</td><td>0.09</td><td>0.192</td><td>86.1</td></t<>                              | 9/11/2006 1:15  | 19.37 | 7.93     | 5.84        | 0.125 | 0.09     | 0.192  | 86.1 |
| 9/11/2006         1:46         19:25         7.75         5.85         0.125         0.09         0.192         84           9/11/2006         19:25         7.52         5.85         0.125         0.09         0.192         81.5           9/11/2006         2:30         19:24         7.41         5.85         0.125         0.09         0.192         79.1           9/11/2006         2:45         19:22         7.3         5.86         0.125         0.09         0.192         77.2           9/11/2006         3:0         19:14         6.98         5.86         0.125         0.09         0.192         77.5           9/11/2006         3:0         19:14         6.92         5.86         0.125         0.09         0.192         76.1           9/11/2006         4:10         19:14         6.92         5.86         0.125         0.09         0.192         76.1           9/11/2006         4:10         19:14         6.91         5.86         0.125         0.09         0.192         77.5           9/11/2006         5:15         19:07         6.81         5.86         0.125         0.09         0.192         71.4           9/11/2006 <t< td=""><td>9/11/2006 1:30</td><td>19.33</td><td>7.85</td><td>5.84</td><td>0.125</td><td>0.09</td><td>0.192</td><td>85.2</td></t<>                              | 9/11/2006 1:30  | 19.33 | 7.85     | 5.84        | 0.125 | 0.09     | 0.192  | 85.2 |
| 9/11/2006 2:00         19.29         7.75         5.85         0.125         0.09         0.192         84           9/11/2006 2:30         19.24         7.41         5.85         0.125         0.09         0.192         80.3           9/11/2006 2:30         19.24         7.41         5.85         0.125         0.09         0.192         79.4           9/11/2006 3:00         19.21         7.33         5.85         0.125         0.09         0.192         77.4           9/11/2006 3:01         19.14         6.98         5.86         0.125         0.09         0.192         77.4           9/11/2006 3:45         19.14         6.92         5.86         0.125         0.09         0.192         74.7           9/11/2006 4:15         19.14         7.03         5.86         0.125         0.09         0.192         74.7           9/11/2006 4:15         19.12         6.66         5.86         0.125         0.09         0.192         74.7           9/11/2006 4:45         19.07         6.68         5.86         0.125         0.09         0.192         71.2           9/11/2006 6:30         19.02         6.68         5.86         0.125         0.9         0.192                                                                                                                                      | 9/11/2006 1:45  | 19.31 | 7.8      | 5.85        | 0.125 | 0.09     | 0.192  | 84.6 |
| 9/11/2006 2:15         19.25         7.52         5.85         0.125         0.09         0.192         81.5           9/11/2006 2:45         19.22         7.3         5.85         0.125         0.09         0.192         79.1           9/11/2006 2:45         19.21         7.33         5.85         0.125         0.09         0.192         77.2           9/11/2006 3:15         19.19         7.13         5.86         0.125         0.09         0.192         77.2           9/11/2006 3:45         19.14         6.92         5.86         0.125         0.09         0.192         76.1           9/11/2006 4:00         19.14         7.03         5.86         0.125         0.09         0.192         76.1           9/11/2006 4:30         19.12         6.66         5.87         0.125         0.09         0.192         73.5           9/11/2006 5:15         19.01         6.66         5.87         0.125         0.09         0.192         73.8           9/11/2006 5:45         19         6.77         5.87         0.125         0.09         0.193         73.3           9/11/2006 6:45         19.02         6.68         5.86         0.125         0.09         0.192                                                                                                                                       | 9/11/2006 2:00  | 19.29 | 7.75     | 5.85        | 0.125 | 0.09     | 0.192  | 84   |
| 9111/2006 2:30         19.24         7.41         5.85         0.125         0.09         0.192         80.3           9111/2006 2:45         19.22         7.3         5.85         0.125         0.09         0.192         79.4           9111/2006 3:00         19.21         7.33         5.86         0.125         0.09         0.192         77.4           9111/2006 3:30         19.14         6.98         5.86         0.125         0.09         0.192         74.9           9111/2006 4:45         19.14         6.92         5.86         0.125         0.09         0.192         74.7           9111/2006 4:15         19.14         6.91         5.86         0.125         0.09         0.192         74.7           9111/2006 4:30         19.12         6.96         5.86         0.125         0.09         0.192         75.5           9111/2006 6:15         19.01         6.6         5.86         0.125         0.09         0.192         74.7           9111/2006 6:15         19.02         6.68         5.86         0.125         0.09         0.192         72.1           9111/2006 6:15         18.97         6.72         5.88         0.125         0.09         0.192 <td>9/11/2006 2:15</td> <td>19.25</td> <td>7.52</td> <td>5.85</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>81.5</td>        | 9/11/2006 2:15  | 19.25 | 7.52     | 5.85        | 0.125 | 0.09     | 0.192  | 81.5 |
| 9/11/2006 2:45         19.21         7.3         5.85         0.125         0.09         0.192         79.4           9/11/2006 3:15         19.9         7.13         5.86         0.125         0.09         0.192         77.2           9/11/2006 3:30         19.14         6.98         5.86         0.125         0.09         0.192         74.9           9/11/2006 3:45         19.14         6.92         5.86         0.125         0.09         0.192         74.7           9/11/2006 4:00         19.14         7.03         5.86         0.125         0.09         0.192         74.7           9/11/2006 4:30         19.12         6.96         5.86         0.125         0.09         0.192         75.5           9/11/2006 6:00         19.02         6.66         5.87         0.125         0.09         0.192         73.5           9/11/2006 6:30         19.02         6.68         5.86         0.125         0.09         0.193         73           9/11/2006 6:43         19.01         6.6         5.88         0.125         0.09         0.192         72.1           9/11/2006 6:45         19.02         6.68         5.86         0.125         0.09         0.192                                                                                                                                        | 9/11/2006 2:30  | 19.24 | 7.41     | 5.85        | 0.125 | 0.09     | 0.192  | 80.3 |
| 9/11/2006 3:00         19.21         7.33         5.85         0.125         0.09         0.192         79.4           9/11/2006 3:30         19.14         6.98         5.86         0.125         0.09         0.192         77.2           9/11/2006 3:45         19.14         6.92         5.86         0.125         0.09         0.192         74.9           9/11/2006 4:15         19.14         7.03         5.86         0.125         0.09         0.192         76.1           9/11/2006 4:15         19.11         6.91         5.86         0.125         0.09         0.192         75.2           9/11/2006 4:45         19.07         6.81         5.86         0.125         0.09         0.192         73.5           9/11/2006 5:15         19.01         6.6         5.86         0.125         0.09         0.193         73.3           9/11/2006 5:30         19.02         6.68         5.86         0.125         0.09         0.193         73.5           9/11/2006 6:50         18.97         6.72         5.88         0.125         0.09         0.192         70.7           9/11/2006 6:15         18.92         6.57         5.88         0.125         0.09         0.192 <td>9/11/2006 2:45</td> <td>19.22</td> <td>7.3</td> <td>5.85</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>79.1</td>        | 9/11/2006 2:45  | 19.22 | 7.3      | 5.85        | 0.125 | 0.09     | 0.192  | 79.1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 3:00  | 19.21 | 7.33     | 5.85        | 0.125 | 0.09     | 0.192  | 79.4 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 3:15  | 19.19 | 7.13     | 5.86        | 0.125 | 0.09     | 0.192  | 77.2 |
| 9/11/2006         9.14         6.92         5.86         0.125         0.09         0.192         74.9           9/11/2006         4:00         19.14         7.03         5.86         0.125         0.09         0.192         76.1           9/11/2006         4:15         19.11         6.91         5.86         0.125         0.09         0.192         75.2           9/11/2006         5:00         19.02         6.66         5.87         0.125         0.09         0.192         71.8           9/11/2006         5:10         19.01         6.6         5.86         0.125         0.09         0.193         71.2           9/11/2006         5:30         19.02         6.68         5.86         0.125         0.09         0.193         73.3           9/11/2006         6:45         19         6.77         5.88         0.125         0.09         0.192         70.7           9/11/2006         18.97         6.77         5.88         0.125         0.09         0.192         72.1           9/11/2006         18.91         6.64         5.89         0.125         0.09         0.192         72.9           9/11/2006         18.93         6.77         <                                                                                                                                                        | 9/11/2006 3:30  | 19.14 | 6.98     | 5.86        | 0.125 | 0.09     | 0.192  | 75.5 |
| 9/11/2006 4:00         19.14         7.03         5.86         0.125         0.09         0.192         76.1           9/11/2006 4:15         19.11         6.91         5.86         0.125         0.09         0.192         74.7           9/11/2006 4:45         19.07         6.81         5.86         0.125         0.09         0.192         73.5           9/11/2006 5:15         19.02         6.66         5.87         0.125         0.09         0.192         71.8           9/11/2006 5:15         19.02         6.68         5.86         0.125         0.09         0.193         71.2           9/11/2006 5:30         19.02         6.68         5.86         0.125         0.09         0.193         72.1           9/11/2006 6:00         18.97         6.77         5.87         0.125         0.09         0.192         72.5           9/11/2006 6:30         18.91         6.64         5.89         0.125         0.09         0.192         72.1           9/11/2006 6:45         18.93         6.77         5.88         0.125         0.09         0.192         72.1           9/11/2006 7:00         18.93         6.77         5.88         0.125         0.09         0.192 </td <td>9/11/2006 3:45</td> <td>19.14</td> <td>6.92</td> <td>5.86</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>74.9</td> | 9/11/2006 3:45  | 19.14 | 6.92     | 5.86        | 0.125 | 0.09     | 0.192  | 74.9 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 4:00  | 19.14 | 7.03     | 5.86        | 0.125 | 0.09     | 0.192  | 76.1 |
| 9/11/2006 4:30         19.12         6.96         5.86         0.125         0.09         0.192         75.2           9/11/2006 4:35         19.07         6.81         5.86         0.125         0.09         0.192         73.5           9/11/2006 5:10         19.02         6.66         5.87         0.125         0.09         0.193         71.2           9/11/2006 5:15         19.01         6.6         5.86         0.125         0.09         0.193         73.3           9/11/2006 5:45         19         6.77         5.87         0.125         0.09         0.192         72.5           9/11/2006 6:30         18.91         6.64         5.89         0.125         0.09         0.192         72.5           9/11/2006 6:30         18.91         6.64         5.89         0.125         0.09         0.192         71.4           9/11/2006 6:45         18.93         6.77         5.88         0.125         0.09         0.192         72.9           9/11/2006 7:15         18.88         6.68         5.89         0.125         0.09         0.192         72.2           9/11/2006 7:30         18.91         6.71         5.89         0.125         0.09         0.192                                                                                                                                       | 9/11/2006 4.15  | 19 11 | 6.91     | 5.86        | 0 125 | 0.09     | 0 192  | 74 7 |
| 9/11/2006 4:45       19.07       6.81       5.86       0.125       0.09       0.192       73.5         9/11/2006 5:00       19.02       6.66       5.87       0.125       0.09       0.193       71.2         9/11/2006 5:30       19.02       6.68       5.86       0.125       0.09       0.193       72.1         9/11/2006 5:30       19.02       6.68       5.86       0.125       0.09       0.193       73.5         9/11/2006 5:45       19       6.77       5.87       0.125       0.09       0.192       72.5         9/11/2006 6:30       18.97       6.72       5.88       0.125       0.09       0.192       71.4         9/11/2006 6:30       18.91       6.64       5.89       0.125       0.09       0.192       72.1         9/11/2006 7:00       18.93       6.7       5.88       0.125       0.09       0.192       72.9         9/11/2006 7:45       18.88       6.68       5.89       0.125       0.09       0.192       72.9         9/11/2006 7:45       18.86       6.68       5.89       0.125       0.09       0.192       72.6         9/11/2006 7:45       18.86       6.75       5.9       0.125 <td>9/11/2006 4:30</td> <td>19.12</td> <td>6.96</td> <td>5.86</td> <td>0.125</td> <td>0.09</td> <td>0.192</td> <td>75.2</td>                                                                                       | 9/11/2006 4:30  | 19.12 | 6.96     | 5.86        | 0.125 | 0.09     | 0.192  | 75.2 |
| 9/11/2006 5:0019.026.665.870.1250.090.19271.89/11/2006 5:3019.026.685.860.1250.090.19371.29/11/2006 5:3019.026.685.860.1250.090.19372.19/11/2006 6:3018.976.725.880.1250.090.19272.59/11/2006 6:1518.926.575.880.1250.090.19270.79/11/2006 6:3018.916.645.890.1250.090.19271.49/11/2006 6:4518.936.75.880.1250.090.19272.19/11/2006 7:0018.936.775.880.1250.090.19272.99/11/2006 7:3018.96.715.890.1250.090.19272.29/11/2006 7:4518.866.755.90.1250.090.19272.69/11/2006 8:1518.946.755.890.1250.090.19272.79/11/2006 8:3018.856.715.90.1250.090.19272.79/11/2006 8:3018.856.715.90.1250.090.19272.79/11/2006 8:3018.866.955.90.1250.090.19277.79/11/2006 8:3018.866.955.90.1250.090.19277.59/11/2006 8:3018.866.955.90.1250.090.19277.59/11/2006 8:30 <t< td=""><td>9/11/2006 4:45</td><td>19.07</td><td>6.81</td><td>5.86</td><td>0.125</td><td>0.09</td><td>0.192</td><td>73.5</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/11/2006 4:45  | 19.07 | 6.81     | 5.86        | 0.125 | 0.09     | 0.192  | 73.5 |
| 9/11/20065:1519.016.65.860.1250.090.19371.29/11/20065:3019.026.685.860.1250.090.193739/11/20066:0018.976.775.870.1250.090.19272.59/11/20066:1518.926.575.880.1250.090.19270.79/11/20066:3018.916.645.890.1250.090.19271.49/11/20066:4518.936.775.880.1250.090.19272.19/11/20067:0018.936.775.880.1250.090.19272.99/11/20067:3018.96.715.890.1250.090.19272.99/11/20067:3018.96.715.890.1250.090.19272.69/11/20067:3018.916.845.890.1250.090.19272.79/11/20067:4518.866.755.90.1250.090.19272.79/11/20068:3018.856.715.90.1250.090.19272.79/11/20068:3018.866.955.90.1250.090.19274.79/11/20068:4518.846.645.90.1250.090.19277.39/11/20068:1518.947.315.890.1250.090.19277.39/11/20069:10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/11/2006 5:00  | 19.02 | 6.66     | 5.87        | 0.125 | 0.09     | 0.192  | 71.8 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 5:15  | 19.01 | 6.6      | 5.86        | 0.125 | 0.09     | 0 193  | 71.2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 5:30  | 19.02 | 6 68     | 5.86        | 0.125 | 0.09     | 0 193  | 72.1 |
| 9/11/2006         18.97         6.72         5.88         0.125         0.09         0.192         72.5           9/11/2006         6:15         18.92         6.57         5.88         0.125         0.09         0.192         70.7           9/11/2006         6:43         18.91         6.64         5.89         0.125         0.09         0.192         72.1           9/11/2006         6:45         18.93         6.77         5.88         0.125         0.09         0.192         72.1           9/11/2006         7:00         18.93         6.77         5.88         0.125         0.09         0.192         72.9           9/11/2006         7:15         18.86         6.68         5.89         0.125         0.09         0.192         72.6           9/11/2006         7:45         18.86         6.75         5.9         0.125         0.09         0.192         72.6           9/11/2006         8:01         18.91         6.84         5.89         0.125         0.09         0.192         72.7           9/11/2006         8:30         18.85         6.71         5.9         0.125         0.09         0.192         74.7           9/11/2006                                                                                                                                                                | 9/11/2006 5:45  | 19    | 6 77     | 5.87        | 0.125 | 0.09     | 0 193  | 73   |
| 9/11/2006 6:15       18.92       6.57       5.88       0.125       0.09       0.192       70.7         9/11/2006 6:30       18.91       6.64       5.89       0.125       0.09       0.192       71.4         9/11/2006 6:45       18.93       6.7       5.88       0.125       0.09       0.192       72.1         9/11/2006 7:00       18.93       6.77       5.88       0.125       0.09       0.192       72.9         9/11/2006 7:15       18.88       6.68       5.89       0.125       0.09       0.192       72.2         9/11/2006 7:30       18.9       6.71       5.89       0.125       0.09       0.192       72.2         9/11/2006 8:00       18.91       6.84       5.89       0.125       0.09       0.192       72.7         9/11/2006 8:15       18.94       6.75       5.89       0.125       0.09       0.192       72.7         9/11/2006 8:30       18.85       6.71       5.9       0.125       0.09       0.192       72.7         9/11/2006 8:45       18.84       6.64       5.9       0.125       0.09       0.192       75.9         9/11/2006 9:50       18.84       7.18       5.9       0.125 <td>9/11/2006 6:00</td> <td>18.97</td> <td>6.72</td> <td>5.88</td> <td>0.125</td> <td>0.09</td> <td>0 192</td> <td>72.5</td>                                                                                       | 9/11/2006 6:00  | 18.97 | 6.72     | 5.88        | 0.125 | 0.09     | 0 192  | 72.5 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 6:15  | 18.92 | 6.57     | 5.88        | 0.125 | 0.09     | 0.192  | 70.7 |
| 9/11/2006       6:45       18.93       6.7       5.88       0.125       0.09       0.192       72.1         9/11/2006       7:00       18.93       6.77       5.88       0.125       0.09       0.192       72.9         9/11/2006       7:15       18.88       6.68       5.89       0.125       0.09       0.192       72.2         9/11/2006       7:15       18.86       6.675       5.9       0.125       0.09       0.192       72.2         9/11/2006       7:45       18.86       6.75       5.9       0.125       0.09       0.192       72.6         9/11/2006       8:00       18.91       6.84       5.89       0.125       0.09       0.192       72.7         9/11/2006       8:01       18.85       6.71       5.9       0.125       0.09       0.192       72.7         9/11/2006       8:01       18.85       6.71       5.9       0.125       0.09       0.192       72.7         9/11/2006       8:03       18.86       6.95       5.9       0.125       0.09       0.192       74.7         9/11/2006       9:01       18.86       7.89       0.125       0.09       0.192       77.3                                                                                                                                                                                                                                        | 9/11/2006 6:30  | 18.91 | 6 64     | 5.89        | 0.125 | 0.09     | 0 192  | 71.4 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 6:45  | 18.93 | 6.7      | 5.88        | 0.125 | 0.09     | 0.192  | 72.1 |
| 9/11/2006 7:15       18.88       6.68       5.89       0.125       0.09       0.192       71.9         9/11/2006 7:30       18.9       6.71       5.89       0.125       0.09       0.192       72.2         9/11/2006 7:45       18.86       6.75       5.9       0.125       0.09       0.192       72.2         9/11/2006 8:00       18.91       6.84       5.89       0.125       0.09       0.192       72.2         9/11/2006 8:15       18.94       6.75       5.89       0.125       0.09       0.192       72.2         9/11/2006 8:15       18.84       6.64       5.9       0.125       0.09       0.192       72.2         9/11/2006 8:45       18.84       6.64       5.9       0.125       0.09       0.192       74.7         9/11/2006 9:00       18.86       6.95       5.9       0.125       0.09       0.192       74.7         9/11/2006 9:15       18.91       7.05       5.9       0.125       0.09       0.192       78.7         9/11/2006 9:45       18.94       7.31       5.89       0.125       0.09       0.192       78.7         9/11/2006 10:00       19       7.45       5.89       0.125                                                                                                                                                                                                                       | 9/11/2006 7·00  | 18.93 | 6 77     | 5.88        | 0.125 | 0.09     | 0 192  | 72.9 |
| 9/11/2006 7:30         18.9         6.71         5.89         0.125         0.09         0.192         72.2           9/11/2006 7:45         18.86         6.75         5.9         0.125         0.09         0.192         72.6           9/11/2006 8:00         18.91         6.84         5.89         0.125         0.09         0.192         73.6           9/11/2006 8:15         18.94         6.75         5.89         0.125         0.09         0.192         72.7           9/11/2006 8:30         18.85         6.71         5.9         0.125         0.09         0.192         72.7           9/11/2006 8:45         18.84         6.64         5.9         0.125         0.09         0.192         74.7           9/11/2006 9:10         18.86         6.95         5.9         0.125         0.09         0.192         74.7           9/11/2006 9:15         18.91         7.05         5.9         0.125         0.09         0.192         77.3           9/11/2006 9:45         18.94         7.31         5.89         0.125         0.09         0.192         78.7           9/11/2006 10:01         19         7.45         5.89         0.125         0.09         0.192                                                                                                                                           | 9/11/2006 7:15  | 18.88 | 6.68     | 5.89        | 0.125 | 0.09     | 0.192  | 71.9 |
| 9/11/2006 7:45       18.86       6.75       5.9       0.125       0.09       0.192       72.6         9/11/2006 8:00       18.91       6.84       5.89       0.125       0.09       0.192       73.6         9/11/2006 8:15       18.94       6.75       5.89       0.125       0.09       0.192       72.7         9/11/2006 8:30       18.85       6.71       5.9       0.125       0.09       0.192       72.2         9/11/2006 9:00       18.86       6.95       5.9       0.125       0.09       0.192       74.7         9/11/2006 9:00       18.86       6.95       5.9       0.125       0.09       0.192       75.9         9/11/2006 9:30       18.88       7.18       5.9       0.125       0.09       0.192       77.3         9/11/2006 9:30       18.88       7.18       5.9       0.125       0.09       0.192       78.7         9/11/2006 10:00       19       7.45       5.89       0.125       0.09       0.192       78.7         9/11/2006 10:01       19       7.45       5.89       0.125       0.09       0.192       88.7         9/11/2006 10:30       19.16       7.82       5.87       0.125                                                                                                                                                                                                                        | 9/11/2006 7:30  | 18.9  | 6.71     | 5.89        | 0.125 | 0.09     | 0.192  | 72.2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 7:45  | 18.86 | 6.75     | 5.9         | 0.125 | 0.09     | 0.192  | 72.6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 8:00  | 18.91 | 6.84     | 5.89        | 0.125 | 0.09     | 0.192  | 73.6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 8:15  | 18.94 | 6.75     | 5.89        | 0.125 | 0.09     | 0.192  | 72.7 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/11/2006 8:30  | 18.85 | 6.71     | 5.9         | 0.125 | 0.09     | 0.192  | 72.2 |
| 9/11/2006 9:0018.866.955.90.1250.090.19274.79/11/2006 9:1518.917.055.90.1250.090.19275.99/11/2006 9:3018.887.185.90.1250.090.19277.39/11/2006 9:4518.947.315.890.1250.090.19278.79/11/2006 10:00197.455.890.1250.090.19280.39/11/2006 10:1519.097.75.870.1250.090.19283.29/11/2006 10:3019.167.825.870.1250.090.19284.69/11/2006 10:4519.257.885.850.1250.090.19285.49/11/2006 11:1019.317.875.840.1250.090.19285.59/11/2006 11:1319.277.875.860.1250.090.19285.39/11/2006 11:3019.277.875.860.1250.090.19285.39/11/2006 12:0019.277.895.860.1250.090.19285.39/11/2006 12:1519.277.895.860.1250.090.19285.39/11/2006 12:3019.38.145.860.1250.090.19288.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/11/2006 8:45  | 18.84 | 6.64     | 5.9         | 0.125 | 0.09     | 0.192  | 71.4 |
| 9/11/2006 9:15         18.91         7.05         5.9         0.125         0.09         0.192         75.9           9/11/2006 9:30         18.88         7.18         5.9         0.125         0.09         0.192         77.3           9/11/2006 9:45         18.94         7.31         5.89         0.125         0.09         0.192         78.7           9/11/2006 10:00         19         7.45         5.89         0.125         0.09         0.192         80.3           9/11/2006 10:15         19.09         7.7         5.87         0.125         0.09         0.192         83.2           9/11/2006 10:30         19.16         7.82         5.87         0.125         0.09         0.192         84.6           9/11/2006 11:45         19.25         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.5           9/11/2006 11:13         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192<                                                                                                                                 | 9/11/2006 9:00  | 18.86 | 6.95     | 5.9         | 0.125 | 0.09     | 0.192  | 74.7 |
| 9/11/2006 9:30         18.88         7.18         5.9         0.125         0.09         0.192         77.3           9/11/2006 9:45         18.94         7.31         5.89         0.125         0.09         0.192         78.7           9/11/2006 10:00         19         7.45         5.89         0.125         0.09         0.192         80.3           9/11/2006 10:15         19.09         7.7         5.87         0.125         0.09         0.192         83.2           9/11/2006 10:30         19.16         7.82         5.87         0.125         0.09         0.192         84.6           9/11/2006 11:45         19.25         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.5           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.3           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.89         5.86         0.125         0.09         0.192                                                                                                                                 | 9/11/2006 9:15  | 18.91 | 7.05     | 5.9         | 0.125 | 0.09     | 0.192  | 75.9 |
| 9/11/2006 9:45         18.94         7.31         5.89         0.125         0.09         0.192         78.7           9/11/2006 10:00         19         7.45         5.89         0.125         0.09         0.192         80.3           9/11/2006 10:15         19.09         7.7         5.87         0.125         0.09         0.192         83.2           9/11/2006 10:30         19.16         7.82         5.87         0.125         0.09         0.192         84.6           9/11/2006 11:45         19.25         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.4           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.3           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:10         19.27         7.89         5.86         0.125         0.09         0.1                                                                                                                                 | 9/11/2006 9:30  | 18.88 | 7.18     | 5.9         | 0.125 | 0.09     | 0.192  | 77.3 |
| 9/11/2006 10:00         19         7.45         5.89         0.125         0.09         0.192         80.3           9/11/2006 10:15         19.09         7.7         5.87         0.125         0.09         0.192         83.2           9/11/2006 10:30         19.16         7.82         5.87         0.125         0.09         0.192         84.6           9/11/2006 10:45         19.25         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.4           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.5           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:15         19.27         7.89         5.86         0.125         0.09         0.                                                                                                                                 | 9/11/2006 9:45  | 18.94 | 7.31     | 5.89        | 0.125 | 0.09     | 0.192  | 78.7 |
| 9/11/2006 10:15         19.09         7.7         5.87         0.125         0.09         0.192         83.2           9/11/2006 10:30         19.16         7.82         5.87         0.125         0.09         0.192         84.6           9/11/2006 10:45         19.25         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.4           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.5           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.                                                                                                                                 | 9/11/2006 10:00 | 19    | 7.45     | 5.89        | 0.125 | 0.09     | 0.192  | 80.3 |
| 9/11/2006 10:30         19.16         7.82         5.87         0.125         0.09         0.192         84.6           9/11/2006 10:45         19.25         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.4           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.5           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:10         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         86.8           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.1                                                                                                                                 | 9/11/2006 10:15 | 19.09 | 7.7      | 5.87        | 0.125 | 0.09     | 0.192  | 83.2 |
| 9/11/2006 10:45         19.25         7.88         5.85         0.125         0.09         0.192         85.4           9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.4           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.5           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:00         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:00         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         86.8           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.192         88.3                                                                                                                                                                                                                                         | 9/11/2006 10:30 | 19.16 | 7.82     | 5.87        | 0.125 | 0.09     | 0.192  | 84.6 |
| 9/11/2006 11:00         19.31         7.87         5.84         0.125         0.09         0.192         85.4           9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.5           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:00         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         86.8           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.192         88.3                                                                                                                                                                                                                                                                                                                                                                 | 9/11/2006 10:45 | 19.25 | 7.88     | 5.85        | 0.125 | 0.09     | 0.192  | 85.4 |
| 9/11/2006 11:15         19.3         7.88         5.85         0.125         0.09         0.192         85.5           9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:00         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         86.8           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.192         88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/11/2006 11:00 | 19.31 | 7.87     | 5.84        | 0.125 | 0.09     | 0.192  | 85.4 |
| 9/11/2006 11:30         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:00         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         86.8           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.192         88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9/11/2006 11:15 | 19.3  | 7.88     | 5.85        | 0.125 | 0.09     | 0.192  | 85.5 |
| 9/11/2006 11:45         19.27         7.87         5.86         0.125         0.09         0.192         85.3           9/11/2006 12:00         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.192         88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/11/2006 11:30 | 19.27 | 7.87     | 5.86        | 0.125 | 0.09     | 0.192  | 85.3 |
| 9/11/2006 12:00         19.27         7.89         5.86         0.125         0.09         0.192         85.6           9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         86.8           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.192         88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/11/2006 11:45 | 19.27 | 7.87     | 5.86        | 0.125 | 0.09     | 0.192  | 85.3 |
| 9/11/2006 12:15         19.27         8         5.86         0.125         0.09         0.192         86.8           9/11/2006 12:30         19.3         8.14         5.86         0.124         0.09         0.192         88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/11/2006 12:00 | 19.27 | 7.89     | 5.86        | 0.125 | 0.09     | 0.192  | 85.6 |
| 9/11/2006 12:30 19.3 8.14 5.86 0.124 0.09 0.192 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/11/2006 12:15 | 19.27 | 8        | 5.86        | 0.125 | 0.09     | 0.192  | 86.8 |
| 9/11/2006 12:30 19.3 8.14 5.86 0.124 0.09 0.192 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |          |             |       |          |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9/11/2006 12:30 | 19.3  | 8.14     | 5.86        | 0.124 | 0.09     | 0.192  | 88.3 |

| 9/11/2006 12:45 | 19.3  | 8.25 | 5.86 | 0.125 | 0.09 | 0.192 | 89.6 |
|-----------------|-------|------|------|-------|------|-------|------|
| 9/11/2006 13:00 | 19.28 | 8.28 | 5.86 | 0.125 | 0.09 | 0.192 | 89.8 |
| 9/11/2006 13:15 | 19.27 | 8.29 | 5.85 | 0.125 | 0.09 | 0.192 | 89.9 |
| 9/11/2006 13:30 | 19.27 | 8.28 | 5.86 | 0.124 | 0.09 | 0.192 | 89.8 |
| 9/11/2006 13:45 | 19.27 | 8.24 | 5.86 | 0.125 | 0.09 | 0.192 | 89.3 |
| 9/11/2006 14:00 | 19.28 | 8.18 | 5.86 | 0.124 | 0.09 | 0.191 | 88.7 |
| 9/11/2006 14:15 | 19.25 | 7.98 | 5.86 | 0.125 | 0.09 | 0.192 | 86.5 |
| 9/11/2006 14:30 | 19.24 | 7.77 | 5.86 | 0.125 | 0.09 | 0.192 | 84.3 |
| 9/11/2006 14:45 | 19.23 | 7.65 | 5.86 | 0.125 | 0.09 | 0.192 | 82.9 |
| 9/11/2006 15:00 | 19.22 | 7.5  | 5.86 | 0.125 | 0.09 | 0.192 | 81.2 |
| 9/11/2006 15:15 | 19.21 | 7.23 | 5.86 | 0.125 | 0.09 | 0.192 | 78.3 |
| 9/11/2006 15:30 | 19.2  | 7.12 | 5.86 | 0.125 | 0.09 | 0.192 | 77.1 |
| 9/11/2006 15:45 | 19.2  | 6.65 | 5.84 | 0.125 | 0.09 | 0.192 | 72   |
| 9/11/2006 16:00 | 19.19 | 6.74 | 5.83 | 0.125 | 0.09 | 0.193 | 72.9 |
| 9/11/2006 16:15 | 19.2  | 5.83 | 5.82 | 0.126 | 0.09 | 0.193 | 63.1 |
| 9/11/2006 16:30 | 19.19 | 5.62 | 5.8  | 0.126 | 0.09 | 0.194 | 60.8 |
| 9/11/2006 16:45 | 19.19 | 5.49 | 5.8  | 0.126 | 0.09 | 0.194 | 59.4 |
| 9/11/2006 17:00 | 19.18 | 5.03 | 5.77 | 0.127 | 0.09 | 0.195 | 54.5 |
| 9/11/2006 17:15 | 19.18 | 4.33 | 5.72 | 0.128 | 0.09 | 0.197 | 46.9 |
| 9/11/2006 17:30 | 19.18 | 3.62 | 5.68 | 0.129 | 0.09 | 0.198 | 39.2 |
| 9/11/2006 17:45 | 19.19 | 3.97 | 5.66 | 0.129 | 0.09 | 0.199 | 42.9 |
| 9/11/2006 18:00 | 19.19 | 3.84 | 5.66 | 0.129 | 0.09 | 0.199 | 41.6 |
| 9/11/2006 18:15 | 19.2  | 3.91 | 5.66 | 0.129 | 0.09 | 0.199 | 42.4 |
| 9/11/2006 18:30 | 19.21 | 3.97 | 5.66 | 0.129 | 0.09 | 0.199 | 43   |
| 9/11/2006 18:45 | 19.23 | 4.05 | 5.69 | 0.128 | 0.09 | 0.197 | 43.9 |
| 9/11/2006 19:00 | 19.24 | 4.5  | 5.8  | 0.126 | 0.09 | 0.194 | 48.8 |
| 9/11/2006 19:15 | 19.27 | 6.51 | 5.8  | 0.126 | 0.09 | 0.194 | 70.6 |
| 9/11/2006 19:30 | 19.28 | 6.47 | 5.79 | 0.126 | 0.09 | 0.194 | 70.2 |
| 9/11/2006 19:45 | 19.28 | 6.16 | 5.76 | 0.127 | 0.09 | 0.195 | 66.8 |
| 9/11/2006 20:00 | 19.3  | 6.05 | 5.75 | 0.127 | 0.09 | 0.195 | 65.6 |
| 9/11/2006 20:15 | 19.29 | 5.89 | 5.75 | 0.127 | 0.09 | 0.195 | 63.9 |
| 9/11/2006 20:30 | 19.34 | 6.89 | 5.78 | 0.126 | 0.09 | 0.194 | 74.8 |
| 9/11/2006 20:45 | 19.39 | 7.61 | 5.8  | 0.126 | 0.09 | 0.193 | 82.7 |
| 9/11/2006 21:00 | 19.47 | 7.41 | 5.78 | 0.126 | 0.09 | 0.193 | 80.7 |
| 9/11/2006 21:15 | 19.51 | 7.72 | 5.79 | 0.125 | 0.09 | 0.193 | 84.1 |
| 9/11/2006 21:30 | 19.53 | 7.84 | 5.79 | 0.125 | 0.09 | 0.193 | 85.4 |
| 9/11/2006 21:45 | 19.55 | 7.93 | 5.79 | 0.125 | 0.09 | 0.193 | 86.4 |
| 9/11/2006 22:00 | 19.56 | 8.06 | 5.79 | 0.125 | 0.09 | 0.193 | 87.9 |
| 9/11/2006 22:15 | 19.55 | 8.1  | 5.79 | 0.125 | 0.09 | 0.193 | 88.3 |
| 9/11/2006 22:30 | 19.54 | 8.09 | 5.8  | 0.125 | 0.09 | 0.193 | 88.2 |
| 9/11/2006 22:45 | 19.54 | 8.08 | 5.8  | 0.125 | 0.09 | 0.193 | 88.1 |
| 9/11/2006 23:00 | 19.52 | 7.98 | 5.8  | 0.125 | 0.09 | 0.193 | 86.9 |
| 9/11/2006 23:15 | 19.48 | 7.91 | 5.8  | 0.125 | 0.09 | 0.193 | 86.2 |
| 9/11/2006 23:30 | 19.44 | 7.86 | 5.81 | 0.125 | 0.09 | 0.193 | 85.5 |
| 9/11/2006 23:45 | 19.39 | 7.78 | 5.81 | 0.125 | 0.09 | 0.193 | 84.6 |

## **Appendix B. PHREEQC Files**

#### **B-1:** Partial input file for Example 9 (Parkhurst and Appelo 1999)

TITLE Example 9.--Kinetically controlled oxidation of ferrous iron. # Decoupled valence states of iron. SOLUTION\_MASTER\_SPECIES Fe\_di+2 0.0 Fe\_di Fe\_di 55.847 0.0 Fe\_tri Fe\_tri+3 Fe\_tri 55.847 SOLUTION\_SPECIES  $Fe_di+2 = Fe_di+2$ log\_k 0.0 Fe\_tri+3 = Fe\_tri+3 log\_k 0.0 # # Fe+2 species #  $Fe_di+2 + H2O = Fe_diOH+ + H+$ log\_k -9.5 delta\_h 13.20 kcal # #... and also other Fe+2 species # # # Fe+3 species #  $Fe_{tri+3} + H2O = Fe_{triOH+2} + H+$ log\_k -2.19 delta\_h 10.4 kcal # #... and also other Fe+3 species # PHASES Goethite Fe\_triOOH + 3 H+ = Fe\_tri+3 + 2 H2O log\_k -1.0 END SOLUTION 1 pH 7.0 pe 10.0 O2(g) -0.67 .1 Fe\_di 0.1 Na 10. Cl 10. charge EQUILIBRIUM\_PHASES 1 -0.67 02(g) RATES Fe\_di\_ox -start 10 Fe\_di = TOT("Fe\_di")
20 if (Fe\_di <= 0) then goto 200
30 p\_02 = 10^(SI("02(g)"))
40 molect (200)</pre> 40 moles = (2.91e-9 + 1.33e12 \* (ACT("OH-"))^2 \* p\_o2) \* Fe\_di \* TIME 200 SAVE moles -end KINETICS 1 Fe\_di\_ox

-formula Fe\_di -1.0 Fe\_tri 1.0 -steps 100 400 3100 10800 21600 5.04e4 8.64e4 1.728e5 1.728e5 1.728e5 1.728e5 INCREMENTAL\_REACTIONS true SELECTED\_OUTPUT -file ex9.sel -reset false USER\_PUNCH -headings Days Fe(2) Fe(3) pH si\_goethite 10 PUNCH SIM\_TIME/3600/24 TOT("Fe\_di")\*1e6, TOT("Fe\_tri")\*1e6, -LA("H+"), SI("Goethite") END

#### **B-2: Mantua PHREEQC model complete input and output file**

| Input file: F<br>Output file:<br>Database file | F:\Thesis\Kinetics17.j<br>F:\Thesis\Kinetics17<br>Hesis\Kinetics17<br>E:\Program Files\U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pqi<br>.pqp<br>SGS\Phreeqt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : Intera                                                                                             | ctive 2.12.5\phreeqc.dat                  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Reading data                                   | base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                                           |
|                                                | SOLUTION MASTER, SHE<br>SOLUTION, SHETES<br>HASES<br>EXCHANCE MASTER, SHE<br>BOLHANGE, SHETES<br>SURFACE, MASTER, SHET<br>SURFACE, SHETES<br>RATES<br>END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CIES<br>IES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                           |
| Reading input                                  | data for simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                           |
| 2.12.5\phreed                                  | DAIABASE E:\Program<br>p.dat<br>TIILE Example 9.—K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>Files\USGS<br>inetically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \Phreeq<br>cantrol.                                                                                  | c Interactive<br>led oxidation of ferrous |
| 55.045                                         | ii<br>SOLUTION_MASTER_SPEC<br>Fe_di I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ron. Decoup<br>CIES<br>Fe_di+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oled vale<br>0.0                                                                                     | moe states of iron.<br>Fe_di              |
| 55.847                                         | Fe_tri I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe_tri+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                  | Fe_tri                                    |
| 55.847                                         | Fe_tri I<br>SOUTTON_SHELTES<br>Fe_dit-2 = Fe_dit-2<br>Fe_dit-2 = Fe_dit-3<br>Fe_dit-2 = Fe_tri-3<br>Fe_dit-2 + Fe_tri-3<br>Fe_dit-2 + H20 = Fe_tri-3<br>Fe_dit-2 + H20 = Fe_tri-3<br>Fe_dit-2 + H20 = Fe_tri-3<br>Fe_dit-2 + H20 = Fe_tri-3<br>Fe_dit-2 + H304 = FR<br>Log_k & 2.2<br>dalta_h 3.2<br>Fe_dit-2 + H304 = FR<br>Log_k & 2.2<br>dalta_h 3.6<br>Fe_dit-2 + H204 = I<br>Log_k & 2.7<br>Fe_dit-2 + H204 = I<br>Log_k & 2.7<br>Fe_dit-2 + H204 = I<br>Log_k & 2.7<br>Fe_dit-2 + H204 = I<br>Log_k & 2.7<br>dalta_h 10.7<br>Fe_tri+3 + H20 = Fe<br>Log_k & -2.7<br>dalta_h 10.7<br>Fe_tri+3 + 2 H20 = I<br>Log_k & -2.7<br>dalta_h 13.1<br>2 Fe_tri+3 + 2 H20 = I<br>Log_k & -2.7<br>dalta_h 13.1<br>2 Fe_tri+3 + 2 H20 = I<br>Log_k & -2.7<br>dalta_h 13.1<br>2 Fe_tri+3 + 2 H20 = I<br>Log_k & -2.7<br>dalta_h 13.1<br>2 Fe_tri+3 + 2 H20 = I<br>Log_k & -2.7<br>dalta_h 13.5<br>Fe_tri+3 + 4 H20 = I<br>Log_k & -2.7<br>dalta_h 13.5<br>Fe_tri+3 + 2 H20 = I<br>Log_k & -2.7<br>dalta_h 13.5<br>Fe_tri+3 + 4 H20 = I<br>Log_k & -2.7<br>Fe_tri+3 + H204 = I<br>Log_k & -2.7<br>Fe_tri+3 + H2 | ii(iII+ + II+           ii(iII+ + II+           20         kcal           ii(II)         ii(II)           ii(II)         ii(II)           ii(II)         ii(II)           ii(II)         ii(II)           a.ditRO3+         a.ditRO3+           iF+         trai(H)           trai(H)         4           kcal         re_tri(CH)           s         kcal           s         kcal           if cal         ii(E)           if cal         ii(E)           if cal         ii(CH)           if cal         ii(CH)           ii(CH)         ii(CH)< | 0.0<br>H+<br>+ + 2 H<br>+ + 3 H+<br>+ + 3 H+<br>H)2+4 +<br>H)4+5 +<br>2<br>2<br>4)2<br>+<br>4<br>4+2 | Fe_tri<br>+<br>2 II+<br>4 II+             |
|                                                | Fe_tri+3 + 2 F- = Fe<br>log_k 10.8<br>delta_h 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e_triF2+<br>8 kcal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                           |
|                                                | re_tr+s + 3 F- = F6<br>log_k 14.(<br>delta_h 5.4<br>EQUILIERIUM_PHASES 3<br>Fe(CH)3(a) 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e_urur3<br>0<br>kcal<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                           |
|                                                | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                                           |

