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Compact waveguide splitter networks  
Yusheng Qian, Jiguo Song, Seunghyun Kim, Weisheng Hu, and Gregory P. Nordin 

Electrical and Computer Engineering, Brigham Young University,Provo, UT 84602 USA 
nordin@ee.byu.edu 

 
Abstract:  We demonstrate compact waveguide splitter networks in silicon-
on-insulator (SOI) rib waveguides using trench-based splitters (TBSs) and 
bends (TBBs). Rather than a 90° geometry, we use 105° TBSs to facilitate 
reliable fabrication of high aspect ratio trenches suitable for 50/50 splitting 
when filled with SU8. Three dimensional (3D) finite difference time 
domain (FDTD) simulation is used for splitter and bend design. Measured 
TBB and TBS optical efficiencies are 84% and 68%, respectively. Compact 
105° 1 × 4, 1 × 8, and 1 × 32 trench-based splitter networks (TBSNs) are 
demonstrated. The measured total optical loss of the 1 × 32 TBSN is 9.15 
dB. Its size is only 700 μm × 1600 μm for an output waveguide spacing of 
50 μm.  

©2008 Optical Society of America 

OCIS codes: (130.0130) Integrated optics; (230.1360) Beam splitters; (260.6970) Total 
internal reflection; (230.7370) Waveguides; (130.1750) Components; (250.5300) Photonic 
integrated circuits. 
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1. Introduction 

Waveguide splitter networks that divide an optical signal into N outputs (1 × N) are important 
elements in a variety of applications including power splitters for planar lightwave circuits 
(PLCs) [1,2] and periodic optical sources for integrated microfluidic devices [3,4]. Such 
splitter networks are primarily based on either cascaded Y-branch splitters [1-3,5,6] or 
multimode interference (MMI) splitters [4,7-9]. In this paper we report an alternate approach 
using trench-based splitters (TBSs) [10,11] and trench-based bends (TBBs) [12]. We focus on 
silicon-on-insulator (SOI) rib waveguides that have low in-plane core/clad refractive index 
contrast and hence require relatively large bend radius (1.2 mm for the waveguides considered 
in this paper) which limits achievable size reduction for traditional splitter networks. The use 
of TBSs and TBBs to create trench-based splitter networks (TBSNs) results in a large 
decrease in required chip area. This is particularly important in our ultimate application of 
sourcing light into many SOI microcantilevers for a new in-plane photonic transduction 
mechanism [13] to enable single-chip microcantilever sensor arrays [14-16]. 

In this paper we first discuss modification of our previously-reported SOI TBSs [10] to 
achieve 50/50 reflection/transmission splitting ratios in fabricated splitters with SU8 as the 
trench fill material by changing the splitter angle from 90° to 105°. We then report fabrication 
and measurement of 105° 1 × 4 and 1 × 32 TBSNs, followed by an examination of total 
splitter network loss. For an output waveguide spacing of 50 μm, the 1 × 32 network occupies 
an area of only 700 μm × 1600 μm.  
 
2. Design 

As shown in Fig. 1(a), we consider an SOI rib waveguide with rib width of 1.6 μm, rib 
thickness of 0.75 μm, and slab thickness of 0.65 μm. The underclad is SiO2 and the overclad 
is SU8, which is the same material used to fill the TBS and TBB trenches. The waveguide 
supports only the fundamental TE polarization mode (electric field in the plane of the silicon) 
at a wavelength of 1550 nm. 

Figures 1(b) and 1(c) show the geometry of a TBB and a TBS. The TBB bend angle, α1, 
is defined as the angle between the original waveguide direction and the direction of the 
output waveguide. Similarly, the TBS bend angle, α2 , is defined as the angle between the 
transmission output direction and the reflection output direction. In both cases, D is defined as 
the distance from the intersection of the waveguide center lines to the first interface of the 
trench. In Ref. 12 we reported fabrication and measurement of TBBs with a 90° bend angle in 
which the trench is filled with SU8 and the measured optical efficiency (i.e. fraction of the 
incident waveguide mode power reflected into the mode of the output waveguide) is 93%. In 
Ref. 10 we reported the development of SOI TBSs with a 90° bend angle. TBSs filled with air 
(n = 1.0), SU8 (n = 1.57), or refractive index matching fluid (n = 1.733) are characterized at 
1550 nm. A 49/51 (reflection/transmission) splitting ratio is reported for a trench width of 82 
nm with index matching fluid as the trench fill material. However, TBSs with SU8 as the 
trench fill material need a trench width of 67 nm to achieve a 50/50 splitting ratio, which is 
too small for us to reliably fabricate since the trench etch depth must be 750 nm. To realize 
50/50 TBSs with SU8 as the trench fill material, in this paper we explore a new design by 
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increasing the TBS bend angle to 105° so that a 50/50 splitting ratio can be achieved with a 
wider trench.  
 

 
(a) 

 
 (b) (c) 

 
(d) 

Fig. 1. (a). Rib waveguide cross section. (b) 105° TBB and (c) TBS geometry (i.e., α1 = α2 = 
105° and θ1 = θ2 = 37.5°). (d) Required trench width for 50/50 splitting using SU8 filled TBSs 
(right axis) and total splitter efficiency (left axis) as a function of splitter bend angle.  

 
As discussed in Ref. [10], TBSs operate based on frustrated total internal reflection (FTIR) 

in which the trench width is small enough that part of the optical field is transmitted through 
the trench while the rest undergoes total internal reflection. For a given incidence angle,  

 θ2 = 90° −α2/2, (1) 
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the ratio between the reflected and transmitted power is a function of trench width. 
Alternatively, for a given trench width, the splitting ratio can be altered by changing the 
incidence angle (i.e., splitter bend angle). We use the three dimensional (3D) finite difference 
time domain (FDTD) method [17,18] with Berenger PML boundary conditions [19] to 
explore the relationship between trench width and splitter angle to achieve 50/50 splitting for 
the case of SU8 trench fill, which is also the overclad material of the SOI rib waveguide. The 
refractive indices used for numerical simulation are 3.476 for silicon, 1.444 for SiO2, and 
1.570 for SU8 at a wavelength of 1550 nm. The result is shown in Fig. 1(d) in which the 
trench width (right axis) is shown as a function of splitter bend angle for 50/50 splitting. Also 
shown is the total optical efficiency (i.e., sum of transmitted and reflected mode power 
divided by incident mode power) on the left axis. Note that as the splitter bend angle increases 
the required trench width also increases, but the total optical efficiency is reduced. Based on 
fabrication considerations, we choose a splitter bend angle of 105° such that the desired 
trench width is 116 nm while the total optical efficiency is 84% (reflection 42% and 
transmission 42%). To account for the Goos-Hanchen shift, D is chosen to be -97 nm. The 
TBS trench has an aspect ratio (depth:width) of 6.5:1, which is relatively straightforward for 
us to fabricate. A plot of the magnitude of the time-averaged magnetic field is shown at a 
plane 0.325 μm above the SiO2 underclad (i.e., nearly in the middle of the rib waveguide) in 
Fig. 2(a). 

Changing the splitter bend angle, α2, to 105° necessitates changing α1 for the TBBs to 
105° to maintain the desired geometry of the TBSNs (shown in later sections). We similarly 
use 3D FDTD to design the 105° bends. Figure 2(b) shows the magnitude of the time-
averaged magnetic field in a plane 0.325 μm above the SiO2 underclad for a 105° SU8 filled 
TBB (D = -85 nm), which has an optical efficiency of 82%. 

 

   
(a)                                                                                        (b) 

Fig. 2. Magnitude of the time-averaged magnetic field for (a) 105° TBS and (b) 105° TBB. 