Example 9.—Kinetically controlled oxidation of ferrous iron. Decoupled valence states of iron. End of simulation. Reading input data for simulation 2. SOLUTION 1 N 1 pH 4.55 pe -0.924 (2c (g) -0.785 Fe ci 0.161 Na 0.4183 Cl 0.3216 charge Mg 0.9719 Mn 0.0003951 Ca 147.6 Alkalinity 29.67 c 138.9 S 15.79 RTUM HHSES 1 EQUILIBRIUM\_PHASES 1 02 (g) -0.785 C2 (g) -0.785 Fe\_di\_cx start 10 Fe\_di = TOT("Fe\_di") 20 if (Fe\_di <= 0) then goto 200 30 p\_c2 = 10^{+}CS("C2(g)")) 40 moles = (2.91e-9 + 4el3 \* (ACT("CH-"))^2 \* p\_c2) \* Fe\_di \* , مريع مر ۲۹ مرد ۲۹ مر TIME Beginning of initial solution calculations. Initial solution 1. pH will be adjusted to obtain desired alkalinity. -----Solution composition--Elements Molality Moles 2.967e-002 2.967e-002 1.389e-001 1.389e-001 1.476e-001 1.476e-001 2.367e-001 2.367e-001 Charge balance Alkalinity C Ca Cl Cl Fe\_di K Mg Mn 1.610e-004 5.270e-005 5.270e-005 5.270e-005 9.719e-004 9.719e-004 3.951e-007 3.951e-007 Na S 4.183e-004 4.183e-004 1.579e-002 1.579e-002 --Description of solution--Adjust alkalinity Equilibrium with pH = 5.434 pe = 15.168 02 (g) C2(g) Activity of water = 0.991 Ionic strength = 4.068e-001 Mass of water (kg) = 1.000e+000 Total C02 (mOl/kg) = 1.3398-001 Temperature (deg C) = 25.000 Electrical balance (eg) = -3.112e-015 Percent error, 100\*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 19 Total H = 1.110421e+002 Total O = 5.587722e+001 -Distribution of species Log Log Log Species Molality Activity Molality Activity Ganna 4.766e-006 3.678e-006 -5.322 -5.434 H+ -0.113 OH-4.154e-009 2.698e-009 -8.382 -8.569 -0.187 H2O 5.551e+001 9.911e-001 1.744 -0.004 0.000 C(-4) 0.000e+000 CH4 0.000e+000 0.000e+000 -141.384 -141.344 0.041 C(4) 1.389e-001

| 0.041      | CC2                   | 1.092e-001 | 1.200e-001 | -0.962   | -0.921   |
|------------|-----------------------|------------|------------|----------|----------|
| 0.041      | HC03-                 | 2.043e-002 | 1.438e-002 | -1.690   | -1.842   |
| -0.152     | CaHCO3+               | 9.116e-003 | 6.417e-003 | -2.040   | -2.193   |
| -0.152     | MaHCO3+               | 5.781e-005 | 4.225e-005 | -4.238   | -4.374   |
| -0.136     | Fe diHCO3+            | 5.274e-005 | 3.854e-005 | -4.278   | -4.414   |
| -0.136     | രന്ദ                  | 9 811-006  | 1 077-005  | -5.008   | _/ 968   |
| 0.041      |                       | 2.172-000  | 2.200000   | -5.000   | -4.500   |
| 0.041      | Nahuos                | 2.172e-006 | 2.3800-000 | -5.005   | -3.022   |
| -0.610     | 03-2                  | /.4666-007 | 1.8340-007 | -6.12/   | -6./3/   |
| 0.041      | Fe_diC03              | 1.0/4e-00/ | 1.1/9e-00/ | -6.969   | -6.928   |
| -0.136     | MnHCO3+               | 1.037e-007 | 7.582e-008 | -6.984   | -7.120   |
| 0.041      | MgCO3                 | 4.001e-008 | 4.394e-008 | -7.398   | -7.357   |
| -0.136     | NaCO3-                | 1.378e-009 | 1.007e-009 | -8.861   | -8.997   |
| 0.041      | MnCO3                 | 7.846e-010 | 8.617e-010 | -9.105   | -9.065   |
| Ca         | 1.476e-001            | 1 2030 001 | 3 /090 002 | 0 999    | 1 456    |
| -0.568     | G 72                  | 0.010.000  | 1 010 000  | -0.005   | -1.400   |
| 0.041      | Ca304                 | 9.212e-003 | 1.012e-002 | -2.036   | -1.995   |
| -0.152     | Carcos+               | 9.116e-003 | 6.417e-003 | -2.040   | -2.193   |
| 0.041      | CaCO3                 | 9.811e-006 | 1.07/e-005 | -5.008   | -4.968   |
| -0.136     | CaHSO4+               | 2.982e-007 | 2.180e-007 | -6.525   | -6.662   |
| -0.136     | CaCH+                 | 2.141e-009 | 1.565e-009 | -8.669   | -8.806   |
| Cl         | 2.367e-001            | 2.367e-001 | 1.559e-001 | -0.626   | -0.807   |
| -0.181     | Te dicl+              | 7 893-006  | 5 768-006  | _5 103   | _5 239   |
| -0.136     | Necl.                 | F 1410 000 | 2 7570 000 | 7 200    | 7 405    |
| -0.136     | MCI+                  | 0.000 000  | 3.737e-000 | -7.209   | -7.420   |
| 0.041      | MhC12                 | 2.3280-009 | 2.55/e-009 | -8.633   | -8.592   |
| -0.136     | MhCL3-                | 1.502e-010 | 1.098e-010 | -9.823   | -9.960   |
| Fe_di      | 1.610e-004<br>Fe_di+2 | 9.396e-005 | 2.681e-005 | -4.027   | -4.572   |
| -0.545     | Fe diHCO3+            | 5.274e-005 | 3.854e-005 | -4.278   | -4.414   |
| -0.136     | Fe diCl+              | 7.893e-006 | 5.768e-006 | -5.103   | -5.239   |
| -0.136     | Fe dig04              | 6 292-006  | 6 909-006  | -5 201   | -5 161   |
| 0.041      | Fo dima               | 1 0740 007 | 1 1796 007 | 6 969    | 6 979    |
| 0.041      | To dictu              | 2 126- 000 | 2 2940 000 | 0.505    | 0.520    |
| -0.136     | Pe_dium               | 3.120e-009 | 2.204C-009 | -0.000   | -0.041   |
| -0.136     | Fe_diH504+            | 2.2850-010 | 1.6/08-010 | -9.041   | -9.///   |
| 0.041      | Fe_di(HS)2            | 0.000e+000 | 0.000e+000 | -2/4.519 | -2/4.4/9 |
| -0.136     | Fe_di (HS)3-          | 0.000e+000 | 0.000e+000 | -411.734 | -411.870 |
| H(0)       | 0.000e+000<br>H2      | 0.000e+000 | 0.000e+000 | -44.396  | -44.355  |
| 0.041<br>K | 5.270e-005            |            |            |          |          |
| -0.181     | K+                    | 5.222e-005 | 3.439e-005 | -4.282   | -4.464   |
| _0 136     | K904-                 | 4.793e-007 | 3.503e-007 | -6.319   | -6.456   |
| 0.041      | KOH                   | 2.927e-014 | 3.214e-014 | -13.534  | -13.493  |
| Mg         | 9.719e-004            | 0.264004   | 0 511- 004 | 2 070    | 3 (00    |
| -0.523     | Mg+2                  | 8.3040-004 | 2.5110-004 | -3.078   | -3.600   |
| 0.041      | MgSO4                 | 7.770e-005 | 8.532e-005 | -4.110   | -4.069   |
| -0.136     | MgHCO3+               | 5.781e-005 | 4.225e-005 | -4.238   | -4.3/4   |
| 0.041      | MgCO3                 | 4.001e-008 | 4.394e-008 | -7.398   | -7.357   |
| -0.136     | MgCH+                 | 3.362e-010 | 2.457e-010 | -9.473   | -9.610   |
| Mn(2)      | 3.951e-007<br>Mn+2    | 2.228e-007 | 5.916e-008 | -6.652   | -7.228   |
| -0.576     | MoHOOR+               | 1 037-007  | 7 582-008  | _6.984   | _7 120   |
| -0.136     | Macily                | E 141- 000 | 2 7570 000 | 7 200    | 7 405    |
| -0.136     | MLI+                  | 1 200- 000 | 1 525- 000 | -7.209   | -7.420   |
| 0.041      | M1504                 | 1.3890-008 | 1.5258-008 | -/.85/   | -/.81/   |
| 0.041      | MINULZ                | 2.328e-009 | 2.55/e-009 | -8.633   | -8.592   |
| 0.041      | MnCO3                 | 7.846e-010 | 8.617e-010 | -9.105   | -9.065   |
| -0.136     | MnCl3-                | 1.502e-010 | 1.098e-010 | -9.823   | -9.960   |
| -0.136     | MhOH+                 | 5.608e-013 | 4.098e-013 | -12.251  | -12.387  |
| Mn(3)      | 4.528e-017<br>Mn+3    | 4.528-017  | 2.693e-018 | -16.344  | -17,570  |
| -1.226     | 4 1830 004            |            |            | 10.011   | 1        |
| 0.146      | 4.1002-004<br>Na+     | 4.132e-004 | 2.950e-004 | -3.384   | -3.530   |
| -0.120     | Na904-                | 2.933e-006 | 2.143e-006 | -5.533   | -5.669   |
| 0.041      | NaHCO3                | 2.172e-006 | 2.386e-006 | -5.663   | -5.622   |
| 0.041      | NaCO3-                | 1.378e-009 | 1.007e-009 | -8.861   | -8.997   |
| 0 100      |                       |            |            |          |          |

| 0.041                                         | NaCH                                                                                                                                                                 | 4.784e-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.253e-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -12.320                                                                                | -12.280                                        |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|
| 0.041<br>O(0)                                 | 3.828e-004                                                                                                                                                           | 1.914e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.102e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.718                                                                                 | -3.677                                         |
| 0.041<br>S(-2)                                | 0.000e+000                                                                                                                                                           | 0.000-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127.002                                                                                | 107 001                                        |
| 0.041                                         | H2S                                                                                                                                                                  | 0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -137.962                                                                               | -137.921                                       |
| -0.187                                        | H5-                                                                                                                                                                  | 0.000=+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000=.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -139.241                                                                               | -139.429                                       |
| -0.635                                        | 5-2<br>To di (TC\)                                                                                                                                                   | 0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -140.277                                                                               | -140.912                                       |
| 0.041                                         | Fe_di (HS) 3_                                                                                                                                                        | 0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -214.019                                                                               | -214.475                                       |
| -0.136<br>S(6)                                | 1.579e-002                                                                                                                                                           | 010000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 010000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | 1111070                                        |
| 0.041                                         | Ca904                                                                                                                                                                | 9.212e-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.012e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.036                                                                                 | -1.995                                         |
| -0.651                                        | SO4-2                                                                                                                                                                | 6.490e-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.449e-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.188                                                                                 | -2.839                                         |
| 0.041                                         | MgSO4                                                                                                                                                                | 7.770e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.532e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.110                                                                                 | -4.069                                         |
| 0.041                                         | Fe_diSO4                                                                                                                                                             | 6.292e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.909e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.201                                                                                 | -5.161                                         |
| -0.136                                        | NaSO4-                                                                                                                                                               | 2.933e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.143e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.533                                                                                 | -5.669                                         |
| -0.136                                        | HSO4-                                                                                                                                                                | 7.091e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.183e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.149                                                                                 | -6.285                                         |
| -0.136                                        | K904-                                                                                                                                                                | 4.793e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.503e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.319                                                                                 | -6.456                                         |
| -0.136                                        | Cars04+                                                                                                                                                              | 2.982e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.180e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.525                                                                                 | -0.662                                         |
| 0.041                                         | MISO4                                                                                                                                                                | 2.205- 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5250-008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -/.85/                                                                                 | -7.817                                         |
| -0.136                                        | Fe_QIH504+                                                                                                                                                           | 2.2858-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6/08-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.041                                                                                 | -9.111                                         |
|                                               |                                                                                                                                                                      | Saturation i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ndices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                                |
|                                               | Phase                                                                                                                                                                | SI log I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AP log KT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |                                                |
|                                               | Anhydrite<br>Aragonite<br>Calcite                                                                                                                                    | 0.07 -4.1<br>0.14 -8.1<br>0.29 -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29 -4.36<br>19 -8.34<br>19 -8.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CaSO4<br>CaCO3<br>CaCO3                                                                |                                                |
|                                               | CH4 (g)<br>(02 (a)                                                                                                                                                   | -138.48 -141.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34 -2.86<br>32 -1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH4<br>(1)2                                                                            |                                                |
|                                               | Dolomite<br>Gypsun                                                                                                                                                   | -1.44 -18.<br>0.28 -4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53 -17.09<br>30 -4.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CaMg(003)2<br>CaS04:2H20                                                               |                                                |
|                                               | H2 (g)<br>H2O(a)                                                                                                                                                     | -41.21 -44.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36 -3.15<br>00 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2<br>H2O                                                                              |                                                |
|                                               | H2S(g)<br>Halite                                                                                                                                                     | -136.92 -137.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92 -1.00<br>34 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2S<br>NaCl                                                                            |                                                |
|                                               | Hausmannite<br>Manganite                                                                                                                                             | -8.92 52.<br>-1.10 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 61.03<br>24 25.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min3O4<br>MinOCH                                                                       |                                                |
|                                               | 02(g)<br>Pvrochroite                                                                                                                                                 | -0.78 -3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58 -2.89<br>53 15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02<br>Mn (OH) 2                                                                        |                                                |
|                                               | Pyrolusite<br>Rhodochrosite                                                                                                                                          | 3.46 44.1<br>-2.83 -13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84 41.38<br>96 -11.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MhO2<br>MhO03                                                                          |                                                |
|                                               | Sulfur                                                                                                                                                               | -101.60 -96.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72 4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                      |                                                |
| Beginning of                                  | batch-reaction                                                                                                                                                       | calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                |
| Reaction ste                                  | p1.                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                |
| Using solutio                                 | on 1.<br>hase assemblace                                                                                                                                             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                |
| Using kinetio                                 | as 1.                                                                                                                                                                | Kinetics define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed in simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ation 2.                                                                               |                                                |
| Kinetics 1.                                   | Kinetics defir                                                                                                                                                       | ed in simulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |                                                |
|                                               |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                |
|                                               | Time step: 100<br>Rate name                                                                                                                                          | ) seconds (Inc.<br>Delta Moles /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | remented ti<br>Ibtal Moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | me: 100 sec<br>Reactant                                                                | ands)                                          |
| Coefficient                                   | Time step: 100<br>Rate name                                                                                                                                          | ) seconds (Inc.<br>Delta Moles '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | remented ti<br>Iotal Moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | me: 100 sec<br>Reactant                                                                | ands)                                          |
| Coefficient<br>-1                             | Time step: 100<br>Rate name<br>Fe <u>di</u> ox                                                                                                                       | ) seconds (Inc.<br>Delta Moles ?<br>-7.679e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | remented ti<br>Iotal Moles<br>1.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | me: 100 sec<br>Reactant<br>Fe_di                                                       | ands)                                          |
| Coefficient<br>-1<br>1                        | Time step: 100<br>Rate name<br>Fe <u>di</u> ox                                                                                                                       | ) seconds (Inc.<br>Delta Moles ?<br>-7.679e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | remented ti<br>Iotal Moles<br>1.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri                                             | ands)                                          |
| 0xefficient<br>-1<br>1<br>                    | Time step: 100<br>Rate name<br>Fe_di_ox                                                                                                                              | ) seconds (Inc.<br>Delta Moles ?<br>-7.679e-007<br>Phase assert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | remented ti<br>Iotal Moles<br>1.000e+000<br>blage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>                                         | ands)<br>                                      |
| Opefficient<br>-1<br>1<br>                    | Time step: 100<br>Rate name<br>Fe_di_ox                                                                                                                              | ) seconds (Inc.<br>Delta Moles '<br>-7.679e-007<br>Phase assent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | remented ti<br>Iotal Moles<br>1.000e+000<br>blage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles_in_as                              | ands)<br>                                      |
| Obefficient -1 1 Delta                        | Time step: 100<br>Rate name<br>Fe_di_ox<br>Phase                                                                                                                     | ) seconds (Inc:<br>Delta Moles '<br>-7.679e-007<br>Phase assent<br>SI log I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | remented tin<br>Total Moles<br>1.000e+000<br>blage<br>blage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Fe_tri<br>Moles in as<br>Initial         | ands)<br><br>sentblage<br>Final                |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fhase<br>G2 (g)                                                                                                           | ) seconds (Inc:<br>Delta Moles '<br>-7.679e-007<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | remented tin<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial                   | ands)<br>semblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fhase<br>02 (g)                                                                                                           | ) seconds (Inc<br>Delta Moles '<br>-7.679e-007<br>Phase assent<br>SI log I<br>-0.78 -3.0<br>Solution comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | remented til<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>osition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001     | ands)<br>semblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Phase<br>02 (g)<br>Elements                                                                                               | ) seconds (Inc<br>Delta Moles '<br>-7.679e-007<br>Phase assent<br>SI log L<br>-0.78 -3.0<br>Solution comp<br>Molality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | remented til<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>csition<br>Moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | me: 100 sec<br>Reactant<br>Pe_di<br>Pe_tri<br><br>Moles in as<br>Initial<br>1.000e+001 | ands)<br>semblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Phase<br>(2(g)<br>Elements<br>C                                                                                           | <ul> <li>) seconds (Inc.</li> <li>Delta Moles '</li> <li>-7.679e-007</li> <li>Phase assent</li> <li>SI log I</li> <li>-0.78 -3.</li> <li>-Solution comp</li> <li>Molality</li> <li>1.389e-001</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | remented til<br>Iotal Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>csition<br>Moles<br>1.389e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001     | ands)<br>sentblage<br>Final<br>1.000e+001-     |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Phase<br>02 (g)<br>Elements<br>C<br>Ca<br>CL                                                                              | <ul> <li>) seconds (Inc.</li> <li>Delta Moles '</li> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>-7.679e-001</li> <li>Solution comp</li> <li>Molality</li> <li>1.389e-001</li> <li>1.476e-001</li> <li>2.367e-001</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | remented til<br>Iotal Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>ceition<br>58 -2.89<br>ceition<br>Moles<br>1.383e-001<br>1.476e-001<br>2.367e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001     | ands)<br>semblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Phase<br>02 (g)<br>Elements<br>C<br>Ca<br>Cl<br>Ci<br>Ci<br>Ci<br>Fe_dii<br>Fe_tri                                        | <ul> <li>Detta Moles '</li> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>-7.679e-001</li> <li>-0.78</li> <li>-3.1</li> <li>-50lution comp<br/>Molality</li> <li>1.389e-001</li> <li>1.476e-001</li> <li>2.367e-001</li> <li>1.602e-004</li> <li>7.679e-007</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | remented til<br>Total Moles<br>1.000e+000<br>blage<br>blage<br>S8 -2.89<br>csition<br>Moles<br>1.339e-001<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>7.679e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001     | ands)<br>senblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fe_di_ox<br>C2 (g)<br>Elements<br>C<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>K<br>K<br>Mg                       | <ul> <li>Deta Moles '         <ul> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>SI log I</li> <li>-0.783.0</li> <li>-Solution comp</li> <li>Molality</li> <li>1.399e-001</li> <li>1.676e-001</li> <li>2.567e-001</li> <li>1.676e-001</li> <li>7.679e-001</li> <li>7.679e-001</li> <li>7.679e-001</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | remented til<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>cosition<br>1.389e-001<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>7.679e-007<br>5.270e-005<br>9.719e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001     | ands)<br>semblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fe_di_ox<br>C2 (g)<br>Elements<br>C<br>Ca<br>C1<br>Fe_di<br>Fe_tri<br>K<br>Mg<br>Mh<br>Na                                 | <ul> <li>accords (Inc.</li> <li>Delta Moles '</li> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>SI log I</li> <li>-0.78 -3.0</li> <li>-3.0</li> <li>-3.0</li></ul>          | remented til<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>csition<br>1.399e-001<br>1.602e-004<br>7.679e-007<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.133e-004<br>4.133e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001     | ands)<br>sentblage<br>Final<br>1.000e+001-     |
| Oxefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fe_di_ox<br>Ehase<br>O2(g)<br>Elements<br>C<br>Ca<br>Cl<br>Ca<br>Cl<br>Ca<br>Cl<br>Ca<br>Cl<br>K<br>Mn<br>Na<br>S         | <ul> <li>a) seconds (Inc:<br/>Delta Moles '<br/>-7.679e-007</li> <li>-7.679e-007</li> <li>SI log I<br/>-0.78 -3.0</li> <li>-3.1</li> <li>-3.1</li></ul> | remented til<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>csition<br>Moles<br>1.389e-001<br>2.367e-001<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>5.270e-005<br>9.795e-007<br>1.579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.1579e-002<br>0.15799e-002<br>0.1                             | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Pe_tri<br>Initial                        | ands)<br>semblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fe_di_ox<br>Phase<br>02 (g)<br>Elements<br>C<br>Ca<br>Ca<br>Cl<br>Fe_di<br>Mn<br>Na<br>S                                  | <ul> <li>Decomb (Inc.</li> <li>Delta Moles '</li> <li>-7.679e-007</li> <li>-7.679e-007</li> <li>SI log I</li> <li>-0.78 -3.0</li> <li>-Solution comp</li> <li>Molality</li> <li>1.389e-001</li> <li>1.476e-001</li> <li>2.367e-001</li> <li>3.651e-007</li> <li>3.591e-007</li> <li>4.183e-004</li> <li>4.579e-002</li> <li>Description of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | remented til<br>Total Moles<br>1.000e+000<br>blage<br>P log KT<br>58 -2.89<br>csittion<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>9.719e-004<br>3.951e-007<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>9.719e-004<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5.270e-005<br>5. | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Initial<br>1.000e+001                    | ands)<br>semblage<br>Final<br>1.000e+001-      |
| Coefficient -1 1 Delta 1.920e-007             | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fe_di_ox<br>Phase<br>(2 (g)<br>Elements<br>C<br>Ca<br>C1<br>Fe_di<br>Fe_di<br>Fe_tri<br>Na<br>S                           | ) seconds (Inc<br>Delta Moles '<br>-7.679e-007<br>Phase assent<br>SI log I<br>-0.78 -3.0<br>Solution comp<br>Molality<br>1.389e-001<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>3.951e-007<br>4.1859e-002<br>1.559e-002<br>Description of<br>pH<br>pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | remented til<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>osition<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>7.679e-07<br>9.719e-004<br>3.951e-077<br>4.183e-004<br>1.579e-002<br>solution<br>= 5.434<br>= 15.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001     | ands)<br>satiblage<br>Final<br>1.000e+001-<br> |
| Coefficient -1 1 Delta 1.920e-007 equilibrium | Time step: 100<br>Rate name<br>Fe_di_ox<br>Phase<br>(2 (g)<br>Elements<br>C<br>Ca<br>Cl<br>Fe_di<br>Fe_di<br>Fe_tri<br>K<br>Mg<br>Mn<br>Na<br>S                      | ) seconds (Inc.<br>Delta Moles '<br>-7.679e-007<br>Phase assemi<br>SI log I<br>-0.78 -3.1<br>Solution comp<br>Molality<br>1.389e-001<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>7.679e-007<br>5.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002<br>Description of<br>Ph<br>pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | remented til<br>Total Moles<br>1.000e+000<br>blage<br>AP log KT<br>58 -2.89<br>cosition<br>1.476e-001<br>2.367e-001<br>1.476e-001<br>2.367e-001<br>1.602e-004<br>9.719e-004<br>1.579e-002<br>solution<br>= 5.434<br>= 15.168<br>= 0.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001<br> | ands)<br>semblage<br>Final<br>1.000e+001-<br>  |
| Coefficient -1 1 Delta 1.920e-007 equilibrium | Time step: 100<br>Rate name<br>Fe_di_ox<br>Fe_di_ox<br>Phase<br>02 (g)<br>Elements<br>C<br>Ca<br>Cl<br>Fe_dii<br>Fe_trii<br>K<br>Mg<br>Mn<br>Na<br>S<br>Act:<br>Mass | <ul> <li>accords (Inc:<br/>Delta Moles '<br/>-7.679e-007</li> <li>-7.679e-007</li> <li>SI log I<br/>-0.78 -3.1</li> <li>-Solution comp<br/>Molality</li> <li>1.389e-001</li> <li>1.476e-001</li> <li>2.367e-001</li> <li>1.602e-004</li> <li>7.679e-007</li> <li>5.719e-004</li> <li>3.951e-007</li> <li>4.183e-004</li> <li>1.579e-002</li> <li>Description of<br/>pH<br/>pe</li> <li>tity of water<br/>foric strength</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AP log KT<br>58 -2.89<br>5.362-001<br>1.476e-001<br>2.367e-001<br>1.476e-001<br>2.367e-001<br>1.476e-001<br>2.367e-001<br>3.951e-007<br>3.951e-007<br>3.951e-007<br>4.183e-004<br>1.579e-002<br>solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | me: 100 sec<br>Reactant<br>Fe_di<br>Fe_tri<br>Moles in as<br>Initial<br>1.000e+001<br> | ands)<br>semblage<br>Final<br>1.000e+001-<br>  |

|               | Total alkalin<br>Total C     | uity (eg/kg)<br>D2 (mol/kg) | = 2.967e-0<br>= 1.389e-0 | 02<br>01 |          |
|---------------|------------------------------|-----------------------------|--------------------------|----------|----------|
|               | Tenperat<br>Electrical b     | ure (deg C)<br>alance (eg)  | = 25.000<br>= -1.008e-0  | )14      |          |
| Percent erro  | or, 100*(Cat- An )           | /(Cat+ An )<br>Iterations   | = -0.00<br>= 41          |          |          |
|               |                              | Total H                     | = 1.110421e              | +002     |          |
|               | Di                           | ctribution of               | = 0.007722e              | 51001    |          |
|               | Di                           | SCIENCIAIC                  | i species                |          |          |
| _             |                              |                             |                          | Log      | Log      |
| Log           | Species                      | Molality                    | Activity                 | Molality | Activity |
| Gamma         |                              |                             |                          |          |          |
| -0.113        | H+                           | 4.767e-006                  | 3.678e-006               | -5.322   | -5.434   |
| -0.187        | OH-                          | 4.154e-009                  | 2.698e-009               | -8.382   | -8.569   |
| 0.000         | H2O                          | 5.551e+001                  | 9.911e-001               | 1.744    | -0.004   |
| C(-4)         | 0.000e+000<br>CH4            | 0.000e+000                  | 0.000e+000               | -141.384 | -141.344 |
| 0.041<br>C(4) | 1 389e-001                   |                             |                          |          |          |
| 0.041         | 002                          | 1.092e-001                  | 1.200e-001               | -0.962   | -0.921   |
| _0 152        | H003-                        | 2.043e-002                  | 1.438e-002               | -1.690   | -1.842   |
| 0.152         | CaHCO3+                      | 9.116e-003                  | 6.417e-003               | -2.040   | -2.193   |
| 0.126         | MgHCO3+                      | 5.781e-005                  | 4.225e-005               | -4.238   | -4.374   |
| -0.130        | Fe_diH003+                   | 5.249e-005                  | 3.836e-005               | -4.280   | -4.416   |
| -0.130        | CaCO3                        | 9.811e-006                  | 1.077e-005               | -5.008   | -4.968   |
| 0.041         | NaHCO3                       | 2.172e-006                  | 2.386e-006               | -5.663   | -5.622   |
| 0.041         | 003-2                        | 7.466e-007                  | 1.833e-007               | -6.127   | -6.737   |
| -0.610        | Fe_di003                     | 1.068e-007                  | 1.173e-007               | -6.971   | -6.931   |
| 0.041         | MnHCO3+                      | 1.037e-007                  | 7.582e-008               | -6.984   | -7.120   |
| -0.136        | MgCO3                        | 4.001e-008                  | 4.393e-008               | -7.398   | -7.357   |
| 0.041         | NaCO3-                       | 1.378e-009                  | 1.007e-009               | -8.861   | -8.997   |
| -0.136        | Mp(TO3                       | 7.846e-010                  | 8.617e-010               | -9.105   | -9.065   |
| 0.041         | 1 476-001                    | 10100 010                   | 010170 010               | 51105    | 51005    |
| _0 568        | Ca+2                         | 1.293e-001                  | 3.498e-002               | -0.889   | -1.456   |
| 0.041         | Ca904                        | 9.212e-003                  | 1.012e-002               | -2.036   | -1.995   |
| 0.150         | CaHCO3+                      | 9.116e-003                  | 6.417e-003               | -2.040   | -2.193   |
| 0.112         | CaCO3                        | 9.811e-006                  | 1.077e-005               | -5.008   | -4.968   |
| 0.041         | CaHSO4+                      | 2.982e-007                  | 2.180e-007               | -6.525   | -6.662   |
| -0.130        | CaCH+                        | 2.141e-009                  | 1.564e-009               | -8.669   | -8.806   |
| -0.136<br>Cl  | 2.367e-001                   |                             |                          |          |          |
| -0.181        | CL-                          | 2.367e-001                  | 1.559e-001               | -0.626   | -0.807   |
| -0.136        | Fe_diCl+                     | 7.855e-006                  | 5.741e-006               | -5.105   | -5.241   |
| -0.136        | MnCl+                        | 5.141e-008                  | 3.757e-008               | -7.289   | -7.425   |
| 0.041         | MnCl2                        | 2.328e-009                  | 2.557e-009               | -8.633   | -8.592   |
| -0.136        | MnCl3-                       | 1.502e-010                  | 1.098e-010               | -9.823   | -9.960   |
| -0.545        | Fe <u>tri</u> Cl+2           | 5.669e-011                  | 1.617e-011               | -10.246  | -10.791  |
| -0.136        | Fe_triCl2+                   | 1.541e-011                  | 1.126e-011               | -10.812  | -10.948  |
| 0.041         | Fe_triCl3                    | 1.599e-013                  | 1.756e-013               | -12.796  | -12.756  |
| Fe_di         | 1.602e-004<br>Fe di+2        | 9.352e-005                  | 2.668e-005               | -4.029   | -4.574   |
| -0.545        | Fe diH003+                   | 5 249-005                   | 3 836-005                | -4 280   | -4 416   |
| -0.136        | Fe diCl+                     | 7.855-006                   | 5.741e-006               | -5.105   | -5,241   |
| -0.136        | Fe dis04                     | 6.262-005                   | 6.876-006                | -5 203   | -5.163   |
| 0.041         | Fe dim                       | 1 068- 007                  | 1 172-007                |          | _6 931   |
| 0.041         | Fe diam                      | 3 1110 000                  | 2 274~ 000               | -0.5/1   | _8 EV3   |
| -0.136        |                              | 2 275- 010                  | 1 6620 010               | 0.00/    | -0.0±0   |
| -0.136        |                              | 2.2750-010                  | 0.000000                 | -9.045   | -9.119   |
| 0.041         | re_ut(ns)2                   | 0.000.000                   | 0.000.000                | -2/4.522 | -2/4.481 |
| -0.136        | re_ol(HS)3-                  | v.uuue+000                  | v.uuue+000               | -411.736 | -411.8/2 |
| re <u>tri</u> | 7.6/9e-00/<br>Fe_tri (OH) 2+ | 7.299e-007                  | 5.334e-007               | -6.137   | -6.273   |
| -0.136        | Fe_triOH+2                   | 2.095e-008                  | 5.978e-009               | -7.679   | -8.223   |
| -0.545        | Fe_tri(OH)3                  | 1.686e-008                  | 1.852e-008               | -7.773   | -7.732   |
| 0.041         | Fe_triSO4+                   | 7.471e-011                  | 5.460e-011               | -10.127  | -10.263  |
| -0.136        | Fe tri+3                     | 5.776e-011                  | 3.436e-012               | -10.238  | -11.464  |
| -1.226        | Fe triC1+2                   | 5.669e-011                  | 1.617e-011               | -10.246  | -10,791  |
| -0.545        | Fe triCl2+                   | 1.541-011                   | 1.126-011                | -10 812  | -10.948  |
| -0.136        | Fe tri (041/1_               | 6 228-012                   | 4 551_012                | _11 206  | _11 3/12 |
| -0.136        | <u>-</u>                     | J.220C-012                  | 210-210-210              | 41.200   | 244.144  |