 
3. Measured 105° TBB and TBS optical properties 

The 105° TBBs and TBSs are fabricated with the same process as the 90° geometry devices 
reported in Refs. [10] and [12]. Electron beam lithography (EBL) with a Nanometer Pattern 
Generation System (JC Nabity NPGS) and field emission environmental scanning electron 
microscope (FEI/Philips XL30 ESEM-FEG) is used for trench patterning. A water soluble 
conductive polymer (aquaSAVE53za) is spin coated on top of the electron-beam resist (ZEP 
520A) to prevent charging during EBL. After developing, trenches are etched in an 
inductively coupled plasma reactive ion etcher (ICP RIE) with a fluorine-based etch 
chemistry. Finally, SU8 is spin coated to fill the trenches and also act as the upper cladding.  
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The optical source for characterization of TBBs and TBSs is an amplified spontaneous 
emission (ASE) source with a center wavelength of 1550 nm connected to an erbium-doped 
fiber amplifier (EDFA). A non-laser source source is chosen because the ASE bandwidth 
(~30 nm) results in a short coherence length which eliminates Fabry-Perot effects in the 
waveguides that would otherwise be present because of light reflected from the chip output 
and input endfaces. Note that the bandwidth of the source does not significantly affect our 
measurement results because the bend and splitter performance are only weakly dependent on 
wavelength. Light from the EDFA passes through a linear polarizer and is coupled into a 
polarization maintaining (PM) fiber, which in turn is butt coupled to an input waveguide on 
the chip under test. A single mode fiber is butt coupled to an output waveguide to direct light 
to a detector. A Newport auto-align system is used to maximize the coupling through the 
input and output fibers [10,12]. 

 

 
Fig. 3. Measured loss of 105° TBB as a function of number of bends in a set of equal-length 
waveguides. The average error for each data point is +/-0.09 dB. The insertion loss is ~37 dB, 
with almost all of this (~36 dB) due to the fiber/waveguide mode mismatch in getting light on 
and off chip.  

 
The optical properties of the 105° TBBs and TBSs are characterized as discussed in Refs. 

10 and 12 for 90° devices. The optical loss for 105° TBBs is measured with a set of equal 
length waveguides that have different numbers of bends. Figure 3 shows the measured optical 
loss as a function of the number of bends. The measured loss of 105° TBBs is -0.77 dB ± 0.02 
dB (84%) per bend. Curiously, the measured efficiency is slightly higher than the 3D FDTD 
prediction of 82%. However, this is consistent with our experience for 90° TBBs in which the 
measured efficiency is 93% while the 3D FDTD prediction is 89%. We have not yet 
discovered the source of this discrepancy.  

For TBSs, the splitter ratio and efficiency is measured using sets of 105° 1 × 2 network 
structures that contain one TBS and one TBB. Figure 4(a) shows a fabricated 105° 1 × 2 
network before coating SU8. The two etched circular regions at each end of the splitter trench 
are intended to facilitate filling SU8 into the trench. The other etched circles are present to 
scatter stray light in the silicon slab which originates from butt coupling the input fiber to the 
input waveguide. Measurement results for the reflection and transmission splitting ratio (i.e., 
reflected or transmitted optical power divided by the sum of the two) for individual splitters 
with different trench widths are shown in Fig. 4(b). Also shown are 3D FDTD simulation 
results. The short dashed lines are linear fits to the measured data. While the slope of these 
lines is comparable to the 3D FDTD results near the 50/50 splitting ratio region, the actual 
trench width at which 50/50 splitting occurs is 95 nm for the measured data compared to 116 
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nm for the simulations. The reason for this discrepancy is the fabricated trench widths are 
measured nondestructively by scanning electron microscope (SEM) imaging of the top of the 
trenches (i.e., looking down on the trenches from above the plane of the silicon). However, 
when an etched trench is cleaved and imaged in cross section as shown in Fig. 4(c), the trench 
sidewalls are seen to exhibit bowing. The center of the trench is 25% wider than the top 
trench width and therefore the effective trench width as experienced by the waveguide mode 
is larger than predicted by top-view SEM imaging.  