| 0 126           | Fe_tri(SO4)2-     | 2.369e-012    | 1.731e-012           | -11.625     | -11.762  |
|-----------------|-------------------|---------------|----------------------|-------------|----------|
| -0.130          | Fe_triCl3         | 1.599e-013    | 1.756e-013           | -12.796     | -12.756  |
| 0.041           | Fe_tri2(CH)2+4    | 1.452e-013    | 9.618e-016           | -12.838     | -15.017  |
| -2.179          | Fe_triH904+2      | 1.885e-015    | 5.377e-016           | -14.725     | -15.269  |
| -0.545          | Fe_tri3(CH)4+5    | 2.721e-016    | 1.072e-019           | -15.565     | -18.970  |
| -3.405<br>H(0)  | 0.000e+000        |               |                      |             |          |
| 0.041           | H2                | 0.000e+000    | 0.000e+000           | -44.396     | -44.355  |
| K               | 5.270e-005<br>K+  | 5.222e-005    | 3.439e-005           | -4.282      | -4.464   |
| -0.181          | K904-             | 4 793-007     | 3 503-007            | -6 319      | -6 456   |
| -0.136          | KOH               | 2 927-01/     | 3 21/0-01/           | _13 534     | _13 /93  |
| 0.041<br>Mr     | 9 719-004         | 2.92/0 014    | 5.2140 014           | 10:004      | 10.400   |
| 0 523           | Mg+2              | 8.364e-004    | 2.511e-004           | -3.078      | -3.600   |
| -0.525          | MgSO4             | 7.770e-005    | 8.532e-005           | -4.110      | -4.069   |
| 0.041           | MgHCO3+           | 5.781e-005    | 4.225e-005           | -4.238      | -4.374   |
| -0.136          | MgCO3             | 4.001e-008    | 4.393e-008           | -7.398      | -7.357   |
| 0.041           | MgCH+             | 3.362e-010    | 2.457e-010           | -9.473      | -9.610   |
| -0.136<br>Mn(2) | 3.951e-007        |               |                      |             |          |
| -0.576          | Min+2             | 2.228e-007    | 5.916e-008           | -6.652      | -7.228   |
| -0.136          | MinHCO3+          | 1.037e-007    | 7.582e-008           | -6.984      | -7.120   |
| -0.136          | MnCl+             | 5.141e-008    | 3.757e-008           | -7.289      | -7.425   |
| 0.041           | Min904            | 1.389e-008    | 1.525e-008           | -7.857      | -7.817   |
| 0.041           | MnCl2             | 2.328e-009    | 2.557e-009           | -8.633      | -8.592   |
| 0.041           | MhCO3             | 7.846e-010    | 8.617e-010           | -9.105      | -9.065   |
| _0 136          | MnCl3-            | 1.502e-010    | 1.098e-010           | -9.823      | -9.960   |
| -0.136          | MnOH+             | 5.608e-013    | 4.098e-013           | -12.251     | -12.387  |
| Mn(3)           | 4.528e-017        | 4 520- 017    | 2 602- 010           | 16 244      | 17 570   |
| -1.226          | 4 102 004         | 4.5208-017    | 2.0958-010           | -10.344     | -17.570  |
| Na              | 4.183e-004<br>Na+ | 4.132e-004    | 2.950e-004           | -3.384      | -3.530   |
| -0.146          | Na904-            | 2.933e-006    | 2.143e-006           | -5.533      | -5.669   |
| -0.136          | NaHCO3            | 2.172e-006    | 2.386e-006           | -5.663      | -5.622   |
| 0.041           | NaCO3-            | 1.378e-009    | 1.007e-009           | -8.861      | -8.997   |
| -0.136          | NaCH              | 4.784e-013    | 5.253e-013           | -12.320     | -12.280  |
| 0.041<br>O(0)   | 3.828e-004        |               |                      |             |          |
| 0.041           | 02                | 1.914e-004    | 2.102e-004           | -3.718      | -3.677   |
| S(-2)           | 0.000e+000<br>H2S | 0.000e+000    | 0.000e+000           | -137.962    | -137.921 |
| 0.041           | HS-               | 0.000e+000    | 0.000e+000           | -139.241    | -139,428 |
| -0.187          | s-2               | 0.000e+000    | 0.000e+000           | -146.277    | -146.912 |
| -0.635          | Fe di (HS)2       | 0.000e+000    | 0.000e+000           | -274.522    | -274.481 |
| 0.041           | Fe di (HS) 3      | 0.000e+000    | 0.000e+000           | -411 736    | -411 872 |
| -0.136          | 1 579-002         | 010002.000    | 010000-000           |             | 11110/2  |
| 0.041           | Ca904             | 9.212e-003    | 1.012e-002           | -2.036      | -1.995   |
| 0.651           | SO4-2             | 6.490e-003    | 1.449e-003           | -2.188      | -2.839   |
| -0.0JI          | MgSO4             | 7.770e-005    | 8.532e-005           | -4.110      | -4.069   |
| 0.041           | Fe_diSO4          | 6.262e-006    | 6.876e-006           | -5.203      | -5.163   |
| 0.041           | Na904-            | 2.933e-006    | 2.143e-006           | -5.533      | -5.669   |
| -0.136          | H904-             | 7.092e-007    | 5.183e-007           | -6.149      | -6.285   |
| -0.136          | K904-             | 4.793e-007    | 3.503e-007           | -6.319      | -6.456   |
| -0.136          | CaHSO4+           | 2.982e-007    | 2.180e-007           | -6.525      | -6.662   |
| -0.136          | Mn904             | 1.389e-008    | 1.525e-008           | -7.857      | -7.817   |
| 0.041           | Fe_diH904+        | 2.275e-010    | 1.662e-010           | -9.643      | -9.779   |
| -0.136          | Fe_triSO4+        | 7.471e-011    | 5.460e-011           | -10.127     | -10.263  |
| -0.136          | Fe tri (904)2-    | 2.369e-012    | 1.731e-012           | -11.625     | -11.762  |
| -0.136          | Fe triHSO4+2      | 1.885e-015    | 5.377e-016           | -14.725     | -15.269  |
| -0.545          | ·                 |               |                      |             |          |
|                 |                   | -Saturation i | ndices               |             |          |
|                 | Phase             | ST log T      | AP ]oor KTT          |             |          |
|                 | Anhudrite         | 0.07 _/       | 29 _4 36             | Ca904       |          |
|                 | Aragonite         | 0.14 -8.      | 19 -8.34<br>19 -8.49 | CaCC3       |          |
|                 | CH4 (g) -         | -138.48 -141. | 34 -2.86<br>92 _1 /7 | CH4<br>(1)2 |          |
|                 | Dolomite          | -1.44 -18.    | 53 -17.09            | CaMg(003)2  |          |
|                 | H2 (g)            | -41.21 -44.   | 36 -3.15             |             |          |
|                 | H2S(g) -          | -136.92 -137. | 92 -1.00             | H2S         |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Halite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.92 -4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaCl                                                                                                                                                                                                                                      |                                                                                                                                                                                                       | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ca904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.212e-003                                                                                                                                                                                                                                                                                                                                                                             | 1.012e-002                                                                                                                                                                                                                                                                                                      | -2.036                                                                                                                                                                                                                                                                                | -1.995                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manganite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8.92 52.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 25.34 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mn304<br>Mn00H                                                                                                                                                                                                                            |                                                                                                                                                                                                       | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CaHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.115e-003                                                                                                                                                                                                                                                                                                                                                                             | 6.417e-003                                                                                                                                                                                                                                                                                                      | -2.040                                                                                                                                                                                                                                                                                | -2.193                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02(g)<br>Pyrochroite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.78 -3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68 –2.89 (<br>63 15.20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02<br>Min (OH) 2                                                                                                                                                                                                                          |                                                                                                                                                                                                       | -0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.809e-006                                                                                                                                                                                                                                                                                                                                                                             | 1.077e-005                                                                                                                                                                                                                                                                                                      | -5.008                                                                                                                                                                                                                                                                                | -4.968                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrolusite<br>Rhodochrosite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.46 44.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84 41.38 1<br>96 -11.13 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MinCO3                                                                                                                                                                                                                                    |                                                                                                                                                                                                       | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CaHSO4+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.983e-007                                                                                                                                                                                                                                                                                                                                                                             | 2.180e-007                                                                                                                                                                                                                                                                                                      | -6.525                                                                                                                                                                                                                                                                                | -6.662                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sulfur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -101.60 -96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72 4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                                                                                                                                                                                                                         |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CaOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.140e-009                                                                                                                                                                                                                                                                                                                                                                             | 1.564e-009                                                                                                                                                                                                                                                                                                      | -8.669                                                                                                                                                                                                                                                                                | -8.806                                                                                                                                                                                                                                                                                                     |
| Reaction step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.136<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.367e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |
| Using solutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.367e-001                                                                                                                                                                                                                                                                                                                                                                             | 1.559e-001                                                                                                                                                                                                                                                                                                      | -0.626                                                                                                                                                                                                                                                                                | -0.807                                                                                                                                                                                                                                                                                                     |
| Using kinetio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cs 1. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | linetics define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed in simulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion 2.                                                                                                                                                                                                                                   |                                                                                                                                                                                                       | -0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_diCl+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.707e-006                                                                                                                                                                                                                                                                                                                                                                             | 5.632e-006                                                                                                                                                                                                                                                                                                      | -5.113                                                                                                                                                                                                                                                                                | -5.249                                                                                                                                                                                                                                                                                                     |
| Kinetics 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kinetics define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ad in simulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MnCl+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.141e-008                                                                                                                                                                                                                                                                                                                                                                             | 3.757e-008                                                                                                                                                                                                                                                                                                      | -7.289                                                                                                                                                                                                                                                                                | -7.425                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time step: 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | seconds (Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | remented tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e: 500 sec                                                                                                                                                                                                                                | rands)                                                                                                                                                                                                | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MnCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.328e-009                                                                                                                                                                                                                                                                                                                                                                             | 2.557e-009                                                                                                                                                                                                                                                                                                      | -8.633                                                                                                                                                                                                                                                                                | -8.592                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rate name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Delta Moles '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reactant                                                                                                                                                                                                                                  | :                                                                                                                                                                                                     | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe_triCl+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.806e-010                                                                                                                                                                                                                                                                                                                                                                             | 8.005e-011                                                                                                                                                                                                                                                                                                      | -9.552                                                                                                                                                                                                                                                                                | -10.097                                                                                                                                                                                                                                                                                                    |
| Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MnCl3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.502e-010                                                                                                                                                                                                                                                                                                                                                                             | 1.098e-010                                                                                                                                                                                                                                                                                                      | -9.823                                                                                                                                                                                                                                                                                | -9.959                                                                                                                                                                                                                                                                                                     |
| -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe_di_ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.032e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fe_di                                                                                                                                                                                                                                     |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe triCl2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.627e-011                                                                                                                                                                                                                                                                                                                                                                             | 5.574e-011                                                                                                                                                                                                                                                                                                      | -10.118                                                                                                                                                                                                                                                                               | -10.254                                                                                                                                                                                                                                                                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe <u>t</u> ri                                                                                                                                                                                                                            |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe triCl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 912-013                                                                                                                                                                                                                                                                                                                                                                              | 8 689-013                                                                                                                                                                                                                                                                                                       | -12 102                                                                                                                                                                                                                                                                               | -12 061                                                                                                                                                                                                                                                                                                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phaco accorri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | blace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.041<br>Fe di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 572-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                        | 0.0050 015                                                                                                                                                                                                                                                                                                      | 101100                                                                                                                                                                                                                                                                                | 111001                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Circage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe_di+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.175e-005                                                                                                                                                                                                                                                                                                                                                                             | 2.617e-005                                                                                                                                                                                                                                                                                                      | -4.037                                                                                                                                                                                                                                                                                | -4.582                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OT 1 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M les M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bles in as                                                                                                                                                                                                                                | senblage                                                                                                                                                                                              | -0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_diHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.149e-005                                                                                                                                                                                                                                                                                                                                                                             | 3.763e-005                                                                                                                                                                                                                                                                                                      | -4.288                                                                                                                                                                                                                                                                                | -4.424                                                                                                                                                                                                                                                                                                     |
| Delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SI log L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AP LOG KI'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initial                                                                                                                                                                                                                                   | Final                                                                                                                                                                                                 | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_diCl+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.707e-006                                                                                                                                                                                                                                                                                                                                                                             | 5.632e-006                                                                                                                                                                                                                                                                                                      | -5.113                                                                                                                                                                                                                                                                                | -5.249                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02 (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.79 -3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68 -2.89 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000e+001                                                                                                                                                                                                                                 | 1.000e+001-                                                                                                                                                                                           | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_diSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.143e-006                                                                                                                                                                                                                                                                                                                                                                             | 6.746e-006                                                                                                                                                                                                                                                                                                      | -5.212                                                                                                                                                                                                                                                                                | -5.171                                                                                                                                                                                                                                                                                                     |
| 7.581e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe di003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.048e-007                                                                                                                                                                                                                                                                                                                                                                             | 1.151e-007                                                                                                                                                                                                                                                                                                      | -6.980                                                                                                                                                                                                                                                                                | -6.939                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -Solution comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | osition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe diOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 052-009                                                                                                                                                                                                                                                                                                                                                                              | 2 230-009                                                                                                                                                                                                                                                                                                       | -8 515                                                                                                                                                                                                                                                                                | -8 652                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flamanta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Molalitzz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Moloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fo diugna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2320 010                                                                                                                                                                                                                                                                                                                                                                             | 1 6310 010                                                                                                                                                                                                                                                                                                      | 9 651                                                                                                                                                                                                                                                                                 | 0.799                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 200- 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 200- 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_direct+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000000                                                                                                                                                                                                                                                                                                                                                                               | 0.000000                                                                                                                                                                                                                                                                                                        | -9.001                                                                                                                                                                                                                                                                                | -9.700                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.385e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.476e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe_01(HS)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000000000                                                                                                                                                                                                                                                                                                                                                                            | 0.00000000                                                                                                                                                                                                                                                                                                      | -274.000                                                                                                                                                                                                                                                                              | -2/4.409                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe_di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.36/e-001<br>1.572e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.36/e-001<br>1.572e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe <u>a</u> t (HS) 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000e+000                                                                                                                                                                                                                                                                                                                                                                             | 0.0000+000                                                                                                                                                                                                                                                                                                      | -411./44                                                                                                                                                                                                                                                                              | -411.880                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe_tri<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.800e-006<br>5.270e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.800e-006<br>5.270e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | Fe_tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.800e-006<br>Fe_tri(OH)2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.612e-006                                                                                                                                                                                                                                                                                                                                                                             | 2.640e-006                                                                                                                                                                                                                                                                                                      | -5.442                                                                                                                                                                                                                                                                                | -5.578                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mg<br>Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.719e-004<br>3.951e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.719e-004<br>3.951e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_triOH+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.037e-007                                                                                                                                                                                                                                                                                                                                                                             | 2.958e-008                                                                                                                                                                                                                                                                                                      | -6.984                                                                                                                                                                                                                                                                                | -7.529                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Na.<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.183e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.183e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe tri (OH) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 344-008                                                                                                                                                                                                                                                                                                                                                                              | 9 163-008                                                                                                                                                                                                                                                                                                       | -7 079                                                                                                                                                                                                                                                                                | -7 038                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Description of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe trign+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 698-010                                                                                                                                                                                                                                                                                                                                                                              | 2 702-010                                                                                                                                                                                                                                                                                                       | _9 /132                                                                                                                                                                                                                                                                               | _9 568                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jescription of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Solucion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Po trita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 9590 010                                                                                                                                                                                                                                                                                                                                                                             | 1 7006 011                                                                                                                                                                                                                                                                                                      | 9.402                                                                                                                                                                                                                                                                                 | 10 769                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 5.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Charge                                                                                                                                                                                                                                    | e balance                                                                                                                                                                                             | -1.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | re_urs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0050-010                                                                                                                                                                                                                                                                                                                                                                             | 0.005 011                                                                                                                                                                                                                                                                                                       | -9.944                                                                                                                                                                                                                                                                                | -10.705                                                                                                                                                                                                                                                                                                    |
| equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 15.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACJUS                                                                                                                                                                                                                                     | ed to redux                                                                                                                                                                                           | -0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_trici+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8006-010                                                                                                                                                                                                                                                                                                                                                                             | 8.005e-011                                                                                                                                                                                                                                                                                                      | -9.002                                                                                                                                                                                                                                                                                | -10.097                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Activ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aty of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ // (001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - co- o44                                                                                                                                                                                                                                                                                                                                                                              | E EEA 044                                                                                                                                                                                                                                                                                                       | 40 440                                                                                                                                                                                                                                                                                | 40.004                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nic strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 4.068e-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01                                                                                                                                                                                                                                        |                                                                                                                                                                                                       | -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe_triCl2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.627e-011                                                                                                                                                                                                                                                                                                                                                                             | 5.574e-011                                                                                                                                                                                                                                                                                                      | -10.118                                                                                                                                                                                                                                                                               | -10.254                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Id<br>Mass d<br>Total alkal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onic strength<br>of water (kg)<br>inity (eq/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 4.068e-0<br>= 1.000e+0<br>= 2.967e-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01<br>00<br>02                                                                                                                                                                                                                            |                                                                                                                                                                                                       | -0.136<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe_triCl2+<br>Fe_tri(OH)4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.627e-011<br>3.081e-011                                                                                                                                                                                                                                                                                                                                                               | 5.574e-011<br>2.252e-011                                                                                                                                                                                                                                                                                        | -10.118<br>-10.511                                                                                                                                                                                                                                                                    | -10.254<br>-10.647                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I<br>Mass (<br>Total alkal:<br>Total<br>Tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nic strength<br>of water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>ature (deg C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 4.068e-0<br>= 1.000e+0<br>= 2.967e-0<br>= 1.389e-0<br>= 25.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01<br>00<br>02<br>01                                                                                                                                                                                                                      |                                                                                                                                                                                                       | -0.136<br>-0.136<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe_triCl2+<br>Fe_tri (OH) 4-<br>Fe_tri (SO4) 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.627e-011<br>3.081e-011<br>1.173e-011                                                                                                                                                                                                                                                                                                                                                 | 5.574e-011<br>2.252e-011<br>8.569e-012                                                                                                                                                                                                                                                                          | -10.118<br>-10.511<br>-10.931                                                                                                                                                                                                                                                         | -10.254<br>-10.647<br>-11.067                                                                                                                                                                                                                                                                              |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Id<br>Mass of<br>Total alkal:<br>Total<br>Tempera<br>Electrical<br>or, 100*(Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nic strength<br>f water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>ature (deg C)<br>balance (eq)<br>)/(Cat+[An])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{rcl} & & 0.391 \\ = & 4.068e^{-0} \\ = & 1.000e^{+0} \\ = & 2.967e^{-0} \\ = & 1.389e^{-0} \\ = & 2.518e^{-0} \\ = & 0.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01<br>00<br>02<br>01<br>14                                                                                                                                                                                                                |                                                                                                                                                                                                       | -0.136<br>-0.136<br>-0.136<br>-2.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe_tri(12+<br>Fe_tri(0H)4-<br>Fe_tri(504)2-<br>Fe_tri2(0H)2+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012                                                                                                                                                                                                                                                                                                                                   | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014                                                                                                                                                                                                                                                            | -10.118<br>-10.511<br>-10.931<br>-11.449                                                                                                                                                                                                                                              | -10.254<br>-10.647<br>-11.067<br>-13.628                                                                                                                                                                                                                                                                   |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I<br>Mass (<br>Total alkal:<br>Total<br>Total<br>Total<br>Electrical<br>Cat- An<br>(Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nic strength<br>of water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>ature (deg C)<br>balance (eg)<br> )/(Cat+ An )<br>Iterations<br>Total H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{rcl} & - & 0.391 \\ = & 4.068e-0 \\ = & 1.000e+0 \\ = & 2.967e-0 \\ = & 1.389e-0 \\ = & 25.000 \\ = & 25.518e-0 \\ = & 0.00 \\ = & 47 \\ = & 1.110421e \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01<br>00<br>02<br>01<br>14<br>+002                                                                                                                                                                                                        |                                                                                                                                                                                                       | -0.136<br>-0.136<br>-0.136<br>-2.179<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe_tri(CH)4-<br>Fe_tri(SO4)2-<br>Fe_tri2(CH)2+4<br>Fe_tri23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013                                                                                                                                                                                                                                                                                                                     | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013                                                                                                                                                                                                                                              | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102                                                                                                                                                                                                                                   | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061                                                                                                                                                                                                                                                        |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I<br>Mass o<br>Total alkal<br>Total<br>Tenper<br>Electrical<br>or, 100*(Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nic strength<br>of water (kg)<br>(CO2 (mol/kg)<br>ature (deg C)<br>balance (eg)<br>)/(Cat+[An])<br>Iterations<br>Total H<br>Total O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0.991<br>= 4.068e-0<br>= 1.000e+0<br>= 2.967e-0<br>= 1.389e-0<br>= 2.518e-0<br>= 0.00<br>= 47<br>= 1.110421e<br>= 5.587723e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01<br>00<br>02<br>01<br>14<br>+002<br>+001                                                                                                                                                                                                |                                                                                                                                                                                                       | -0.136<br>-0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe_triCl2+<br>Fe_tri(OH)4-<br>Fe_tri(SO4)2-<br>Fe_tri2(OH)2+4<br>Fe_triCl3<br>Fe_tri3(OH)4+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014                                                                                                                                                                                                                                                                                                       | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017                                                                                                                                                                                                                                | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482                                                                                                                                                                                                                        | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886                                                                                                                                                                                                                                             |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II<br>Mass (<br>Total alkal:<br>Total<br>Tamper<br>Electrical<br>or, 100* (Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nic strength<br>of water (kg)<br>(C2 (ml/kg)<br>balance (eg)<br>)/(Cat+[An])<br>Iterations<br>Total H<br>Total O<br>Distribution o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.991<br>= 4.068e-0<br>= 1.000e+0<br>= 2.967e-0<br>= 25.000<br>= 25.000<br>= 0.00<br>= 47<br>= 1.110421e<br>= 5.587723e<br>f species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01<br>00<br>02<br>01<br>14<br>+002<br>+001                                                                                                                                                                                                |                                                                                                                                                                                                       | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe_triCl2+<br>Fe_tri (CH)4-<br>Fe_tri (SO4)2-<br>Fe_tri2 (CH)2+4<br>Fe_triCl3<br>Fe_tri3 (CH)4+5<br>Fe_triBO4+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015                                                                                                                                                                                                                                                                                         | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015                                                                                                                                                                                                                  | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030                                                                                                                                                                                                             | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575                                                                                                                                                                                                                                  |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II<br>Mass (<br>Total alkal:<br>Total<br>Tanper<br>Electrical<br>or, 100* (Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mic strength<br>of water (kg)<br>mity (eq/kg)<br>CO2 (mol/kg)<br>ature (deg C)<br>balance (eg)<br> )/(Cat+[An])<br>Iterations<br>Total H<br>Total 0<br>Distribution o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0.991<br>= 4.068e-0<br>= 1.000e+0<br>= 2.967e-0<br>= 1.389e-0<br>= 25.000<br>= 2.518e-0<br>= 0.00<br>= 47<br>= 1.110421e<br>= 5.587723e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01<br>00<br>02<br>01<br>14<br>++002<br>++001                                                                                                                                                                                              |                                                                                                                                                                                                       | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe_tri(12+<br>Fe_tri(0H)4-<br>Fe_tri(0A)2-<br>Fe_tri2(0H)2+4<br>Fe_triCl3<br>Fe_tri3(0H)4+5<br>Fe_triHSO4+2<br>0,000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015                                                                                                                                                                                                                                                                                         | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015                                                                                                                                                                                                                  | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030                                                                                                                                                                                                             | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575                                                                                                                                                                                                                                  |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I NASS (<br>Mass (<br>Total alkal)<br>Total<br>Tempera<br>Electrical<br>or, 100*(Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nic strength<br>fr water (kg)<br>CO2 (mol/kg)<br>Atree (deg C)<br>balance (eg)<br>)/(Cat+ An]<br>Iterations<br>Total H<br>Total O<br>Distribution o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0.991<br>= 4.068e-0<br>= 1.000e+0<br>= 2.967e-0<br>= 2.518e-0<br>= 2.518e-0<br>= 0.00<br>= 47<br>= 1.110421e<br>= 5.587723e<br>f species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01<br>00<br>02<br>01<br>14<br>++002<br>++001<br>                                                                                                                                                                                          | Log                                                                                                                                                                                                   | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe_tri(12+<br>Fe_tri(0H)4-<br>Fe_tri(SO4)2-<br>Fe_tri2(0H)2+4<br>Fe_triC13<br>Fe_triG13<br>Fe_triH5O4+2<br>0.000e+000<br>H2<br>E_770-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000                                                                                                                                                                                                                                                                           | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>0.000e+000                                                                                                                                                                                                    | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396                                                                                                                                                                                                  | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355                                                                                                                                                                                                                       |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I Mas<br>Mass<br>Total alkali<br>Total<br>Total<br>Impea<br>Electrical<br>or, 100*(Cat- An<br>Jock Cat- An<br>Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nic strength<br>fr water (kg)<br>CO2 (mol/kg)<br>Atnre (deg C)<br>halarce (eg)<br>)/(Cat+ An])<br>Iterations<br>Total H<br>Total O<br>Distribution o<br>Molality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 0.391<br>= 4.068e-0<br>= 1.000e+0<br>= 2.967e-0<br>= 2.967e-0<br>= 25.000<br>= 0.00<br>= 0.00<br>= 47<br>= 1.110421e<br>= 5.587723e<br>f species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Log<br>Molality                                                                                                                                                                             | Log<br>Activity                                                                                                                                                                                       | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_triC13<br>Fe_tri3(0t)4+5<br>Fe_triH504+2<br>0.000e+000<br>H2<br>5.270e=005<br>K+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005                                                                                                                                                                                                                                                             | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>0.000e+000<br>3.439e-005                                                                                                                                                                                      | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282                                                                                                                                                                                        | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.464                                                                                                                                                                                                            |
| Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I Mas<br>Mass<br>Total alkali<br>Total<br>Ital<br>Impea<br>Electrical<br>or, 100*(Cat- An<br>geccies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nic strength<br>f water (kg)<br>finity (eg/kg)<br>CO2 (mol/kg)<br>Dolaroe (eg)<br>J)/(Cat+ An])<br>Iterations<br>Total M<br>Distribution o<br>Molality<br>4.767e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0.391<br>= 4.068e-0<br>= 1.000e+0<br>2.967e-0<br>= 2.567e-0<br>= 2.518e-0<br>= 0.00<br>= 47<br>= 1.110421e<br>= 5.587723e<br>f species<br>Activity<br>3.678e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Log<br>Molality<br>-5.322                                                                                                                                                                   | Log<br>Activity<br>-5.434                                                                                                                                                                             | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_triC13<br>Fe_tri3(0t)4+5<br>Fe_triHE04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007                                                                                                                                                                                                                                               | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>0.000e+000<br>3.439e-005<br>3.503e-007                                                                                                                                                                        | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319                                                                                                                                                                              | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.454<br>-6.456                                                                                                                                                                                                  |
| Percent error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I Mas<br>Mass<br>Total alkali<br>Total<br>Ital<br>Impac<br>Electrical<br>or, 100*(Cat- An<br>gaecies<br>H+<br>CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nic strength<br>f water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>Dolaroe (eg)<br>J/ (Cat+ An])<br>Iterations<br>Total M<br>Distribution o<br>Distribution o<br>Molality<br>4.767e-006<br>4.154e-009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>- 0.331</li> <li>- 4.068e-0</li> <li>= 1.000e+0</li> <li>2.967e-0</li> <li>= 1.389e-0</li> <li>0.00</li> <li>= 4.7</li> <li>= 1.110421e</li> <li>= 5.587723e</li> <li>f species</li> <li>Activity</li> <li>3.678e-006</li> <li>2.698e-009</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Log<br>Molality<br>-5.322<br>-8.382                                                                                                                                                         | Log<br>Activity<br>-5.434<br>-8.569                                                                                                                                                                   | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_triC13<br>Fe_tri3(0t)4+5<br>Fe_triHE04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014                                                                                                                                                                                                                                 | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>0.000e+000<br>3.439e-005<br>3.503e-007<br>3.214e-014                                                                                                                                                          | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534                                                                                                                                                                   | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-4.464<br>-6.456<br>-13.493                                                                                                                                                                                        |
| Percent error<br><br>Log<br>Gemma<br>-0.113<br>-0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I Mass<br>Mass<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Species<br>H+<br>CH-<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nic strength<br>f water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Dalance (eg)<br>J)/(Cat+ An )<br>Iterations<br>Total H<br>Total O<br>Distribution o<br>Molality<br>4.767e-006<br>4.154e-009<br>5.551e+001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0.33<br>= 4.069-0<br>= 1.000+0<br>= 2.967-0<br>= 2.967-0<br>= 2.507<br>= 25.000<br>= 2.518e-0<br>= 0.00<br>= 47<br>Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Log<br>Molality<br>-5.322<br>-8.382<br>1.744                                                                                                                                                | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004                                                                                                                                                         | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181<br>-0.136<br>0.041<br>My                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_triC13<br>Fe_tri3(0t)4+5<br>Fe_triHE04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014                                                                                                                                                                                                                                 | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>0.000e+000<br>3.439e-005<br>3.503e-007<br>3.214e-014                                                                                                                                                          | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534                                                                                                                                                                   | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493                                                                                                                                                                             |
| Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I Mass<br>Mass<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Electrical<br>Electrical<br>Cat.  An<br>Species<br>H+<br>CH-<br>H2O<br>0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nic strength<br>f water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Dalance (eg)<br>J)/(Cat+ An )<br>Iterations<br>Total H<br>Total O<br>Distribution o<br>Molality<br>4.767e-006<br>4.154e-009<br>5.551e+001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0.33<br>- 0.362-0<br>= 1.000+0<br>= 2.967-0<br>= 2.967-0<br>= 2.507<br>= 25.000<br>= 25.000<br>= 25.000<br>= 0.00<br>= 47<br>Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Log<br>Molality<br>-5.322<br>-8.382<br>1.744                                                                                                                                                | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004                                                                                                                                                         | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181<br>-0.136<br>0.041<br>My                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_tri2(0t)4+5<br>Fe_triHED4+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004<br>Mg+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004                                                                                                                                                                                                                   | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>0.000e+000<br>3.439e-005<br>3.503e-007<br>3.214e-014<br>2.511e-004                                                                                                                                            | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078                                                                                                                                                         | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600                                                                                                                                                                   |
| Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I Mass<br>Mass<br>Total aldai<br>Total<br>Total<br>Total<br>Total<br>Total<br>Species<br>H+<br>CH-<br>H2O<br>CH-<br>H2O<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nic strength<br>f water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Dislance (eg)<br>J)/(Cat+ An )<br>Iterations<br>Total H<br>Total O<br>Distribution o<br>Distribution o<br>A.167e-006<br>4.154e-009<br>5.551e+001<br>0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 0.33<br>- 0.362-0<br>= 1.000+0<br>= 2.967-0<br>= 2.967-0<br>= 2.507<br>= 25.000<br>= 25.000<br>= 25.000<br>= 0.00<br>= 47<br>Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384                                                                                                                                           | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344                                                                                                                                             | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181<br>-0.136<br>0.041<br>Mg<br>-0.523<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_tri2(0t)4+5<br>Fe_triHE04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004<br>Mg+2<br>Mg504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005                                                                                                                                                                                                     | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.000e+000<br>3.439e-005<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005                                                                                                                              | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110                                                                                                                                               | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069                                                                                                                                                         |
| Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | II<br>Mass<br>Total alkali<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Species<br>H+<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>M2O<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nic strength<br>f water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Dislance (eg)<br>J)/(Cat+ An )<br>Iterations<br>Total H<br>Total O<br>Distribution o<br>Nolality<br>4.767e-006<br>4.154e-009<br>5.551e+001<br>0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.39<br>- 0.39<br>- 0.00e+0<br>- 1.000e+0<br>- 2.967e-0<br>- 2.387e-0<br>- 2.500<br>- 2.500<br>- 2.500<br>- 0.00<br>- 47<br>- 0.10421e<br>- 5.587723e<br>f species<br>Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000<br>1.200e.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>                                                                                                                                                                                            | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344                                                                                                                                             | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181<br>-0.136<br>0.041<br>My<br>-0.523<br>0.041<br>0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_tri2(0t)4+5<br>Fe_triHSD4+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KSO4-<br>KCH<br>9.719e-004<br>Mg+2<br>Mg5O4<br>MgHO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005                                                                                                                                                                                       | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.602e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005                                                                                                                              | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238                                                                                                                                     | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374                                                                                                                                               |
| Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | II<br>Mass<br>Total alkali<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Spacies<br>H+<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>1.389e-001<br>C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mic strength<br>f water (kg)<br>inity (eg/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Distribution (kg C)<br>balance (eg)<br>J)/(Cat+ An )<br>Iterations<br>Total O<br>Distribution o<br>Distribution o<br>Distribution o<br>4.154e-009<br>5.551e+001<br>0.000e+000<br>1.092e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.39<br>- 0.39<br>- 0.00e+0<br>- 1.000e+0<br>- 2.967e-0<br>- 2.397e-0<br>- 2.507<br>- 2.508-0<br>- 0.00<br>- 47<br>- 0.10421e<br>- 5.587723e<br>f species<br>Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.400e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962                                                                                                                                 | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921                                                                                                                                   | $\begin{array}{c} -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ +0.0545\\ +0.0181\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_tri3(0t)4+5<br>Fe_triHS04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004<br>Mg+2<br>Mg504<br>Mg403+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008                                                                                                                                                                         | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.602e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.393e-08                                                                                                                 | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398                                                                                                                           | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357                                                                                                                                     |
| Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | II<br>Mass<br>Total alkali<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Spacies<br>H+<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Distribution (kg C)<br>balance (eq)<br>J)/(Cat+ An )<br>Iterations<br>Total O<br>Distribution o<br>Distribution o<br>Distribution o<br>4.154e-009<br>5.551e+001<br>0.000e+000<br>1.092e-001<br>2.042e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0.39<br>- 0.39<br>- 0.00e+0<br>- 1.000e+0<br>- 2.967e-0<br>- 2.397e-0<br>- 2.507<br>- 2.508-0<br>- 0.00<br>- 47<br>- 0.10421e<br>- 5.587723e<br>f species<br>Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.438e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>0.0962<br>0.000                                                                                                              | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>2.452                                                                                                                | $\begin{array}{c} -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ +0.0545\\ +0.0181\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_tri3(0t)4+5<br>Fe_triHS04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004<br>Mg+2<br>Mg504<br>Mg403+<br>Mg003<br>Mg0H+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010                                                                                                                                                           | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.602e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010                                                                                                  | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473                                                                                                                 | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610                                                                                                                           |
| Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | II<br>Mass<br>Total alkali<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Spacies<br>H+<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Distribution (kg C)<br>Falance (eq)<br>J)/(Cat+ An )<br>Iterations<br>Total H<br>Total O<br>Distribution o<br>Distribution o<br>Distribution o<br>0.001<br>4.154e-009<br>5.551e+001<br>0.000e+000<br>1.092e-001<br>2.042e-002<br>9.115e-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.33<br>- 0.36<br>- 0.000+0<br>- 1.000+0<br>- 2.967-0<br>- 2.367-0<br>- 2.507<br>- 2.500<br>- 2.500<br>- 2.500<br>- 2.500<br>- 0.00<br>- 47<br>- 0.00<br>- 0.00<br>- 47<br>- 0.00<br>- 47<br>- 0.00<br>- 47<br>- 0.00<br>- 0.00<br>- 47<br>- 0.00<br>- 0.00<br>- 47<br>- 0.00<br>- 0                                                                                                                                                                                                                                                                                                                                                                                                  | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040                                                                                                             | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193                                                                                                               | $\begin{array}{c} -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.012\\ -0.02\\ 0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02$            | Fe_tri(12+<br>Fe_tri(0t)4-<br>Fe_tri(304)2-<br>Fe_tri2(0t)2+4<br>Fe_tri3(0t)4+5<br>Fe_triHS04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004<br>Mg+2<br>Mg504<br>Mg503<br>MgCH+<br>3.951e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010                                                                                                                                                           | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.602e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.393e-008<br>2.457e-010                                                                                                  | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473                                                                                                                 | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610                                                                                                                           |
| Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>C(4)<br>0.041<br>-0.152<br>-0.152<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II<br>Mass<br>Total alkali<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Tital<br>Species<br>H+<br>CH-<br>H2O<br>0.000e+000<br>CH4<br>1.389e-001<br>CC2<br>HC03-<br>CaHC03+<br>MgHC03+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2                                   | - 0.39<br>- 0.39<br>- 0.00e+0<br>- 1.000e+0<br>- 2.967e-0<br>- 2.387e-0<br>- 2.507<br>- 2.508<br>- 0.00<br>- 47<br>- 0.10<br>- 47<br>- 0.10<br>- 47<br>- 0.10<br>- 47<br>- 0.00<br>- 0                                                                                                                                                                                                                                                                                                                                                                                                | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040<br>-4.238                                                                                                   | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374                                                                                                     | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ Mn(2)\\ -0.576\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHSD4+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KSO4-<br>KCH<br>9.719e-004<br>Mg+2<br>MgSO4<br>MgHO3+<br>MgCO3<br>MgCH+<br>3.951e-007<br>Mn+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.2228e-007                                                                                                                                            | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.602e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-008                                                                                    | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652                                                                                                       | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228                                                                                                                 |
| Percent error<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II<br>MES<br>Total alkal.<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Species<br>H*<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2                                   | - 0.39<br>- 0.39<br>- 0.00e+0<br>- 1.000e+0<br>- 2.967e-0<br>- 2.967e-0<br>- 2.507e-0<br>- 0.00<br>- 2.508<br>- 0.00<br>- 47<br>-                                                                                                                                                                                                                                                   | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288                                                                                         | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424                                                                                           | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ Mn(2)\\ -0.576\\ -0.136\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHED4+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KSO4-<br>KCH<br>9.719e-004<br>Mg+2<br>MgSO4<br>MgHO3+<br>MgC03<br>MgCH+<br>3.951e-007<br>Mn+2<br>MHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007                                                                                                                               | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.602e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-008<br>7.581e-008                                                                      | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984                                                                                             | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120                                                                                                       |
| Percent error<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II<br>MESS<br>Total alkal.<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Species<br>H*<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2                                   | - 0.39<br>- 0.39<br>- 0.000+0<br>- 1.000+0<br>- 2.957-0<br>- 2.957-0<br>- 2.507<br>- 2.507<br>- 2.508-0<br>- 0.00<br>- 47<br>- 47                                                                                                                                                                                                                                                   | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.008                                                                               | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968                                                                                 | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ Mn(2)\\ -0.576\\ -0.136\\ -0.136\\ -0.136\\ -0.136\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHSD4+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KSO4-<br>KCH<br>9.719e-004<br>Mg+2<br>Mg5O4<br>Mg+03+<br>MgC03+<br>MgC03+<br>MgC03+<br>Mg+C03+<br>Mg+C1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008                                                                                                                 | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-008<br>7.581e-008<br>3.757e-008                                                                      | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289                                                                                   | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.425                                                                                             |
| Percent error<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II<br>MBSS<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Species<br>H*<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>H2O<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CH-<br>CD-<br>CO<br>CD-<br>CH-<br>CH-<br>CD-<br>CD-<br>CD-<br>CH-<br>CD-<br>CD-<br>CD-<br>CD-<br>CD-<br>CD-<br>CD-<br>CD-<br>CD-<br>CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2                                   | - 0.39<br>- 0.39<br>- 0.000+0<br>- 1.000+0<br>- 2.967-0<br>- 2.967-0<br>- 2.507<br>- 2.508-0<br>- 0.00<br>- 47<br>- 47<br>- 47<br>- 455-00<br>- 5.587723e<br>f species<br>Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.438e-002<br>6.417e-003<br>3.763e-005<br>1.077e-005<br>2.385e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.008<br>-5.663                                                                     | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622                                                                       | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ $                                  | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHSD4+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KSO4-<br>KCH<br>9.719e-004<br>Mg+2<br>Mg5O4<br>Mg+03+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO3+<br>MgCO                                                                     | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008                                                                                                   | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-008<br>7.581e-008<br>3.757e-008<br>1.525e-008                                                        | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857                                                                         | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.425<br>-7.817                                                                                   |
| Percent error<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II<br>MESS<br>Total alkali<br>Temper<br>Total<br>Terper<br>Electrical<br>ar, 100* (Cat- An<br>Species<br>H+<br>CH-<br>H20<br>0.0000+000<br>CH<br>1.339e-001<br>CC2<br>CAHCO3+<br>MgHCO3+<br>Fe_diHCO3+<br>CaCO3<br>NaHCO3<br>CO3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mic strength<br>f water (kg)<br>imity (eq/kg)<br>CO2 (mol/kg)<br>CO2                                   | - 0.39<br>- 0.39<br>- 0.000-0<br>- 1.000-0<br>- 2.967-0<br>- 2.967-0<br>- 2.507<br>- 2.500<br>- 2.500                                                                                                                                                     | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127                                                           | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737                                                             | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041$  | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHS04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004<br>Mg+20<br>Mg504<br>Mg504<br>Mg503<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg70+                                                                     | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009                                                                                     | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-088<br>7.581e-088<br>3.757e-088<br>1.525e-089                                                        | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633                                                               | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592                                                                         |
| Percent error<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II<br>Mass<br>Total alkal<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Species<br>H+<br>CH-<br>H2O<br>0.0000+000<br>CH4<br>1.339e-001<br>CC2<br>CHC3-<br>CAHC03+<br>MgHC03+<br>Fe_diHC03<br>CO3-2<br>Fe_diC03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2                                   | - 0.39<br>- 0.39<br>- 0.000-0<br>- 1.000-0<br>- 2.967-0<br>- 2.967-0<br>- 2.507<br>- 2.500<br>- 2.300<br>- 2.500<br>- 2.300<br>- 2.500<br>- 2.300<br>- 2.500<br>- 2.300<br>- 2.300<br>- 2.300<br>- 2.500<br>- 2.300<br>- 2.500<br>- 2.300<br>- 2.500<br>- 2.500                                                                                                                                                     | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127<br>-6.980                                                 | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737<br>-6.939                                                   | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041$  | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHSD4+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KSO4-<br>KCH<br>9.719e-004<br>Mg+20<br>Mg504<br>Mg504<br>Mg503<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg70+                                                                     | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009<br>7.845e-010                                                                       | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.502e-007<br>3.214e-010<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-008<br>7.581e-008<br>3.757e-008<br>1.525e-009<br>8.615e-010                                          | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633<br>-9.105                                                     | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592<br>-9.065                                                               |
| Percent error<br><br>Log<br>Gemma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.052<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.057<br>0.055<br>0.055<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.055<br>0.055<br>0.055<br>0.055<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055 | II<br>MESS<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total | mic strength<br>f water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2                                   | - 0.39<br>- 0.39<br>- 0.000-0<br>- 1.000-0<br>- 2.967-0<br>- 2.967-0<br>- 2.507<br>- 2.508-0<br>- 0.00<br>- 2.508-0<br>- 0.00<br>- 47<br>- 0.00<br>- 0.00<br>- 47<br>- 0.00<br>- 0.00<br>- 47<br>- 0.00<br>- 0. | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-141.384<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127<br>-6.980<br>-6.984                                       | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737<br>-6.939<br>-7.120                                         | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ My\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041$ | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHS04+2<br>0.000e+000<br>H2<br>5.270e-005<br>K+<br>KS04-<br>KCH<br>9.719e-004<br>Mg+20<br>Mg504<br>Mg504<br>Mg504<br>Mg503<br>Mg603+<br>Mg504<br>Mg503<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg603+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+<br>Mg703+                                                                         | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009<br>7.845e-010<br>1.502e-010                                                         | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.602e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-088<br>7.581e-088<br>3.757e-088<br>1.525e-089<br>8.615e-010<br>1.098e-010              | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633<br>-9.105<br>-9.823                                           | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592<br>-9.065<br>-9.959                                                     |
| Percent error<br><br>Log<br>Gemma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mic strength<br>for water (kg)<br>imity (eq/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>CO                                  | - 0.39<br>- 0.39<br>- 0.000+0<br>- 1.000+0<br>- 2.967-0<br>- 2.967-0<br>- 2.507-0<br>- 2.355-0<br>- 0.007-0<br>- 1.516-007<br>- 7.5816-008<br>- 4.393e-008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127<br>-6.980<br>-6.964<br>-7.398                                         | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737<br>-6.939<br>-7.120<br>-7.357                               | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ Mg\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ Mn(2)\\ -0.576\\ -0.136\\ -0.136\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ -0.136\\ 0.041\\ 0.041\\ -0.136\\ 0.041\\ 0.041\\ -0.136\\ 0.041\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ 0.041\\ -0.136\\ 0.041\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ -0.041\\ -0.041\\ -0.041\\ -0.041\\ -0.041\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.040\\ -0.$                        | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHS04+2<br>0.0000+000<br>H2<br>5.2700=005<br>K+<br>KS04-<br>KCH<br>9.7190=004<br>Mg+2<br>Mg504<br>Mg504<br>Mg503<br>Mg604+<br>3.951e=007<br>Mx+2<br>Mg504<br>Mg603+<br>Mg603<br>Mg604+<br>3.951e=007<br>Mx+2<br>Mx+03+<br>MxCl+<br>Mx504<br>MxCl2<br>Mx603<br>MxCl3-<br>Mx604+<br>Mx603<br>Mx613-<br>Mx604+<br>Mx604<br>Mx603<br>Mx613-<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx604<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764<br>Mx764        | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009<br>7.845e-010<br>1.502e-010<br>5.607e-013                                           | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.253e-007<br>5.917e-008<br>7.581e-008<br>3.757e-008<br>1.525e-008<br>8.615e-010<br>1.098e-010                                          | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633<br>-9.105<br>-9.823<br>-12.251                                | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592<br>-9.065<br>-9.959<br>-12.387           |
| Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>-0.610<br>0.041<br>-0.136<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mic strength<br>for water (kg)<br>imity (eq/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>CO                                  | - 0.39<br>- 0.39<br>- 0.000+0<br>- 1.000+0<br>- 2.967-0<br>- 2.967-0<br>- 2.507-0<br>- 2.507-0<br>- 2.507-0<br>- 2.508-0<br>- 0.00<br>- 47<br>- Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.438e-002<br>6.417e-003<br>4.256-005<br>1.077e-005<br>2.385e-006<br>1.833e-007<br>1.518-007<br>7.581e-008<br>4.393e-008<br>1.007e-009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127<br>-6.980<br>-6.984<br>-7.398<br>-8.861                               | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737<br>-6.939<br>-7.120<br>-7.357<br>-8.997                     | $\begin{array}{c} -0.136\\ -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ Mg\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ Mn(2)\\ -0.576\\ -0.136\\ -0.136\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ -0.136\\ Mn(3)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHS04+2<br>0.0000+000<br>H2<br>5.2700=005<br>K+<br>KS04-<br>KCH<br>9.7190=004<br>Mg+20<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>M | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009<br>7.845e-010<br>1.502e-010<br>5.607e-013                                           | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>0.000e+000<br>3.439e-005<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.239a-008<br>2.457e-010<br>5.917e-008<br>7.57e-008<br>1.525e-008<br>8.615e-010<br>1.098e-010               | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633<br>-9.105<br>-9.823<br>-12.251                                | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592<br>-9.065<br>-9.959<br>-12.387                                          |
| Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>-0.610<br>0.041<br>-0.136<br>0.041<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mic strength<br>for water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>CO                                  | - 0.39<br>- 0.39<br>- 0.000<br>- 1.0000-0<br>- 2.967-0<br>- 2.967-0<br>- 2.507-0<br>- 2.507-0<br>- 2.500<br>- 2.3050<br>- 0.000<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127<br>-6.980<br>-6.984<br>-7.398<br>-8.861<br>-9.105                     | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737<br>-6.939<br>-7.120<br>-7.357<br>-8.997<br>-9.065           | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181<br>-0.136<br>0.041<br>Mg<br>-0.523<br>0.041<br>-0.136<br>0.041<br>-0.136<br>Mn(2)<br>-0.576<br>-0.136<br>-0.136<br>0.041<br>0.041<br>0.041<br>-0.136<br>-0.136<br>Mn(3)<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHS04+2<br>0.0000+000<br>H2<br>5.2700=005<br>K+<br>KS04-<br>KCH<br>9.7190=004<br>Mg+2<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009<br>7.845e-010<br>1.502e-010<br>5.607e-013<br>4.528e-017                             | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-007<br>4.225e-005<br>4.393e-008<br>2.457e-010<br>5.917e-008<br>7.581e-008<br>3.757e-008<br>1.557e-009<br>8.615e-010<br>1.098e-013<br>2.693e-018              | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633<br>-9.105<br>-9.823<br>-12.251<br>-16.344                     | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592<br>-9.065<br>-9.959<br>-12.387<br>-17.570           |
| Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>-0.610<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mic strength<br>for water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>CO                                  | - 0.39<br>- 0.39<br>- 0.000<br>- 1.0000-0<br>- 2.967-0<br>- 2.967-0<br>- 2.507-0<br>- 2.507<br>- 2.508-0<br>- 0.00<br>- 47<br>- Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.438e-002<br>6.417e-003<br>4.256-005<br>1.077e-005<br>2.385e-006<br>1.833e-007<br>1.518-007<br>1.518-007<br>8.615e-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01<br>00<br>02<br>01<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127<br>-6.980<br>-6.984<br>-7.398<br>-8.861<br>-9.105                     | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737<br>-6.939<br>-7.120<br>-7.357<br>-8.997<br>-9.065           | -0.136<br>-0.136<br>-2.179<br>0.041<br>-3.405<br>-0.545<br>H(0)<br>0.041<br>K<br>-0.181<br>-0.136<br>0.041<br>Mg<br>-0.523<br>0.041<br>-0.136<br>0.041<br>-0.136<br>Mn(2)<br>-0.576<br>-0.136<br>-0.136<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>-0.136<br>Mn(3)<br>-1.226<br>Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHS04+2<br>0.0000+000<br>H2<br>5.2700=005<br>K+<br>KS04-<br>KCH<br>9.7190=004<br>Mg+2<br>Mg504<br>Mg504<br>Mg504<br>Mg503<br>MgCH+<br>3.9510=007<br>Mx+2<br>Mx504<br>MxCl<br>MxCl<br>MxCl<br>MxCl<br>4.5280=017<br>Mx+3<br>4.1830=004<br>Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009<br>7.845e-010<br>1.502e-010<br>5.607e-013<br>4.528e-017<br>4.132e-004               | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.393e-008<br>2.457e-010<br>5.917e-008<br>7.571e-008<br>3.757e-008<br>8.615e-010<br>1.098e-013<br>2.693e-018<br>2.250e-004              | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633<br>-9.105<br>-9.823<br>-12.251<br>-16.344<br>-3.384           | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592<br>-9.065<br>-9.959<br>-12.387<br>-17.570<br>-3.530 |
| Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>-0.610<br>0.041<br>-0.610<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.041<br>-0.136<br>0.058<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.558<br>-0.5588<br>-0.558                                                 | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mic strength<br>five terrength<br>(e) water (kg)<br>(m1/kg)<br>(c2 (m1/kg)<br>(c2 (m1/kg))<br>(c2 (m2/kg)<br>(c2 (m2/kg))<br>(c2 ( | - 0.39<br>- 0.39<br>- 0.000<br>- 1.0000-0<br>- 2.967-0<br>- 2.967-0<br>- 2.507-0<br>- 2.507-0<br>- 2.508-0<br>- 0.00<br>- 47<br>- Activity<br>3.678e-006<br>2.698e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.438e-002<br>6.417e-003<br>4.275e-005<br>1.077e-005<br>2.385e-006<br>1.833e-007<br>1.518-007<br>1.518-007<br>3.4398e-002<br>3.498e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01<br>00<br>02<br>11<br>14<br>+002<br>+001<br>Molality<br>-5.322<br>-8.382<br>1.744<br>-0.962<br>-1.690<br>-2.040<br>-4.238<br>-4.288<br>-5.068<br>-5.663<br>-6.127<br>-6.980<br>-6.984<br>-7.398<br>-8.861<br>-9.105<br>-9.105<br>-0.889 | Log<br>Activity<br>-5.434<br>-8.569<br>-0.004<br>-141.344<br>-0.921<br>-1.842<br>-2.193<br>-4.374<br>-4.424<br>-4.968<br>-5.622<br>-6.737<br>-6.939<br>-7.120<br>-7.357<br>-8.997<br>-9.065<br>-1.456 | $\begin{array}{c} -0.136\\ -0.136\\ -2.179\\ 0.041\\ -3.405\\ -0.545\\ H(0)\\ 0.041\\ K\\ -0.181\\ -0.136\\ 0.041\\ Mg\\ -0.523\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ 0.041\\ -0.136\\ -0.136\\ -0.136\\ -0.136\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ -0.136\\ Mn(3)\\ -1.226\\ Na\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe_tri(12+<br>Fe_tri(12+<br>Fe_tri(304)2-<br>Fe_tri2(0+)2+4<br>Fe_tri3(0+)4+5<br>Fe_triHS04+2<br>0.0000+000<br>H2<br>5.2700-005<br>K+<br>KS04-<br>KCH<br>9.7190-004<br>Mg+2<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504<br>Mg504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.627e-011<br>3.081e-011<br>1.173e-011<br>3.556e-012<br>7.912e-013<br>3.297e-014<br>9.330e-015<br>0.000e+000<br>5.222e-005<br>4.793e-007<br>2.926e-014<br>8.364e-004<br>7.770e-005<br>5.780e-005<br>4.000e-008<br>3.362e-010<br>2.228e-007<br>1.037e-007<br>5.141e-008<br>1.389e-008<br>2.328e-009<br>7.845e-010<br>1.502e-010<br>5.607e-013<br>4.528e-017<br>4.132e-004<br>2.933e-005 | 5.574e-011<br>2.252e-011<br>8.569e-012<br>2.355e-014<br>8.689e-013<br>1.299e-017<br>2.662e-015<br>3.503e-007<br>3.214e-014<br>2.511e-004<br>8.533e-005<br>4.225e-005<br>4.257e-000<br>5.917e-008<br>7.57e-008<br>3.757e-008<br>1.557e-009<br>8.615e-010<br>1.098e-013<br>2.693e-018<br>2.950e-004<br>2.142e-005 | -10.118<br>-10.511<br>-10.931<br>-11.449<br>-12.102<br>-13.482<br>-14.030<br>-44.396<br>-4.282<br>-6.319<br>-13.534<br>-3.078<br>-4.110<br>-4.238<br>-7.398<br>-9.473<br>-6.652<br>-6.984<br>-7.289<br>-7.857<br>-8.633<br>-9.105<br>-9.823<br>-12.251<br>-16.344<br>-3.384<br>-5.533 | -10.254<br>-10.647<br>-11.067<br>-13.628<br>-12.061<br>-16.886<br>-14.575<br>-44.355<br>-44.355<br>-4.464<br>-6.456<br>-13.493<br>-3.600<br>-4.069<br>-4.374<br>-7.357<br>-9.610<br>-7.228<br>-7.120<br>-7.425<br>-7.817<br>-8.592<br>-9.065<br>-9.959<br>-12.387<br>-17.570<br>-3.530<br>-5.669           |

| 0.041                                           | NaHCO3                                                                                                                                                                                              | 2.172e-006                                           | 2.385e-006                                           | -5.663                                                                                                                              | -5.622      |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|
| -0.136                                          | NaCO3-                                                                                                                                                                                              | 1.378e-009                                           | 1.007e-009                                           | -8.861                                                                                                                              | -8.997      |
| 0.041                                           | NaCH                                                                                                                                                                                                | 4.783e-013                                           | 5.253e-013                                           | -12.320                                                                                                                             | -12.280     |
| O(0)                                            | 3.828e-004<br>02                                                                                                                                                                                    | 1.914e-004                                           | 2.102e-004                                           | -3.718                                                                                                                              | -3.677      |
| 0.041<br>S(-2)                                  | 0.000e+000                                                                                                                                                                                          | 0.000-000                                            | 0.000-000                                            | 127 062                                                                                                                             | 127 001     |
| 0.041                                           | HZ5                                                                                                                                                                                                 | 0.000e+000                                           | 0.000e+000                                           | 130 2/1                                                                                                                             | 130 /20     |
| -0.187                                          | e 2                                                                                                                                                                                                 | 0.000+000                                            | 0.000-000                                            | 146 277                                                                                                                             | 1/6 012     |
| -0.635                                          | E di (HS) 2                                                                                                                                                                                         | 0.000e+000                                           | 0.000=+000                                           | _274 530                                                                                                                            | _274_489    |
| 0.041                                           | Fe di (HS)3-                                                                                                                                                                                        | 0.000e+000                                           | 0.000e+000                                           | -411.744                                                                                                                            | -411.880    |
| -0.136<br>S(6)                                  | 1.579e-002                                                                                                                                                                                          |                                                      |                                                      |                                                                                                                                     |             |
| 0.041                                           | Ca904                                                                                                                                                                                               | 9.212e-003                                           | 1.012e-002                                           | -2.036                                                                                                                              | -1.995      |
| -0.651                                          | 904-2                                                                                                                                                                                               | 6.490e-003                                           | 1.449e-003                                           | -2.188                                                                                                                              | -2.839      |
| 0.041                                           | MgSO4                                                                                                                                                                                               | 7.770e-005                                           | 8.533e-005                                           | -4.110                                                                                                                              | -4.069      |
| 0.041                                           | Fe_di.904                                                                                                                                                                                           | 6.143e-006                                           | 6.746e-006                                           | -5.212                                                                                                                              | -5.171      |
| -0.136                                          | NaSO4-                                                                                                                                                                                              | 2.933e-006                                           | 2.143e-006                                           | -5.533                                                                                                                              | -5.669      |
| -0.136                                          | H904-                                                                                                                                                                                               | 7.092e-007                                           | 5.183e-00/                                           | -6.149                                                                                                                              | -6.285      |
| -0.136                                          | K904-                                                                                                                                                                                               | 4.793e-007                                           | 3.503e-007                                           | -6.319                                                                                                                              | -6.456      |
| -0.136                                          | CaHSO4+                                                                                                                                                                                             | 2.983e-007                                           | 2.180e-007                                           | -6.525                                                                                                                              | -6.662      |
| 0.041                                           | MnS04                                                                                                                                                                                               | 1.389e-008                                           | 1.525e-008                                           | -7.857                                                                                                                              | -7.817      |
| -0.136                                          | Fe_triso4+                                                                                                                                                                                          | 3.6986-010                                           | 2.702e-010                                           | -9.432                                                                                                                              | -9.568      |
| -0.136                                          | Fe_CIHSU4+                                                                                                                                                                                          | 2.232e-010                                           | 1.6310-010                                           | -9.651                                                                                                                              | -9.788      |
| -0.136                                          | Fe_tr1 (504) 2-                                                                                                                                                                                     | 1.1/3e-011                                           | 8.569e-012                                           | -10.931                                                                                                                             | -11.06/     |
| -0.545                                          | Fe_tr1H904+2                                                                                                                                                                                        | 9.330e-015                                           | 2.662e-015                                           | -14.030                                                                                                                             | -14.5/5     |
|                                                 |                                                                                                                                                                                                     | -Saturation i                                        | ndiæs                                                |                                                                                                                                     |             |
|                                                 |                                                                                                                                                                                                     | or 1 -                                               |                                                      |                                                                                                                                     |             |
|                                                 | Mase                                                                                                                                                                                                |                                                      | AP 100 KT                                            | 0-001                                                                                                                               |             |
|                                                 | Aragonite<br>Calcite<br>Calcite<br>CC2(g)<br>Dolomite<br>Gypsun<br>H2(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>Haismernite<br>Marganite<br>C2(g)<br>Pyrochroite<br>Pyrolosite<br>Rindochrosite<br>Sulfar | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | CaCO3<br>CACO3<br>CH4<br>CC2<br>CaMg(CO3)2<br>CaSO4:2H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>M3O4<br>MnOCH<br>O2<br>Mn(CH)2<br>MnO2<br>S |             |
| Reaction ster                                   | 3                                                                                                                                                                                                   | 101.00 90.                                           | 12 4.00                                              | 5                                                                                                                                   |             |
| Using solutio<br>Using pure pl<br>Using kinetic | n 1.<br>nase assemblage 1<br>ns 1. K                                                                                                                                                                | inetics defin                                        | ed in simula                                         | ation 2.                                                                                                                            |             |
| Kinetics 1.                                     | Kinetics define                                                                                                                                                                                     | d in simulati                                        | an 2.                                                |                                                                                                                                     |             |
|                                                 | Time step: 3100                                                                                                                                                                                     | seconds (In                                          | cremented t                                          | ime: 3600 s                                                                                                                         | econds)     |
| Coofficient                                     | Rate name                                                                                                                                                                                           | Delta Moles                                          | Total Moles                                          | Reactant                                                                                                                            |             |
| werndalt                                        | Fe di ax                                                                                                                                                                                            | -2.162e-005                                          | 1.000e+000                                           | Fe di                                                                                                                               |             |
| -1                                              |                                                                                                                                                                                                     | 2.1020 000                                           |                                                      | Fe tri                                                                                                                              |             |
| 1                                               |                                                                                                                                                                                                     |                                                      |                                                      |                                                                                                                                     |             |
|                                                 |                                                                                                                                                                                                     | Phase asser                                          | blage                                                |                                                                                                                                     |             |
|                                                 |                                                                                                                                                                                                     |                                                      |                                                      | Moles in as                                                                                                                         | semblage    |
| Delta                                           | Phase                                                                                                                                                                                               | SI log I                                             | AP log KT                                            | Initial                                                                                                                             | Final       |
| E 40E- 00C                                      | 02 (g)                                                                                                                                                                                              | -0.79 -3.                                            | 68 -2.89                                             | 1.000e+001                                                                                                                          | 1.000e+001- |
| 5.405e-006                                      |                                                                                                                                                                                                     | Solution com                                         | ogition                                              |                                                                                                                                     |             |
|                                                 |                                                                                                                                                                                                     |                                                      |                                                      |                                                                                                                                     |             |
|                                                 | Elements                                                                                                                                                                                            | Molality                                             | Moles                                                |                                                                                                                                     |             |
|                                                 | C<br>Ca                                                                                                                                                                                             | 1.389e-001<br>1.476e-001                             | 1.389e-001<br>1.476e-001                             |                                                                                                                                     |             |
|                                                 | Cl<br>Fe_di                                                                                                                                                                                         | 2.367e-001<br>1.356e-004                             | 2.367e-001<br>1.356e-004                             |                                                                                                                                     |             |
|                                                 | Fe_tri<br>K                                                                                                                                                                                         | 2.542e-005<br>5.270e-005                             | 2.542e-005<br>5.270e-005                             |                                                                                                                                     |             |
|                                                 | Mg<br>Min                                                                                                                                                                                           | 9.719e-004<br>3.951e-007                             | 9.719e-004<br>3.951e-007                             |                                                                                                                                     |             |
|                                                 | Na<br>S                                                                                                                                                                                             | 4.183e-004<br>1.579e-002                             | 4.183e-004<br>1.579e-002                             |                                                                                                                                     |             |
|                                                 | I                                                                                                                                                                                                   | escription of                                        | solution                                             |                                                                                                                                     |             |

|              |                            | pH<br>pe                     | = 5.434<br>= 15.169           | Charge<br>Adjust | e balance<br>ed to redox |
|--------------|----------------------------|------------------------------|-------------------------------|------------------|--------------------------|
| equilibrium  | Activ                      | ity of water                 | = 0.991                       |                  |                          |
|              | Ion<br>Mass o              | nic strength<br>E water (kg) | = 4.068e-0<br>= 1.000e+0      | 001<br>000       |                          |
|              | Total alkalin<br>Total (   | nity (eg/kg)<br>302 (mol/kg) | = 2.970e-0<br>= 1.389e-0      | )02<br>)01       |                          |
|              | Tenperal<br>Electrical I   | ture (deg C)<br>balance (eg) | = 25.000<br>= 2.519e-0        | )14              |                          |
| Percent erro | or, 100*(Cat- An           | Iterations                   | = 0.00<br>= 44<br>= 1.110421c |                  |                          |
|              |                            | Total 0                      | = 5.587724                    | +002             |                          |
|              | D                          | istribution c                | f species                     |                  |                          |
|              |                            |                              |                               | Log              | Log                      |
| Log          | Species                    | Molality                     | Activity                      | Molality         | Activity                 |
| Ganma        |                            |                              |                               |                  |                          |
| -0.113       | H+                         | 4.7/0e-006                   | 3.681e-006                    | -5.321           | -5.434                   |
| -0.187       | UH-<br>170                 | 4.151e-009                   | 2.6968-009                    | -8.382           | -8.569                   |
| 0.000        | 0.000-+000                 | 3.3316+001                   | 9.9118-001                    | 1.744            | -0.004                   |
| 0.041        | CH4                        | 0.000e+000                   | 0.000e+000                    | -141.384         | -141.344                 |
| C(4)         | 1.389e-001<br>CO2          | 1.093e-001                   | 1.200e-001                    | -0.962           | -0.921                   |
| 0.041        | H003-                      | 2.041e-002                   | 1.437e-002                    | -1.690           | -1.843                   |
| -0.152       | CaHCO3+                    | 9.111e-003                   | 6.414e-003                    | -2.040           | -2.193                   |
| -0.152       | MgHCO3+                    | 5.778e-005                   | 4.223e-005                    | -4.238           | -4.374                   |
| -0.136       | Fe_diH003+                 | 4.440e-005                   | 3.245e-005                    | -4.353           | -4.489                   |
| -0.136       | CaCO3                      | 9.798e-006                   | 1.076e-005                    | -5.009           | -4.968                   |
| 0.041        | NaHCO3                     | 2.171e-006                   | 2.384e-006                    | -5.663           | -5.623                   |
| -0.610       | 003-2                      | 7.456e-007                   | 1.831e-007                    | -6.128           | -6.737                   |
| -0.136       | MnHCO3+                    | 1.037e-007                   | 7.579e-008                    | -6.984           | -7.120                   |
| 0.041        | Fe_diCO3                   | 9.031e-008                   | 9.917e-008                    | -7.044           | -7.004                   |
| 0.041        | MgCO3                      | 3.995e-008                   | 4.388e-008                    | -7.398           | -7.358                   |
| -0.136       | NaCO3-                     | 1.376e-009                   | 1.006e-009                    | -8.861           | -8.997                   |
| 0.041        | MinCO3                     | 7.837e-010                   | 8.606e-010                    | -9.106           | -9.065                   |
| Ca           | 1.476e-001<br>Ca+2         | 1.293e-001                   | 3.498e-002                    | -0.889           | -1.456                   |
| -0.568       | CaSO4                      | 9.213e-003                   | 1.012e-002                    | -2.036           | -1.995                   |
| _0 152       | CaHCO3+                    | 9.111e-003                   | 6.414e-003                    | -2.040           | -2.193                   |
| 0.041        | CaCO3                      | 9.798e-006                   | 1.076e-005                    | -5.009           | -4.968                   |
| -0.136       | CaHSO4+                    | 2.985e-007                   | 2.182e-007                    | -6.525           | -6.661                   |
| -0.136       | CaOH+                      | 2.139e-009                   | 1.563e-009                    | -8.670           | -8.806                   |
| Cl           | 2.367e-001<br>Cl-          | 2.367e-001                   | 1.559e-001                    | -0.626           | -0.807                   |
| -0.181       | Fe_diCl+                   | 6.648e-006                   | 4.859e-006                    | -5.177           | -5.313                   |
| -0.136       | MnCl+                      | 5.142e-008                   | 3.758e-008                    | -7.289           | -7.425                   |
| -0.136       | MnCl2                      | 2.329e-009                   | 2.557e-009                    | -8.633           | -8.592                   |
| _0.545       | Fe_triCl+2                 | 1.879e-009                   | 5.362e-010                    | -8.726           | -9.271                   |
| -0.136       | Fe_triCl2+                 | 5.109e-010                   | 3.733e-010                    | -9.292           | -9.428                   |
| -0.136       | MnCl3-                     | 1.502e-010                   | 1.098e-010                    | -9.823           | -9.959                   |
| 0.041        | Fe_triCl3                  | 5.300e-012                   | 5.820e-012                    | -11.276          | -11.235                  |
| Fe_di        | 1.356e-004<br>Fe_di+2      | 7.915e-005                   | 2.258e-005                    | -4.102           | -4.646                   |
| -0.545       | Fe_diH003+                 | 4.440e-005                   | 3.245e-005                    | -4.353           | -4.489                   |
| -0.136       | Fe_diCl+                   | 6.648e-006                   | 4.859e-006                    | -5.177           | -5.313                   |
| -0.136       | Fe_di304                   | 5.300e-006                   | 5.820e-006                    | -5.276           | -5.235                   |
| 0.041        | Fe_diCO3                   | 9.031e-008                   | 9.917e-008                    | -7.044           | -7.004                   |
| -0.136       | Fe_diOH+                   | 2.631e-009                   | 1.923e-009                    | -8.580           | -8.716                   |
| -0.136       | Fe_diH904+                 | 1.927e-010                   | 1.408e-010                    | -9.715           | -9.851                   |
| 0.041        | Fe_di(HS)2                 | 0.000e+000                   | 0.000e+000                    | -274.593         | -274.553                 |
| -0.136       | Fe_di (HS) 3-              | 0.000e+000                   | 0.000e+000                    | -411.808         | -411.944                 |
| Fe_tri       | 2.542e-005<br>Fe_tri(OH)2+ | 2.416e-005                   | 1.766e-005                    | -4.617           | -4.753                   |
| -0.136       | Fe_triOH+2                 | 6.941e-007                   | 1.980e-007                    | -6.159           | -6.703                   |
| -0.545       | Fe_tri(OH)3                | 5.577e-007                   | 6.125e-007                    | -6.254           | -6.213                   |
| _0 136       | Fe_triSO4+                 | 2.477e-009                   | 1.810e-009                    | -8.606           | -8.742                   |
| -1.226       | Fe_tri+3                   | 1.915e-009                   | 1.139e-010                    | -8.718           | -9.944                   |

I

|                | Anhydrite<br>Aragonite<br>Calcite<br>CH4(g) | 0.07 -4.<br>0.14 -8.<br>0.29 -8.<br>-138.48 -141. | 29 -4.36<br>19 -8.34<br>19 -8.48<br>34 -2.86 | Ca904<br>Ca003<br>Ca003<br>CH4 |           |
|----------------|---------------------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------|-----------|
|                | Phase                                       | SI log I                                          | AP log KT                                    |                                |           |
|                | 79                                          |                                                   | 1                                            |                                |           |
|                |                                             | -Saturation i                                     | ndices                                       |                                |           |
| -0.545         | Fe_triH904+2                                | 6.254e-014                                        | 1.784e-014                                   | -13.204                        | -13.749   |
| -0.136         | Fe_tri(SO4)2-                               | 7.854e-011                                        | 5.740e-011                                   | -10.105                        | -10.241   |
| -0.136         | Fe_diH904+                                  | 1.927e-010                                        | 1.408e-010                                   | -9.715                         | -9.851    |
| -0.136         | Fe_tri904+                                  | 2.477e-009                                        | 1.810e-009                                   | -8.606                         | -8.742    |
| 0.041          | MnSO4                                       | 1.389e-008                                        | 1.525e-008                                   | -7.857                         | -7.817    |
| -0.136         | CaHSO4+                                     | 2.985e-007                                        | 2.182e-007                                   | -6.525                         | -6.661    |
| -0.136         | K904-                                       | 4.793e-007                                        | 3.503e-007                                   | -6.319                         | -6.456    |
| -0.136         | H904-                                       | 7.097e-007                                        | 5.187e-007                                   | -6.149                         | -6.285    |
| -0.136         | NaSO4-                                      | 2.933e-006                                        | 2.143e-006                                   | -5.533                         | -5.669    |
| 0.041          | Fe_diSO4                                    | 5.300e-006                                        | 5.820e-006                                   | -5.276                         | -5.235    |
| 0.041          | Mg904                                       | 7.770e-005                                        | 8.533e-005                                   | -4.110                         | -4.069    |
| -0.651         | SO4-2                                       | 6.490e-003                                        | 1.449e-003                                   | -2.188                         | -2.839    |
| 0.041          | Ca904                                       | 9.213e-003                                        | 1.012e-002                                   | -2.036                         | -1.995    |
| -0.136<br>5(6) | ге <u>с</u> ц (н5) <i>3</i> -<br>1.579е-002 | v.uue+uuu                                         | v.uue+uuu                                    | -411.808                       | -411.944  |
| 0.041          | re_ou(H5)2                                  | 0.000-000                                         | 0.000~000                                    | _2/4.593                       | -2/4.553  |
| -0.635         | u-2                                         | 0.000-000                                         | 0.000~:000                                   | 274 502                        | -140.912  |
| -0.187         | s_2                                         |                                                   | 0.000=+000                                   | -1/6 241                       | -1/6 017  |
| 0.041          | HS_                                         |                                                   | 0.000~+000                                   | -130 2/1                       | -139 //20 |
| 0.041<br>S(-2) | <br>0.000e+000                              | 0.000-:000                                        | 0.000~000                                    | _127 0.01                      | _127_001  |
| 0.041<br>D(0)  | 3.828e-004                                  | 1 914-004                                         | 2 102-004                                    | -3 718                         | -3 677    |
| -0.136         | NaOH                                        | 4.780e-013                                        | 5.249e-013                                   | -12.321                        | -12.280   |
| 0.041          | NaCO3-                                      | 1.376e-009                                        | 1.006e-009                                   | -8.861                         | -8.997    |
| -0.136         | NaHCO3                                      | 2.171e-006                                        | 2.384e-006                                   | -5.663                         | -5.623    |
| -0.146         | NaSO4-                                      | 2.933e-006                                        | 2.143e-006                                   | -5.533                         | -5.669    |
| -1.220<br>Na   | 4.183e-004<br>Na+                           | 4.132e-004                                        | 2.950e-004                                   | -3.384                         | -3.530    |
| Mn(3)          | 4.532e-017<br>Mn+3                          | 4.532e-017                                        | 2.696e-018                                   | -16.344                        | -17.569   |
| -0.136         | MnCH+                                       | 5.604e-013                                        | 4.096e-013                                   | -12.251                        | -12.388   |
| -0.136         | MnCl3-                                      | 1.502e-010                                        | 1.098e-010                                   | -9.823                         | -9.959    |
| 0.041          | MnCO3                                       | 7.837e-010                                        | 8.606e-010                                   | -9.106                         | -9.065    |
| 0.041          | MnCl2                                       | 2.329e-009                                        | 2.557e-009                                   | -8.633                         | -8.592    |
| 0.041          | MnSO4                                       | 1.389e-008                                        | 1.525e-008                                   | -7.857                         | -7.817    |
| -0.136         | MnCl+                                       | 5.142e-008                                        | 3.758e-008                                   | -7.289                         | -7.425    |
| -0.136         | MnHCO3+                                     | 1.037e-007                                        | 7.579e-008                                   | -6.984                         | -7.120    |
| -0.576         | 3.951e-00/<br>Mn+2                          | 2.228e-007                                        | 5.917e-008                                   | -6.652                         | -7.228    |
| -0.136         | MgCH+                                       | 3.359e-010                                        | 2.455e-010                                   | -9.474                         | -9.610    |
| 0.041          | MgCO3                                       | 3.995e-008                                        | 4.388e-008                                   | -7.398                         | -7.358    |
| -0.136         | MgHCO3+                                     | 5.778e-005                                        | 4.223e-005                                   | -4.238                         | -4.374    |
| 0.041          | Mg904                                       | 7.770e-005                                        | 8.533e-005                                   | -4.110                         | -4.069    |
| Mg<br>-0.523   | 9.719e-004<br>Mg+2                          | 8.364e-004                                        | 2.511e-004                                   | -3.078                         | -3.600    |
| 0.041          | KOH                                         | 2.924e-014                                        | 3.211e-014                                   | -13.534                        | -13.493   |
| -0.136         | K904-                                       | 4.793e-007                                        | 3.503e-007                                   | -6.319                         | -6.456    |
| -0.181         | 5.270€-005<br>K+                            | 5.222e-005                                        | 3.440e-005                                   | -4.282                         | -4.464    |
| 0.041          | H2                                          | 0.000e+000                                        | 0.000e+000                                   | -44.396                        | -44.355   |
| -0.545<br>H(0) | Fe_tr1H904+2                                | 6.254e-014                                        | 1.784e-014                                   | -13.204                        | -13.749   |
| 0.041          | Fe_triCL3                                   | 5.300e-012                                        | 5.820e-012                                   | -11.2/6                        | -11.235   |
| -3.405         | Fe_tri3(OH)4+5                              | 9.880e-012                                        | 3.893e-015                                   | -11.005                        | -14.410   |
| -0.136         | Fe_tri (904)2-                              | 7.854e-011                                        | 5.740e-011                                   | -10.105                        | -10.241   |
| -2.179         | Fe_tri2(OH)2+4                              | 1.593e-010                                        | 1.055e-012                                   | -9.798                         | -11.977   |
| -0.136         | Fe_tri (OH) 4-                              | 2.058e-010                                        | 1.504e-010                                   | -9.687                         | -9.823    |
| -0.136         | Fe_triCl2+                                  | 5.109e-010                                        | 3.733e-010                                   | -9.292                         | -9.428    |
| -0.545         | Fe_triCi+2                                  | 1.8/9e-009                                        | 5.362e-010                                   | -8.726                         | -9.2/1    |

| Reaction ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CC2(g)<br>Dolamite<br>Opesum<br>H2(g)<br>H2S(g)<br>H2S(g)<br>Halite<br>Hausmanite<br>C2(g)<br>Pyrodraoite<br>Pyrodraoite<br>Rhododraoite<br>Sulfur<br>p 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ccccccc} 0.55 & -0.\\ -1.44 & -18.\\ 0.28 & -4.\\ -41.21 & -44.\\ -1.51 & -0.\\ -136.92 & -137.\\ -5.92 & -4.\\ -8.92 & 52.\\ -1.10 & 24.\\ -0.79 & -2.\\ -1.10 & 24.\\ -0.79 & -3.\\ -1157 & 3.\\ -1.57 & 3.\\ -1.64 & -4.\\ -2.84 & -13.\\ -101.60 & -96.\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CC2<br>CaMg(CC3)2<br>CaSO4:2H2C<br>H2<br>H2O<br>H2S<br>NaC1<br>Mn3O4<br>Mn3O4<br>Mn3O4<br>Mn3O4<br>Mn(CH)2<br>Mn(CH)2<br>Mn02<br>S                                                                            |                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Using soluti<br>Using pure p<br>Using kineti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on 1.<br>hase assemblage 1<br>cs 1. K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l.<br>inetics defin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed in simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion 2.                                                                                                                                                                                                       |                                                                                                                                                                         |
| Kinetics 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kinetics define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d in simulati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time step: 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 seconds (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | incremented t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ime: 14400                                                                                                                                                                                                    | seconds)                                                                                                                                                                |
| Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rate name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Delta Moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reactant                                                                                                                                                                                                      |                                                                                                                                                                         |
| -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fe_di_ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5.450e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.999e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe_di                                                                                                                                                                                                         |                                                                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe_tri                                                                                                                                                                                                        |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | blage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111450 (4560)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Linge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                         |
| Delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SI log I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M<br>AP log KT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bles in as<br>Initial                                                                                                                                                                                         | semblage<br>Final                                                                                                                                                       |
| 1.363e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O2 (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.79 -3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68 -2.89 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000e+001                                                                                                                                                                                                     | 1.000e+001-                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -Solution comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | osition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C<br>Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.389e-001<br>1.476e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.389e-001<br>1.476e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cl<br>Fe_di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.367e-001<br>8.109e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.36/e-001<br>8.109e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe <u>t</u> ri<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.991e-005<br>5.270e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.991e-005<br>5.270e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mg<br>Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.719e-004<br>3.951e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.719e-004<br>3.951e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Na<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.183e-004<br>1.579e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.183e-004<br>1.579e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | đ                                                                                                                                                                                                             |                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pH<br>pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 5.433<br>= 15.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Charge<br>Adjust                                                                                                                                                                                              | e balance<br>ed to redox                                                                                                                                                |
| equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pH<br>pe<br>rity of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 5.433<br>= 15.169<br>= 0.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Charge<br>Adjust                                                                                                                                                                                              | e balance<br>ed to redox                                                                                                                                                |
| equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ<br>Ic<br>Mass c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pH<br>pe<br>nicy of water<br>nic strength<br>of water (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Charge<br>Adjust<br>001                                                                                                                                                                                       | e balance<br>red to redox                                                                                                                                               |
| equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ<br>Io<br>Mass c<br>Total alkali<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pH<br>pe<br>nicy of water<br>nic strength<br>f water (kg)<br>nity (eg/kg)<br>CO2 (mol/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e+0<br>= 2.975e-0<br>= 1.389e-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Charge<br>Adjust<br>001<br>000<br>002<br>001                                                                                                                                                                  | e balance<br>ad to radax                                                                                                                                                |
| equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ<br>Ins<br>Total alkali<br>Total<br>Tempera<br>Electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pH<br>pe<br>nic strength<br>of water (kg)<br>nity (eg/kg)<br>(CO2 (mol/kg)<br>turre (deg C)<br>balance (eg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000e+C<br>= 2.975e-C<br>= 1.389e-C<br>= 25.000<br>= 2.542e-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Charge<br>Adjust<br>001<br>002<br>001<br>114                                                                                                                                                                  | e balance<br>ed to redox                                                                                                                                                |
| equilibrium<br>Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ<br>Ic<br>Mass G<br>Total alkali<br>Total<br>Temper<br>Electrical<br>or, 100* (Cat-]An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pH<br>pe<br>vity of water<br>nic strength<br>inty (eg/kg)<br>CO2 (mol/kg)<br>iture (deg C)<br>balance (eg)<br>)/(Cat+[An])<br>Iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e+0<br>= 2.975e-0<br>= 25.000<br>= 2.542e-0<br>= 0.00<br>= 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Charge<br>Adjust<br>001<br>002<br>001<br>114                                                                                                                                                                  | e balance<br>ed to redox                                                                                                                                                |
| equilibrium<br>Percent enro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ<br>Ic<br>Mass C<br>Total alkali<br>Total<br>Tempera<br>Electrical<br>or, 100* (Cat-]An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pH<br>pe<br>nicy of water<br>mic strength<br>of water (kg)<br>mity (cg/kg)<br>c02 (mol/kg)<br>thre (deg C)<br>balance (cg)<br>(C2 (mol/kg)<br>threations<br>Total H<br>Total O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000e+C<br>= 2.975e-C<br>= 1.389e-C<br>= 2.5.000<br>= 2.522e-C<br>= 0.00<br>= 34<br>= 1.110421c<br>= 5.5877266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Charge<br>Adjust<br>001<br>000<br>002<br>001<br>114<br>\$+002<br>\$+001                                                                                                                                       | e balance<br>ed to redox                                                                                                                                                |
| equilibrium<br>Percent erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ<br>IR<br>Mess c<br>Total alkali<br>Total<br>Tempera<br>Electrical<br>or, 100* (Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pH<br>pe<br>nity of water<br>nic strength<br>of water (kg)<br>nity (cg/kg)<br>(C2 (ml/kg)<br>three (cg)<br>)/(Cat+ 2n])<br>Iterations<br>Total 0<br>Distribution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000erC<br>= 2.975e-C<br>= 25.000<br>= 2.542e-C<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>e+002<br>e+001                                                                                                                                                | e balance<br>ed to redox                                                                                                                                                |
| equilibrium<br>Percent enro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Activ<br>Is<br>Total alkali<br>Total<br>Tempera<br>Electrical<br>cr, 100* (Cat- An <br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pH<br>pe<br>nic strength<br>of water (kg)<br>002 (mol/kg)<br>202 (mol/kg                                                                                                                                                                                                                | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000e+C<br>= 2.575e-C<br>= 0.00<br>= 2.542e-C<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001                                                                                                                                                | e balance<br>ed to redox                                                                                                                                                |
| equilibrium<br>Percent erro<br><br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Activ<br>Is<br>Total alkali<br>Total<br>Impera<br>Electrical<br>or, 100* (Cat- Aa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH<br>pe<br>nic strength<br>of water (kg)<br>nity (cg/kg)<br>CD2 (mol/kg)<br>Dalance (cg)<br>)/(Cat+[An])<br>Iterations<br>Total H<br>Total O<br>Distribution c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000e+C<br>= 2.975e-C<br>= 25.000<br>= 2.542e-C<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Log                                                                                                                                         | e balance<br>ed to redox<br>I.og                                                                                                                                        |
| equilibrium<br>Percent erro<br><br>Log<br>Gamma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Activ<br>Is<br>Mass of<br>Total alkali<br>Tempera<br>Electrical<br>cr, 100* (Cat- An <br>or, 100* (Cat- An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pH<br>pe<br>nic strength<br>f water (kg)<br>of (kg)<br>(C2 (kg) | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e0<br>= 2.975e-0<br>= 2.502e-0<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e<br>ff species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Charge<br>Adjust<br>001<br>002<br>001<br>010<br>114<br>++002<br>++001<br>Log<br>Molality                                                                                                                      | e balance<br>ad to radox<br>I.og<br>Activity                                                                                                                            |
| equilibrium<br>Percent erro<br><br>Log<br>Gamma<br>-0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Activ<br>Is<br>Total alkali<br>Total<br>Total<br>Tempera<br>Electrical<br>or, 100*(Cat- An <br>or, 100*(Cat- In <br>Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pH<br>pe<br>vity of water<br>mic strength<br>of water (kg)<br>CO2 (mol/kg)<br>CO2 (mol/kg)<br>Dialance (eq)<br>Jolance (eq)<br>Jolance (eq)<br>Jolant H<br>Total 0<br>Distribution of<br>Molality<br>4.778e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000e4C<br>= 2.975e-C<br>= 2.975e-C<br>= 25.000<br>= 34<br>= 1.110421e<br>= 5.587726<br>of species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Log<br>Molality<br>-5.321                                                                                                                   | Log<br>Activity<br>-5.433                                                                                                                                               |
| equilibrium<br>Percent erro<br>Log<br>Gama<br>-0.113<br>-0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Activ<br>Is<br>Total alkali<br>Total<br>Total<br>Tempera<br>Electrical<br>or, 100*(Cat- An <br>or, 100*(Cat- An <br>Pactics<br>Heter<br>Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pH<br>pe<br>rity of water<br>mic strength<br>of water (kg)<br>(02 (mol/kg)<br>(02 (mol/kg)<br>balance (eq)<br>)/(Cat+kal)<br>Iterations<br>Total H<br>Total 0<br>Distribution of<br>Molality<br>4.778e-006<br>4.143e-009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000e-C<br>= 2.975e-C<br>= 2.975e-C<br>= 2.500<br>= 2.500<br>= 34<br>= 1.110421e<br>= 5.587726<br>of species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Log<br>Molality<br>-5.321<br>-8.383                                                                                                         | Log<br>Activity<br>-5.433<br>-8.570                                                                                                                                     |
| equilibrium<br>Percent erro<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Activ<br>Is<br>Total alkali<br>Total alkali<br>Total<br>Tempera<br>Electrical<br>or, 100*(Cat- An <br>or, 100*(Cat- An <br>Papecies<br>H+<br>CH-<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pH<br>pe<br>nity of water<br>mic strength<br>of water (kg)<br>022 (mol/kg)<br>022 (mol/kg)<br>balance (eq)<br>)/(Cat+An])<br>Iterations<br>Total 0<br>Distribution of<br>Molality<br>4.778e-006<br>4.143e-009<br>5.551e+001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.000e-C<br>= 1.389e-C<br>= 2.975e-C<br>= 2.502<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Molality<br>-5.321<br>-8.383<br>1.744                                                                                                       | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004                                                                                                                           |
| equilibrium<br>Percent erro<br><br>Log<br>Gama<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Activ<br>Ir<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total  | pH<br>pe<br>rity of water<br>mic strength<br>fwater (kg)<br>mity (eg/kg)<br>022 (mol./kg)<br>three (cdg (C)<br>fralarce (eg)<br>//Cat+[An])<br>Iterations<br>Total H<br>Total O<br>Oistribution of<br>Molality<br>4.778e-006<br>4.143e-009<br>5.551e+001<br>0.000e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.008-C<br>= 2.975e-C<br>= 1.383e-C<br>= 2.502e-C<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Charge<br>Adjust<br>000<br>002<br>001<br>114<br>+002<br>+001<br>Log<br>Molality<br>-5.321<br>-8.383<br>1.744                                                                                                  | E balance<br>ed to redox<br>Iog<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343                                                                                   |
| equilibrium<br>Percent erro<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Activ<br>Is<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total  | pH<br>pe<br>rity of water<br>mic strength<br>fwater (kg)<br>mity (eg/kg)<br>022 (mol./kg)<br>thure (deg C)<br>palaroe (eg)<br>//Cat+[An])<br>Iterations<br>Total H<br>Total O<br>Distribution of<br>Molality<br>4.778e-006<br>4.143e-009<br>5.551e+001<br>0.000e+000<br>1.093e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 2.975e-C<br>= 2.975e-C<br>= 2.502e-C<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e<br>f species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>+002<br>+001<br>Log<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961                                                                            | E balance<br>ed to redox<br>Iog<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921                                                                         |
| equilibrium<br>Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.001<br>C(4)<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Activ<br>Is<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total  | pH<br>pe<br>rity of water<br>mic strength<br>fwater (kg)<br>mity (eg/kg)<br>002 (mol/kg)<br>three (eg C)<br>relarce (eg C)<br>rotal H<br>Total 0<br>Distribution of<br>Molality<br>4.778e-006<br>4.143e-009<br>5.551e+001<br>0.000e+000<br>1.093e-001<br>2.039e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.008-C<br>= 2.975e-C<br>= 1.389e-C<br>= 2.502e-C<br>= 0.00<br>= 34<br>= 1.110421e<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.435e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Charge<br>Adjust<br>000<br>002<br>001<br>14<br>+002<br>+001<br>Log<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961<br>-1.691                                                                   | E balance<br>ed to redox<br>Iog<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843                                                               |
| equilibrium<br>Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>C(4)<br>0.041<br>-0.152<br>0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Activ<br>Ir<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total  | pH<br>pe<br>rity of water<br>mic strength<br>fowater (kg)<br>mity (eq/kg)<br>(C2 (ml/kg)<br>http:<br>(C2 (ml/kg)<br>http:<br>(C2 (ml/kg)<br>for a (kg)<br>for                                                                                                                         | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.389e-C<br>= 2.975e-C<br>= 2.975e-C<br>= 0.00<br>= 34<br>0.00<br>= 34<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001<br>0.000e+000<br>1.200e-001<br>1.435e-002<br>6.407e-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>                                                                                                                                            | E balance<br>ed to redox<br>Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193                                                     |
| equilibrium<br>Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>C(4)<br>0.041<br>-0.152<br>-0.152<br>-0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Activ<br>Ir<br>Mass of<br>Total alkali<br>Tempera<br>Electrical<br>or, 100*(Cat- An <br>Cat-<br>Species<br>H+<br>CH-<br>H2O<br>0.000e+000<br>CH4<br>1.389e-001<br>CC2<br>HCO3-<br>CaHCO3+<br>MgHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pH<br>pe<br>rity of water<br>mic strength<br>for water (kg)<br>mity (eq/kg)<br>(C2 (ml/kg)<br>htrze (cag (C)<br>(C2 (ml/kg)<br>htrze (cag (C)<br>(C2 (ml/kg)<br>ntratice<br>Total H<br>Total O<br>Distribution of<br>Molality<br>4.778e-006<br>4.143e-009<br>5.551e+001<br>0.000e+000<br>1.093e-001<br>2.039e-002<br>9.101e-003<br>5.771e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.389e-C<br>= 2.975e-C<br>= 2.975e-C<br>= 0.00<br>= 34<br>0.00<br>= 0.00<br>= 0. | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Tog<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961<br>-1.691<br>-2.041<br>-4.239                                            | E balance<br>ed to redox<br>Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375                                           |
| equilibrium<br>Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>C(4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.0152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Activ<br>Ir<br>Mass of<br>Total alkali<br>Tempera<br>Electrical<br>or, 100*(Cat- An <br>Cat-<br>Species<br>H+<br>CH-<br>H2O<br>0.0000e+000<br>CH4<br>1.389e-001<br>C02<br>HC03-<br>CatC03+<br>MgHC03+<br>Fe_diHC03+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pH<br>pe<br>rity of water<br>mic strength<br>fwater (kg)<br>mity (ed/kg)<br>(C2 (ml/kg)<br>hinre (cag )<br>(C2 training<br>trans (cag )<br>(Cat+[An])<br>Iterations<br>Total 0<br>Distribution of<br>Molality<br>4.778e-006<br>4.143e-009<br>5.551e+001<br>0.000e+000<br>1.093e-001<br>2.039e-002<br>9.101e-003<br>5.771e-005<br>2.653e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-C<br>= 1.2087e-C<br>= 1.2087e-C<br>= 1.2087e-C<br>= 1.2087e-C<br>= 1.2087e-C<br>= 2.502e-C<br>= 34<br>0.00<br>= 34<br>0.00<br>= 34<br>0.00<br>= 34<br>0.00<br>= 34<br>0.00<br>= 34<br>0.00<br>= 4.002<br>= 5.587726e<br>0.0<br>= 34<br>0.002<br>= 0.00<br>= 34<br>0.002<br>= 0.00<br>= 34<br>0.002<br>= 0.00<br>= 34<br>0.002<br>= 0.00<br>= 34<br>0.002<br>= 0.00<br>= 0.00<br>= 0.002<br>= 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961<br>-1.691<br>-2.041<br>-4.239<br>-4.576                                         | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375<br>-4.712                                                             |
| equilibrium<br>Percent error<br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>C(4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>-0.136<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Activ<br>Iso<br>Total alkalia<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pH<br>pe<br>rity of water<br>nic strength<br>for water (kg)<br>inity (eg/kg)<br>(C2 (mol/kg)<br>three (cdg C)<br>)/ (Cat+lAn])<br>Iterations<br>Total O<br>Distribution of<br>Molality<br>4.778e-006<br>4.143e-009<br>5.551e+001<br>0.000e+000<br>1.093e-001<br>2.039e-002<br>9.101e-003<br>5.771e-005<br>2.653e-005<br>9.770e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e-0<br>= 2.975e-0<br>= 2.500<br>= 2.500<br>= 2.500<br>= 34<br>= 1.11042te<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001<br>1.435e-002<br>6.407e-003<br>4.218e-005<br>1.939e-005<br>1.073e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961<br>-1.691<br>-2.041<br>-4.239<br>-4.576<br>-5.010                               | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375<br>-4.712<br>-4.969                                                   |
| equilibrium<br>Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>C(4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>-0.136<br>0.041<br>0.041<br>-0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Activ<br>Iso<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pH<br>pe<br>ricy of water<br>nic strength<br>fwater (kg)<br>nity (cg/kg)<br>thre (cg)<br>plance (cg)<br>)/(Cat+lAn)<br>Iterations<br>Total H<br>Total O<br>Distribution of<br>A.143e-009<br>5.551e+001<br>0.000e+000<br>1.093e-001<br>2.039e-002<br>9.101e-003<br>5.771e-005<br>2.653e-005<br>9.770e-006<br>2.168e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e-0<br>= 2.975e-0<br>= 2.500<br>= 2.500<br>= 2.500<br>= 34<br>= 1.110242<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001<br>1.435e-002<br>6.407e-003<br>4.218e-005<br>1.939e-005<br>1.073e-005<br>2.381e-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961<br>-1.691<br>-2.041<br>-4.239<br>-4.576<br>-5.010<br>-5.664                     | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375<br>-4.712<br>-4.969<br>-5.623                                         |
| equilibrium<br>Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>0.041<br>0.041<br>-0.152<br>-0.136<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.04 | Activ<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Tot | pH<br>pe<br>ricy of water<br>nic strength<br>fowater (kg)<br>nity (cg/kg)<br>(C2 (ml/kg)<br>(C2 (ml                                                                                                                                                                         | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e-0<br>= 2.975e-0<br>= 2.502e-0<br>= 0.00<br>= 2.502e-0<br>= 1.11042a<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001<br>1.435e-002<br>6.407e-003<br>4.218e-005<br>1.939e-005<br>1.073e-005<br>2.381e-006<br>1.826e-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961<br>-1.691<br>-2.041<br>-4.239<br>-4.576<br>-5.010<br>-5.664<br>-6.129           | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375<br>-4.712<br>-4.969<br>-5.623<br>-6.739                               |
| equilibrium<br>Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>-0.136<br>0.041<br>0.041<br>0.041<br>-0.152<br>-0.136<br>0.041<br>0.041<br>0.041<br>-0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Activ<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Tot | pH<br>pe<br>ricy of water<br>nic strength<br>fwater (kg)<br>nity (cg/kg)<br>(C2 (ml/kg)<br>(C2 (ml/                                                                                                                                                                         | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e-0<br>= 2.975e-0<br>= 2.502e-0<br>= 0.00<br>= 2.502e-0<br>= 1.11042<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001<br>1.200e-001<br>1.435e-002<br>6.407e-003<br>4.218e-005<br>1.939e-005<br>1.939e-005<br>1.939e-005<br>1.826e-007<br>7.572e-008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Charge<br>Adjust<br>001<br>002<br>001<br>114<br>++002<br>++001<br>Molality<br>-5.321<br>-8.383<br>1.744<br>-141.384<br>-0.961<br>-1.691<br>-2.041<br>-4.239<br>-4.576<br>-5.010<br>-5.664<br>-6.129<br>-6.985 | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375<br>-4.712<br>-4.969<br>-5.623<br>-6.739<br>-7.121                     |
| equilibrium<br>Percent error<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.152<br>-0.136<br>0.041<br>0.041<br>0.041<br>-0.152<br>-0.136<br>0.041<br>0.041<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Activ<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Total<br>Tot | pH<br>pe<br>ricy of water<br>nic strength<br>for water (kg)<br>nity (cg/kg)<br>(C2 (ml/kg)<br>(C2 (                                                                                                                                                                         | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e-0<br>= 2.975e-0<br>= 2.502-0<br>= 0.00<br>= 2.502-0<br>= 0.00<br>= 2.502-0<br>= 0.00<br>= 2.502-0<br>= 1.11042<br>= 5.587726c<br>of species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Charge<br>Adjust<br>001<br>000<br>002<br>001<br>114<br>+002<br>+0001<br>                                                                                                                                      | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375<br>-4.712<br>-4.969<br>-5.623<br>-6.739<br>-7.121<br>-7.228           |
| equilibrium<br>Percent error<br>Camma<br><br>Log<br>Gamma<br>-0.113<br>-0.187<br>0.000<br>C(-4)<br>0.041<br>-0.152<br>-0.152<br>-0.136<br>-0.136<br>0.041<br>-0.610<br>-0.136<br>0.041<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Activ<br>Mass of<br>Total alkali<br>Total<br>Total<br>Total<br>Total<br>Tempera<br>Electrical<br>or, 100*(Cat- An <br>Cat:<br>Species<br>H+<br>CH-<br>H2O<br>0.0000e+000<br>CH4<br>1.339e-001<br>CO2<br>HCO3-<br>Cat:<br>Cat:<br>Cat:<br>Cat:<br>Cat:<br>Cat:<br>Cat:<br>Cat:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pH<br>pe<br>ricy of water<br>nic strength<br>fwater (kg)<br>nity (cg/kg)<br>(C2 (ml/kg)<br>(C2 (ml/                                                                                                                                                                         | = 5.433<br>= 15.169<br>= 0.991<br>= 4.067e-0<br>= 1.000e-0<br>= 2.975e-0<br>= 2.502e-0<br>= 0.00<br>= 2.502e-0<br>= 1.11042a<br>= 5.587726e<br>of species<br>Activity<br>3.687e-006<br>2.691e-009<br>9.911e-001<br>1.200e-001<br>1.435e-002<br>6.407e-003<br>4.218e-005<br>1.939e-005<br>1.073e-005<br>2.381e-006<br>1.826e-007<br>7.572e-008<br>5.916e-008<br>4.375e-008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Charge<br>Adjust<br>001<br>000<br>002<br>001<br>114<br>+002<br>+0001<br>                                                                                                                                      | Log<br>Activity<br>-5.433<br>-8.570<br>-0.004<br>-141.343<br>-0.921<br>-1.843<br>-2.193<br>-4.375<br>-4.712<br>-4.969<br>-5.623<br>-6.739<br>-7.121<br>-7.228<br>-7.359 |