 

 
(a) 

 
(b)                                                                            (c)  

Fig. 4. (a). SEM image of a fabricated 1 × 2 network before SU8 spin coating. The separation 
between transmission and reflection waveguides is 50 μm. (b) Measurement and 3D FDTD 
simulation results for 105° TBS splitting ratio as a function of trench width. (c) Cross sectional 
SEM image of a cleaved trench. 

 
The optical efficiency, ηTBS , of 105° TBSs can be experimentally determined based on 

[10] 

 ηTBS =
PTBS _ reflection ηTBB + PTBS _ transmission

PStraight_ waveguide

   (2) 

where ηTBB is the optical efficiency of a 105° TBB, PTBS _ reflection and PTBS _ transmissionare 

the measured TBS reflected and transmitted power, respectively, and PStraight_ waveguideis the 
measured power through a separate straight waveguide. The measured splitter efficiency 
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based on Eq. (2) is 67.8% ± 9.9% (-1.79 dB ± 0.66 dB). Increasing the verticality of etched 
trench sidewalls to remove the observed bowing should significantly improve TBS efficiency. 
 

 
(a) (b) 

Fig. 5. (a). Microscope image and (b) 1D output fiber scan of SU8 coated 1 × 4 105° TBSN.  
 

4. 1 × N 105° TBSN Measurements 

With 105° TBBs and TBSs successfully demonstrated, we combine them to make 1 × N 
networks. We use 1 cm × 1 cm die designed such that we can fabricate 1 × 4, 1 × 8, or 1 × 32 
105° TBSNs. The TBSs of the network are fabricated to have a top-view trench width of ~95 
nm to account for sidewall bowing. Figure 5(a) shows a microscope picture of a fabricated 1 
× 4 network with 50 μm output waveguide spacing with SU8 on top. Figure 5(b) shows the 
measured optical power as a fiber is scanned along the output waveguides. The measured 
optical power through a straight waveguide is 23.7 μW so the optical efficiencies for outputs 
1-4 are 12%, 9%, 12%, and 9%, respectively.  

Figure 6(a) shows a 1 × 32 TBSN. The output waveguide spacing is 50 μm except for 
outputs #16 and #17 which have a spacing of 100 μm. The total 1 × 32 network region 
occupies an area only 700 μm × 1600 μm. Figure 6(b) is an infrared camera image of the 32 
corresponding outputs. The optical power of each output is measured and plotted in Fig. 6(c). 
The 1×32 network has an average output power of 0.12 μw and a standard deviation (STD) of 
0.03 μw. The normalized STD (STD divided by the mean) of the measured 32 outputs is 0.26. 
The optical power through a nearby straight waveguide is 32.8 μW so the average fraction of 
the input light that exits a given output waveguide is 0.37%. 

Due to the asymmetry of our TBSN structure, light in different output waveguides passes 
through different numbers of TBBs. Consequently, there will be variation in the output optical 
powers due to losses from the TBBs. To estimate the expected variation for an ideal TBSN, 
we calculate the normalized output power of a 1 × 32 TBSN using the measured 105° TBB 
and TBS efficiency reported in Section 3, and assume that all of the TBSs in the network have 
a 50/50 splitting ratio (i.e., TBB efficiency 84% and TBS transmission and reflection 
efficiencies both 34%). The result is a normalized STD of 0.20. Comparing with the 
normalized STD of the measured 32 output powers (0.26), the variation of output power in the 
fabricated 1 × 32 network is ~30% higher than the theoretical value, which is most likely due 
to variations between individual splitters because of fabrication process nonuniformities and 
variations introduced by the quality of the endface polish. We note that TBSN output 
uniformity can be improved by using a symmetric 105° network geometry in which the 
number of TBBs in each output path is the same. However, the achieved level of uniformity 
reported in this paper is entirely adequate for our application since differential signals are 
used to transduce microcantilever deflection [13]. 