Nacco3- 1.372e-009 1.003e-009 -8.863 -8.999

-0.136

| 0.041            | MinCO3                       | 7.816e-010 | 8.584e-010  | -9.107   | -9.066   |
|------------------|------------------------------|------------|-------------|----------|----------|
| 0.041<br>Ca      | 1.476e-001                   |            |             |          |          |
| -0.568           | Ca+2                         | 1.293e-001 | 3.499e-002  | -0.888   | -1.456   |
| 0.041            | Ca904                        | 9.215e-003 | 1.012e-002  | -2.036   | -1.995   |
| -0.152           | CaHCO3+                      | 9.101e-003 | 6.407e-003  | -2.041   | -2.193   |
| 0.041            | CaCO3                        | 9.770e-006 | 1.073e-005  | -5.010   | -4.969   |
| -0.136           | CaHSO4+                      | 2.991e-007 | 2.186e-007  | -6.524   | -6.660   |
| -0.136           | CaCH+                        | 2.136e-009 | 1.561e-009  | -8.670   | -8.807   |
| cl               | 2.367e-001                   | 2 367e-001 | 1 559-001   | -0.626   | -0.807   |
| -0.181           | Te dicl+                     | 3 978-006  | 2 907-006   | -5.400   | _5 537   |
| -0.136           | MpC]+                        | 5 1440 009 | 3 7590 000  | 7 290    | 7 /25    |
| -0.136           | Eo triCl+2                   | 5 9290 009 | 1 6920 000  | 9 227    | 0.777    |
| -0.545           | re_unut+z                    | 0.329e-009 | 1.092e-009  | -0.227   | -0.772   |
| 0.041            | MILLZ                        | 2.3290-009 | 2.5580-009  | -8.000   | -8.392   |
| -0.136           | Fe_tricl2+                   | 1.612e-009 | 1.1/8e-009  | -8.793   | -8.929   |
| -0.136           | MnCL3-                       | 1.503e-010 | 1.098e-010  | -9.823   | -9.959   |
| 0.041            | Fe_triCL3                    | 1.672e-011 | 1.836e-011  | -10.777  | -10.736  |
| Fe_di            | 8.109e-005<br>Fe_di+2        | 4.735e-005 | 1.351e-005  | -4.325   | -4.869   |
| -0.545           | Fe_diH003+                   | 2.653e-005 | 1.939e-005  | -4.576   | -4.712   |
| -0.136           | Fe diCl+                     | 3.978e-006 | 2.907e-006  | -5.400   | -5.537   |
| -0.136           | Fe diSO4                     | 3.171e-006 | 3.482e-006  | -5.499   | -5.458   |
| 0.041            | Fe di(0)3                    | 5.387e-008 | 5.916e-008  | -7.269   | -7.228   |
| 0.041            | Fe diOH+                     | 1 571-009  | 1 1/18-009  | _8 804   | _8 9/0   |
| -0.136           | Fe ditant                    | 1 155-010  | 8 ///0=_011 | _9 937   | _10_074  |
| -0.136           | Fe di (HS)?                  | 0.000e+000 | 0.000+000   | _274_815 | _274 774 |
| 0.041            | Te_di (IIC)2                 | 0.000=:000 | 0.000-000   | 412 020  | 110 164  |
| -0.136           | re_ut(h5)5-                  | 0.00000000 | 0.00000000  | -412.020 | -412.104 |
| re_tri           | 7.991e-005<br>Fe_tri (OH) 2+ | 7.595e-005 | 5.551e-005  | -4.119   | -4.256   |
| -0.136           | Fe_triOH+2                   | 2.186e-006 | 6.236e-007  | -5.660   | -6.205   |
| -0.545           | Fe_tri(OH)3                  | 1.750e-006 | 1.922e-006  | -5.757   | -5.716   |
| 0.041            | Fe_triSO4+                   | 7.814e-009 | 5.711e-009  | -8.107   | -8.243   |
| -0.136           | Fe_tri+3                     | 6.041e-009 | 3.593e-010  | -8.219   | -9.445   |
| -1.226           | Fe_triCl+2                   | 5.929e-009 | 1.692e-009  | -8.227   | -8.772   |
| -0.545           | Fe_triCl2+                   | 1.612e-009 | 1.178e-009  | -8.793   | -8.929   |
| -0.136           | Fe_tri2(OH)2+4               | 1.580e-009 | 1.047e-011  | -8.801   | -10.980  |
| -2.179           | Fe tri(OH)4-                 | 6.448e-010 | 4.713e-010  | -9.191   | -9.327   |
| -0.136           | Fe tri3(0H)4+5               | 3.081e-010 | 1.214e-013  | -9.511   | -12,916  |
| -3.405           | Fe tri (904)2-               | 2.478e-010 | 1.811e-010  | -9.606   | -9.742   |
| -0.136           | Fe triCl3                    | 1 672-011  | 1 8360-011  | _10 777  | _10_736  |
| 0.041            | Fo trill9042                 | 1 9760 013 | 5 6390 014  | 12 704   | 13 2/0   |
| -0.545           | 0.00000000                   | 1.9708-015 | 5.0598-014  | -12.704  | -13.245  |
| n(0)             | H2                           | 0.000e+000 | 0.000e+000  | -44.396  | -44.355  |
| 0.041<br>K       | 5.270e-005                   | 5 000 005  | 2 440 005   | 4 000    | 4.400    |
| -0.181           | K+                           | 5.222e-005 | 3.4400-005  | -4.282   | -4.463   |
| -0.136           | K904-                        | 4.794e-007 | 3.5030-007  | -6.319   | -6.456   |
| 0.041            | KOH                          | 2.919e-014 | 3.206e-014  | -13.535  | -13.494  |
| Mg               | 9.719e-004<br>Mg+2           | 8.364e-004 | 2.511e-004  | -3.078   | -3.600   |
| -0.523           | Mg904                        | 7.772e-005 | 8.535e-005  | -4.109   | -4.069   |
| 0.041            | MgHCO3+                      | 5.771e-005 | 4.218e-005  | -4.239   | -4.375   |
| -0.136           | MpCO3                        | 3.984e-008 | 4.375e-008  | -7.400   | -7.359   |
| 0.041            | MpCH+                        | 3.354e-010 | 2.451e-010  | -9.474   | -9.611   |
| -0.136<br>Mn(2)  | 3.951e-007                   |            |             |          |          |
| -0.576           | Mn+2                         | 2.229e-007 | 5.919e-008  | -6.652   | -7.228   |
| -0.136           | MnHCO3+                      | 1.036e-007 | 7.572e-008  | -6.985   | -7.121   |
| _0 136           | MnCl+                        | 5.144e-008 | 3.759e-008  | -7.289   | -7.425   |
| 0.041            | MnSO4                        | 1.390e-008 | 1.526e-008  | -7.857   | -7.816   |
| 0.041            | MnCl2                        | 2.329e-009 | 2.558e-009  | -8.633   | -8.592   |
| 0.041            | Mn003                        | 7.816e-010 | 8.584e-010  | -9.107   | -9.066   |
| 0.120            | MnCl3-                       | 1.503e-010 | 1.098e-010  | -9.823   | -9.959   |
| -0.136           | MnOH+                        | 5.596e-013 | 4.090e-013  | -12.252  | -12.388  |
| -∪.⊥36<br>Man(3) | 4.541e-017                   |            |             |          |          |
| -1.226           | Min+3                        | 4.541e-017 | 2.701e-018  | -16.343  | -17.568  |

| Na             | 4.183e-004         | 1 132-001     | 2 951-001  | _3 384   | _3 530   |
|----------------|--------------------|---------------|------------|----------|----------|
| -0.146         | NECO               | 2 0220 004    | 2.1440.005 | E E22    | 5.550    |
| -0.136         | 14204-             | 2.5558-000    | 2.1446-000 | -5.555   | -5.005   |
| 0.041          | Nahoos             | 2.1080-000    | 2.3810-000 | -5.004   | -5.023   |
| -0.136         | NaLO3-             | 1.3/2e-009    | 1.003e-009 | -8.863   | -8.999   |
| 0.041          | NaCH               | 4.7/2e-013    | 5.240e-013 | -12.321  | -12.281  |
| O(0)           | 3.828e-004<br>02   | 1.914e-004    | 2.102e-004 | -3.718   | -3.677   |
| 0.041<br>S(-2) | 0.000e+000         |               |            |          |          |
| 0.041          | H2S                | 0.000e+000    | 0.000e+000 | -137.960 | -137.919 |
| -0.187         | HS-                | 0.000e+000    | 0.000e+000 | -139.240 | -139.427 |
| -0.635         | S-2                | 0.000e+000    | 0.000e+000 | -146.277 | -146.912 |
| 0.041          | Fe_di(HS)2         | 0.000e+000    | 0.000e+000 | -274.815 | -274.774 |
| 0.126          | Fe_di(HS)3-        | 0.000e+000    | 0.000e+000 | -412.028 | -412.164 |
| S(6)           | 1.579e-002         | 0.215-0.02    | 1 012- 002 | 2 026    | 1 005    |
| 0.041          | Ca304              | 9.2150-003    | 1.0120-002 | -2.050   | -1.990   |
| -0.651         | 504-2              | 6.490e-003    | 1.4508-005 | -2.188   | -2.839   |
| 0.041          | MgSO4              | 7.772e-005    | 8.535e-005 | -4.109   | -4.069   |
| 0.041          | Fe_diS04           | 3.171e-006    | 3.482e-006 | -5.499   | -5.458   |
| -0.136         | NaSO4-             | 2.933e-006    | 2.144e-006 | -5.533   | -5.669   |
| -0.136         | H904-              | 7.110e-007    | 5.196e-007 | -6.148   | -6.284   |
| -0.136         | K904-              | 4.794e-007    | 3.503e-007 | -6.319   | -6.456   |
| -0.136         | CaHSO4+            | 2.991e-007    | 2.186e-007 | -6.524   | -6.660   |
| 0.041          | MnSO4              | 1.390e-008    | 1.526e-008 | -7.857   | -7.816   |
| 0.120          | Fe_triSO4+         | 7.814e-009    | 5.711e-009 | -8.107   | -8.243   |
| -0.136         | Fe_tri(SO4)2-      | 2.478e-010    | 1.811e-010 | -9.606   | -9.742   |
| -0.136         | Fe <u>diH</u> 904+ | 1.155e-010    | 8.440e-011 | -9.937   | -10.074  |
| -0.136         | Fe_triH904+2       | 1.976e-013    | 5.639e-014 | -12.704  | -13.249  |
| -0.545         |                    |               |            |          |          |
|                |                    | -Saturation i | ndices     |          |          |
|                | Phase              | SI log I      | AP log KT  |          |          |

| Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SI log I                                                                                                                                                                                                                             | AP log KT                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arbage<br>Arbagenite<br>Calcite<br>Calcite<br>C44(g)<br>C02(g)<br>Dolomite<br>Cypsum<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H20(g)<br>H | 51 100 1<br>0.07 -4.<br>0.29 -8.<br>-138.48 -141.<br>0.55 -0.<br>-1.44 -188.<br>0.28 -8.<br>-41.21 -44.<br>-41.21 -44.<br>-1.51 -0.<br>-1.36.92 -137.<br>-5.92 -4.<br>-8.92 -52.<br>-1.11 24.<br>-0.79 -3.<br>3.46 44.<br>-2.84 -13. | $\begin{array}{rrrrr} & -100 & \mathrm{K}^{-1} \\ 29 & -4.36 \\ 19 & -8.34 \\ 19 & -8.48 \\ 34 & -2.86 \\ 92 & -1.47 \\ 53 & -17.09 \\ 30 & -4.58 \\ 63 & -3.15 \\ 36 & -3.15 \\ 30 & 1.51 \\ 92 & -1.00 \\ 34 & 1.58 \\ 11 & 61.03 \\ 23 & 25.34 \\ 68 & -2.89 \\ 63 & 15.20 \\ 63 & 15.20 \\ 84 & 41.38 \\ 97 & -11.13 \end{array}$ | CaSO4<br>CaCO3<br>CaCO3<br>Cf4<br>Cf2<br>CaSO4:2:H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>MaCL<br>MaOCH<br>O2<br>MaOCH<br>O2<br>MaCO3<br>MaCO3<br>MaCO3 |
| Sulfur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -101.60 -96.                                                                                                                                                                                                                         | 71 4.88                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                        |

Reaction step 5.

Na

Using solution 1. Using pure phase assemblage 1. Using kinetics 1. Kinetics defined in simulation 2. Kinetics 1. Kinetics defined in simulation 2.

| Coefficient | Rate name       | Delta Moles Total Mole | s Reactant          |
|-------------|-----------------|------------------------|---------------------|
| 1           | Fe <u>di</u> ax | -5.198e-005 9.999e-00  | 1 Fe_di             |
| -1          |                 |                        | Fe_tri              |
|             |                 | Phase assemblage       |                     |
|             |                 |                        | Moles in assemblage |

| Delta |            | Phase  | SI       | log IAP   | log KT | Initial    | Final       |
|-------|------------|--------|----------|-----------|--------|------------|-------------|
|       | 1.300e-005 | 02 (g) | -0.78    | -3.68     | -2.89  | 1.000e+001 | 1.000e+001- |
|       |            |        | Solution | ı canposi | tion   |            |             |

| Elements                                                 | Molality                                                                                                     | Moles                                                                                                                      |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| C<br>Ca<br>Cl<br>Fe_Cii<br>Fe_tri<br>K<br>Mg<br>Mn<br>Ma | 1.389e-001<br>1.476e-001<br>2.367e-001<br>2.911e-005<br>1.319e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004 | 1.389e-001<br>1.476e-001<br>2.367e-001<br>2.911e-005<br>1.319e-004<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004 |

|                            | S                                                                                           | 1.579e-002                                                                                                                                                              | 1.579e-002                                                                                                                                            |                                                               |             |
|----------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|
|                            | D                                                                                           | escription of                                                                                                                                                           | solution                                                                                                                                              |                                                               |             |
|                            |                                                                                             | pH                                                                                                                                                                      | = 5.433                                                                                                                                               | Charge                                                        | balance     |
| equilibrium<br>Percent err | Activ<br>Ic<br>Mass c<br>Total alkali<br>Total<br>Tempera<br>Electrical<br>or, 100*(Cat- An | pe<br>rity of water<br>nic strength<br>f water (kg)<br>nity (eg/kg)<br>CO2 (mol/kg)<br>ture (deg C)<br>balance (eg)<br>)/(Cat+ An )<br>Iterations<br>Total H<br>Total O | = 15.170<br>= 0.991<br>= 4.067e-C<br>= 1.000e+C<br>= 2.980e-C<br>= 1.389e-C<br>= 25.000<br>= 2.537e-C<br>= 0.00<br>= 85<br>= 1.110421e<br>= 5.587729e | Adjust<br>101<br>100<br>102<br>101<br>114<br>\$+002<br>\$+001 | ed to redax |
|                            | T                                                                                           | istribution c                                                                                                                                                           | f species                                                                                                                                             |                                                               |             |
|                            |                                                                                             |                                                                                                                                                                         |                                                                                                                                                       |                                                               |             |
| Log                        |                                                                                             |                                                                                                                                                                         |                                                                                                                                                       | Log                                                           | Log         |
| Gamma                      | Species                                                                                     | Molality                                                                                                                                                                | Activity                                                                                                                                              | Molality                                                      | Activity    |
|                            | H+                                                                                          | 4.786e-006                                                                                                                                                              | 3.693e-006                                                                                                                                            | -5.320                                                        | -5.433      |
| -0.113                     | OH-                                                                                         | 4.137e-009                                                                                                                                                              | 2.687e-009                                                                                                                                            | -8.383                                                        | -8.571      |
| -0.187                     | H2O                                                                                         | 5 551e+001                                                                                                                                                              | 9 911-001                                                                                                                                             | 1 744                                                         | -0.004      |
| 0.000                      | 0.000+000                                                                                   | 5.55101001                                                                                                                                                              | J.JIIC 001                                                                                                                                            | 1./11                                                         | 0.001       |
| 0.041                      | CH4                                                                                         | 0.000e+000                                                                                                                                                              | 0.000e+000                                                                                                                                            | -141.384                                                      | -141.343    |
| 0.0/1                      | 02                                                                                          | 1.094e-001                                                                                                                                                              | 1.201e-001                                                                                                                                            | -0.961                                                        | -0.920      |
| -0 152                     | HCO3-                                                                                       | 2.036e-002                                                                                                                                                              | 1.434e-002                                                                                                                                            | -1.691                                                        | -1.844      |
| 0.150                      | CaHCO3+                                                                                     | 9.090e-003                                                                                                                                                              | 6.399e-003                                                                                                                                            | -2.041                                                        | -2.194      |
| 0.120                      | MgHCO3+                                                                                     | 5.765e-005                                                                                                                                                              | 4.213e-005                                                                                                                                            | -4.239                                                        | -4.375      |
| -0.136                     | CaCO3                                                                                       | 9.743e-006                                                                                                                                                              | 1.070e-005                                                                                                                                            | -5.011                                                        | -4.971      |
| 0.041                      | Fe_diHCO3+                                                                                  | 9.515e-006                                                                                                                                                              | 6.954e-006                                                                                                                                            | -5.022                                                        | -5.158      |
| -0.136                     | NaHCO3                                                                                      | 2.166e-006                                                                                                                                                              | 2.379e-006                                                                                                                                            | -5.664                                                        | -5.624      |
| 0.041                      | 003-2                                                                                       | 7.412e-007                                                                                                                                                              | 1.820e-007                                                                                                                                            | -6.130                                                        | -6.740      |
| -0.610                     | MnHCO3+                                                                                     | 1.035e-007                                                                                                                                                              | 7.565e-008                                                                                                                                            | -6.985                                                        | -7.121      |
| -0.136                     | MgCO3                                                                                       | 3.973e-008                                                                                                                                                              | 4.363e-008                                                                                                                                            | -7.401                                                        | -7.360      |
| 0.041                      | Fe_diC03                                                                                    | 1.929e-008                                                                                                                                                              | 2.118e-008                                                                                                                                            | -7.715                                                        | -7.674      |
| 0.041                      | NaCO3-                                                                                      | 1.369e-009                                                                                                                                                              | 1.000e-009                                                                                                                                            | -8.864                                                        | -9.000      |
| -0.136                     | MinCO3                                                                                      | 7.797e-010                                                                                                                                                              | 8.562e-010                                                                                                                                            | -9.108                                                        | -9.067      |
| 0.041<br>Ca                | 1.476e-001                                                                                  | 1 293-001                                                                                                                                                               | 3 499-002                                                                                                                                             | -0.888                                                        | -1 456      |
| -0.568                     | Ca904                                                                                       | 9 216-003                                                                                                                                                               | 1 012-002                                                                                                                                             | -2 035                                                        | _1 995      |
| 0.041                      | C=1003+                                                                                     | 9 0905 003                                                                                                                                                              | 6 3000 003                                                                                                                                            | 2.000                                                         | 2 104       |
| -0.152                     | Cances+                                                                                     | 9.0908-005                                                                                                                                                              | 1 070- 005                                                                                                                                            | -2.041                                                        | -2.134      |
| 0.041                      | Calus                                                                                       | 9.745e-006                                                                                                                                                              | 1.070e-005                                                                                                                                            | -5.011                                                        | -4.9/1      |
| -0.136                     | CaHSO4+                                                                                     | 2.9966-007                                                                                                                                                              | 2.1908-007                                                                                                                                            | -6.523                                                        | -6.660      |
| -0.136<br>Cl               | 2.367e-001                                                                                  | 2.1328-009                                                                                                                                                              | 1.5580-009                                                                                                                                            | -8.6/1                                                        | -8.807      |
| -0.181                     | CI-                                                                                         | 2.367e-001                                                                                                                                                              | 1.559e-001                                                                                                                                            | -0.626                                                        | -0.807      |
| -0.136                     | re <u>d</u> iCl+                                                                            | 1.428e-006                                                                                                                                                              | 1.044e-006                                                                                                                                            | -5.845                                                        | -5.981      |
| -0.136                     | MnC1+                                                                                       | 5.146e-008                                                                                                                                                              | 3.761e-008                                                                                                                                            | -7.289                                                        | -7.425      |
| -0.545                     | re_triCl+2                                                                                  | 9.818e-009                                                                                                                                                              | 2.801e-009                                                                                                                                            | -8.008                                                        | -8.553      |
| -0.136                     | re_triCl2+                                                                                  | 2.669e-009                                                                                                                                                              | 1.950e-009                                                                                                                                            | -8.574                                                        | -8.710      |
| 0.041                      | MhCL2                                                                                       | 2.330e-009                                                                                                                                                              | 2.559e-009                                                                                                                                            | -8.633                                                        | -8.592      |
| -0.136                     | MnCL3-                                                                                      | 1.504e-010                                                                                                                                                              | 1.099e-010                                                                                                                                            | -9.823                                                        | -9.959      |
| 0.041<br>Fe_di             | Fe_triCl3<br>2.911e-005                                                                     | 2.769e-011                                                                                                                                                              | 3.041e-011                                                                                                                                            | -10.558                                                       | -10.517     |
| -0.545                     | Fe_di+2                                                                                     | 1.700e-005                                                                                                                                                              | 4.851e-006                                                                                                                                            | -4.769                                                        | -5.314      |
| -0.136                     | Fe_diHCO3+                                                                                  | 9.515e-006                                                                                                                                                              | 6.954e-006                                                                                                                                            | -5.022                                                        | -5.158      |
| -0.136                     | Fe_diCl+                                                                                    | 1.428e-006                                                                                                                                                              | 1.044e-006                                                                                                                                            | -5.845                                                        | -5.981      |
| 0.041                      | Fe_diSO4                                                                                    | 1.139e-006                                                                                                                                                              | 1.251e-006                                                                                                                                            | -5.944                                                        | -5.903      |
| 0.041                      | Fe_diCO3                                                                                    | 1.929e-008                                                                                                                                                              | 2.118e-008                                                                                                                                            | -7.715                                                        | -7.674      |
| -0.136                     | Fe_diOH+                                                                                    | 5.633e-010                                                                                                                                                              | 4.117e-010                                                                                                                                            | -9.249                                                        | -9.385      |
| -0.136                     | Fe_diH904+                                                                                  | 4.154e-011                                                                                                                                                              | 3.036e-011                                                                                                                                            | -10.382                                                       | -10.518     |
| 0.041                      | Fe_di(HS)2                                                                                  | 0.000e+000                                                                                                                                                              | 0.000e+000                                                                                                                                            | -275.258                                                      | -275.217    |
| -0.136                     | Fe <u>di</u> (HS)3-                                                                         | 0.000e+000                                                                                                                                                              | 0.000e+000                                                                                                                                            | -412.471                                                      | -412.607    |
| Fe_tri<br>-0.136           | 1.319e-004<br>Fe_tri(OH)2+                                                                  | 1.253e-004                                                                                                                                                              | 9.161e-005                                                                                                                                            | -3.902                                                        | -4.038      |
| -0.545                     | Fe_tri0H+2                                                                                  | 3.614e-006                                                                                                                                                              | 1.031e-006                                                                                                                                            | -5.442                                                        | -5.987      |
|                            |                                                                                             |                                                                                                                                                                         |                                                                                                                                                       |                                                               |             |

|                 | Fe_tri(OH)3                 | 2.884e-006    | 3.167e-006 | -5.540   | -5.499   |
|-----------------|-----------------------------|---------------|------------|----------|----------|
| 0.041           | Fe_triSO4+                  | 1.294e-008    | 9.457e-009 | -7.888   | -8.024   |
| -0.136          | Fe_tri+3                    | 1.000e-008    | 5.949e-010 | -8.000   | -9.226   |
| -1.226          | Fe triCl+2                  | 9.818e-009    | 2.801e-009 | -8.008   | -8.553   |
| -0.545          |                             | 4.318e-009    | 2.860e-011 | -8.365   | -10.544  |
| -2.179          | Fe triCl2+                  | 2.669e-009    | 1.950e-009 | -8.574   | -8.710   |
| -0.136          | Fe tri3(0H)/4+5             | 1 390-009     | 5 /7/0-013 | _8 .857  | _12 262  |
| -3.405          | Te_cris(CI)4+5              | 1.061-000     | 7 7520 010 | 0.007/   | 0 111    |
| -0.136          | Fe_tri (GO() 2              | 1.0010-009    | 7.7528-010 | -0.9/4   | -9.111   |
| -0.136          | Fe_tr1(504)2-               | 4.1040-010    | 3.000e-010 | -9.387   | -9.523   |
| 0.041           | Fe_trici3                   | 2.769e-011    | 3.0410-011 | -10.558  | -10.517  |
| -0.545<br>H(0)  | Fe_triH904+2<br>0.000e+000  | 3.2/8e-013    | 9.353e-014 | -12.484  | -13.029  |
| 0.041<br>K      | H2<br>5.270e-005            | 0.000e+000    | 0.000e+000 | -44.396  | -44.355  |
| -0.181          | K+                          | 5.222e-005    | 3.440e-005 | -4.282   | -4.463   |
| -0.136          | K904-                       | 4.794e-007    | 3.504e-007 | -6.319   | -6.455   |
| 0.041<br>Mg     | КОН<br>9.719е-004           | 2.915e-014    | 3.201e-014 | -13.535  | -13.495  |
| -0.522          | Mg+2                        | 8.365e-004    | 2.512e-004 | -3.078   | -3.600   |
| 0.041           | Mg904                       | 7.773e-005    | 8.536e-005 | -4.109   | -4.069   |
| _0 136          | MgHCO3+                     | 5.765e-005    | 4.213e-005 | -4.239   | -4.375   |
| 0.041           | MgCO3                       | 3.973e-008    | 4.363e-008 | -7.401   | -7.360   |
| 0.120           | MgCH+                       | 3.349e-010    | 2.447e-010 | -9.475   | -9.611   |
| -0.136<br>Mn(2) | 3.951e-007                  | 2 230-007     | 5 921-008  | -6 652   | _7 228   |
| -0.576          | Melinia.                    | 1 0350 007    | 7 5650 000 | 6 995    | 7 121    |
| -0.136          | MIRLOST                     | E 14C- 000    | 7.3050-000 | -0.905   | -7.121   |
| -0.136          | MICI+                       | 1 200 000     | 1.507.000  | -7.209   | -7.423   |
| 0.041           | Mn304                       | 1.390e-008    | 1.52/e-008 | -/.85/   | -7.816   |
| 0.041           | MnC12                       | 2.330e-009    | 2.559e-009 | -8.633   | -8.592   |
| 0.041           | MhCO3                       | '/.'/9/e-010  | 8.562e-010 | -9.108   | -9.067   |
| -0.136          | MnCl3-                      | 1.504e-010    | 1.099e-010 | -9.823   | -9.959   |
| -0.136          | MnCH+                       | 5.589e-013    | 4.085e-013 | -12.253  | -12.389  |
| Mn(3)<br>-1.226 | 4.550e-017<br>Mn+3          | 4.550e-017    | 2.707e-018 | -16.342  | -17.568  |
| Na              | 4.183e-004<br>Na+           | 4.132e-004    | 2.951e-004 | -3.384   | -3.530   |
| -0.146          | NaSO4-                      | 2.933e-006    | 2.144e-006 | -5.533   | -5.669   |
| -0.136          | NaHCO3                      | 2.166e-006    | 2.379e-006 | -5.664   | -5.624   |
| 0.041           | NB(103-                     | 1 369-009     | 1 000-009  | -8 864   | -9.000   |
| -0.136          | NHON                        | 4 7640 013    | 5 2320 013 | 12 322   | 12 201   |
| 0.041<br>O(0)   | 3.828e-004                  | 1 91/0-00/    | 2 102-004  | _3 718   | -3 677   |
| 0.041<br>S(-2)  | 0.000e+000                  | 0.000~+000    | 0.000-+000 | 137 059  | 137 019  |
| 0.041           | 120                         | 0.000-000     | 0.000-000  | 120.000  | 120 427  |
| -0.187          | 10-<br>10-                  | 0.000000      | 0.000000   | 146 000  | 146 010  |
| -0.635          | 5-2                         | 0.000000000   | 0.0000+000 | -140.277 | -140.912 |
| 0.041           | Fe_d1 (HS) 2                | 0.000e+000    | 0.000e+000 | -2/5.258 | -2/5.21/ |
| -0.136<br>S(6)  | Fe_d1 (HS) 3-<br>1.579e-002 | 0.000e+000    | 0.000e+000 | -412.471 | -412.607 |
| 0.041           | Ca504                       | 9.216e-003    | 1.012e-002 | -2.035   | -1.995   |
| -0.651          | SO4-2                       | 6.490e-003    | 1.450e-003 | -2.188   | -2.839   |
| 0.041           | Mg904                       | 7.773e-005    | 8.536e-005 | -4.109   | -4.069   |
| -0.136          | Na904-                      | 2.933e-006    | 2.144e-006 | -5.533   | -5.669   |
| 0.041           | Fe_diSO4                    | 1.139e-006    | 1.251e-006 | -5.944   | -5.903   |
| -0.136          | HSO4-                       | 7.123e-007    | 5.206e-007 | -6.147   | -6.284   |
| -0.136          | K904-                       | 4.794e-007    | 3.504e-007 | -6.319   | -6.455   |
| _0 136          | CaHSO4+                     | 2.996e-007    | 2.190e-007 | -6.523   | -6.660   |
| 0.041           | MnSO4                       | 1.390e-008    | 1.527e-008 | -7.857   | -7.816   |
| 0.120           | Fe_triSO4+                  | 1.294e-008    | 9.457e-009 | -7.888   | -8.024   |
| -0.130          | Fe_tri(SO4)2-               | 4.104e-010    | 3.000e-010 | -9.387   | -9.523   |
| -0.136          | Fe_diH904+                  | 4.154e-011    | 3.036e-011 | -10.382  | -10.518  |
| -0.136          | Fe_triH904+2                | 3.278e-013    | 9.353e-014 | -12.484  | -13.029  |
| -0.545          |                             |               |            |          |          |
|                 |                             | -Saturation i | ndices     |          |          |

| Phase         | SI      | log IAP | log KT |            |
|---------------|---------|---------|--------|------------|
| Anhydrite     | 0.07    | -4.29   | -4.36  | Ca904      |
| Aragonite     | 0.14    | -8.20   | -8.34  | CaCO3      |
| Calcite       | 0.28    | -8.20   | -8.48  | CaCO3      |
| CH4 (q)       | -138.48 | -141.34 | -2.86  | CH4        |
| CC2 (g)       | 0.55    | -0.92   | -1.47  | CC2        |
| Dolomite      | -1.45   | -18.54  | -17.09 | CaMg(003)2 |
| Gypsum        | 0.28    | -4.30   | -4.58  | Ca904:2H20 |
| H2 (g)        | -41.21  | -44.36  | -3.15  | H2         |
| H2O(g)        | -1.51   | -0.00   | 1.51   | H2O        |
| H2S(g)        | -136.92 | -137.92 | -1.00  | H2S        |
| Halite        | -5.92   | -4.34   | 1.58   | NaCl       |
| Hausmannite   | -8.93   | 52.10   | 61.03  | Mn304      |
| Manganite     | -1.11   | 24.23   | 25.34  | MinOOH     |
| 02 (g)        | -0.78   | -3.68   | -2.89  | 02         |
| Pyrochroite   | -11.57  | 3.63    | 15.20  | Min (OH) 2 |
| Pyrolusite    | 3.46    | 44.84   | 41.38  | MinO2      |
| Rhodochrosite | -2.84   | -13.97  | -11.13 | MinCO3     |
| Sulfur        | -101.59 | -96.71  | 4.88   | S          |

Reaction step 6.

-0.136

0.041

CaCO3

WARNING: Element Fe di has negative moles in solution, -4.123295e-006. Erroneous mole balance occurs as moles are added to produce zero moles. Usually caused by KINETICS, REACTION, or diffuse layer calculation. calculation. May be due to large time steps in early part of KINETICS simulation or negative concentrations in the diffuse layer. Using solution 1. Using purphase assemblage 1. Using kinetics 1. Kinetics defined in simulation 2. Kinetics 1. Kinetics defined in simulation 2. Time step: 50400 seconds (Incremented time: 86400 seconds) Delta Moles Total Moles Reactant Rate name Coefficient Fe\_di\_ax -2.642e-005 9.998e-001 Fe\_di -1 Fe\_tri 1 -Phase assemblage-Moles in assemblage SI log IAP log KT Initial Final Phase Delta 02 (g) -0.78 -3.68 -2.89 1.000e+001 1.000e+001-6.607e-006 -Solution composition---Elements Molality Moles 
 1.389e-001
 1.389e-001

 1.476e-001
 1.476e-001

 2.367e-001
 2.367e-001

 2.681e-005
 2.681e-006

 1.583e-004
 1.583e-004

 5.270e-005
 5.270e-005

 9.719e-004
 9.719e-004

 3.951e-007
 4.138e-004

 4.138e-004
 4.138e-004

 5.70e-005
 2.578e-002
 C Ca Cl Fe\_di Fe\_tri K Mg Ma Na S -Description of solutionpH = 5.432 pe = 15.170 Charge balance Adjusted to redox equilibrium equilibrium Activity of water = Ionic strength = Mass of water (kg) = Total alkalinity (eg/kg) = Total (CO2 (mol/kg) = Tamperature (kg C) = Electrical balance (eg) = Percent error, 100\*(Cat-[An])/(Cat+[An]) = Terations = 0.991  $\begin{array}{rcl} = & 0.991 \\ = & 4.066e-001 \\ = & 1.000e+000 \\ = & 2.983e-002 \\ = & 1.389e-001 \\ = & 25.000 \\ = & 1.721e-013 \\ = & 0.00 \\ = & 85 \\ = & 1.110(21e+0) \end{array}$ Total H = 1.110421e+002 Total 0 = 5.587730e+001 -Distribution of species-Log Log Log Species Molality Activity Molality Activity Gamma H+ 4.790e-006 3.696e-006 -5.320 -5.432 -0.113 OH-4.133e-009 2.684e-009 -8.384 -8.571 -0.187 H2O 5.551e+001 9.911e-001 1.744 -0.004 0.000 C(-4) 0.000e+000 CH4 0.000e+000 0.000e+000 -141.384 -141.343 0.041 C(4) 1.389e-001 002 -0.961 1.094e-001 1.201e-001 -0.920 0.041 HCO3-2.035e-002 1.433e-002 -1.691 -1.844 -0.152 CaHCO3+ 9.085e-003 6.396e-003 -2.042 -2.194 -0.152 MgHCO3+ 5.761e-005 4.211e-005 -4.239 -4.376

9.730e-006 1.068e-005

-5.012

-4.971

| 0.041                                        | NaHCO3                                                     | 2.165e-006                                           | 2.377e-006                                           | -5.665                               | -5.624                               |
|----------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------|
| 0.041                                        | Fe_diH003+                                                 | 8.762e-007                                           | 6.403e-007                                           | -6.057                               | -6.194                               |
| -0.130                                       | 003-2                                                      | 7.401e-007                                           | 1.818e-007                                           | -6.131                               | -6.740                               |
| -0.010                                       | MinHCO3+                                                   | 1.035e-007                                           | 7.562e-008                                           | -6.985                               | -7.121                               |
| -0.130                                       | MgCO3                                                      | 3.967e-008                                           | 4.357e-008                                           | -7.401                               | -7.361                               |
| 0.041                                        | Fe_diC03                                                   | 1.775e-009                                           | 1.949e-009                                           | -8.751                               | -8.710                               |
| 0.041                                        | NaCO3-                                                     | 1.367e-009                                           | 9.987e-010                                           | -8.864                               | -9.001                               |
| -0.130                                       | MinCO3                                                     | 7.787e-010                                           | 8.551e-010                                           | -9.109                               | -9.068                               |
| Ca                                           | 1.476e-001                                                 | 1 202- 001                                           | 2 400- 002                                           | 0 000                                | 1 /56                                |
| -0.568                                       | Ca#2                                                       | 0.217-002                                            | 1 012- 002                                           | -0.000                               | -1.400                               |
| 0.041                                        | Callon                                                     | 9.21/0-003                                           | 6 2060 002                                           | 2.035                                | 2 104                                |
| -0.152                                       | C-002                                                      | 9.0000-005                                           | 1 060- 005                                           | -2.042                               | -2.194                               |
| 0.041                                        | Callford                                                   | 2,000-,007                                           | 2 102- 007                                           | -5.012                               | -4.971                               |
| -0.136                                       | Canso4+                                                    | 2.3350-007                                           | 1 5570 000                                           | -0.525                               | 0.000                                |
| -0.136                                       | 0.207-001                                                  | 2.1318-009                                           | 1.00/e-009                                           | -0.0/2                               | -0.000                               |
| 0.101                                        | 2.36/e-001<br>Cl-                                          | 2.367e-001                                           | 1.559e-001                                           | -0.626                               | -0.807                               |
| -0.181                                       | Fe_diCl+                                                   | 1.316e-007                                           | 9.618e-008                                           | -6.881                               | -7.017                               |
| -0.130                                       | MnCl+                                                      | 5.147e-008                                           | 3.761e-008                                           | -7.288                               | -7.425                               |
| -0.136                                       | Fe_triCl+2                                                 | 1.180e-008                                           | 3.368e-009                                           | -7.928                               | -8.473                               |
| -0.545                                       | Fe_triCl2+                                                 | 3.209e-009                                           | 2.345e-009                                           | -8.494                               | -8.630                               |
| -0.136                                       | MnCl2                                                      | 2.331e-009                                           | 2.560e-009                                           | -8.632                               | -8.592                               |
| 0.041                                        | MnCl3-                                                     | 1.504e-010                                           | 1.099e-010                                           | -9.823                               | -9.959                               |
| -0.136                                       | Fe_triCl3                                                  | 3.329e-011                                           | 3.656e-011                                           | -10.478                              | -10.437                              |
| 0.041<br>Fe_di                               | 2.681e-006                                                 | 1 5 67 000                                           | 4 470 007                                            | 5 005                                | 6 250                                |
| -0.545                                       | Fe <u>d</u> 1+2                                            | 1.56/e-006                                           | 4.4/0e-00/                                           | -5.805                               | -6.350                               |
| -0.136                                       | Fe <u>diHCU3</u> +                                         | 8.762e-007                                           | 6.403e-007                                           | -6.057                               | -6.194                               |
| -0.136                                       | Fe_diCl+                                                   | 1.316e-007                                           | 9.618e-008                                           | -6.881                               | -7.017                               |
| 0.041                                        | Fe_diS04                                                   | 1.049e-007                                           | 1.152e-007                                           | -6.979                               | -6.938                               |
| 0.041                                        | Fe <u>d</u> icus                                           | 1.7/5e-009                                           | 1.949e-009                                           | -8.751                               | -8.710                               |
| -0.136                                       | Fe_diOH+                                                   | 5.186e-011                                           | 3.790e-011                                           | -10.285                              | -10.421                              |
| -0.136                                       | Fe_diH904+                                                 | 3.831e-012                                           | 2.800e-012                                           | -11.417                              | -11.553                              |
| 0.041                                        | Fe_di(HS)2                                                 | 0.000e+000                                           | 0.000e+000                                           | -2/6.293                             | -276.252                             |
| -0.136                                       | Fe_d1 (HS) 3-                                              | 0.00000000                                           | 0.00000+000                                          | -413.505                             | -413.641                             |
| Fe <u>t</u> ri                               | 1.583e-004<br>Fe_tri(OH)2+                                 | 1.505e-004                                           | 1.100e-004                                           | -3.823                               | -3.959                               |
| -0.136                                       | Fe_triOH+2                                                 | 4.341e-006                                           | 1.238e-006                                           | -5.362                               | -5.907                               |
| -0.545                                       | Fe_tri(OH)3                                                | 3.459e-006                                           | 3.798e-006                                           | -5.461                               | -5.420                               |
| 0.041                                        | Fe <u>tri</u> 904+                                         | 1.556e-008                                           | 1.137e-008                                           | -7.808                               | -7.944                               |
| -0.136                                       | Fe_tri+3                                                   | 1.203e-008                                           | 7.153e-010                                           | -7.920                               | -9.146                               |
| -1.226                                       | Fe_triCl+2                                                 | 1.180e-008                                           | 3.368e-009                                           | -7.928                               | -8.473                               |
| -0.545                                       | Fe_tri2(OH)2+4                                             | 6.232e-009                                           | 4.128e-011                                           | -8.205                               | -10.384                              |
| -2.179                                       | Fe_triCl2+                                                 | 3.209e-009                                           | 2.345e-009                                           | -8.494                               | -8.630                               |
| -0.136                                       | Fe_tri3(OH)4+5                                             | 2.407e-009                                           | 9.483e-013                                           | -8.619                               | -12.023                              |
| -3.405                                       | Fe_tri (OH) 4-                                             | 1.271e-009                                           | 9.289e-010                                           | -8.896                               | -9.032                               |
| -0.136                                       | Fe_tri(SO4)2-                                              | 4.935e-010                                           | 3.607e-010                                           | -9.307                               | -9.443                               |
| -0.136                                       | Fe_triCl3                                                  | 3.329e-011                                           | 3.656e-011                                           | -10.478                              | -10.437                              |
| 0.041                                        | Fe_triH904+2                                               | 3.945e-013                                           | 1.125e-013                                           | -12.404                              | -12.949                              |
| -0.545<br>H(0)                               | 0.000e+000                                                 |                                                      |                                                      |                                      |                                      |
| 0.041                                        | H2                                                         | 0.00000000                                           | 0.00000+000                                          | -44.396                              | -44.355                              |
| K                                            | 5.2/0e-005<br>K+                                           | 5.222e-005                                           | 3.440e-005                                           | -4.282                               | -4.463                               |
| -0.181                                       | K904-                                                      | 4.794e-007                                           | 3.504e-007                                           | -6.319                               | -6.455                               |
| -0.130                                       | KOH                                                        | 2.912e-014                                           | 3.198e-014                                           | -13.536                              | -13.495                              |
| 0.041<br>Mg                                  | 9.719e-004                                                 | 0.005 004                                            | 0 540 004                                            | 0.050                                | 0.000                                |
| -0.522                                       | Mg+2                                                       | 8.365e-004                                           | 2.512e-004                                           | -3.078                               | -3.600                               |
| 0.041                                        | 143504                                                     | 1.//4e-005                                           | 0.53/e-005                                           | -4.109                               | -4.069                               |
| 0.120                                        | D0000 F F 1 1 1 1                                          | э./юте-002                                           | 4.211e-005                                           | -4.239                               | -4.576                               |
| -0.130                                       | MgHLUS+                                                    | 2.007 000                                            | 4 357 000                                            | 7 404                                | 7 200                                |
| 0.041                                        | MgHLO3+<br>MgCO3                                           | 3.967e-008                                           | 4.357e-008                                           | -7.401                               | -7.361                               |
| -0.136<br>0.041<br>-0.136                    | MgCO3<br>MgCH+                                             | 3.967e-008<br>3.346e-010                             | 4.357e-008<br>2.445e-010                             | -7.401<br>-9.475                     | -7.361<br>-9.612                     |
| -0.136<br>0.041<br>-0.136<br>Mn(2)           | MgCO3<br>MgCH+<br>3.951e-007<br>Mn+2                       | 3.967e-008<br>3.346e-010<br>2.230e-007               | 4.357e-008<br>2.445e-010<br>5.922e-008               | -7.401<br>-9.475<br>-6.652           | -7.361<br>-9.612<br>-7.228           |
| -0.136<br>0.041<br>-0.136<br>Mn(2)<br>-0.576 | MgHLOS+<br>MgCO3<br>MgCH+<br>3.951e-007<br>Mn+2<br>MnHCO3+ | 3.967e-008<br>3.346e-010<br>2.230e-007<br>1.035e-007 | 4.357e-008<br>2.445e-010<br>5.922e-008<br>7.562e-008 | -7.401<br>-9.475<br>-6.652<br>-6.985 | -7.361<br>-9.612<br>-7.228<br>-7.121 |

| 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MnCl+                                                                         | 5.147e-008                                             | 3.761e-008                                  | -7.288                          | -7.425     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|---------------------------------|------------|--|--|
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mn904                                                                         | 1.390e-008                                             | 1.527e-008                                  | -7.857                          | -7.816     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MnC12                                                                         | 2.331e-009                                             | 2.560e-009                                  | -8.632                          | -8.592     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MinCO3                                                                        | 7.787e-010                                             | 8.551e-010                                  | -9.109                          | -9.068     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MnCl3-                                                                        | 1.504e-010                                             | 1.099e-010                                  | -9.823                          | -9.959     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnCH+                                                                         | 5.585e-013                                             | 4.082e-013                                  | -12.253                         | -12.389    |  |  |
| -0.136<br>Mn(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.555e-017<br>Mn+3                                                            | 4.555e-017                                             | 2.709e-018                                  | -16.342                         | -17.567    |  |  |
| -1.226<br>Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.183e-004                                                                    | 4 122- 004                                             | 0.051004                                    | 2 204                           | 3 530      |  |  |
| -0.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Na+                                                                           | 4.132e-004                                             | 2.9510-004                                  | -3.384                          | -3.530     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N8904-                                                                        | 2.9340-006                                             | 2.1440-006                                  | -5.533                          | -5.669     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAHLUS                                                                        | 2.1658-006                                             | 2.3//e-006                                  | -5.005                          | -5.624     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nacos-                                                                        | 1.36/e-009                                             | 9.98/e-010                                  | -8.864                          | -9.001     |  |  |
| 0.041<br>O(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.828e-004                                                                    | 4.700e-013                                             | 2 102-004                                   | -12.322                         | -12.282    |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000e+000                                                                    | 1.9140 004                                             | 2.1020 004                                  | 5.710                           | 5.077      |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2S                                                                           | 0.000e+000                                             | 0.000e+000                                  | -137.957                        | -137.917   |  |  |
| _0 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HS-                                                                           | 0.000e+000                                             | 0.000e+000                                  | -139.239                        | -139.426   |  |  |
| -0.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S-2                                                                           | 0.000e+000                                             | 0.000e+000                                  | -146.277                        | -146.912   |  |  |
| -0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe_di(HS)2                                                                    | 0.000e+000                                             | 0.000e+000                                  | -276.293                        | -276.252   |  |  |
| 0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_di(HS)3-                                                                   | 0.000e+000                                             | 0.000e+000                                  | -413.505                        | -413.641   |  |  |
| -0.136<br>S(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.579e-002                                                                    | 9 217e-003                                             | 1 012-002                                   | -2 035                          | _1 995     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and 2                                                                         | 6 491o 003                                             | 1 4500 003                                  | 2.000                           | 2 930      |  |  |
| -0.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 304-2<br>M=004                                                                | 7 774- 005                                             | 2.430e-005                                  | -2.100                          | -2.039     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149304<br>1597/                                                               | 2 9340 006                                             | 2 1440 006                                  | -4.109                          | -4.009     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10004-                                                                        | 7 1290 007                                             | 5 2106 007                                  | 6 147                           | 6 293      |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11304-                                                                        | 4 7040 007                                             | 2 5040 007                                  | -0.147                          | -0.200     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-17004-                                                                      | 4.7940-007                                             | 3.304e-007                                  | -0.319                          | -0.455     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CaH504+                                                                       | 2.9998-007                                             | 2.192e-007                                  | -6.523                          | -6.659     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | re_diso4                                                                      | 1.0490-007                                             | 1.1520-007                                  | -0.979                          | -0.938     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe_tris04+                                                                    | 1.5568-008                                             | 1.13/e-008                                  | -7.808                          | -7.944     |  |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mn904                                                                         | 1.3900-008                                             | 1.52/e-008                                  | -7.857                          | -7.816     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe_tr1 (504) 2-                                                               | 4.935e-010                                             | 3.60/e-010                                  | -9.307                          | -9.443     |  |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re_allhout+                                                                   | 3.851e-012                                             | 2.800e-012                                  | -11.41/                         | -11.555    |  |  |
| -0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe_tr1H904+2                                                                  | 3.9450-013                                             | 1.1250-013                                  | -12.404                         | -12.949    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | —Saturation i                                          | ndices                                      |                                 |            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phase                                                                         | SI log I                                               | AP log KT                                   |                                 |            |  |  |
| Arhydrite         0.07         -4.29         -4.36         CaSDA           Aragonite         0.14         -8.20         -8.34         CaCDA           Calcite         0.28         -8.20         -8.48         CaCDA           CH4(g)         -138.48         -141.34         -2.86         CH4           CQ2(g)         0.55         -0.92         -1.47         CQ2           Dolarmite         -1.45         -18.54         -17.09         CaMg(CO3)2           Oppsam         0.28         -4.30         -4.58         CaSDA::EEO           H2(g)         -4.121         -44.36         -3.15         H2           H20(g)         -15.1         -0.00         1.51         H20           H2S(g)         -136.92         -137.92         -1.00         H21           Haistrem         -8.93         52.10         61.03         Mn3O4           Marganite         -8.93         52.10         61.03         Mn3O4           Marganite         -11.17         24.23         25.34         MnO2           Pyrolysite         3.45         44.83         41.38         MnO2           Rhadochrosite         -2.44         -13.97         -11.13         40.95< |                                                                               |                                                        |                                             |                                 |            |  |  |
| Reaction step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.                                                                           |                                                        |                                             |                                 |            |  |  |
| WARNING: Elen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rent Fe_di has ne                                                             | gative moles                                           | in solution,                                | -5.710494                       | e-006.     |  |  |
| zero moles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Erromeous mole balance occurs as moles are added to produce<br>zero moles.    |                                                        |                                             |                                 |            |  |  |
| calculation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Usually caused by KINETICS, REACTION, or diffuse layer calculation.           |                                                        |                                             |                                 |            |  |  |
| simulation or<br>Using solutio<br>Using pure pr<br>Using kinetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rnay be due to l<br>r negative concer<br>n 1.<br>nase assemblage 1<br>ns 1. K | arge time ste<br>itrations in t<br>1.<br>inetics defin | ps in early<br>he diffuse ]<br>ed in simula | part of KI<br>layer.<br>tion 2. | NETICS     |  |  |
| Kinetics 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kinetics define                                                               | d in simulati                                          | an 2.                                       |                                 |            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time step: 8640                                                               | 0 seconds (I                                           | incremented t                               | time: 17280                     | 0 seconds) |  |  |
| Opeficiant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rate name                                                                     | Delta Moles                                            | Total Moles                                 | Reactant                        |            |  |  |

| COEFFICIENC |          |             |            |        |
|-------------|----------|-------------|------------|--------|
| 1           | Fe_di_ox | -2.636e-006 | 9.998e-001 | Fe_di  |
| -1          |          |             |            | Fe_tri |
| 1           |          |             |            |        |
|             |          | Phase asser | iblage     |        |

| Delta          | Phase                                               | SI log I                                                                                                                                 | AP log KT                                                                                                                                | Moles in as<br>Initial                       | semblage<br>Fina        |
|----------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|
| 6.591e-007     | C2 (g)                                              | -0.79 -3.                                                                                                                                | 68 -2.89                                                                                                                                 | 1.000e+001                                   | 1.000e+00               |
|                |                                                     | -Solution comp                                                                                                                           | osition                                                                                                                                  |                                              |                         |
|                | Elements                                            | Molality                                                                                                                                 | Moles                                                                                                                                    |                                              |                         |
|                | C<br>Ca<br>Cl<br>Fe_tri<br>K<br>Mg<br>Mn<br>Na<br>S | 1.389e-001<br>1.476e-001<br>2.367e-001<br>4.531e-008<br>1.610e-004<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002 | 1.389e-001<br>1.476e-001<br>2.367e-001<br>4.531e-008<br>1.610e-004<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002 |                                              |                         |
|                |                                                     | Description of                                                                                                                           | solution                                                                                                                                 |                                              |                         |
| equilibrium    | Acti<br>I<br>Mass<br>Total alkal<br>Total<br>Total  | pH<br>pe<br>vity of water<br>onic strength<br>of water (kg)<br>inity (eg/kg)<br>.002 (mol/kg)<br>ature (der C)                           | = 5.432<br>= 15.170<br>= 0.991<br>= 4.066e-<br>= 1.000e+<br>= 2.983e-<br>= 1.389e-<br>= 25.000                                           | Charge<br>Adjust<br>001<br>000<br>002<br>001 | e balance<br>ted to red |
| Percent err    | Electrical<br>ar, 100*(Cat- An                      | balance (eg)<br> )/(Cat+ An )<br>Iterations<br>Total H<br>Total O                                                                        | = 3.342e-<br>= 0.00<br>= 92<br>= 1.110421<br>= 5.587731                                                                                  | 013<br>e+002<br>e+001                        |                         |
|                |                                                     | Distribution o                                                                                                                           | f species                                                                                                                                |                                              |                         |
| Im             |                                                     |                                                                                                                                          |                                                                                                                                          | Log                                          | Log                     |
| Gamma          | Species                                             | Molality                                                                                                                                 | Activity                                                                                                                                 | Molality                                     | Activity                |
|                | H+                                                  | 4.791e-006                                                                                                                               | 3.697e-006                                                                                                                               | -5.320                                       | -5.432                  |
| -0.113         | OH-                                                 | 4.133e-009                                                                                                                               | 2.684e-009                                                                                                                               | -8.384                                       | -8.571                  |
| 0.000          | H2O                                                 | 5.551e+001                                                                                                                               | 9.911e-001                                                                                                                               | 1.744                                        | -0.004                  |
| C(-4)          | 0.000e+000<br>CH4                                   | 0.000e+000                                                                                                                               | 0.000e+000                                                                                                                               | -141.384                                     | -141.34                 |
| 0.0/1          | 1.389e-001<br>CC2                                   | 1.094e-001                                                                                                                               | 1.201e-001                                                                                                                               | -0.961                                       | -0.92                   |
| -0.152         | H003-                                               | 2.035e-002                                                                                                                               | 1.433e-002                                                                                                                               | -1.691                                       | -1.84                   |
| -0.152         | CaHCO3+                                             | 9.085e-003                                                                                                                               | 6.396e-003                                                                                                                               | -2.042                                       | -2.19                   |
| -0.136         | MgHCO3+                                             | 5.761e-005                                                                                                                               | 4.210e-005                                                                                                                               | -4.239                                       | -4.376                  |
| 0.041          | CaCO3                                               | 9.729e-006                                                                                                                               | 1.068e-005                                                                                                                               | -5.012                                       | -4.97                   |
| 0.041          | Marillus<br>marillus                                | 2.1650-006                                                                                                                               | 2.37/e-006                                                                                                                               | -5.665                                       | -5.62                   |
| -0.610         | MH1002+                                             | 1.035o.007                                                                                                                               | 7 5620 008                                                                                                                               | -0.131                                       | -0.74                   |
| -0.136         | Marcos                                              | 3.967-008                                                                                                                                | 4 356-008                                                                                                                                | -7 402                                       | -7.36                   |
| 0.041          | Fe diHOO3+                                          | 1.481e-008                                                                                                                               | 1.082e-008                                                                                                                               | -7.830                                       | -7.96                   |
| -0.136         | NaCO3-                                              | 1.366e-009                                                                                                                               | 9,986e-010                                                                                                                               | -8.864                                       | -9.00                   |
| -0.136         | MhCO3                                               | 7.786e-010                                                                                                                               | 8.550e-010                                                                                                                               | -9.109                                       | -9.06                   |
| 0.041          | Fe_di003                                            | 2.999e-011                                                                                                                               | 3.293e-011                                                                                                                               | -10.523                                      | -10.48                  |
| 0.041<br>Ca    | 1.476e-001                                          | 4 000 004                                                                                                                                |                                                                                                                                          | 0.000                                        |                         |
| -0.568         | (a+2                                                | 1.293e-001                                                                                                                               | 3.499e-002                                                                                                                               | -0.888                                       | -1.45                   |
| 0.041          | Ca204                                               | 9.21/e-003                                                                                                                               | 6 3960 003                                                                                                                               | -2.035                                       | -1.99                   |
| -0.152         | CarD3                                               | 9 729-006                                                                                                                                | 1 068-005                                                                                                                                | -5 012                                       | -2.15                   |
| 0.041          | CaHSO4+                                             | 2.999e-007                                                                                                                               | 2.192e-007                                                                                                                               | -6.523                                       | -6.65                   |
| -0.136         | CaOH+                                               | 2.130e-009                                                                                                                               | 1.557e-009                                                                                                                               | -8.672                                       | -8.800                  |
| -0.136<br>Cl   | 2.367e-001                                          |                                                                                                                                          |                                                                                                                                          |                                              |                         |
| -0.181         | C1-                                                 | 2.367e-001                                                                                                                               | 1.559e-001                                                                                                                               | -0.626                                       | -0.80                   |
| -0.136         | MACL+                                               | 5.14'/e-008                                                                                                                              | 3.761e-008                                                                                                                               | -7.288                                       | -/.42                   |
| -0.545         | re_unu+2                                            | 1.200e-008                                                                                                                               | 2 395~ 000                                                                                                                               | -1.921                                       | -8.465                  |
| -0.136         | re_uriulz+<br>Mac12                                 | 2 3310 000                                                                                                                               | 2.3830-009                                                                                                                               | _d.486                                       | -8.62                   |
| 0.041          | Fe diCl+                                            | 2.224-009                                                                                                                                | 1.625-009                                                                                                                                | -0.002                                       | _8 78                   |
| -0.136         | MnCl3-                                              | 1.504-010                                                                                                                                | 1.099-010                                                                                                                                | -0.000                                       | _9,950                  |
| -0.136         | Fe tri(13                                           | 3.385-011                                                                                                                                | 3.718-011                                                                                                                                | -10 470                                      | -10 430                 |
| 0.041<br>Fe_di | 4.531e-008<br>Fe_di+2                               | 2.648e-008                                                                                                                               | 7.553e-009                                                                                                                               | -7.577                                       | -8.122                  |
| -0.545         |                                                     |                                                                                                                                          |                                                                                                                                          |                                              |                         |

| _0 136          | Fe_diH003+         | 1.481e-008 | 1.082e-008 | -7.830                | -7.966   |
|-----------------|--------------------|------------|------------|-----------------------|----------|
| _0.136          | Fe_diCl+           | 2.224e-009 | 1.625e-009 | -8.653                | -8.789   |
| 0.041           | Fe_diSO4           | 1.773e-009 | 1.947e-009 | -8.751                | -8.711   |
| 0.041           | Fe_diCO3           | 2.999e-011 | 3.293e-011 | -10.523               | -10.482  |
| 0.136           | Fe_diOH+           | 8.763e-013 | 6.404e-013 | -12.057               | -12.194  |
| 0.136           | Fe_diH904+         | 6.474e-014 | 4.732e-014 | -13.189               | -13.325  |
| 0.041           | Fe_di(HS)2         | 0.000e+000 | 0.000e+000 | -278.065              | -278.024 |
| _0 136          | Fe_di (HS) 3-      | 0.000e+000 | 0.000e+000 | -415.277              | -415.413 |
| Fe_tri          | 1.610e-004         | 1 530-004  | 1 118-004  | _3 815                | _3 952   |
| -0.136          | Fe triOH+2         | 4 414-006  | 1 259-006  | -5 355                | -5 900   |
| -0.545          | Fe tri (OH) 3      | 3 516-006  | 3 861-006  | -5 454                | -5 413   |
| 0.041           | Fe trig04+         | 1 582-008  | 1 156-008  | -7 801                | _7 937   |
| -0.136          | Fe tri+3           | 1 223-008  | 7 273-010  | -7 913                | -9 138   |
| -1.226          | Fe triCl+2         | 1.200e-008 | 3.424e-009 | -7.921                | -8.465   |
| -0.545          | Fe tri2(0H)2+4     | 6 442e-009 | 4 267-011  | -8 191                | -10 370  |
| -2.179          | Fe triCl2+         | 3.263e-009 | 2.385e-009 | -8.486                | -8.623   |
| -0.136          | Fe tri3(0H)4+5     | 2.530e-009 | 9.966e-013 | -8.597                | -12.001  |
| -3.405          | Fe tri (OH) 4-     | 1.292e-009 | 9.442e-010 | -8,889                | -9.025   |
| -0.136          | Fe tri (904)2-     | 5.018e-010 | 3.667e-010 | -9.299                | -9.436   |
| -0.136          | Fe triCl3          | 3.385e-011 | 3.718e-011 | -10.470               | -10.430  |
| 0.041           | Fe triHSO4+2       | 4.012e-013 | 1.145e-013 | -12.397               | -12.941  |
| -0.545<br>H(0)  | 0.000e+000         | 0.000e+000 | 0.000e+000 | -44.396               | -44.355  |
| 0.041<br>K      |                    |            |            |                       |          |
| -0.181          | K+                 | 5.222e-005 | 3.440e-005 | -4.282                | -4.463   |
| -0.136          | K904-              | 4.794e-007 | 3.504e-007 | -6.319                | -6.455   |
| 0.041           | KOH                | 2.912e-014 | 3.198e-014 | -13.536               | -13.495  |
| Mg              | 9.719e-004<br>Mg+2 | 8.365e-004 | 2.512e-004 | -3.078                | -3.600   |
| -0.522          | Mg904              | 7.774e-005 | 8.537e-005 | -4.109                | -4.069   |
| 0.041           | MgHCO3+            | 5.761e-005 | 4.210e-005 | -4.239                | -4.376   |
| -0.136          | MgCO3              | 3.967e-008 | 4.356e-008 | -7.402                | -7.361   |
| 0.041           | MgCH+              | 3.346e-010 | 2.445e-010 | -9.476                | -9.612   |
| -0.136<br>Mn(2) | 3.951e-007         | 0.000.007  | 5 000 000  | 6 650                 | 5.000    |
| -0.576          | Mn+2               | 2.230e-007 | 5.922e-008 | -6.652                | -7.228   |
| -0.136          | MnHLUS+            | 1.0350-007 | 7.562e-008 | -6.985                | -/.121   |
| -0.136          | MnC1+              | 5.14/e-008 | 3.761e-008 | -/.288                | -7.425   |
| 0.041           | MISO4              | 2.331- 000 | 1.52/e-008 | -/.85/                | -/.810   |
| 0.041           | MIC12              | 2.331e-009 | 2.500e-009 | -8.032                | -8.392   |
| 0.041           | MILLOS             | 1 504- 010 | 8.550e-010 | -9.109                | -9.068   |
| -0.136          | MILLS-             | E 5050 012 | 1.0990-010 | 10.052                | -9.959   |
| -0.136          | 4 EEEo 017         | 5.5656-015 | 4.0028-015 | -22.235               | -12.309  |
| -1.226          | 4.555e-017<br>Mn+3 | 4.555e-017 | 2.710e-018 | -16.341               | -17.567  |
| . 14C           | 4.1830-004<br>Na+  | 4.132e-004 | 2.951e-004 | -3.384                | -3.530   |
| -0.146          | NaSO4-             | 2.934e-006 | 2.144e-006 | -5.533                | -5.669   |
| -0.130          | NaHCO3             | 2.165e-006 | 2.377e-006 | -5.665                | -5.624   |
| 0.126           | NaCO3-             | 1.366e-009 | 9.986e-010 | -8.864                | -9.001   |
| 0.110           | NaCH               | 4.760e-013 | 5.227e-013 | -12.322               | -12.282  |
| O(0)            | 3.828e-004<br>02   | 1.914e-004 | 2.102e-004 | -3.718                | -3.677   |
| S(-2)           | 0.000e+000         | 0 000~+000 | 0 000~+000 | _137 057              | _137 017 |
| 0.041           | نك.<br>HC_         |            | 0.000~000  | חכר חבר.<br>חכר חבר_  | -130 /02 |
| -0.187          | -u-<br>-u-         | 0.000-:000 | 0.000-:000 | ענג. בנב-<br>146 יידי | 146 012  |
| -0.635          | Fe di /ue\?        |            | 0.000~000  | -140.211              | _278 004 |
| 0.041           | Fe di (HC) 3       |            |            | _/15_277              | _/15 /13 |
| -0.136          | 1 579 <u>–</u> 000 | 5.000er000 | 5.000er000 | <i>۱۱۵، ب</i> ید      | CT6.CTE  |
| 0.041           | Ca904              | 9.217e-003 | 1.012e-002 | -2.035                | -1.995   |
| -0.651          | 904-2              | 6.491e-003 | 1.450e-003 | -2.188                | -2.839   |
| 0.041           | MgSO4              | 7.774e-005 | 8.537e-005 | -4.109                | -4.069   |
| -0.136          | NaSO4-             | 2.934e-006 | 2.144e-006 | -5.533                | -5.669   |
|                 |                    |            |            |                       |          |

| 0 100  | H904-              | 7.130e-007    | 5.211e-007 | -6.147  | -6.283  |
|--------|--------------------|---------------|------------|---------|---------|
| -0.136 | K904-              | 4.794e-007    | 3.504e-007 | -6.319  | -6.455  |
| -0.136 | CaH904+            | 2.999e-007    | 2.192e-007 | -6.523  | -6.659  |
| -0.136 | Fe_triSO4+         | 1.582e-008    | 1.156e-008 | -7.801  | -7.937  |
| -0.136 | Mn904              | 1.390e-008    | 1.527e-008 | -7.857  | -7.816  |
| 0.041  | Fe <u>di</u> 904   | 1.773e-009    | 1.947e-009 | -8.751  | -8.711  |
| 0.041  | Fe_tri(SO4)2-      | 5.018e-010    | 3.667e-010 | -9.299  | -9.436  |
| -0.136 | Fe_triH904+2       | 4.012e-013    | 1.145e-013 | -12.397 | -12.941 |
| -0.545 | Fe <u>diH</u> 904+ | 6.474e-014    | 4.732e-014 | -13.189 | -13.325 |
| -0.136 |                    |               |            |         |         |
|        |                    | -saturation i | nalces     |         |         |

| Phase                                                                                                                                                                                       | SI                                                                                                                                                                   | log IAP                                                                                                                                                               | log KT                                                                                                                                                               |                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arhydrite<br>Aragonite<br>Calcite<br>(C2(g)<br>Dolamite<br>(Gpsum<br>H20(g)<br>H20(g)<br>Halite<br>Hausnarnite<br>Margenite<br>(C2(g)<br>Pyroduroite<br>Pyrolusite<br>Rododrosite<br>Sulfur | $\begin{array}{c} 0.07\\ 0.14\\ 0.28\\ -138.48\\ 0.55\\ -1.45\\ 0.28\\ -41.21\\ -1.51\\ -1.592\\ -8.93\\ -1.11\\ -0.79\\ -11.57\\ 3.45\\ -2.84\\ -101.59\end{array}$ | -4.29<br>-8.20<br>-8.20<br>-141.34<br>-0.92<br>-18.54<br>-4.30<br>-44.36<br>-0.00<br>-137.92<br>-4.34<br>52.10<br>24.23<br>-3.68<br>3.63<br>44.83<br>-13.97<br>-96.71 | $\begin{array}{c} -4.36\\ -8.34\\ -8.48\\ -2.86\\ -1.47.09\\ -4.58\\ -3.15\\ 1.51\\ -1.00\\ 1.58\\ 61.03\\ 25.34\\ -2.89\\ 15.20\\ 41.38\\ -11.13\\ 4.88\end{array}$ | CaSD4<br>CaCD3<br>CaCD3<br>C4H4<br>CC2<br>CaVbg(CC3)2<br>CaSD4:2H20<br>H2<br>H2O<br>H2S<br>Mn3C4<br>Mn3C4<br>Mn2CH<br>Mn2CH<br>Mn2CH<br>Mn2CH<br>Mn2C<br>Mn2C3<br>S |
|                                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                     |

| Reaction step                                  | 98.                                                                                                                                                                                                                                    |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WARNING: Elen                                  | nent Fe_di has negative moles in solution, -2.872895e-008.<br>Erroneous mole balance occurs as moles are added to produce                                                                                                              |
| zero moles.                                    | Usually caused by KINETICS, REACTION, or diffuse layer                                                                                                                                                                                 |
| calculation.<br>simulation or<br>WARNING: Elem | May be due to large time steps in early part of KINEIICS<br>r negative concentrations in the diffuse layer.<br>nent Re_di has negative moles in solution, -1.971399e-009.                                                              |
| zero moles.                                    | Erroneous mole balance occurs as moles are added to produce                                                                                                                                                                            |
| calculation.                                   | Marche du te leure time terre in enderent of Mature                                                                                                                                                                                    |
| simulation or<br>WARNING: Elen                 | ray be due to large the steps in early part of Anterics<br>regative concentrations in the diffuse layer.<br>earlt Fe_di has negative moles in solution, -3.030945e-009.<br>Erroneous mole balance occurs as moles are added to produce |
| zero moles.                                    | Usually caused by KINETICS, REACTION, or diffuse layer                                                                                                                                                                                 |
| simulation or                                  | May be due to large time steps in early part of KINETICS<br>regetive concentrations in the diffuse layer,<br>metric and the persenting relation collision 2.416660,000                                                                 |
| WARDING: FIG                                   | Erroneous mole balance occurs as moles are added to produce                                                                                                                                                                            |
| zero notes.                                    | Usually caused by KINETICS, REACTION, or diffuse layer                                                                                                                                                                                 |
| simulation or                                  | May be due to large time steps in early part of KINETICS<br>regative concentrations in the diffuse layer.                                                                                                                              |
| WARNING: EIG                                   | Tent Fe_on has negative moles in solution, -1.4/86.22e-009.<br>Erroneous nole balance occurs as noles are added to produce                                                                                                             |
| zero moies.                                    | Usually caused by KINETICS, REACTION, or diffuse layer                                                                                                                                                                                 |
| simulation or<br>WARNING: Elem                 | May be due to large time steps in early part of KINETICS<br>regative concentrations in the diffuse layer.<br>rent Fe_di has negative noles in solution, -7.499156e-010.<br>Erromeous mole balance occurs as moles are added to produce |
| zero moles.                                    | -<br>Usually caused by KINETICS, REACTION, or diffuse layer                                                                                                                                                                            |
| calculation.                                   | May be due to large time steps in early part of KINETICS                                                                                                                                                                               |
| simulation or<br>WARNING: Elen                 | : négative concentrations in the diffuse layer.<br>nent Fe_di has negative moles in solution, -3.589512e-011.<br>Erroneous mole balance occurs as moles are added to produce                                                           |
| zero moles.                                    | Usually caused by KINETICS, REACTION, or diffuse layer                                                                                                                                                                                 |
| calculation.                                   | May be due to large time steps in early part of KINETICS                                                                                                                                                                               |
| Using solution                                 | n 1.<br>nase assemblage 1.                                                                                                                                                                                                             |
| Using kinetic                                  | s 1. Kinetics defined in simulation 2.                                                                                                                                                                                                 |
| Kinetics 1.                                    | Kinetics defined in simulation 2.                                                                                                                                                                                                      |
|                                                | Time step: 172800 seconds (Incremented time: 345600 seconds)                                                                                                                                                                           |
| Coefficient                                    | Rate name Delta Moles Total Moles Reactant                                                                                                                                                                                             |
| -1                                             | Fe_di_ax -4.530e-008 9.998e-001 Fe_di                                                                                                                                                                                                  |
| 1                                              | Fe_tri                                                                                                                                                                                                                                 |
|                                                | Phase assemblage                                                                                                                                                                                                                       |
| -                                              | Malon in another                                                                                                                                                                                                                       |
| Delta                                          | Phase SI log IAP log KT Initial Final                                                                                                                                                                                                  |
|                                                | C2(g) -0.78 -3.68 -2.89 1.000e+001 1.000e+001-                                                                                                                                                                                         |

1.132e-008

|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | Solution comp                                                                                                                            | osition                                                                                                                                  |                  |                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elements                                                     | Molality                                                                                                                                 | Moles                                                                                                                                    |                  |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | C<br>Ca<br>Cl<br>Fe_di<br>Fe_tri<br>K<br>Mg<br>Mg<br>Na<br>S | 1.389e-001<br>1.476e-001<br>2.367e-001<br>1.298e-011<br>1.610e-004<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002 | 1.389e-001<br>1.476e-001<br>2.367e-001<br>1.298e-011<br>1.610e-004<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002 |                  |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                            | escription of                                                                                                                            | solution                                                                                                                                 |                  |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | pH<br>pe                                                                                                                                 | = 5.432<br>= 15.170                                                                                                                      | Charge<br>Adiust | e balance<br>ed to redox  |  |
| pe = 15.17.0 Adjusted to redox<br>equilibrium<br>Activity of water = 0.991<br>Ionic strength = 4.066e-001<br>Mess of water (kg) = 1.000e+000<br>Total alkalinity (eg/kg) = 2.983e-002<br>Total 002 (m0/kg) = 1.389e-001<br>Tapperature (deg C) = 25.000<br>Electrical halance (eg) = -1.264e-009<br>Percent error, 100*(Cat-[An])/(Cat+[An]) = -0.00<br>Iterations = 236<br>Total H = 1.110421e+002<br>Total 0 = 5.587731e+0001 |                                                              |                                                                                                                                          |                                                                                                                                          |                  |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                            | istribution o                                                                                                                            | of species                                                                                                                               |                  |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                                                                                                          |                                                                                                                                          | Log              | Log                       |  |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                             | Species                                                      | Molality                                                                                                                                 | Activity                                                                                                                                 | Molality         | Activity                  |  |
| Ganma                                                                                                                                                                                                                                                                                                                                                                                                                           | TT.                                                          | 4 701- 000                                                                                                                               | 2 607- 000                                                                                                                               | E 200            | -<br>E 400                |  |
| -0.113                                                                                                                                                                                                                                                                                                                                                                                                                          | 11+<br>(1H-                                                  | 4./910-006                                                                                                                               | 3.69/e-006                                                                                                                               | -5.320<br>_8.384 | -5.4 <i>3</i> 2<br>_8 571 |  |
| -0.187                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 5.551e+001                                                                                                                               | 9.911e-001                                                                                                                               | 1.744            | -0.004                    |  |
| 0.000<br>⊂(-4)                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000e+000                                                   | 0.000 000                                                                                                                                | 0.000 005                                                                                                                                | 141.007          | 141 242                   |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4<br>1 389-001                                             | 0.000e+000                                                                                                                               | 0.000e+000                                                                                                                               | -141.384         | -141.343                  |  |
| 2(⊈)<br>).041                                                                                                                                                                                                                                                                                                                                                                                                                   | 02                                                           | 1.094e-001                                                                                                                               | 1.201e-001                                                                                                                               | -0.961           | -0.920                    |  |
| -0.152                                                                                                                                                                                                                                                                                                                                                                                                                          | HCO3-                                                        | 2.035e-002                                                                                                                               | 1.433e-002                                                                                                                               | -1.691           | -1.844                    |  |
| -0.152                                                                                                                                                                                                                                                                                                                                                                                                                          | CaHCO3+                                                      | 9.085e-003                                                                                                                               | 6.396e-003                                                                                                                               | -2.042           | -2.194                    |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | MgHCO3+                                                      | 5.761e-005                                                                                                                               | 4.210e-005                                                                                                                               | -4.239           | -4.376                    |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                           | NaHOO3                                                       | 9.729e-006                                                                                                                               | 2.377e-006                                                                                                                               | -5.665           | -4.971                    |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                           | 003-2                                                        | 7.400e-007                                                                                                                               | 1.818e-007                                                                                                                               | -6.131           | -6.741                    |  |
| -0.610                                                                                                                                                                                                                                                                                                                                                                                                                          | MnHCO3+                                                      | 1.035e-007                                                                                                                               | 7.562e-008                                                                                                                               | -6.985           | -7.121                    |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | MgC03                                                        | 3.967e-008                                                                                                                               | 4.356e-008                                                                                                                               | -7.402           | -7.361                    |  |
| 0.126                                                                                                                                                                                                                                                                                                                                                                                                                           | NaCO3-                                                       | 1.366e-009                                                                                                                               | 9.986e-010                                                                                                                               | -8.864           | -9.001                    |  |
| 0.130                                                                                                                                                                                                                                                                                                                                                                                                                           | MinCO3                                                       | 7.786e-010                                                                                                                               | 8.550e-010                                                                                                                               | -9.109           | -9.068                    |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_diHCO3+                                                   | 4.243e-012                                                                                                                               | 3.101e-012                                                                                                                               | -11.372          | -11.509                   |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                           | Fe_diCO3                                                     | 8.593e-015                                                                                                                               | 9.436e-015                                                                                                                               | -14.066          | -14.025                   |  |
| Ъ<br>                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.476e-001<br>Ca+2                                           | 1.293e-001                                                                                                                               | 3.499e-002                                                                                                                               | -0.888           | -1.456                    |  |
| -0.568                                                                                                                                                                                                                                                                                                                                                                                                                          | Ca904                                                        | 9.217e-003                                                                                                                               | 1.012e-002                                                                                                                               | -2.035           | -1.995                    |  |
| 0.152                                                                                                                                                                                                                                                                                                                                                                                                                           | CaHCO3+                                                      | 9.085e-003                                                                                                                               | 6.396e-003                                                                                                                               | -2.042           | -2.194                    |  |
| -0.152<br>) 041                                                                                                                                                                                                                                                                                                                                                                                                                 | CaCO3                                                        | 9.729e-006                                                                                                                               | 1.068e-005                                                                                                                               | -5.012           | -4.971                    |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | CaHSO4+                                                      | 2.999e-007                                                                                                                               | 2.192e-007                                                                                                                               | -6.523           | -6.659                    |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | CaOH+                                                        | 2.130e-009                                                                                                                               | 1.557e-009                                                                                                                               | -8.672           | -8.808                    |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.367e-001<br>Cl-                                            | 2.367e-001                                                                                                                               | 1.559e-001                                                                                                                               | -0.626           | -0.807                    |  |
| -0.181                                                                                                                                                                                                                                                                                                                                                                                                                          | MnCl+                                                        | 5.147e-008                                                                                                                               | 3.761e-008                                                                                                                               | -7.288           | -7.425                    |  |
| -0.130                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_triCl+2                                                   | 1.201e-008                                                                                                                               | 3.425e-009                                                                                                                               | -7.921           | -8.465                    |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_triCl2+                                                   | 3.264e-009                                                                                                                               | 2.385e-009                                                                                                                               | -8.486           | -8.622                    |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                           | MnC12                                                        | 2.331e-009                                                                                                                               | 2.560e-009                                                                                                                               | -8.632           | -8.592                    |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | MnCl3-                                                       | 1.504e-010                                                                                                                               | 1.099e-010                                                                                                                               | -9.823           | -9.959                    |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                           | Fe_triCl3                                                    | 3.386e-011                                                                                                                               | 3.719e-011                                                                                                                               | -10.470          | -10.430                   |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_diCl+                                                     | 6.373e-013                                                                                                                               | 4.658e-013                                                                                                                               | -12.196          | -12.332                   |  |
| re <u>di</u>                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.298e-011<br>Fe_di+2                                        | 7.587e-012                                                                                                                               | 2.164e-012                                                                                                                               | -11.120          | -11.665                   |  |
| -0.345                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_diH003+                                                   | 4.243e-012                                                                                                                               | 3.101e-012                                                                                                                               | -11.372          | -11.509                   |  |
| -0.136                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe_diCl+                                                     | 6.373e-013                                                                                                                               | 4.658e-013                                                                                                                               | -12.196          | -12.332                   |  |
| 0.041                                                                                                                                                                                                                                                                                                                                                                                                                           | Fe_diSO4                                                     | 5.081e-013                                                                                                                               | 5.580e-013                                                                                                                               | -12.294          | -12.253                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                                                                                                          |                                                                                                                                          |                  |                           |  |