As a final comment on output uniformity, light exiting each output waveguide goes 
through a different waveguide propagation length. For our 1 × 32 network, the longest path 
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(output waveguide #32) is 2 mm longer than the shortest one (#1). Since the measured 
propagation loss is 1.1 dB (measured with the cut-back method using a straight waveguide 
sample at 1550 nm), this length difference causes an extra loss of only 0.22 dB. Hence the 
network output power variation due to waveguide length difference is negligible compared to 
the variation caused by the different number of TBBs in each output path.  
 

    
(a)                                                                             (b) 

 
(c) 

Fig. 6. (a). Microscope image of SU8 coated 1 × 32 TBSN and corresponding (b) IR camera 
image of output waveguides and (c) fiber-based output waveguide power measurement as a 
function of output waveguide number. 
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5. 1 × N 105° TBBSN loss 

An important parameter to evaluate 1 × N network performance is the total optical loss of the 
network. We analyze this loss by assuming an ideal case in which the TBBs and TBSs of the 
network have same optical efficiency, η, and the TBS splitting ratio is 50/50. The total optical 

efficiency of a 1 × 2 network is the sum of the efficiency for the reflection path, η2 2 , and 
the efficiency for the transmission path, η 2 . The total network loss can therefore be 
calculated as 

 Lcalc = 10 * log((
η2

2
+ η

2
)M )    (3) 

where M is the number of layers in the network, which is defined as the number of splitters 
that each waveguide passes from input to output. The output number N and the layer number 

M are related by N = 2M . 
The experimentally measured total network loss is  

Lmeas = 10 * log(
P1 ×  N network

Pstraight−waveguide
)      (4) 

where the network total output power, P1 ×  N network , is the sum of all N output powers. 
Lcalc  is plotted as a function of N and M (top and bottom axes, respectively) in Fig. 7 for 

η= 60%, 70%, 80%, 90%, and 95%. The measured total network loss, Lmeas , is also shown (-
3.82 dB, -5.9 dB, and -9.15 dB for 1 × 4, 1 × 8, and 1 × 32 TBSNs, respectively). In the case 
of the 1×8 network, the total output power is an estimated value based on only seven outputs 
(multiplying the average power of the seven outputs by eight) because one output waveguide 
of the network has a waveguide defect such that no output power can be measured. Note that 
the measured data indicates an average TBB/TBS efficiency between 70% and 80%, and that 
the data points are consistent with each other (i.e., nearly linear).  
 

 
Fig. 7. Measured and calculated 1 × N network total loss as a function of number of network 
layers (bottom axis) and network outputs (top axis) (see text for details). 

 

(C) 2008 OSA 31 March 2008 / Vol. 16,  No. 7 / OPTICS EXPRESS  4989
#92636 - $15.00 USD Received 11 Feb 2008; revised 23 Mar 2008; accepted 25 Mar 2008; published 27 Mar 2008



6. Conclusions  

In summary, we have demonstrated 105° TBBs and TBSs with SU8 as the trench fill material. 
The measured optical efficiencies are 84% and 68% respectively. With a 105° splitter bend 
angle we are able to achieve 50/50 splitting for reasonable trench widths at the cost of 
somewhat lower total efficiency. Based on these 105° components, we have fabricated 1 × N 
networks up to 1 × 32, which occupies an area of only 700 μm × 1600 μm for output 
waveguide spacing of 50 μm. The total network loss for the 1 × 32 network is 9.15 dB, which 
is consistent with the measured TBB and TBS efficiencies. The normalized standard deviation 
of the output power in the network’s 32 outputs is 0.26, which is only ~30% higher than what 
is expected based only on the asymmetry of the network. 
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