| 0.041            | Fe_diC03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.593e-015  | 9.436e-015  | -14.066          | -14.025  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------------|----------|
| 0.041            | Fe_diOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.511e-016  | 1.835e-016  | -15.600          | -15.736  |
| -0.136           | Fe_diH904+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.855e-017  | 1.356e-017  | -16.732          | -16.868  |
| -0.136           | Fe_di(HS)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000e+000  | 0.000e+000  | -281.608         | -281.567 |
| 0.041            | Fe_di (HS) 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000e+000  | 0.000e+000  | -418.820         | -418.956 |
| -0.136<br>Fe_tri | 1.610e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 5300 004  | 1 119- 004  | 3 915            | 3 051    |
| -0.136           | Fe_triOH+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 415e-006  | 1 259-004   | -5.355           | -5.900   |
| -0.545           | Fe tri (OH) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 517-006   | 3 862-006   | -5 454           | _5 /13   |
| 0.041            | Fo trigo/+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 5930 009  | 1 1570 008  | 7 901            | 7 037    |
| -0.136           | Te_crisoar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2220 000  | 7 275- 010  | 7 012            | 0 120    |
| -1.226           | Fe_tri=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2230-000  | 7.275e-010  | 7.001            | -9.130   |
| -0.545           | Fe_trici+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 4460 000  | 3.425e-009  | -7.921<br>0.101  | -8.400   |
| -2.179           | Fe_triz(0ri)2+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4400-009  | 4.209e-011  | -0.191           | -10.370  |
| -0.136           | Fe_triciz+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2040-009  | 2.3850-009  | -8.480           | -8.022   |
| -3.405           | Fe_tr13(UH)4+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.532e-009  | 9.9/4e-013  | -8.597           | -12.001  |
| -0.136           | Fe_tri (OH) 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.292e-009  | 9.444e-010  | -8.889           | -9.025   |
| -0.136           | Fe_tri (904) 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.020e-010  | 3.6680-010  | -9.299           | -9.436   |
| 0.041            | Fe_tricl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3860-011  | 3./190-011  | -10.470          | -10.430  |
| -0.545           | Fe_triH904+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.013e-013  | 1.145e-013  | -12.397          | -12.941  |
| H(0)             | H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000e+000  | 0.000e+000  | -44.396          | -44.355  |
| K                | 5.270e-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.222e-005  | 3.440e-005  | -4.282           | -4.463   |
| -0.181           | KdO1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 794-007   | 3 50/0-007  | _6 319           | _6 /155  |
| -0.136           | KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 912-014   | 3 198-014   | -13 536          | -13 495  |
| 0.041<br>Mar     | 9.719e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.9120 014  | 5.1500 014  | 19:550           | 10.400   |
| -0.522           | Mg+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.365e-004  | 2.512e-004  | -3.078           | -3.600   |
| 0.041            | Mg904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.774e-005  | 8.537e-005  | -4.109           | -4.069   |
| -0.136           | MgHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.761e-005  | 4.210e-005  | -4.239           | -4.376   |
| 0.041            | MgCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.967e-008  | 4.356e-008  | -7.402           | -7.361   |
| -0.136           | MgCH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.346e-010  | 2.445e-010  | -9.476           | -9.612   |
| Mn(2)            | 3.951e-007<br>Mp+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 230e-007  | 5 922-008   | -6 652           | -7 228   |
| -0.576           | MoHOO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 035-007   | 7 562-008   | _6.985           | _7 121   |
| -0.136           | Mecl+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 1470 009  | 3 7610 009  | 7 200            | 7 /25    |
| -0.136           | Maccol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 200- 009  | 1 527- 000  | 7 057            | 7 016    |
| 0.041            | M1304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.331- 000  | 2.5270-000  | -7.007           | -7.010   |
| 0.041            | MIC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.551e-009  | 2.3008-009  | -0.032           | -0.052   |
| 0.041            | MhLO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /./866-010  | 8.5508-010  | -9.109           | -9.068   |
| -0.136           | MnCL3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.504e-010  | 1.099e-010  | -9.823           | -9.959   |
| -0.136<br>Mp(3)  | MnOH+<br>4 555e-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.585e-013  | 4.082e-013  | -12.253          | -12.389  |
| -1.226           | Mn+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.555e-017  | 2.710e-018  | -16.341          | -17.567  |
| Na               | 4.183e-004<br>Na+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.132e-004  | 2.951e-004  | -3.384           | -3.530   |
| -0.146           | Na904-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.934e-006  | 2.144e-006  | -5.533           | -5.669   |
| -0.136           | Nahoos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 165-006   | 2 377-006   | -5 665           | -5 624   |
| 0.041            | NaCO3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 366-009   | 9 986-010   | -8 864           | _9 001   |
| -0.136           | NaCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 760e-013  | 5 227e-013  | -12 322          | -12 282  |
| 0.041<br>O(0)    | 3.828e-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |                  |          |
| 0.041            | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.914e-004  | 2.102e-004  | -3.718           | -3.677   |
| S(-2)            | 0.000e+000<br>H2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000e+000  | 0.000e+000  | -137.957         | -137.917 |
| 0.041            | HS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000e+000  | 0.000e+000  | -139.239         | -139.426 |
| -0.187           | S-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000e+000  | 0.000e+000  | -146.277         | -146.912 |
| -0.635           | Fe_di(HS)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000e+000  | 0.000e+000  | -281.608         | -281.567 |
| 0.041            | Fe_di(HS)3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000e+000  | 0.000e+000  | -418.820         | -418.956 |
| =0.136<br>S(6)   | 1.579e-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 2170 003  | 1 0120 002  | 2 035            | 1 005    |
| 0.041            | 901_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 /191~ 003 | 1 450- 002  | -2.033           | -2 020   |
| -0.651           | 104-2<br>Mag2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 77/~ 005  | 2.5370 005  |                  | _2.039   |
| 0.041            | Na90/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 92/10 005 | 2 1000      | -2 233           | -4.009   |
| -0.136           | H904-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 130-007   | 5 211-007   | _6 1/7           | -6.262   |
| -0.136           | K904-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 79/2 007  | 3 50/10 007 | -0.14/<br>_6 210 | -0.203   |
| -0.136           | CaH904+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 999-007   | 2 192-007   | -6 523           | -6 650   |
| -0.136           | and the second s | 2           |             | 0.20             | 0.009    |

| 0 126  | Fe <u>tri</u> SO4+ | 1.583e-008   | 1.157e-008 | -7.801  | -7.937  |
|--------|--------------------|--------------|------------|---------|---------|
| -0.130 | MnSO4              | 1.390e-008   | 1.527e-008 | -7.857  | -7.816  |
| 0.126  | Fe_tri(SO4)2-      | 5.020e-010   | 3.668e-010 | -9.299  | -9.436  |
| -0.130 | Fe_diSO4           | 5.081e-013   | 5.580e-013 | -12.294 | -12.253 |
| 0.041  | Fe_triH904+2       | 4.013e-013   | 1.145e-013 | -12.397 | -12.941 |
| _0.136 | Fe_diH904+         | 1.855e-017   | 1.356e-017 | -16.732 | -16.868 |
|        |                    | Saturation i | ndices     |         |         |
|        |                    |              |            |         |         |

| Phase                                                                                                        | SI log IAP                                                                                                                               | log KT                                                                        |                                                                                |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Anhydrite<br>Aragonite<br>Calcite<br>CAlcite<br>CA4(g)<br>Dolonite<br>Gypsum<br>H2(g)<br>H20(g)              | 0.07 -4.29<br>0.14 -8.20<br>0.28 -8.20<br>-138.48 -141.34<br>0.55 -0.92<br>-1.45 -18.54<br>0.28 -4.30<br>-41.21 -44.36<br>-1.51 -0.00    | -4.36<br>-8.34<br>-8.48<br>-2.86<br>-1.47<br>-17.09<br>-4.58<br>-3.15<br>1.51 | CaSO4<br>CaCO3<br>CaCO3<br>CH4<br>CO2<br>CaMg(CC3)2<br>CaSO4:2H2O<br>H2<br>H2O |
| H2S(g)<br>Halite<br>Hausmannite<br>Manganite<br>Q2(g)<br>Pyroducite<br>Pyrolusite<br>Rhodochrosite<br>Sulfar | -136.92 -137.92<br>-5.92 -4.34<br>-8.93 52.10<br>-1.11 24.23<br>-0.78 -3.68<br>-11.57 3.63<br>3.45 44.83<br>-2.84 -13.97<br>101 59 96 71 | -1.00<br>1.58<br>61.03<br>25.34<br>-2.89<br>15.20<br>41.38<br>-11.13          | H2S<br>NaCl<br>Mn3O4<br>MnOOH<br>O2<br>Mn(OH)2<br>MnO2<br>MnO2<br>S            |

|                                                  | Rhodochrosite<br>Sulfur                                                      | -2.84<br>-101.59                                | -13.97<br>-96.71                | -11.13<br>4.88                  | MhCO3<br>S                                                              |
|--------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------|
| Reaction step                                    | o 9.                                                                         |                                                 |                                 |                                 |                                                                         |
| WARNING: Elen                                    | rent Fe_di has ne                                                            | gative m                                        | les in :                        | solution                        | , -8.232164e-012.                                                       |
| zero moles.                                      | Erroneous mole l                                                             | balance c                                       | ocurs a:                        | s moles                         | are added to produce                                                    |
| calculation.                                     | Usually caused I                                                             | by KINEFI                                       | CS, REA                         | CTION, O                        | r diffuse layer                                                         |
| simulation or<br>WARNING: Elem                   | May be due to la<br>regative concent<br>ment Fe_di has ne<br>Fromeous mole l | arge time<br>trations<br>gative mo<br>balance o | in the oles in a                | in early<br>diffuse<br>solution | part of KINETICS<br>layer.<br>, -5.648819e-013.<br>are added to produce |
| zero moles.                                      | Usually caused                                                               | by KINETT                                       | OS REM                          |                                 | r diffuse laver                                                         |
| calculation.                                     | Marko dia ta li                                                              | oy Idiwili                                      |                                 |                                 | r arriver af VINUTOC                                                    |
| simulation or<br>WARNING: Elem                   | negative concen<br>nent Fe_di has ne<br>Fromeous mole l                      | trations<br>gative m<br>balance c               | in the o<br>les in a            | diffuse<br>solution             | layer.<br>18.685081e-013.<br>are added to produce                       |
| zero moles.                                      | Uranily cauced i                                                             |                                                 |                                 |                                 | r diffuso larger                                                        |
| calculation.                                     | May be due to 1                                                              | avro tim                                        |                                 | in onclu                        | r arriade layer                                                         |
| simulation or<br>WARNING: Elem                   | negative concen<br>nent Fe_di has ne<br>Fromeous mole l                      | trations<br>gative mo<br>balance c              | in the o<br>les in a            | diffuse<br>solution             | layer.<br>1, -6.920311e-013.                                            |
| zero moles.                                      | Usually caused l                                                             | by KINEPI                                       | CS. REA                         | TTON. O                         | r diffuse laver                                                         |
| calculation.                                     | Marcho duo to li                                                             | avro timo                                       |                                 | in oarlu                        | nert of KINKUICS                                                        |
| simulation or<br>WARNING: Elem                   | r negative concen<br>nent Fe_di has ne<br>Fromeous mole l                    | trations<br>gative m<br>balance c               | in the o<br>les in a            | diffuse<br>solution             | layer.<br>1, -4.236973e-013.                                            |
| zero moles.                                      | Denally caused l                                                             | by KINETT                                       | NAR 20                          |                                 | r diffuse laver                                                         |
| calculation.                                     | May be due to 1                                                              | avro tim                                        |                                 | in onclu                        | r arriade layer                                                         |
| simulation or<br>WARNING: Elem                   | negative concen<br>nent Fe_di has ne<br>Fromeous mole l                      | trations<br>gative m<br>balance c               | in the o<br>les in a            | diffuse<br>solution             | layer.<br>1, -2.148874e-013.                                            |
| zero moles.                                      | Denally caused l                                                             | by KINETT                                       | NAR 20                          |                                 | r diffuse laver                                                         |
| calculation.                                     | May be due to 1                                                              | amo timo                                        | etane :                         | in carly                        | rant of KINFUICS                                                        |
| simulation or<br>WARNING: Elem                   | regative concen<br>rent Fe_di has ne<br>Erronecus mole l                     | trations<br>gative mo<br>balance c              | in the o<br>les in a<br>cours a | diffuse<br>solution<br>s moles  | layer.<br>1, -1.028570e-014.<br>are added to produce                    |
| zero moles.                                      | Usually caused I                                                             | by KINEFI                                       | CS, REA                         | CTION, o                        | r diffuse layer                                                         |
| calculation.                                     | May be due to la                                                             | -<br>arge time                                  | steps :                         | in early                        | part of KINEFICS                                                        |
| simulation or<br>Using solution<br>Using pure ph | r negative concen<br>m 1.<br>nase assemblage 1                               | trations                                        | in the (                        | diffuse                         | layer.                                                                  |
| Using kinetic                                    | 351. K                                                                       | inetics d                                       | etined i                        | in simuli                       | ation 2.                                                                |
| Kinetics 1.                                      | Kinetics define                                                              | d in simu                                       | lation 2                        | 2.                              |                                                                         |
|                                                  | Time step: 1728                                                              | 00 second                                       | ls (Inci                        | remented                        | time: 518400 seconds)                                                   |
| Coefficient                                      | Rate name                                                                    | Delta Mc                                        | les Tota                        | al Moles                        | Reactant                                                                |
| -1                                               | Fe <u>di</u> ax                                                              | -1.298e-                                        | 011 9.9                         | 998e-001                        | Fe <u>di</u>                                                            |
| 1                                                |                                                                              |                                                 |                                 |                                 | Fe_tri                                                                  |
|                                                  |                                                                              | Phase a                                         | sembla                          | ne                              |                                                                         |
|                                                  |                                                                              |                                                 |                                 | 5-                              |                                                                         |
| Delta                                            | Phase                                                                        | SI 1                                            | og IAP                          | log KT                          | Moles in assemblage<br>Initial Final                                    |
| 3.196e-012                                       | O2 (g)                                                                       | -0.78                                           | -3.68                           | -2.89                           | 1.000e+001 1.000e+001-                                                  |
|                                                  |                                                                              | Solution                                        | canposi                         | tion                            |                                                                         |
|                                                  | Florents                                                                     | 14-1-1                                          | itar                            | Mole-                           |                                                                         |
|                                                  | malaits                                                                      | roudi                                           | тсу.                            | rotes                           |                                                                         |

|              | C<br>Ca<br>Cl<br>Fe_cti<br>Fe_tri<br>K<br>Mg<br>Mn<br>Na<br>S | 1.389e-001<br>1.476e-001<br>2.367e-001<br>3.720e-015<br>1.610e-004<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002 | 1.389e-001<br>1.476e-001<br>2.367e-001<br>3.720e-015<br>1.610e-004<br>5.270e-005<br>9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002 |                                              |                                    |
|--------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|
|              | D                                                             | escription of                                                                                                                            | solution                                                                                                                                 |                                              |                                    |
| equilibrium  | Activ<br>Io<br>Mass o<br>Total alkali<br>Total (              | pH<br>pe<br>nic strength<br>f water (kg)<br>nity (eq/kg)<br>002 (mol/kg)                                                                 | = 5.432<br>= 15.170<br>= 0.991<br>= 4.066e-(<br>= 1.000e+(<br>= 2.983e-(<br>= 1.389e-(                                                   | Charge<br>Adjust<br>001<br>000<br>002<br>001 | e bal <i>a</i> nce<br>ied to redox |
| Percent erro | Tempera<br>Electrical l<br>or, 100*(Cat- An                   | ture (deg C)<br>balance (eg)<br>)/(Cat+ An )<br>Iterations<br>Total H<br>Total O                                                         | $= 25.000 \\= -1.265e-( \\= -0.00 \\= 233 \\= 1.110421e \\= 5.587731e \\$                                                                | 009<br>2+002<br>2+001                        |                                    |
|              | <u></u> u                                                     |                                                                                                                                          | DI Species                                                                                                                               |                                              |                                    |
| Log          |                                                               |                                                                                                                                          |                                                                                                                                          | Log                                          | Log                                |
| Ganma        | Species                                                       | Molality                                                                                                                                 | Activity                                                                                                                                 | Molality                                     | Activity                           |
|              | H+                                                            | 4.791e-006                                                                                                                               | 3.697e-006                                                                                                                               | -5.320                                       | -5.432                             |
| -0.113       | OH-                                                           | 4.133e-009                                                                                                                               | 2.684e-009                                                                                                                               | -8.384                                       | -8.571                             |
| -0.18/       | H2O                                                           | 5.551e+001                                                                                                                               | 9.911e-001                                                                                                                               | 1.744                                        | -0.004                             |
| C(-4)        | 0.000e+000<br>CH4                                             | 0.000e+000                                                                                                                               | 0.000e+000                                                                                                                               | -141.384                                     | -141.343                           |
| C(4)         | 1.389e-001<br>CC2                                             | 1.094e-001                                                                                                                               | 1.201e-001                                                                                                                               | -0.961                                       | -0.920                             |
| 0.041        | H003-                                                         | 2.035e-002                                                                                                                               | 1.433e-002                                                                                                                               | -1.691                                       | -1.844                             |
| -0.152       | CaHCO3+                                                       | 9.085e-003                                                                                                                               | 6.396e-003                                                                                                                               | -2.042                                       | -2.194                             |
| -0.152       | MgHCO3+                                                       | 5.761e-005                                                                                                                               | 4.210e-005                                                                                                                               | -4.239                                       | -4.376                             |
| -0.136       | CaCO3                                                         | 9.729e-006                                                                                                                               | 1.068e-005                                                                                                                               | -5.012                                       | -4.971                             |
| 0.041        | NaHCO3                                                        | 2.165e-006                                                                                                                               | 2.377e-006                                                                                                                               | -5.665                                       | -5.624                             |
| 0.041        | 003-2                                                         | 7.400e-007                                                                                                                               | 1.818e-007                                                                                                                               | -6.131                                       | -6.741                             |
| -0.610       | MnHCO3+                                                       | 1.035e-007                                                                                                                               | 7.562e-008                                                                                                                               | -6.985                                       | -7.121                             |
| 0.041        | MgCO3                                                         | 3.967e-008                                                                                                                               | 4.356e-008                                                                                                                               | -7.402                                       | -7.361                             |
| -0.136       | NaCO3-                                                        | 1.366e-009                                                                                                                               | 9.986e-010                                                                                                                               | -8.864                                       | -9.001                             |
| 0.041        | MinCO3                                                        | 7.786e-010                                                                                                                               | 8.550e-010                                                                                                                               | -9.109                                       | -9.068                             |
| -0.136       | Fe_diH003+                                                    | 1.216e-015                                                                                                                               | 8.885e-016                                                                                                                               | -14.915                                      | -15.051                            |
| 0.041        | Fe_diCO3                                                      | 2.462e-018                                                                                                                               | 2.704e-018                                                                                                                               | -17.609                                      | -17.568                            |
| Ca           | 1.476e-001<br>Ca+2                                            | 1.293e-001                                                                                                                               | 3.499e-002                                                                                                                               | -0.888                                       | -1.456                             |
| -0.568       | Ca304                                                         | 9.217e-003                                                                                                                               | 1.012e-002                                                                                                                               | -2.035                                       | -1.995                             |
| 0.041        | CaHCO3+                                                       | 9.085e-003                                                                                                                               | 6.396e-003                                                                                                                               | -2.042                                       | -2.194                             |
| -0.152       | CaCO3                                                         | 9.729e-006                                                                                                                               | 1.068e-005                                                                                                                               | -5.012                                       | -4.971                             |
| 0.041        | CaHSO4+                                                       | 2.999e-007                                                                                                                               | 2.192e-007                                                                                                                               | -6.523                                       | -6.659                             |
| -0.136       | CaCH+                                                         | 2.130e-009                                                                                                                               | 1.557e-009                                                                                                                               | -8.672                                       | -8.808                             |
| ci           | 2.367e-001<br>Cl-                                             | 2.367e-001                                                                                                                               | 1.559e-001                                                                                                                               | -0.626                                       | -0.807                             |
| -0.181       | MnCl+                                                         | 5.147e-008                                                                                                                               | 3.761e-008                                                                                                                               | -7.288                                       | -7.425                             |
| -0.136       | Fe_triCl+2                                                    | 1.201e-008                                                                                                                               | 3.425e-009                                                                                                                               | -7.921                                       | -8.465                             |
| -0.545       | Fe_triCl2+                                                    | 3.264e-009                                                                                                                               | 2.385e-009                                                                                                                               | -8.486                                       | -8.622                             |
| -0.136       | MnCl2                                                         | 2.331e-009                                                                                                                               | 2.560e-009                                                                                                                               | -8.632                                       | -8.592                             |
| 0.041        | MnCl3-                                                        | 1.504e-010                                                                                                                               | 1.099e-010                                                                                                                               | -9.823                                       | -9.959                             |
| -0.136       | Fe_triCl3                                                     | 3.386e-011                                                                                                                               | 3.719e-011                                                                                                                               | -10.470                                      | -10.430                            |
| J.U41        | Fe_diCl+                                                      | 1.826e-016                                                                                                                               | 1.335e-016                                                                                                                               | -15.738                                      | -15.875                            |
| Fe_di        | 3.720e-015<br>Fe_di+2                                         | 2.174e-015                                                                                                                               | 6.202e-016                                                                                                                               | -14.663                                      | -15.207                            |
| -0.545       | Fe_diH003+                                                    | 1.216e-015                                                                                                                               | 8.885e-016                                                                                                                               | -14.915                                      | -15.051                            |
| -0.136       | Fe_diCl+                                                      | 1.826e-016                                                                                                                               | 1.335e-016                                                                                                                               | -15.738                                      | -15.875                            |
| -0.136       | Fe_diSO4                                                      | 1.456e-016                                                                                                                               | 1.599e-016                                                                                                                               | -15.837                                      | -15.796                            |
| 0.041        | Fe_di003                                                      | 2.462e-018                                                                                                                               | 2.704e-018                                                                                                                               | -17.609                                      | -17.568                            |
| 0.136        | Fe_diOH+                                                      | 7.195e-020                                                                                                                               | 5.258e-020                                                                                                                               | -19.143                                      | -19.279                            |
| -0.136       | Fe_diH904+                                                    | 5.316e-021                                                                                                                               | 3.885e-021                                                                                                                               | -20.274                                      | -20.411                            |

|                          | Fe_di(HS)2          | 0.000e+000 | 0.000e+000 | -285.150 | -285.110 |  |
|--------------------------|---------------------|------------|------------|----------|----------|--|
| 0.041                    | Fe <u>di</u> (HS)3- | 0.000e+000 | 0.000e+000 | -422.363 | -422.499 |  |
| -0.136<br>Fe <u>t</u> ri | 1.610e-004          | 1 5300 004 | 1 119- 004 | 3 915    | 3 951    |  |
| -0.136                   | Fe_UII (UR) 2+      | 1.5508-004 | 1 259-004  | -5.815   | -5.900   |  |
| -0.545                   | Fe tri (OH) 3       | 3 517-006  | 3 862-006  | _5.454   | _5 /13   |  |
| 0.041                    | Fe trig0/+          | 1 583-008  | 1 157-008  | _7 801   | _7 937   |  |
| -0.136                   | Fe tri+3            | 1 223-008  | 7 275-010  | _7 913   | _9 138   |  |
| -1.226                   | Fe triCl+2          | 1 201-008  | 3 425-009  | -7 921   | -8 465   |  |
| -0.545                   | Fe tri2(0H)2+4      | 6 446-009  | 4 269-011  | -8 191   | -10 370  |  |
| -2.179                   | Fe triCl2+          | 3 264-009  | 2 385-009  | -8 486   | -8 622   |  |
| -0.136                   | Fe tri3(0H)4+5      | 2.532e-009 | 9.974e-013 | -8,597   | -12.001  |  |
| -3.405                   | Fe tri (OH) 4-      | 1.292e-009 | 9.444e-010 | -8,889   | -9.025   |  |
| -0.136                   | Fe tri (SO4)2-      | 5.020e-010 | 3.668e-010 | -9.299   | -9.436   |  |
| -0.136                   | Fe triCl3           | 3.386e-011 | 3.719e-011 | -10.470  | -10.430  |  |
| 0.041                    | Fe triHSO4+2        | 4.013e-013 | 1.145e-013 | -12.397  | -12,941  |  |
| -0.545<br>H(0)           | 0.000e+000          |            |            |          |          |  |
| 0.041                    | H2                  | 0.000e+000 | 0.000e+000 | -44.396  | -44.355  |  |
| K                        | 5.270e-005<br>K+    | 5.222e-005 | 3.440e-005 | -4.282   | -4.463   |  |
| -0.181                   | K904-               | 4.794e-007 | 3.504e-007 | -6.319   | -6.455   |  |
| -0.136                   | KOH                 | 2.912e-014 | 3.198e-014 | -13.536  | -13.495  |  |
| 0.041<br>Mg              | 9.719e-004          |            |            |          |          |  |
| -0.522                   | Mg+2                | 8.365e-004 | 2.512e-004 | -3.078   | -3.600   |  |
| 0.041                    | Mg904               | 7.774e-005 | 8.537e-005 | -4.109   | -4.069   |  |
| -0.136                   | MgHCO3+             | 5.761e-005 | 4.210e-005 | -4.239   | -4.376   |  |
| 0.041                    | MgCO3               | 3.967e-008 | 4.356e-008 | -7.402   | -7.361   |  |
| -0.136                   | MgCH+               | 3.346e-010 | 2.445e-010 | -9.476   | -9.612   |  |
| Mn(2)                    | 3.951e-007<br>Mn+2  | 2.230e-007 | 5.922e-008 | -6.652   | -7.228   |  |
| -0.5/6                   | MnHCO3+             | 1.035e-007 | 7.562e-008 | -6.985   | -7.121   |  |
| 0.136                    | MnCl+               | 5.147e-008 | 3.761e-008 | -7.288   | -7.425   |  |
| 0.011                    | MnSO4               | 1.390e-008 | 1.527e-008 | -7.857   | -7.816   |  |
| 0.041                    | MnCl2               | 2.331e-009 | 2.560e-009 | -8.632   | -8.592   |  |
| 0.041                    | MnCO3               | 7.786e-010 | 8.550e-010 | -9.109   | -9.068   |  |
| -0.136                   | MnCl3-              | 1.504e-010 | 1.099e-010 | -9.823   | -9.959   |  |
| -0.136                   | MnOH+               | 5.585e-013 | 4.082e-013 | -12.253  | -12.389  |  |
| Mn(3)                    | 4.555e-017<br>Mn+3  | 4.555e-017 | 2.710e-018 | -16.341  | -17.567  |  |
| -1.226<br>Na             | 4.183e-004          |            | 0.054.004  |          | 0.500    |  |
| -0.146                   | Na+                 | 4.132e-004 | 2.951e-004 | -3.384   | -3.530   |  |
| -0.136                   | Naso4-              | 2.9340-006 | 2.1440-000 | -5.555   | -5.009   |  |
| 0.041                    | Nahuus              | 2.105e-000 | 2.37/e-006 | -3.005   | -5.624   |  |
| -0.136                   | Naccu               | 1.3000-009 | 5 2270 013 | 10.004   | 12 292   |  |
| 0.041                    | 3 828-004           | 4.7008-015 | J.22/8-01J | -12.322  | -12.202  |  |
| 0.041                    | 02                  | 1.914e-004 | 2.102e-004 | -3.718   | -3.677   |  |
| S(-2)                    | 0.000e+000<br>H2S   | 0.000e+000 | 0.000e+000 | -137.957 | -137.917 |  |
| 0.041                    | HS-                 | 0.000e+000 | 0.000e+000 | -139.239 | -139.426 |  |
| -0.187                   | S-2                 | 0.000e+000 | 0.000e+000 | -146.277 | -146.912 |  |
| -0.635                   | Fe_di(HS)2          | 0.000e+000 | 0.000e+000 | -285.150 | -285.110 |  |
| 0.041                    | Fe_di (HS) 3-       | 0.000e+000 | 0.000e+000 | -422.363 | -422.499 |  |
| -0.136<br>S(6)           | 1.579e-002          | 0.045 000  | 4 040 000  | 0.005    | 4 005    |  |
| 0.041                    | CO1 2               | 9.21/e-003 | 1.012e-002 | -2.035   | -1.995   |  |
| -0.651                   | 504-2<br>M6004      | 0.491e-003 | 1.450e-003 | -2.188   | -2.839   |  |
| 0.041                    | ng504<br>N5004      | 1.1/4e-005 | 0.03/e-005 | -4.109   | -4.069   |  |
| -0.136                   | 1100/4-             | 2.9340-000 | 2.1440-000 | -0.000   | -3.669   |  |
| -0.136                   | 1204-               | 1.130e-007 | 3 504~ 007 | -0.14/   | -0.203   |  |
| -0.136                   | CaHGO(+             | 2 999~ 007 | 2 192~ 007 | -6 577   | -0.400   |  |
| -0.136                   | Fe trigN+           | 1 583a 00P | 1 157~ 000 | Q01      | -0.009   |  |
| -0.136                   | Mh904               | 1 390-000  | 1 527~000  | _7 857   | -7 816   |  |
| 0.041                    | Fe tri (904)?-      | 5.020-010  | 3.668-010  | _9 299   | -9.436   |  |
| -0.136                   | ,,                  |            |            |          |          |  |

|                                                | Fe triH901+2                                                                                                                                                                                        | 4 013-013                                                                                                                                                                                                                                                          | 1 1/5-013                                                   | _12 397                                                                                                                                                                               | _12 9/1             |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| -0.545                                         | Fe dis04                                                                                                                                                                                            | 1.456e-016                                                                                                                                                                                                                                                         | 1.599e-016                                                  | -15.837                                                                                                                                                                               | -15.796             |
| 0.041                                          | Fe_diH904+                                                                                                                                                                                          | 5.316e-021                                                                                                                                                                                                                                                         | 3.885e-021                                                  | -20.274                                                                                                                                                                               | -20.411             |
| -0.136                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                       |                     |
|                                                |                                                                                                                                                                                                     | -Saturation ir                                                                                                                                                                                                                                                     | ndices                                                      |                                                                                                                                                                                       |                     |
|                                                | Phase                                                                                                                                                                                               | SI log IZ                                                                                                                                                                                                                                                          | P log KT                                                    |                                                                                                                                                                                       |                     |
|                                                | Arhydrite<br>Aragonite<br>Calcite<br>C44(g)<br>C02(g)<br>Dolomite<br>Cypsum<br>H2(g)<br>H25(g)<br>Halite<br>Hausmanite<br>Marganite<br>O2(g)<br>Pyroduroite<br>Pyrolusite<br>Rodochrosite<br>Sulfur | 0.07 4.2<br>0.14 -8.2<br>0.28 -8.2<br>-1.38.48 -141.3<br>0.55 -0.2<br>-1.45 -1.8.5<br>0.28 -4.3<br>-1.51 -0.0<br>-136.92 -137.9<br>-4.21 -44.3<br>-5.92 -4.3<br>-8.93 52.1<br>-1.11 24.2<br>-0.78 -3.6<br>-11.57 3.6<br>-11.57 3.6<br>-11.57 -3.6<br>-101.59 -96.3 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$        | CaSO4<br>CaCO3<br>CaCO3<br>CACO3<br>CACO3<br>CACG<br>CASO4:2H2O<br>H2<br>H2O<br>H2S<br>H2O<br>H2S<br>H2O<br>H2S<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O |                     |
| Reaction ste                                   | p 10.                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                             | -                                                                                                                                                                                     |                     |
| WARNING: Ele                                   | ment Fe_di has ne                                                                                                                                                                                   | gative moles :                                                                                                                                                                                                                                                     | in solution,                                                | -2.3589176                                                                                                                                                                            | -015.               |
| zero moles.                                    | Erroneous mole                                                                                                                                                                                      | balance occurs                                                                                                                                                                                                                                                     | s as moles a                                                | re added to                                                                                                                                                                           | produce             |
| calculation.                                   | Usually caused                                                                                                                                                                                      | by KINEFICS, F                                                                                                                                                                                                                                                     | REACTION, or                                                | diffuse la                                                                                                                                                                            | yer                 |
| simulation of<br>WARNING: Elem                 | May be due to 1<br>r negative concer<br>ment Fe_di has ne<br>Formeous mole                                                                                                                          | arge time ster<br>trations in th<br>gative moles :<br>balance corum                                                                                                                                                                                                | ne diffuse l<br>in solution,                                | part of Kilv<br>ayer.<br>-1.618662e                                                                                                                                                   | EFICS<br>←016.      |
| zero noles.                                    | Usually caused                                                                                                                                                                                      | by KINETICS. F                                                                                                                                                                                                                                                     | FACTION. Or                                                 | diffuse la                                                                                                                                                                            | ver                 |
| calculation.                                   | May be due to 1                                                                                                                                                                                     | arge time ster                                                                                                                                                                                                                                                     | s in early                                                  | part of KIN                                                                                                                                                                           | EFICS               |
| simulation o<br>WARNING: Ele                   | r negative concer<br>ment Fe_di has ne<br>Erroneous mole                                                                                                                                            | trations in t<br>gative moles :<br>balance occurs                                                                                                                                                                                                                  | ne diffuse l<br>in solution,<br>s as moles a                | ayer.<br>-2.488700e<br>re added to                                                                                                                                                    | ÷-016.<br>o produce |
| zero moles.                                    | Usually caused                                                                                                                                                                                      | by KINEFICS, F                                                                                                                                                                                                                                                     | EACTION, or                                                 | diffuse la                                                                                                                                                                            | yer                 |
| calculation.<br>simulation or<br>WARNING: Eler | May be due to l<br>r negative concer<br>ment Fe_di has ne<br>Enronecus mole                                                                                                                         | arge time ster<br>trations in th<br>gative moles i<br>balance occurs                                                                                                                                                                                               | ps in early<br>ne diffuse l<br>in solution,<br>s as moles a | part of KIN<br>ayer.<br>-1.983007e<br>re added to                                                                                                                                     | EFICS<br>+-016.     |
| zero moles.                                    | Usually caused                                                                                                                                                                                      | by KINEFICS, F                                                                                                                                                                                                                                                     | REACTION, or                                                | diffuse la                                                                                                                                                                            | ver                 |
| calculation.<br>simulation of<br>WARNING: Elec | May be due to l<br>r negative concer<br>ment Fe_di has ne                                                                                                                                           | arge time ster<br>trations in the<br>gative moles :                                                                                                                                                                                                                | ps in early<br>ne diffuse l<br>in solution,                 | part of KIN<br>ayer.<br>-1.214100e                                                                                                                                                    | -016 <u>.</u>       |
| zero moles.                                    | Erroneous mole                                                                                                                                                                                      | balance occurs                                                                                                                                                                                                                                                     | sas molesa<br>Tenormoni or                                  | re accec to                                                                                                                                                                           | ) produce           |
| calculation.                                   | May be due to 1                                                                                                                                                                                     | avone time stor                                                                                                                                                                                                                                                    | re in carly:                                                | nart of KTN                                                                                                                                                                           | iver.               |
| simulation o<br>WARNING: Eler                  | r negative concer<br>ment Fe_di has na<br>Erroneous mole                                                                                                                                            | trations in the<br>gative moles :<br>balance occurs                                                                                                                                                                                                                | ne diffuse l<br>in solution,<br>s as moles a                | ayer.<br>-6.157574a<br>re added to                                                                                                                                                    | ÷017.<br>⇒ produce  |
| zero moles.                                    | Usually caused                                                                                                                                                                                      | by KINEFICS, F                                                                                                                                                                                                                                                     | REACTION, or                                                | diffuse la                                                                                                                                                                            | yer                 |
| calculation.<br>simulation or<br>WARNING: Eler | May be due to l<br>r negative concer<br>ment Fe_di has ne                                                                                                                                           | arge time ster<br>trations in th<br>gative moles :                                                                                                                                                                                                                 | ps in early<br>ne diffuse l<br>in solution,                 | part of KIN<br>ayer.<br>-2.9473576                                                                                                                                                    | ETICS               |
| zero moles.                                    | Erroneous mole                                                                                                                                                                                      | balance occurs                                                                                                                                                                                                                                                     | sas moles a                                                 | re added to                                                                                                                                                                           | ) produce           |
| calculation.                                   | May be due to 1                                                                                                                                                                                     | aven timo stor                                                                                                                                                                                                                                                     | en in carly:                                                | carriese is                                                                                                                                                                           | iver.               |
| simulation o<br>Using solutio<br>Using pure pl | n negative concer<br>on 1.<br>hase assemblage 1                                                                                                                                                     | trations in th                                                                                                                                                                                                                                                     | ne diffuse l                                                | ayer.                                                                                                                                                                                 | 5103                |
| Kinetics 1                                     | Kinetics dofi-                                                                                                                                                                                      | d in similation                                                                                                                                                                                                                                                    | a in simula<br>m 2                                          | uun 2.                                                                                                                                                                                |                     |
| matuto 1.                                      | Time step: 1728                                                                                                                                                                                     | 00 seconds (1                                                                                                                                                                                                                                                      | incremented                                                 | time: 69120                                                                                                                                                                           | () seconds)         |
| a                                              | Rate name                                                                                                                                                                                           | Delta Moles 1                                                                                                                                                                                                                                                      | Iotal Moles                                                 | Reactant                                                                                                                                                                              |                     |
| Operficient                                    | Fe di av                                                                                                                                                                                            | -3.886-015                                                                                                                                                                                                                                                         | 9 998-001                                                   | Fe di                                                                                                                                                                                 |                     |
| -1                                             | re <u>ur</u> ax                                                                                                                                                                                     | -3.0006-013                                                                                                                                                                                                                                                        | 9.9908-001                                                  | Fe tri                                                                                                                                                                                |                     |
| 1                                              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                       |                     |
|                                                |                                                                                                                                                                                                     | Phase assemi                                                                                                                                                                                                                                                       | olage                                                       |                                                                                                                                                                                       |                     |
| Delta                                          | Phase                                                                                                                                                                                               | SI log IA                                                                                                                                                                                                                                                          | P log KT                                                    | bles in ass<br>Initial                                                                                                                                                                | emblage<br>Final    |
| 1.048e-013                                     | 02 (g)                                                                                                                                                                                              | -0.78 -3.6                                                                                                                                                                                                                                                         | 58 -2.89 1                                                  | .000e+001 1                                                                                                                                                                           | .000e+001           |
|                                                |                                                                                                                                                                                                     | Solution compo                                                                                                                                                                                                                                                     | osition                                                     |                                                                                                                                                                                       |                     |
|                                                | Elements                                                                                                                                                                                            | Molality                                                                                                                                                                                                                                                           | Moles                                                       |                                                                                                                                                                                       |                     |
|                                                | C C                                                                                                                                                                                                 | 1.389e-001                                                                                                                                                                                                                                                         | 1.389e-001                                                  |                                                                                                                                                                                       |                     |
|                                                | Ca<br>Cl                                                                                                                                                                                            | 1.476e-001<br>2.367e-001                                                                                                                                                                                                                                           | 1.476e-001<br>2.367e-001                                    |                                                                                                                                                                                       |                     |
|                                                | re <u>cu</u><br>Fe_tri<br>K                                                                                                                                                                         | 1.000e-018<br>1.610e-004<br>5.270e-005                                                                                                                                                                                                                             | 1.000e-018<br>1.610e-004<br>5.270e-005                      |                                                                                                                                                                                       |                     |

|                 | Mg<br>Mn<br>Na<br>S                                                                          | 9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002                                                                          | 9.719e-004<br>3.951e-007<br>4.183e-004<br>1.579e-002                                                                                                  |                                         |                           |
|-----------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|
|                 | De                                                                                           | scription of                                                                                                                  | solution                                                                                                                                              |                                         |                           |
|                 |                                                                                              | pH<br>pe                                                                                                                      | = 5.432<br>= 15.170                                                                                                                                   | Charge<br>Adjust                        | e balance<br>ied to redox |
| equilibrium     | Activi                                                                                       | ty of water                                                                                                                   | = 0.991                                                                                                                                               |                                         |                           |
| Percent erro    | Iar<br>Mass of<br>Total alkalir<br>Total C<br>Tenperat<br>Electrical h<br>pr, 100*(Cat- An ) | ic strength<br>water (kg)<br>ity (eg/kg)<br>02 (mol/kg)<br>ure (deg C)<br>alance (eg)<br>/(Cat+[An])<br>Iterations<br>Total H | $\begin{array}{r} = 4.066e+0\\ = 1.000e+0\\ = 2.983e+0\\ = 1.389e+0\\ = 25.000\\ = -1.265e+0\\ = -0.00\\ = 233\\ = 1.110421e\\ = 5.077234\end{array}$ | 01<br>000<br>002<br>001<br>009<br>=+002 |                           |
|                 | Di                                                                                           | ctribution o                                                                                                                  | = 5.367/316                                                                                                                                           | HUUI                                    |                           |
|                 | DI                                                                                           | SUPIDULION C                                                                                                                  | i species                                                                                                                                             |                                         |                           |
| Ior             |                                                                                              |                                                                                                                               |                                                                                                                                                       | Log                                     | Log                       |
| Camma           | Species                                                                                      | Molality                                                                                                                      | Activity                                                                                                                                              | Molality                                | Activity                  |
| Claimer         | H+                                                                                           | 4.791e-006                                                                                                                    | 3.697e-006                                                                                                                                            | -5.320                                  | -5.432                    |
| -0.113          | 0H-                                                                                          | 4.133e-009                                                                                                                    | 2.684e-009                                                                                                                                            | -8.384                                  | -8.571                    |
| -0.187          | H2O                                                                                          | 5.551e+001                                                                                                                    | 9.911e-001                                                                                                                                            | 1.744                                   | -0.004                    |
| 0.000<br>C(-4)  | 0.000e+000                                                                                   |                                                                                                                               |                                                                                                                                                       |                                         |                           |
| 0.041           | CH4                                                                                          | 0.000e+000                                                                                                                    | 0.000e+000                                                                                                                                            | -141.384                                | -141.343                  |
| C(4)            | 1.389e-001                                                                                   | 1.094e-001                                                                                                                    | 1.201e-001                                                                                                                                            | -0.961                                  | -0.920                    |
| 0.041           | HT03-                                                                                        | 2 035e-002                                                                                                                    | 1 433-002                                                                                                                                             | -1 691                                  | -1 844                    |
| -0.152          | CaHOO3+                                                                                      | 9 085e-003                                                                                                                    | 6 3960-003                                                                                                                                            | -2 042                                  | -2 194                    |
| -0.152          | MaHCO3+                                                                                      | 5.761e-005                                                                                                                    | 4.210e-005                                                                                                                                            | -4.239                                  | -4.376                    |
| -0.136          | വന്ദ്                                                                                        | 9 729-006                                                                                                                     | 1 068-005                                                                                                                                             | -5 012                                  | _1 971                    |
| 0.041           | NHOR                                                                                         | 2 1650 006                                                                                                                    | 2 2770 006                                                                                                                                            | 5.012<br>E 66E                          | 4.971<br>E 604            |
| 0.041           | Nancos                                                                                       | 2.1000-000                                                                                                                    | 2.3770-000                                                                                                                                            | -5.005                                  | -5.024                    |
| -0.610          | 03-2                                                                                         | 7.400e-007                                                                                                                    | 1.8186-007                                                                                                                                            | -6.131                                  | -6./41                    |
| -0.136          | MnHCO3+                                                                                      | 1.035e-007                                                                                                                    | 7.562e-008                                                                                                                                            | -6.985                                  | -7.121                    |
| 0.041           | MgCO3                                                                                        | 3.967e-008                                                                                                                    | 4.356e-008                                                                                                                                            | -7.402                                  | -7.361                    |
| -0.136          | NaCO3-                                                                                       | 1.366e-009                                                                                                                    | 9.986e-010                                                                                                                                            | -8.864                                  | -9.001                    |
| 0.041           | MinCO3                                                                                       | 7.786e-010                                                                                                                    | 8.550e-010                                                                                                                                            | -9.109                                  | -9.068                    |
| -0.136          | Fe_diHCO3+                                                                                   | 3.484e-019                                                                                                                    | 2.546e-019                                                                                                                                            | -18.458                                 | -18.594                   |
| 0.041           | Fe_diCO3                                                                                     | 7.056e-022                                                                                                                    | 7.748e-022                                                                                                                                            | -21.151                                 | -21.111                   |
| Ca              | 1.476e-001<br>Ca+2                                                                           | 1.293e-001                                                                                                                    | 3.499e-002                                                                                                                                            | -0.888                                  | -1.456                    |
| -0.568          | Ca904                                                                                        | 9.217e-003                                                                                                                    | 1.012e-002                                                                                                                                            | -2.035                                  | -1.995                    |
| 0.041           | CaHOO3+                                                                                      | 9.085e-003                                                                                                                    | 6.396e-003                                                                                                                                            | -2.042                                  | -2.194                    |
| -0.152          | CaCO3                                                                                        | 9.729e-006                                                                                                                    | 1.068e-005                                                                                                                                            | -5.012                                  | -4.971                    |
| 0.041           | CaH904+                                                                                      | 2 999-007                                                                                                                     | 2 192-007                                                                                                                                             | -6 523                                  | -6 659                    |
| -0.136          | CaOH+                                                                                        | 2 130-009                                                                                                                     | 1 557-009                                                                                                                                             | _8 672                                  | _8.808                    |
| -0.136          | 2 3670 001                                                                                   | 2.1500 005                                                                                                                    | 1.55/0 005                                                                                                                                            | 0.072                                   | 0.000                     |
| 0.101           | Cl-                                                                                          | 2.367e-001                                                                                                                    | 1.559e-001                                                                                                                                            | -0.626                                  | -0.807                    |
| -0.101          | MnCl+                                                                                        | 5.147e-008                                                                                                                    | 3.761e-008                                                                                                                                            | -7.288                                  | -7.425                    |
| -0.136          | Fe_triCl+2                                                                                   | 1.201e-008                                                                                                                    | 3.425e-009                                                                                                                                            | -7.921                                  | -8.465                    |
| -0.545          | Fe_triCl2+                                                                                   | 3.264e-009                                                                                                                    | 2.385e-009                                                                                                                                            | -8.486                                  | -8.622                    |
| -0.136          | MnCl2                                                                                        | 2.331e-009                                                                                                                    | 2.560e-009                                                                                                                                            | -8.632                                  | -8.592                    |
| 0.041           | MnCl3-                                                                                       | 1.504e-010                                                                                                                    | 1.099e-010                                                                                                                                            | -9.823                                  | -9.959                    |
| -0.136          | Fe_triCl3                                                                                    | 3.386e-011                                                                                                                    | 3.719e-011                                                                                                                                            | -10.470                                 | -10.430                   |
| 0.041           | Fe_diCl+                                                                                     | 5.233e-020                                                                                                                    | 3.824e-020                                                                                                                                            | -19.281                                 | -19.417                   |
| -0.136<br>Fe_di | 1.066e-018                                                                                   | C 000 010                                                                                                                     | 1 000 010                                                                                                                                             | 10 000                                  | 10 750                    |
| -0.545          | Fe <u>d</u> 1+2                                                                              | 6.230e-019                                                                                                                    | 1.7//e-019                                                                                                                                            | -18.206                                 | -18.750                   |
| -0.136          | re_d1HCO3+                                                                                   | 3.484e-019                                                                                                                    | 2.546e-019                                                                                                                                            | -18.458                                 | -18.594                   |
| -0.136          | Fe_diCl+                                                                                     | 5.233e-020                                                                                                                    | 3.824e-020                                                                                                                                            | -19.281                                 | -19.417                   |
| 0.041           | Fe_diSO4                                                                                     | 4.172e-020                                                                                                                    | 4.582e-020                                                                                                                                            | -19.380                                 | -19.339                   |
| 0.041           | Fe_diCO3                                                                                     | 7.056e-022                                                                                                                    | 7.748e-022                                                                                                                                            | -21.151                                 | -21.111                   |
| -0.136          | Fe_diOH+                                                                                     | 2.062e-023                                                                                                                    | 1.507e-023                                                                                                                                            | -22.686                                 | -22.822                   |
| -0.136          | Fe_diH904+                                                                                   | 1.523e-024                                                                                                                    | 1.113e-024                                                                                                                                            | -23.817                                 | -23.953                   |
| 0.041           | Fe_di(HS)2                                                                                   | 0.000e+000                                                                                                                    | 0.000e+000                                                                                                                                            | -288.693                                | -288.653                  |
| -0.136          | Fe_di(HS)3-                                                                                  | 0.000e+000                                                                                                                    | 0.000e+000                                                                                                                                            | -425.906                                | -426.042                  |
| Fe_tri          | 1.610e-004<br>Fe tri (0H)2+                                                                  | 1.530-004                                                                                                                     | 1.118-004                                                                                                                                             | _3 215                                  | _3 951                    |
| -0.136          |                                                                                              |                                                                                                                               |                                                                                                                                                       | 5.015                                   | 5.201                     |

| _0 5/15         | Fe_triOH+2          | 4.415e-006 | 1.259e-006 | -5.355   | -5.900          |
|-----------------|---------------------|------------|------------|----------|-----------------|
| 0.041           | Fe_tri(OH)3         | 3.517e-006 | 3.862e-006 | -5.454   | -5.413          |
| 0.041           | Fe_tri904+          | 1.583e-008 | 1.157e-008 | -7.801   | -7.937          |
| -0.136          | Fe_tri+3            | 1.223e-008 | 7.275e-010 | -7.913   | -9.138          |
| -1.226          | Fe_triCl+2          | 1.201e-008 | 3.425e-009 | -7.921   | -8.465          |
| -0.545          | Fe_tri2(0H)2+4      | 6.446e-009 | 4.269e-011 | -8.191   | -10.370         |
| -2.179          | Fe_triCl2+          | 3.264e-009 | 2.385e-009 | -8.486   | -8.622          |
| -0.136          | Fe tri3(0H)4+5      | 2.532e-009 | 9.974e-013 | -8.597   | -12.001         |
| -3.405          | Fe tri (OH) 4-      | 1.292e-009 | 9.444e-010 | -8,889   | -9.025          |
| -0.136          | Fe tri (904)2-      | 5.020e-010 | 3.668e-010 | -9.299   | -9.436          |
| -0.136          | Fe trif13           | 3 386-011  | 3 719-011  | -10 470  | -10 430         |
| 0.041           | Fe triH904+2        | 4 0130-013 | 1 1/50-013 | _12 397  | _12 9/1         |
| -0.545          | 0.000-1000          | 4.0106-010 | 1.1456-015 | -12.327  | -12.941         |
| 0.041           | H2                  | 0.000e+000 | 0.000e+000 | -44.396  | -44.355         |
| K K             | 5.270e-005          | E 222- 00E | 3 440- 00E | 4 202    | 4.400           |
| -0.181          | K+                  | 5.222e-005 | 3.440e-005 | -4.282   | -4.463          |
| -0.136          | K904-               | 4.794e-007 | 3.504e-007 | -6.319   | -6.455          |
| 0.041           | KOH                 | 2.912e-014 | 3.198e-014 | -13.536  | -13.495         |
| Mg              | 9.719e-004<br>Mg+2  | 8.365e-004 | 2.512e-004 | -3.078   | -3.600          |
| -0.522          | MgSO4               | 7.774e-005 | 8.537e-005 | -4.109   | -4.069          |
| 0.041           | MaHCO3+             | 5.761e-005 | 4.210e-005 | -4.239   | -4.376          |
| -0.136          | MpCO3               | 3.967e-008 | 4.356e-008 | -7.402   | -7.361          |
| 0.041           | MbCH+               | 3.346e-010 | 2.445e-010 | -9.476   | -9.612          |
| -0.136<br>Mp(2) | 3 951e-007          |            |            |          |                 |
| -0.576          | Mn+2                | 2.230e-007 | 5.922e-008 | -6.652   | -7.228          |
| _0 136          | MnHCO3+             | 1.035e-007 | 7.562e-008 | -6.985   | -7.121          |
| 0.136           | MnCl+               | 5.147e-008 | 3.761e-008 | -7.288   | -7.425          |
| 0.110           | Mn904               | 1.390e-008 | 1.527e-008 | -7.857   | -7.816          |
| 0.041           | MnCl2               | 2.331e-009 | 2.560e-009 | -8.632   | -8.592          |
| 0.041           | MhCO3               | 7.786e-010 | 8.550e-010 | -9.109   | -9.068          |
| 0.041           | MnCl3-              | 1.504e-010 | 1.099e-010 | -9.823   | -9.959          |
| -0.136          | MnCH+               | 5.585e-013 | 4.082e-013 | -12.253  | -12.389         |
| -0.136<br>Mn(3) | 4.555e-017<br>Mn+3  | 4.555e-017 | 2.710e-018 | -16.341  | -17.567         |
| -1.220<br>Na    | 4.183e-004          | 4 122- 004 | 0.051004   | 2 204    | 2 520           |
| -0.146          | Net                 | 4.1328-004 | 2.9518-004 | -3.304   | -3.330          |
| -0.136          | NaSO4-              | 2.934e-006 | 2.1440-006 | -5.533   | -5.669          |
| 0.041           | NahCO3              | 2.165e-006 | 2.37/e-006 | -5.665   | -5.624          |
| -0.136          | Nacos-              | 1.366e-009 | 9.986e-010 | -8.864   | -9.001          |
| 0.041           | NaOH                | 4.760e-013 | 5.22/e-013 | -12.322  | -12.282         |
| O(0)            | 3.828e-004<br>02    | 1.914e-004 | 2.102e-004 | -3.718   | -3.677          |
| 0.041<br>S(-2)  | 0.000e+000          |            |            |          |                 |
| 0.041           | H2S                 | 0.000e+000 | 0.000e+000 | -137.957 | -137.917        |
| -0.187          | HS-                 | 0.000e+000 | 0.000e+000 | -139.239 | -139.426        |
| -0.635          | S-2                 | 0.000e+000 | 0.000e+000 | -146.277 | -146.912        |
| 0.041           | Fe_di(HS)2          | 0.000e+000 | 0.000e+000 | -288.693 | -288.653        |
| -0.136          | Fe_di(HS)3-         | 0.000e+000 | 0.000e+000 | -425.906 | -426.042        |
| S(6)            | 1.579e-002<br>CaSO4 | 9.217e-003 | 1.012e-002 | -2.035   | -1.995          |
| 0.041           | 504-2               | 6.491e-003 | 1.450e-003 | -2.188   | -2.839          |
| -0.651          | MpSO4               | 7.774e-005 | 8.537e-005 | -4.109   | -4.069          |
| 0.041           | Na904-              | 2.934e-006 | 2.144e-006 | -5.533   | -5.669          |
| -0.136          | H904-               | 7.130e-007 | 5.211e-007 | -6.147   | -6.283          |
| -0.136          | K904-               | 4.794-007  | 3.504e-007 | -6.319   | -6.455          |
| -0.136          | CaHSO1+             | 2.999-007  | 2.192-007  | _6 523   | -6 650          |
| -0.136          | Es trignut          | 1 5820 000 | 1 157~ 000 | _7 901   | פנט.ט<br>דרם ד_ |
| -0.136          | MPGU/               | 1 300- 000 | 1 5070 000 | 7 057    | 7 010           |
| 0.041           | To try (00110       | 1.350G-010 | 1.02/e-008 | -1.00/   | -/.810          |
| -0.136          | re_uri(504)2-       | J.UZUE-UIU | 3.000E-ULU | -9.299   | -9.436          |
| -0.545          | re_ur1H904+2        | 4.013e-013 | 1.1450-013 | 10,000   | -12.941         |
| 0.041           | re_cu:su4           | 4.1/2e-020 | 4.5828-020 | -13.380  | -19.339         |
|                 | re dih904+          | 1.523e-024 | 1.113e-024 | -23.817  | -23 953         |

I

|                                                  | Phase                                                        | SI log IAP                                            | log KT                              |                                                     |
|--------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------------------------|
|                                                  | Anhydrite                                                    | 0.07 -4.29                                            | -4.36                               | Ca904                                               |
|                                                  | Aragonite<br>Calcite                                         | 0.14 -8.20<br>0.28 -8.20                              | -8.34<br>-8.48                      | CaCO3                                               |
|                                                  | CH4 (g) -                                                    | -138.48 -141.34                                       | -2.86<br>-1.47                      | CH4<br>(1)2                                         |
|                                                  | Dolomite                                                     | -1.45 -18.54                                          | -17.09                              | CaMg(003)2                                          |
|                                                  | H2 (g)                                                       | -41.21 -44.36                                         | -3.15                               | H2                                                  |
|                                                  | H2O(g)<br>H2S(g) -                                           | -1.51 -0.00                                           | -1.00                               | H2O<br>H2S                                          |
|                                                  | Halite<br>Hausmannite                                        | -5.92 -4.34<br>-8.93 52.10                            | 1.58<br>61.03                       | NaCl<br>Mn3O4                                       |
|                                                  | Manganite<br>02(q)                                           | -1.11 24.23                                           | 25.34<br>-2.89                      | MnOOH<br>02                                         |
|                                                  | Pyrochroite<br>Byrolusito                                    | -11.57 3.63                                           | 15.20                               | Mn (CH) 2<br>Mn C2                                  |
|                                                  | Rhodochrosite                                                | -2.84 -13.97                                          | -11.13                              | Mh003                                               |
| Densteinen et er                                 |                                                              | -101.59 -90.71                                        | 4.88                                | 5                                                   |
| MERCULIAN SLEP                                   | )⊥L.<br>vant Do di boa nor                                   | etire mles in                                         | colution                            | 6 750450- 010                                       |
| WHRIVIING: FIGI                                  | Erroneous mole b                                             | alance occurs a                                       | as moles a                          | are added to produce                                |
| zero moles.                                      | Usually caused h                                             | y KINETICS, REF                                       | CTION, OI                           | r diffuse layer                                     |
| calculation.                                     | May be due to la                                             | arge time steps                                       | in early                            | part of KINEFICS                                    |
| simulation or<br>WARNING: Elen                   | r negative concent<br>rent Fe_di has neg<br>Erroneous mole h | rations in the<br>pative moles in<br>palance occurs a | diffuse :<br>solution<br>as moles a | layer.<br>, -4.638259e-020.<br>are added to produce |
| zero moles.                                      | Usually caused h                                             | y KINETICS, REF                                       | CTION, OI                           | diffuse layer                                       |
| calculation.                                     | May be due to la                                             | urge time steos                                       | in earlv                            | part of KINEFICS                                    |
| simulation or<br>WARNING: Elem                   | negative concent<br>rent Fe_di has neg<br>Erroneous mole h   | rations in the<br>pative moles in<br>malance occurs a | diffuse :<br>solution<br>as moles a | layer.<br>, -7.131341e-020.<br>are added to produce |
| zero moles.                                      | Usually caused h                                             | y KINETICS, REF                                       | CTION, 01                           | : diffuse layer                                     |
| calculation.                                     | May be due to la                                             | irge time stens                                       | in early                            | part of KINEFICS                                    |
| simulation or<br>WARNING: Elen                   | negative concent<br>rent Fe_di has neg<br>Erroneous mole h   | rations in the<br>pative moles in<br>palance occurs a | diffuse<br>solution<br>as moles a   | layer.<br>, -5.682284e-020.<br>are added to produce |
| zero moles.                                      | Usually caused h                                             | y KINETICS, REF                                       | CTION, OI                           | diffuse layer                                       |
| calculation.                                     | May be due to la                                             | rge time steps                                        | in early                            | part of KINETICS                                    |
| simulation or<br>WARNING: Elen                   | r negative concent<br>rent Fe_di has neg<br>Erroneous mole h | pations in the<br>pative moles in<br>palance occurs a | diffuse :<br>solution<br>as moles a | layer.<br>, -3.478989e-020.<br>are added to produce |
| zero moles.                                      | Usually caused h                                             | y KINETICS, REF                                       | CTION, OI                           | r diffuse layer                                     |
| calculation.                                     | May be due to la                                             | urge time steps                                       | in early                            | part of KINETICS                                    |
| simulation or<br>WARNING: Elen                   | r negative concent<br>rent Fe_di has neg<br>Erroneous mole h | rations in the<br>pative moles in<br>palance occurs a | diffuse :<br>solution<br>as moles a | layer.<br>, -1.764446e-020.<br>are added to produce |
| zero moles.                                      | Usually caused k                                             | y KINETICS, REF                                       | CTION, OI                           | r diffuse layer                                     |
| calculation.<br>simulation or                    | May be due to la<br>negative concent                         | arge time steps<br>crations in the                    | in early<br>diffuse I               | part of KINEFICS<br>layer.                          |
| WARNING: Elen                                    | ent Fe_di has neç<br>Erroneous mole h                        | pative moles in<br>palance occurs a                   | solution.<br>as moles a             | , -8.445617e-022.<br>are added to produce           |
| zero moles.                                      | Usually caused k                                             | y KINETICS, REF                                       | CTION, OI                           | r diffuse layer                                     |
| calculation.                                     | May be due to la                                             | rge time steps                                        | in early                            | part of KINETICS                                    |
| simulation or<br>Using solution<br>Using pure ph | negative concent<br>n 1.<br>ase assemblage 1.                | rations in the                                        | diffuse :                           | layer.                                              |
| Using kinetic                                    | 15 I. Ki                                                     | netics defined                                        | in simula                           | ition 2.                                            |
| Kinetics 1.                                      | Kinetics defined                                             | l in simulation                                       | 2.                                  |                                                     |
|                                                  | Time step: 17280                                             | 10 seconds (Inc                                       | remented                            | time: 864000 seconds)                               |
| Coefficient                                      | Rate name                                                    | Delta Moles Tot                                       | al Moles                            | Reactant                                            |
| 1                                                | Fe_di_ax                                                     | 0.000e+000 9.                                         | .998e-001                           | Fe_di                                               |
| 1                                                |                                                              |                                                       |                                     | Fe_tri                                              |
| T                                                |                                                              | Dhaco accombla                                        | 2000                                |                                                     |
|                                                  |                                                              | ribbe asseniola                                       | aye                                 |                                                     |
| Delta                                            | Phase                                                        | SI log IAP                                            | log KT                              | 'bles in assemblage<br>Initial Final                |
|                                                  | 02 (a)                                                       | -0.78 -3.68                                           | -2.89 1                             | L.000e+001 1.000e+001                               |
| 1.243e-013                                       |                                                              |                                                       |                                     |                                                     |
|                                                  |                                                              | Solution composi                                      | 1t1an                               |                                                     |
|                                                  | Elements                                                     | Molality                                              | Moles                               |                                                     |
|                                                  | C                                                            | 1.389e-001 1.                                         | .389e-001                           |                                                     |
|                                                  | CI<br>Po di                                                  | 2.367e-001 2.                                         | .367e-001                           |                                                     |
|                                                  | Fe_tri                                                       | 1.610e-004 1.                                         | .055e-022                           |                                                     |
|                                                  | к<br>Mg                                                      | 5.2/0e-005 5.<br>9.719e-004 9.                        | .∠/ue-005<br>.719e-004              |                                                     |
|                                                  | Mn<br>Na                                                     | 3.951e-007 3.<br>4.183e-004 4.                        | .951e-007<br>.183e-004              |                                                     |
|                                                  | S                                                            | 1.579e-002 1.                                         | .579e-002                           |                                                     |
|                                                  | De                                                           | escription of so                                      | olution                             |                                                     |

---Saturation indices--

|              |                                                    | pH<br>pe                                                                         | = 5.432<br>= 15.170                                             | Charge<br>Adjust         | e balance<br>red to redox |
|--------------|----------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|---------------------------|
| equilibrium  | Acti<br>I<br>Mass<br>Total alkal<br>Total<br>Total | vity of water<br>anic strength<br>of water (kg)<br>inity (eq/kg)<br>CO2 (mol/kg) | = 0.991<br>= 4.066e-0<br>= 1.000e+0<br>= 2.983e-0<br>= 1.389e-0 | 001<br>000<br>002<br>001 |                           |
| Percent erro | Tempera<br>Electrical<br>or, 100*(Cat- An          | ature (deg C)<br>balance (eg)<br> )/(Cat+ An )<br>Iterations<br>Total H          | = 25.000<br>= -1.265e-0<br>= -0.00<br>= 233<br>= 1.110421e      | )09<br>>+002             |                           |
|              |                                                    | Total O                                                                          | = 5.587731e                                                     | +001                     |                           |
|              |                                                    | Distribution c                                                                   | of species                                                      |                          |                           |
|              |                                                    |                                                                                  |                                                                 | Log                      | Log                       |
| Log          | Species                                            | Molality                                                                         | Activity                                                        | Molality                 | Activity                  |
| Gamma        |                                                    | 4 504 005                                                                        | 0.000.000                                                       | 5 200                    | 5 400                     |
| -0.113       | H+                                                 | 4.791e-006                                                                       | 3.69/e-006                                                      | -5.320                   | -5.432                    |
| -0.187       | UH-                                                | 4.153e-009                                                                       | 2.0840-009                                                      | -8.384                   | -8.5/1                    |
| 0.000        | 0.000-+000                                         | 2.2216+001                                                                       | 9.9118-001                                                      | 1.744                    | -0.004                    |
| 0.0/1        | CH4                                                | 0.000e+000                                                                       | 0.000e+000                                                      | -141.384                 | -141.343                  |
| C(4)         | 1.389e-001                                         | 1.094e-001                                                                       | 1.201e-001                                                      | -0.961                   | -0.920                    |
| 0.041        | HCO3-                                              | 2.035e-002                                                                       | 1.433e-002                                                      | -1.691                   | -1.844                    |
| -0.152       | CaHCO3+                                            | 9.085e-003                                                                       | 6.396e-003                                                      | -2.042                   | -2.194                    |
| -0.152       | MgHCO3+                                            | 5.761e-005                                                                       | 4.210e-005                                                      | -4.239                   | -4.376                    |
| -0.136       | CaCO3                                              | 9.729e-006                                                                       | 1.068e-005                                                      | -5.012                   | -4.971                    |
| 0.041        | NaHCO3                                             | 2.165e-006                                                                       | 2.377e-006                                                      | -5.665                   | -5.624                    |
| 0.041        | 003-2                                              | 7.400e-007                                                                       | 1.818e-007                                                      | -6.131                   | -6.741                    |
| -0.610       | MnHCO3+                                            | 1.035e-007                                                                       | 7.562e-008                                                      | -6.985                   | -7.121                    |
| -0.136       | MgCO3                                              | 3.967e-008                                                                       | 4.356e-008                                                      | -7.402                   | -7.361                    |
| 0.041        | NaCO3-                                             | 1.366e-009                                                                       | 9.986e-010                                                      | -8.864                   | -9.001                    |
| -0.136       | MhCO3                                              | 7.786e-010                                                                       | 8.550e-010                                                      | -9.109                   | -9.068                    |
| 0.041        | Fe_diH003+                                         | 9.982e-023                                                                       | 7.295e-023                                                      | -22.001                  | -22.137                   |
| -0.136       | Fe_diCO3                                           | 2.022e-025                                                                       | 2.220e-025                                                      | -24.694                  | -24.654                   |
| 0.041<br>Ca  | 1.476e-001                                         | 1 000 001                                                                        | 2 400 000                                                       | 0.000                    | 1 450                     |
| -0.568       | Ca+2                                               | 1.293e-001                                                                       | 3.499e-002                                                      | -0.888                   | -1.456                    |
| 0.041        | C-1702                                             | 9.2170-003                                                                       | 6 2060 002                                                      | 2.035                    | -1.995                    |
| -0.152       | Can.U.S.+                                          | 9.0000-000                                                                       | 1 06% 005                                                       | -2.042                   | -2.194                    |
| 0.041        |                                                    | 2 9990 007                                                                       | 2 1020 007                                                      | 6 523                    | 6 659                     |
| -0.136       | CaOH+                                              | 2 130-009                                                                        | 1 557-009                                                       | _8 672                   | _8 808                    |
| -0.136<br>Cl | 2.367e-001                                         | 212000 000                                                                       | 1.5570 005                                                      | 010/2                    | 01000                     |
| -0.181       | C1-                                                | 2.367e-001                                                                       | 1.559e-001                                                      | -0.626                   | -0.807                    |
| -0.136       | MnCl+                                              | 5.147e-008                                                                       | 3.761e-008                                                      | -7.288                   | -7.425                    |
| -0.545       | Fe_triCl+2                                         | 1.201e-008                                                                       | 3.425e-009                                                      | -7.921                   | -8.465                    |
| -0.136       | Fe_triCl2+                                         | 3.264e-009                                                                       | 2.385e-009                                                      | -8.486                   | -8.622                    |
| 0.041        | MnC12                                              | 2.331e-009                                                                       | 2.560e-009                                                      | -8.632                   | -8.592                    |
| -0.136       | MnCl3-                                             | 1.504e-010                                                                       | 1.099e-010                                                      | -9.823                   | -9.959                    |
| 0.041        | Fe_triCl3                                          | 3.386e-011                                                                       | 3.719e-011                                                      | -10.470                  | -10.430                   |
| -0.136       | Fe_diCl+                                           | 1.500e-023                                                                       | 1.096e-023                                                      | -22.824                  | -22.960                   |
| re_ci        | 3.055e-022<br>Fe_di+2                              | 1.785e-022                                                                       | 5.092e-023                                                      | -21.748                  | -22.293                   |
| -0.545       | Fe_diH003+                                         | 9.982e-023                                                                       | 7.295e-023                                                      | -22.001                  | -22.137                   |
| -0.136       | Fe_diCl+                                           | 1.500e-023                                                                       | 1.096e-023                                                      | -22.824                  | -22.960                   |
| 0.011        | Fe_diSO4                                           | 1.196e-023                                                                       | 1.313e-023                                                      | -22.922                  | -22.882                   |
| 0.041        | Fe_diC03                                           | 2.022e-025                                                                       | 2.220e-025                                                      | -24.694                  | -24.654                   |
| -0.136       | Fe_diOH+                                           | 5.908e-027                                                                       | 4.318e-027                                                      | -26.229                  | -26.365                   |
| -0.136       | Fe_diH904+                                         | 4.365e-028                                                                       | 3.190e-028                                                      | -27.360                  | -27.496                   |
| 0.041        | Fe_di(HS)2                                         | 0.000e+000                                                                       | 0.000e+000                                                      | -292.236                 | -292.195                  |
| -0.136       | Fe_di (HS) 3-                                      | 0.000e+000                                                                       | 0.000e+000                                                      | -429.448                 | -429.585                  |
| Fe_tri       | 1.610e-004<br>Fe_tri(OH)2+                         | 1.530e-004                                                                       | 1.118e-004                                                      | -3.815                   | -3.951                    |
| -0.136       | Fe_triOH+2                                         | 4.415e-006                                                                       | 1.259e-006                                                      | -5.355                   | -5.900                    |
| -0.545       | Fe_tri(OH)3                                        | 3.517e-006                                                                       | 3.862e-006                                                      | -5.454                   | -5.413                    |

0.041

-0.136

Fe\_triSO4+

1.583e-008 1.157e-008 -7.801 -7.937

| 4 005           | Fe_tri+3           | 1.223e-008 | 7.275e-010  | -7.913  | -9.138  |
|-----------------|--------------------|------------|-------------|---------|---------|
| -1.226          | Fe_triCl+2         | 1.201e-008 | 3.425e-009  | -7.921  | -8.465  |
| -0.545          | Fe_tri2(OH)2+4     | 6.446e-009 | 4.269e-011  | -8.191  | -10.370 |
| -2.179          | Fe_triCl2+         | 3.264e-009 | 2.385e-009  | -8.486  | -8.622  |
| -0.136          | Fe tri3(0H)4+5     | 2.532e-009 | 9.974e-013  | -8.597  | -12.001 |
| -3.405          | Fe tri (OH) 4-     | 1.292e-009 | 9.444e-010  | -8.889  | -9.025  |
| -0.136          | Fe tri (904)2-     | 5.020e-010 | 3.668e-010  | -9.299  | -9.436  |
| -0.136          | Fe triCl3          | 3.386e-011 | 3.719e-011  | -10.470 | -10.430 |
| 0.041           | Fe triH904+2       | 4 0130-013 | 1 1/150-013 | _12 397 | _12 9/1 |
| -0.545          | 0.0000000          | 4.0100 010 | 1.1400 010  | 12.007  | 12.941  |
| 0.041           | H2                 | 0.000e+000 | 0.000e+000  | -44.396 | -44.355 |
| K.              | 5.270e-005         | E 222- 00E | 3 440- 00F  | 4 000   | 4.400   |
| -0.181          | K+                 | 5.222e-005 | 3.4400-005  | -4.282  | -4.403  |
| -0.136          | KS04-              | 4./94e-00/ | 3.5040-007  | -6.319  | -6.455  |
| 0.041           | KOH                | 2.912e-014 | 3.198e-014  | -13.536 | -13.495 |
| Mg              | 9.719e-004<br>Mg+2 | 8.365e-004 | 2.512e-004  | -3.078  | -3.600  |
| -0.522          | Mg904              | 7.774e-005 | 8.537e-005  | -4.109  | -4.069  |
| 0.041           | MgHCO3+            | 5.761e-005 | 4.210e-005  | -4.239  | -4.376  |
| -0.136          | MgCO3              | 3.967e-008 | 4.356e-008  | -7.402  | -7.361  |
| 0.041           | MpCH+              | 3.346e-010 | 2.445e-010  | -9.476  | -9.612  |
| -0.136<br>Mn(2) | 3.951e-007         |            |             |         |         |
| -0.576          | Mn+2               | 2.230e-007 | 5.922e-008  | -6.652  | -7.228  |
| _0 136          | MnHCO3+            | 1.035e-007 | 7.562e-008  | -6.985  | -7.121  |
| 0.136           | MnCl+              | 5.147e-008 | 3.761e-008  | -7.288  | -7.425  |
| 0.041           | Mn904              | 1.390e-008 | 1.527e-008  | -7.857  | -7.816  |
| 0.041           | MnCl2              | 2.331e-009 | 2.560e-009  | -8.632  | -8.592  |
| 0.041           | MinCO3             | 7.786e-010 | 8.550e-010  | -9.109  | -9.068  |
| 0.041           | MnCl3-             | 1.504e-010 | 1.099e-010  | -9.823  | -9.959  |
| -0.136          | MnCH+              | 5.585e-013 | 4.082e-013  | -12.253 | -12.389 |
| -0.136<br>Mn(3) | 4.555e-017         |            |             |         |         |
| -1.226          | Mn+3               | 4.555e-017 | 2.710e-018  | -16.341 | -17.567 |
| Na              | 4.183e-004<br>Na+  | 4.132e-004 | 2.951e-004  | -3.384  | -3.530  |
| -0.146          | Na904-             | 2.934e-006 | 2.144e-006  | -5.533  | -5.669  |
| -0.136          | NaHCO3             | 2.165e-006 | 2.377e-006  | -5.665  | -5.624  |
| 0.041           | NaCO3-             | 1.366e-009 | 9.986e-010  | -8.864  | -9.001  |
| -0.136          | NaCH               | 4.760e-013 | 5.227e-013  | -12.322 | -12.282 |
| 0.041<br>O(0)   | 3.828e-004         |            |             |         |         |
| 0.041           | 02                 | 1.914e-004 | 2.102e-004  | -3.718  | -3.677  |
| S(-2)           | 0.000e+000         |            |             |         |         |

| 0.041              | H2S                                                                                                                                                                                                        | 0.000e+000                                           | 0.000e+000                                           | -137.957                                                                                                                                        | -137.917 |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| 0.197              | HS-                                                                                                                                                                                                        | 0.000e+000                                           | 0.000e+000                                           | -139.239                                                                                                                                        | -139.426 |  |
| 0.635              | S-2                                                                                                                                                                                                        | 0.000e+000                                           | 0.000e+000                                           | -146.277                                                                                                                                        | -146.912 |  |
| -0.035             | Fe_di(HS)2                                                                                                                                                                                                 | 0.000e+000                                           | 0.000e+000                                           | -292.236                                                                                                                                        | -292.195 |  |
| 0.041              | Fe <u>di</u> (HS)3-                                                                                                                                                                                        | 0.000e+000                                           | 0.000e+000                                           | -429.448                                                                                                                                        | -429.585 |  |
| -0.156<br>S(6)     | 1.579e-002                                                                                                                                                                                                 | 0.017000                                             | 1 010- 000                                           | 0.005                                                                                                                                           | 1 005    |  |
| 0.041              | Ca504                                                                                                                                                                                                      | 9.21/e-003                                           | 1.012e-002                                           | -2.035                                                                                                                                          | -1.995   |  |
| -0.651             | 504-2                                                                                                                                                                                                      | 6.491e-003                                           | 1.4508-005                                           | -2.188                                                                                                                                          | -2.839   |  |
| 0.041              | Mg904                                                                                                                                                                                                      | 7.774e-005                                           | 8.53/e-005                                           | -4.109                                                                                                                                          | -4.069   |  |
| -0.136             | NaSO4-                                                                                                                                                                                                     | 2.934e-006                                           | 2.144e-006                                           | -5.533                                                                                                                                          | -5.669   |  |
| -0.136             | H904-                                                                                                                                                                                                      | 7.130e-007                                           | 5.211e-007                                           | -6.147                                                                                                                                          | -6.283   |  |
| -0.136             | K904-                                                                                                                                                                                                      | 4.794e-007                                           | 3.504e-007                                           | -6.319                                                                                                                                          | -6.455   |  |
| -0.136             | CaH904+                                                                                                                                                                                                    | 2.999e-007                                           | 2.192e-007                                           | -6.523                                                                                                                                          | -6.659   |  |
| -0.136             | Fe_triSO4+                                                                                                                                                                                                 | 1.583e-008                                           | 1.157e-008                                           | -7.801                                                                                                                                          | -7.937   |  |
| 0.041              | MnSO4                                                                                                                                                                                                      | 1.390e-008                                           | 1.527e-008                                           | -7.857                                                                                                                                          | -7.816   |  |
| 0.041              | Fe_tri(SO4)2-                                                                                                                                                                                              | 5.020e-010                                           | 3.668e-010                                           | -9.299                                                                                                                                          | -9.436   |  |
| -0.130             | Fe_triH904+2                                                                                                                                                                                               | 4.013e-013                                           | 1.145e-013                                           | -12.397                                                                                                                                         | -12.941  |  |
| -0.545             | Fe_di904                                                                                                                                                                                                   | 1.196e-023                                           | 1.313e-023                                           | -22.922                                                                                                                                         | -22.882  |  |
| 0.041              | Fe_diH904+                                                                                                                                                                                                 | 4.365e-028                                           | 3.190e-028                                           | -27.360                                                                                                                                         | -27.496  |  |
| -0.136             |                                                                                                                                                                                                            |                                                      |                                                      |                                                                                                                                                 |          |  |
|                    |                                                                                                                                                                                                            | —Saturation i                                        | ndices                                               |                                                                                                                                                 |          |  |
|                    | Phase                                                                                                                                                                                                      | SI log I                                             | AP log KT                                            |                                                                                                                                                 |          |  |
|                    | Arhydrite<br>Aragonite<br>Calcite<br>CH(u)<br>CC2(u)<br>Dolomite<br>Oppsun<br>H20(u)<br>H20(u)<br>H20(u)<br>H25(u)<br>Haister<br>Hassentite<br>O2(u)<br>Pyrochosite<br>Pyrolusite<br>Hudodrosite<br>Sulfur | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | CaSO4<br>CaC03<br>CaC03<br>CaM3<br>CaM5(CO3)2<br>CaM5(CO3)2<br>CaSO4:2H2C<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O<br>H2O |          |  |
| End of simulation. |                                                                                                                                                                                                            |                                                      |                                                      |                                                                                                                                                 |          |  |
| Reading input      | t data for simula                                                                                                                                                                                          | ation 3.                                             |                                                      |                                                                                                                                                 |          |  |
|                    |                                                                                                                                                                                                            |                                                      |                                                      |                                                                                                                                                 |          |  |

End of run.

## **B-3: PHREEQC Partial Output File**

| Days        | Fe(2)       | Fe(3)       | pН          | si_Fe(OH)3(a) |
|-------------|-------------|-------------|-------------|---------------|
| 0.0000e+000 | 1.6100e+002 | 0.0000e+000 | 5.4344e+000 | -9.9990e+001  |
| 1.1574e-003 | 1.6023e+002 | 7.6792e-001 | 5.4344e+000 | -9.9990e+001  |
| 5.7870e-003 | 1.5720e+002 | 3.7999e+000 | 5.4344e+000 | -9.9990e+001  |
| 4.1667e-002 | 1.3558e+002 | 2.5417e+001 | 5.4341e+000 | -9.9990e+001  |
| 1.6667e-001 | 8.1085e+001 | 7.9915e+001 | 5.4333e+000 | -9.9990e+001  |
| 4.1667e-001 | 2.9106e+001 | 1.3189e+002 | 5.4326e+000 | -9.9990e+001  |
| 1.0000e+000 | 2.6813e+000 | 1.5832e+002 | 5.4322e+000 | -9.9990e+001  |
| 2.0000e+000 | 4.5311e-002 | 1.6095e+002 | 5.4322e+000 | -9.9990e+001  |
| 4.0000e+000 | 1.2984e-005 | 1.6100e+002 | 5.4322e+000 | -9.9990e+001  |
| 6.0000e+000 | 3.7205e-009 | 1.6100e+002 | 5.4322e+000 | -9.9990e+001  |
| 8.0000e+000 | 1.0661e-012 | 1.6100e+002 | 5.4322e+000 | -9.9990e+001  |
| 1.0000e+001 | 3.0549e-016 | 1.6100e+002 | 5.4322e+000 | -9.9990e+001  |

# Appendix C. Iron Standards Calculations

**Table C-1: Standards Calculations** 

| Formula Weight, FeCl3 (g/mol)                 | 270.32   |
|-----------------------------------------------|----------|
| Molar Weight, Fe (g/mol)                      | 55.847   |
| Actual Weight of Compound*, FeCl3 (g)         | 0.495    |
| Volume of flask (L)                           | 1        |
| Desired Conc. (mg/L)                          | 100      |
| Desired Mass                                  | 100      |
| Mass of Compound to produce desired [Fe] (mg) | 484.0367 |

#### Table C-2: Iron Standards

| Stand.<br>[C] | Vol.(mL) | Actual<br>Vol<br>(mL)* | Actual<br>Dilution<br>(ppm) |
|---------------|----------|------------------------|-----------------------------|
| 1             | 0.977852 | 1                      | 1.02265                     |
| 2             | 1.955704 | 2                      | 2.0453                      |
| 5             | 4.88926  | 5                      | 5.11325                     |
| 8             | 7.822816 | 8                      | 8.1812                      |
| 50            | 48.8926  | 50                     | 51.1325                     |

\*measured quantity